Mixed-characteristic shtukas

Shtukas are objects introduced by Drinfeld to prove the local Langlands correspondence for GL_2 over function fields (equicharacteristic case). This was later extended by others to all GL_n . Scholze has defined shtukas in mixed characteristic, i.e. *p*-adic shtukas, which one could expect to be used to give a proof of the local Langlands correspondence for GL_n over *p*-adic fields (this was proven earlier by Harris and Taylor by different methods). This definition of *p*-adic shtukas relies on the notion of diamonds.

1 Motivation: rank-1 shtukas and class field theory

What follows is an informal discussion of the case of GL_1 , which is simply class field theory. The geometric viewpoint on this theory is due to Lang, Rosenlicht, Deligne, and others.

Let X/\mathbf{F}_p a smooth projective curve and K := K(X) its function field, with adèle ring **A**. Unramified class field theory gives a canonical isomorphism

$$\left\{\begin{array}{l} \text{idèle class characters} \\ K^{\times} \backslash \mathbf{A}^{\times} / \widehat{\mathcal{O}}^{\times} \to \mathbf{C}^{\times} \end{array}\right\} \simeq \left\{\begin{array}{l} \text{Galois characters} \\ \text{Gal}(K^{\text{ur}}/K) \to \mathbf{C}^{\times} \end{array}\right\}$$

satisfying a compatibility condition: if idèle class character χ corresponds to Galois character ρ then

$$\chi(1,\ldots,1,\pi_x,1,\ldots) = \rho(\operatorname{Frob}_x)$$

for all closed points $x \in X$. This statement is naturally given a geometric interpretation: there is an isomorphism

{characters
$$\operatorname{Pic}(X) \to \overline{\mathbf{Q}}_{\ell}^{\times}$$
} \simeq {characters $\pi_1(X) \to \overline{\mathbf{Q}}_{\ell}^{\times}$ }

also satisfying compatibility condition $\chi(\mathcal{O}(x)) = \rho(\operatorname{Frob}_x)$. The RHS of this equation can be interpreted as rank-1 étale local systems on X.

Drinfeld, reinterpreting work of the aformentioned figures, tells us how to assign a character of Pic X to a character of $\pi_1(X)$ using shtukas.

Definition 1.1. Let S/\mathbf{F}_p a scheme and $\alpha, \beta \in X(S)$. A Drinfeld shtuka of rank 1 with legs at (α, β) is the data of line bundles $\mathcal{L}, \mathcal{L}'$ on $S \times_{\mathbf{F}_p} X$ and a diagram

$$\operatorname{Frob}_{S}^{*}\mathcal{L} \xrightarrow{i} \mathcal{L}' \xleftarrow{j} \mathcal{L}$$

such that coker *i* and coker *j* are supported on the graphs Γ_{α} and Γ_{β} , respectively. If $D \subseteq X$ is a divisor such that α, β are disjoint from *D*, a *level D structure* on a shtuka is a trivialization $h: \mathcal{L}|_{S \times D} \cong \mathcal{O}_{S \times D}$ compatible with Frob_S, in the sense that the following diagram commutes:

Let \mathcal{M}_D^1 denote the moduli space of rank-1 Drinfeld shtukas with level D structure, let $\underline{\operatorname{Pic}}_D X$ denote the Picard scheme of line bundles on X trivialized over D, and $\operatorname{Pic}_D X = (\underline{\operatorname{Pic}}_D X)(\mathbf{F}_p)$ the group of line bundles on X trivialized over D. There is a commuting diagram:

$$\begin{array}{ccc} \mathscr{M}_D^1 & \xrightarrow{\mathcal{L}} & \underline{\operatorname{Pic}}_D X \\ \pi & & & \downarrow^{\operatorname{Frob}^* - \operatorname{id}} \\ (X - D)^2 & \longrightarrow & \underline{\operatorname{Pic}}_D X \end{array}$$

where π just sends a shtuka to its legs (α, β) . There is a natural action of $\operatorname{Pic}_D X$ on \mathscr{M}_D^1 , and consequently a natural action of $K^{\times} \setminus \mathbf{A}^{\times} = \varprojlim \operatorname{Pic}_D X$ on $\mathscr{M}^1 := \varprojlim \mathscr{M}_D^1$. In this way we obtain an action of \mathbf{A}^{\times} on a certain moduli space \mathscr{M}^1 of shtukas.

Choose a point $p \in X - D$ disjoint from α, β . Then the subgroup J of $\underline{\text{Pic}}_D X$ generated by $\mathcal{O}(p)$ acts on \mathscr{M}_D^1 equivariantly over $(X - D)^2$. So there is still a map, which by abuse we also denote $\pi : \mathscr{M}_D^1/J \to (X - D)^2$.

Let $\underline{\mathbf{Q}}_{\ell}$ be the constant local system on \mathscr{M}_D^1/J . Then $\pi_*\underline{\mathbf{Q}}_{\ell}$ is a local system on $(X-D)^2$ and corresponds to a representation of $\pi_1(X-D) \times \pi_1(X-D)$. There is a subtlety here, we should actually expect this to be a representation of $\pi_1((X-D)^2)$ and this group is not in general isomorphic to $\pi_1(X-D) \times \pi_1(X-D)$. But in this case, we do in fact get a representation of $\pi_1(X-D) \times \pi_1(X-D)$ because of the way we have set up the Frobenius compatibility (this is the content of Drinfeld's lemma, see [3, Chapter 16] and [1] for more details). We also already had a natural action of $\operatorname{Pic}_D X$, so we have obtained a representation V_{ℓ} of

$$\pi_1(X-D) \times \pi_1(X-D) \times (\operatorname{Pic}_D X)/J.$$

Theorem 1.2. We have a decomposition

$$V_{\ell} \otimes \overline{\mathbf{Q}}_{\ell} = \bigoplus_{\chi: \operatorname{Pic}_{D} X/J \to \overline{\mathbf{Q}}_{\ell}^{\times}} \rho_{\chi} \otimes \rho_{\chi}^{-1} \otimes \chi$$

where ρ_{χ} is a character of $\pi_1(X - D)$ compatible with χ .

The desired correspondence is then obtained by assigning χ to ρ_{χ} . There are several things to prove of course, e.g. that each χ appears exactly once in this decomposition and that the decomposition takes this shape.

2 Equicharacteristic shtukas

Drinfeld used the same setup to give a proof of the Langlands correspondence for GL_2 over K, using Drinfeld shtukas of rank 2 instead of rank 1. The rest of the proof is similar, but there are additional technicalities in the geometry of the moduli space \mathscr{M}_D^2 . Laurent Lafforgue pushed these techniques further to prove the Langlands correspondence for GL_n over function fields. Vincent Lafforgue gave a modified proof which applied to all reductive groups G. In this situation, it becomes necessary to allow for a more general definition of shtuka which allows for higher rank bundles and arbitrarily many legs. We will still focus

on the case of GL_n , but will allow for these more general shtukas, of which Drinfeld shtukas are a special case.

Definition 2.1. Let S/\mathbf{F}_p a scheme, $x_1, \ldots, x_m \in X(S)$, and $U = S \times_{\mathbf{F}_p} X - \bigcup_i \Gamma_{x_i}$. A shtuka with legs at x_1, \ldots, x_m is a vector bundle \mathcal{E} on $S \times_{\mathbf{F}_p} X$ with an isomorphism $\varphi : \operatorname{Frob}_S^* \mathcal{E}|_U \to \mathcal{E}|_U$.

The local version of this is naturally obtained from this definition: choose a closed point $x \in X(\mathbf{F}_p)$ and let \widehat{X} be the formal completion of X along x. Then $\widehat{X} \cong \operatorname{Spf} \mathbf{F}_p[\![T]\!]$ is an adic space.

Definition 2.2. Let S/\mathbf{F}_p an adic space, $x_1, \ldots, x_m \in \widehat{X}(S)$, and $U = S \times_{\mathbf{F}_p} \widehat{X} - \bigcup_i \Gamma_{x_i}$. A *local shtuka with legs at* x_1, \ldots, x_m is a vector bundle \mathcal{E} on $S \times_{\mathbf{F}_p} \widehat{X}$ with an isomorphism $\varphi : \operatorname{Frob}_S^* \mathcal{E}|_U \to \mathcal{E}|_U$ that is meromorphic along $\bigcup_i \Gamma_{x_i}$.

Remark. Let's recall what it means to be meromorphic along a Cartier divisor. Let Y be a uniform analytic adic space. On small enough open subsets, we can assume $Y = \text{Spa}(R, R^+)$ and the Cartier divisor is determined by a non-zerodivisor $f \in R$. Let Z be the support of the divisor and $U = X \setminus Z$ the complement. There is a canonical map $R[f^{-1}] \hookrightarrow H^0(U, \mathcal{O}_U)$ which is not in general an isomorphism ([3, §5.3]). An element $g \in H^0(U, \mathcal{O}_U)$ is called *meromorphic* if it comes from $R[f^{-1}]$.

It then makes sense to ask for a map of vector bundles to be meromorphic along a Cartier divisor; after choosing trivializations locally over some small enough affinoid open V, such a map is given by an element of $\operatorname{Mat}_n(H^0(V, \mathcal{O}_V))$ and we can ask for the entries to be meromorphic.

In the case that $S = \operatorname{Spa} C$, where C/\mathbf{F}_p is a nonarchimedean algebraically closed field, we have

$$S \times_{\mathbf{F}_p} \operatorname{Spa} \mathbf{F}_p[\![T]\!] = \operatorname{Spa} C \times_{\operatorname{Spa} \mathcal{O}_C} \operatorname{Spa} \mathcal{O}_C[\![T]\!] = \bigcup_n \operatorname{Spa} C \left\langle \frac{T}{\varpi^{1/n}} \right\rangle$$

is the open unit disk \mathbf{D}_C over C. Here $C\langle T/\varpi^{1/n} \rangle$ is $A[1/\varpi]$ where A is the (ϖ, T) -adic completion of $\mathcal{O}_C[T/\varpi^{1/n}]$. A leg is given by a map $\mathbf{F}_p[\![T]\!] \to C$, which is exactly specified by an element of $C^{\circ\circ} = \mathfrak{m}_{\mathcal{O}_C} = \mathbf{D}_C(\operatorname{Spa} C)$. A local shtuka over S with legs at $x_1, \ldots, x_m \in$ $\mathbf{D}_C(\operatorname{Spa} C)$ is therefore just a vector bundle \mathcal{E} on the open unit disk \mathbf{D}_C with a Frobenius linear endomorphism defined away from the geometric points x_1, \ldots, x_m , and meromorphic at these points. Here by "Frobenius linear" we have to be careful that Frobenius acts by pth powers on C but trivially on the free variable T.

A mixed characteristic shtuka will replace the smooth curve X with $X = \operatorname{Spec} \mathbf{Z}$, and the closed point x will be given by a prime number p. Then $\widehat{X} = \operatorname{Spf} \mathbf{Z}_p$. We would like to define local shtukas by making these substitutions everywhere in Definition 2.2. However, we immediately run into the problem that there is no suitable analog of $S \times_{\mathbf{F}_p} \widehat{X}$. There is no natural 0-dimensional object to replace \mathbf{F}_p over which $\operatorname{Spf} \mathbf{Z}_p$ lives, and of course there is also the issue that S and $\operatorname{Spf} \mathbf{Z}_p$ have different characteristics. Once we have a suitable replacement for this product space, we will have to take some care to give an appropriate definition of legs.

The next section is dedicated to solving these two issues.

3 Mixed-characteristic shtukas

3.1 The product space $S \times \operatorname{Spa} \mathbf{Z}_p$

The intuition is that given R of characteristic p, the tensor product " $R \otimes \mathbb{Z}_p$ " should be a universal ring admitting a map from R and \mathbb{Z}_p . As we have already discussed, there is no nontrivial such object in the literal sense. However, W(R) has most of the desired properties. It admits a map from \mathbb{Z}_p (as topological rings) and admits a map from R (as topological multiplicative monoids).

If (R, R^+) is a Tate Huber pair with $\varpi \in R$ a pseudouniformizer, we should then expect "Spa $R^+ \times$ Spa \mathbb{Z}_p " to be Spa $W(R^+)$. So it is sensible to define $\text{Spa}(R, R^+) \times \text{Spa} \mathbb{Z}_p$ to be the subset of $\text{Spa}W(R^+)$ where $[\varpi] \neq 0$. For technical reasons that we will soon see, it is best to restrict this definition to perfectoid Huber pairs.

Definition 3.1. Let (R, R^+) be a perfectoid Huber pair in characteristic p and $S = \text{Spa}(R, R^+)$. We define the product space

$$S \times \operatorname{Spa} \mathbf{Z}_p \coloneqq \{ [\varpi] \neq 0 \} \subseteq \operatorname{Spa} W(R^+).$$

Since \mathcal{O} and \mathcal{O}^+ are always sheaves on perfectoid spaces, this extends to a definition of $S \times \text{Spa} \mathbf{Z}_p$ for any $S \in \text{Perf.}$

Proposition 3.2. Let $S \in \text{Perf.}$

- 1. The space $S \times \operatorname{Spa} \mathbf{Z}_p$ is a uniform analytic adic space.
- 2. There is a canonical isomorphism of diamonds $(S \times \operatorname{Spa} \mathbf{Z}_p)^{\diamond} \simeq S \times \operatorname{Spd} \mathbf{Z}_p$.

Before discussing the proof of this result, let us observe that it implies that $\operatorname{Spd} \mathbf{Z}_p$ is an *absolute diamond* in the sense that $S \times \operatorname{Spd} \mathbf{Z}_p$ is a diamond for any $S \in \operatorname{Perf}$, even though $\operatorname{Spd} \mathbf{Z}_p$ is not itself a diamond. In fact, $\mathcal{D} \times \operatorname{Spd} \mathbf{Z}_p$ is a diamond for any diamond \mathcal{D} ; this follows from the previous fact by choosing a quasi-pro-étale perfectoid cover $S \to \mathcal{D}$.

Proof of Proposition 3.2(2). Suppose we know $X = S \times \operatorname{Spa} \mathbf{Z}_p$ exists as an analytic adic space. We want to show that $X^{\diamond} = S \times \operatorname{Spd} \mathbf{Z}_p$. We can assume $X = \operatorname{Spa}(R, R^+)$ is affinoid. Let $T = \operatorname{Spa}(A, A^+) \in \operatorname{Perf}$. By definition $X^{\diamond}(T)$ consists of untilts $T^{\sharp} = \operatorname{Spa}(A^{\sharp}, A^{\sharp+})$ together with a map $T^{\sharp} \to S \times \operatorname{Spa} \mathbf{Z}_p$. Such a map is equivalent to a map $W(R^+) \to A^{\sharp+}$ such that $[\varpi]$ is invertible in A^{\sharp} . We claim that there is a bijection

$$\left\{\begin{array}{c} \operatorname{maps} W(R^+) \to A^{\sharp +} \\ \operatorname{where} \left[\varpi\right] \text{ invertible in } A^{\sharp} \end{array}\right\} \simeq \left\{\begin{array}{c} \operatorname{maps} R^+ \to A^+ \\ \operatorname{where} \varpi \text{ invertible in } A \end{array}\right\}$$

Given a map $W(R^+) \to A^{\sharp+}$ on the LHS, we see that $[\varpi]$ is a pseudouniformizer of A^{\sharp} and reducing modulo $(p, [\varpi])$ gives a map $R^+/\varpi \to A^{\sharp+}/(p, [\varpi])$. Taking an inverse limit over Frobenius gives a map $R^+ \to A^{\sharp\flat+} = A^+$. In the other direction, given $R^+ \to A^+$, we obtain $W(R^+) \to W(A^+) \to A^{\sharp+}$ via the θ map.

So to give a map $W(R^+) \to A^{\sharp+}$ with $[\varpi]$ invertible is equivalent to giving a map $R^+ \to A^+$ extending to a map of Huber pairs $(R, R^+) \to (A, A^+)$. It follows that

$$X^{\diamond}(T) \simeq \{(T^{\sharp}, T \to S)\} \simeq (S \times \operatorname{Spd} \mathbf{Z}_p)(T).$$

We will not give the full proof that $S \times \operatorname{Spa} \mathbf{Z}_p$ is an adic space, however it is worth mentioning the analogy with the equicharacteristic situation. Suppose that $S = \operatorname{Spa} C$ where C/\mathbf{F}_p is nonarchimedean and algebraically closed. We saw earlier that

$$\operatorname{Spa} C \times_{\mathbf{F}_p} \operatorname{Spa} \mathbf{F}_p[\![T]\!] = \mathbf{D}_C = \bigcup_n \operatorname{Spa} C \left\langle \frac{T}{\varpi^{1/n}} \right\rangle$$

The RHS makes it clear that this is an analytic adic space. In the mixed characteristic situation, we have $\mathbf{F}_p[\![T]\!]$ replaced by \mathbf{Z}_p , and the corresponding decomposition is

$$\operatorname{Spa} C \times \operatorname{Spa} \mathbf{Z}_p = \bigcup_n \operatorname{Spa}(R_n, R_n^+)$$

where $R_n^+ = \mathcal{O}_C \left\langle \frac{p}{[\varpi^{1/p^n}]} \right\rangle$, where the Tate algebra brackets here denote $[\varpi]$ -adic completion of the polynomial algebra $W(\mathcal{O}_C) \left[\frac{p}{[\varpi^{1/p^n}]} \right]$, and $R_n = R_n^+[1/[\varpi]]$. To show that the resulting space is an analytic adic space, one shows that each R_n is sousperfectoid (see [3, Proposition 11.2.1]).

This is the mixed characteristic version of "open unit disk" though it is not literally an open unit disk in any real sense.

3.2 The correct notion of legs

A naïve definition of legs would be maps $S \to \operatorname{Spa} \mathbf{Z}_p$. However, as we have already discussed, every $S \in \operatorname{Perf}$ is fibered uniquely over $\operatorname{Spa} \mathbf{Z}_p$ and so this cannot be the correct analog. We might try to define the graph of a leg directly, i.e. sections $S \to S \times \operatorname{Spa} \mathbf{Z}_p$, but this doesn't even make sense as there is no natural map $S \times \operatorname{Spa} \mathbf{Z}_p \to S$. The correct replacement will be maps $S \to \operatorname{Spd} \mathbf{Z}_p$, which can equivalently be viewed as sections $S \to (S \times \operatorname{Spa} \mathbf{Z}_p)^{\diamond}$. By definition, these are exactly untilts S^{\sharp} of S!

Given an until S^{\sharp} , we have to describe what we mean by the "graph" of S^{\sharp} , in analogy with Definition 2.2. It will be enough to describe this in the affinoid situation, so consider $S = \operatorname{Spa}(R, R^+)$ and suppose $S^{\sharp} = \operatorname{Spa}(R^{\sharp}, R^{\sharp+})$. We have a canonically defined map $\theta : W(R^+) \to R^{\sharp+}$. The image of $[\varpi]$ in R^{\sharp} is ϖ^{\sharp} which is invertible, so the resulting map $S^{\sharp} = \operatorname{Spa}(R^{\sharp}, R^{\sharp+}) \to \operatorname{Spa}W(R^+)$ factors through $S \times \operatorname{Spa} \mathbf{Z}_p$. In other words, we have a diagram:

$$\begin{array}{ccc} \operatorname{Spa} R^{\sharp +} & \longrightarrow & \operatorname{Spa} W(R^{+}) \\ & & & & \uparrow \\ & & & & \uparrow \\ S^{\sharp} & - \cdots \rightarrow & S \times & \operatorname{Spa} \mathbf{Z}_{p} \end{array}$$

On the left, S^{\sharp} sits inside $\operatorname{Spa} R^{\sharp+}$ as the locus where $\varpi \neq 0$ and on the right, $S \times \operatorname{Spa} \mathbf{Z}_p$ sits inside $\operatorname{Spa} W(R^+)$ as the locus where $[\varpi] \neq 0$. So the dashed arrow actually exists as a well-defined map of adic spaces. We now state without proof (from [3, Proposition 11.3.1]).

Proposition 3.3. Given $S^{\sharp} \in (\operatorname{Spd} \mathbf{Z}_p)(S)$, the resulting map $S^{\sharp} \to S \times \operatorname{Spa} \mathbf{Z}_p$ is the inclusion of a closed Cartier divisor.

The intuition should be clear. The element ξ cuts out $\operatorname{Spa} R^{\sharp+}$ in $\operatorname{Spa} W(R^+)$, and ξ is a non-zerodivisor generating a closed ideal in $W(R^+)$. However, the subtleties in the definition of closed Cartier divisor make this quite technical to check, see [3, Proposition 11.3.1] for details.

Given $x \in (\operatorname{Spd} \mathbf{Z}_p)(S)$ corresponding to until S^{\sharp} , the graph of x will refer to the resulting map $\Gamma_x : S^{\sharp} \to S \times \operatorname{Spa} \mathbf{Z}_p$. We now have all the ingredients we need to define shtukas in mixed characteristic.

Definition 3.4. Let $S \in \text{Perf}, x_1, \ldots, x_m \in (\text{Spd} \mathbf{Z}_p)(S)$, and $U = S \times \text{Spa} \mathbf{Z}_p - \bigcup_i \Gamma_{x_i}$. A *local shtuka with legs at* x_1, \ldots, x_m is a vector bundle \mathcal{E} on $S \times \text{Spa} \mathbf{Z}_p$ with an isomorphism $\varphi : \text{Frob}_S^* \mathcal{E}|_U \to \mathcal{E}|_U$ that is meromorphic along $\bigcup_i \Gamma_{x_i}$.

Let C/\mathbf{Q}_p be a complete nonarchimedean algebraically closed field. We will consider shtukas over $\operatorname{Spa} C^{\flat}$ with one leg at C. We can choose $\pi = p$ to be the pseudouniformizer of C and $p^{\flat} = (p, p^{1/p}, p^{1/p^2}, \cdots)$ to be that of its tilt. The untilt C of C^{\flat} corresponds to an element $\xi = p - [p^{\flat}] \in A_{\operatorname{inf}} \coloneqq W(\mathcal{O}_{C^{\flat}})$, primitive of degree 1. We will describe the data of a shtuka over $S = \operatorname{Spa} C^{\flat}$ with one leg at C. In this case $S \times \operatorname{Spa} \mathbf{Z}_p$ is $\operatorname{Spa} A_{\operatorname{inf}} \setminus \{[p^{\flat}] = 0\}$ and a shtuka is a vector bundle on this space, Frobenius equivariant away from $\operatorname{Spa} C \hookrightarrow S \times \operatorname{Spa} \mathbf{Z}_p$, i.e. away from the closed Cartier divisor determined by ξ . On the picture on the next page, this is the geometric point x_C .

We will need it later, so let us discuss the shape of Spa A_{inf} in some more detail. There is the Frobenius endomorphism φ on Spa A_{inf} coming from the Frobenius on $\mathcal{O}_{C^{\flat}}$. Let k be the residue field of $\mathcal{O}_{C^{\flat}}$, and L = W(k)[1/p]. There are points $x_k, x_L, x_C, x_{C^{\flat}}$ labeled on the figure below (subscript indicates the residue field of the point).

Similarly to the case of $\operatorname{Spa} \mathcal{O}_C[[T]]$, we can look at $\mathcal{Y} = \operatorname{Spa} A_{\inf} \setminus \{x_k\}$, this is the

complement of the non-analytic point. There is again a map $\kappa : \mathcal{Y} \to [0, \infty]$ given by

$$\kappa(x) = \log \frac{|[p^{\flat}](\widetilde{x})|}{|p(\widetilde{x})|}$$

where \tilde{x} is a maximal rank-1 generalization of x. We see that $\kappa(x_L) = 0$, $\kappa(x_C) = 1$, $\kappa(x_{C^{\flat}}) = \infty$. We also see that we have the identity $\kappa \circ \varphi = p\kappa$.

There is a notion from integral *p*-adic Hodge theory closely related to that of shtukas over Spa C^{\flat} with one leg at C, namely that of a *Breuil-Kisin-Fargues module*. This is a finite free A_{inf} -module M together with an isomorphism $\varphi_M : (F^*M)[\xi^{-1}] \to M[\xi^{-1}]$. What we have already seen is that a Breuil-Kisin-Fargues module canonically defines a shtuka over Spa C^{\flat} with one leg at C.

Theorem 3.5. The natural functor from Breuil-Kisin-Fargues modules to shtukas over $\operatorname{Spa} C^{\flat}$ with one leg at C is an equivalence of categories.

The nontrivial content of this theorem is that any shtuka, a priori defined only over the locus $\{[p^{\flat}] \neq 0\}$, can be extended over all of Spa A_{inf} .

Observe that the definition of a Breuil-Kisin-Fargues module bears a striking resemblance to the notion of isocrystal over a perfect field of characteristic p. This suggests that shtukas over Spa C^{\flat} with one leg at C will be closely related to p-divisible groups.

References

- [1] V. Drinfeld. Langlands' conjecture for GL(2) over functional fields.
- [2] D. Hansen. Notes on diamonds, http://www.davidrenshawhansen.com/diamondnotes.pdf.
- [3] P. Scholze and J. Weinstein. Berkeley lectures on p-adic geometry, 2014.