
Modular curves and local heights

These are notes meant to explain the computations of local height pairings of Heegner points
on modular curves, as done by Gross and Zagier. These computations comprise one side of
the famous Gross–Zagier formula, which we state in §3. The other side of the formula
(computing coefficients of Rankin L-series) is not a focus of these notes.
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1 Modular curves I

In this section we will give descriptions of the smooth curves Y0(N), Y1(N), X0(N), X1(N)
living over Z[1/N ]. We will ignore the underlying stack-theoretic constructions for now, they
will come to the forefront regardless in §2.

1.1 The curves Y0(N) and Y1(N)

We recall the definitions of the modular curves Y0(N) and Y1(N). Consider the functors
F0, F1 : (Sch /Z[1/N ])opp → Set given by

F0(S) = {ϕ : E → E ′}, F1(S) = {(E,P )}

where E,E ′ are elliptic curves over S, ϕ : E → E ′ is a cyclic S-isogeny of degree N (one
whose kernel is étale locally isomorphic to (Z/NZ)S), and P ∈ E(S) is a point which has
exact order N in every geometric fiber. There is a surjective map of sheaves F1 → F0 which
sends (E,P ) to the isogeny ϕ : E → E/⟨P ⟩. We can also view F1 as the functor

F1(S) = {(ϕ : E → E ′, P )}

where P is a generator of kerϕ. Then the map F1 → F0 is just forgetful.
The functor F1 is representable by a scheme for N ≥ 4, smooth of relative dimension 1

over SpecZ[1/N ]. We omit the proof of representability, but it follows from the existence
of the Tate normal form of an elliptic curve with a marked point of order ≥ 4 (possibly
infinite). Assuming representability, we can prove:

Proposition 1.1. Y1(N) is a smooth curve over Z[1/N ].

Proof. Let R be a local Z[1/N ]-algebra, I an ideal of square zero, and R = R/I. Then R is
again local. Let (E,P ) an elliptic curve over R. Now E has a Weierstrass model in P2

R
, lift

it to a closed subscheme of P2
R by lifting the coefficients. The discriminant is automatically

a unit, and so this gives an elliptic curve E/R lifting E, i.e. ER
∼= E.

Now E[N ] is finite étale over R, since N is invertible in R, so the natural map E[N ](R) →
E[N ](R) is an isomorphism and we can find a lift of P .

We have established the smoothness of Y1(N); it remains to establish its relative dimen-
sion. For this we can work on the generic fiber Y1(N)Q (or really any fiber). The tangent
space at (E,P ) corresponds to flat first-order infinitesimal deformations of the pair (E,P ).
We claim that such deformations of (E,P ) are the same as deformations of E; indeed given
a deformation of E, the closure of P provides a compatible deformation of P . Deformations
of E are parametrized by H1(E, TE) which has dimension 1 over Q.

However, the functor F0 is not representable, evidently the data it parametrizes always
has automorphisms. It’s coarse moduli space is again a smooth curve Y0(N)/ SpecZ[1/N ].
It may be obtained as the quotient of Y1(N) by the action of (Z/NZ)× on the Γ1(N)-level
structure.
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1.2 Compactifications

There are a few ways to write down compactifications of Y0(N) and Y1(N). One way, due
to Deligne–Rapoport [2], is to consider an appropriate moduli functor of generalized elliptic
curves.

Definition 1.2. A generalized elliptic curve over an algebraically closed field k will refer to
a curve E/k such that

• E is reduced, connected, and has at-worst nodal singularities.

• E has arithmetic genus 1.

• E has trivial dualizing sheaf.

• Esm is equipped with the structure of a group scheme and an action map Esm×E → E
which extends the group law on Esm and acts transitively on the irreducible components
of E.

A generalized elliptic curve over an arbitrary base S is the data of a flat, proper S-scheme
E, an S-group structure on Esm which extends to Esm×SE → E, and such that all geometric
fibers are generalized elliptic curves as above.

This definition captures all the key properties of an elliptic curve, except for smoothness.

Proposition 1.3. A generalized elliptic curve over k = k is isomorphic either to an elliptic
curve or to a Néron polygon.

Definition 1.4. A Néron polygon over a scheme S is one obtained by taking n copies of P1
S,

labeled ℓ1, . . . , ℓn, and gluing 0 ∈ ℓi to ∞ ∈ ℓi+1 (indices taken modulo n).

We note a few properties of this definition. Let Cn denote a Néron n-gon. First, we see
that C1 is simply a nodal cubic. In general, an n-gon is a (singular) curve of genus 1 (compute
its Euler characteristic). Second, we can easily compute that the (relative) dualizing sheaf
is trivial. Indeed, ωP1((0) + (∞)) admits a global section which we may call dt

t
, and gluing

these gives a nowhere vanishing global section of ωCn .
The smooth locus on a Néron polygon has the natural structure of a group scheme.

Let Cn denote a Néron n-gon. There is a surjective map P1 × Z/nZ → Cn. Since P1 −
{0,∞} is isomorphic to Gm and maps isomorphically to the smooth locus of each irreducible
component of Cn, we get an isomorphism

Gm × Z/nZ → Csm
n

which we use to give Csm
n the structure of an S-group. The multiplication map Gm×Gm →

Gm extends to a map Gm ×P1 → P1, and consequently we also have an extension

Csm
n × Cn → Cn

of the multiplication map on Csm
n .

3



Thus, a Néron polygon with its group structure as described above is a generalized elliptic
curve. When computing moduli of elliptic curves we will care about the automorphism group
of such a structure; we compute

Aut(Gm × Z/nZ) ∼= ⟨σ⟩ × (µn ⋊ (Z/nZ)×)

where σ denotes the inversion on Gm ×Z/nZ. Here if ζ ∈ µn and u ∈ (Z/nZ)×, the actions
are

σ.(α, t) = (α−1,−t), ζ.(α, t) = (ζtα, t), u.(α, t) = (α, ut)

For such an automorphism to extend to the Néron polygon, we must have u = 1, so we see
that Aut(Cn) ∼= ⟨σ⟩ × µn.

Proof of Proposition 1.3. Let π : C̃ → C be the normalization; we can write C̃ =
⊔a

i=1 Ci

where each Ci is smooth and proper. Define the following quantities:

b := # of nodes of C

bi := # of points on Ci above nodes

gi := genus of Ci

We have the exact sequence

0 −→ OC −→ π∗OC̃ −→
b⊕

j=1

kj −→ 0

where kj denotes a skyscraper for the field k at the jth node. Taking long exact sequences
yields

0 −→ k −→
a⊕

i=1

k −→
b⊕

j=1

kj −→ H1(OC) −→
a⊕

i=1

H1(OCi
) −→ 0

so we arrive at

a = b+
a∑

i=1

gi

and also b ∈ {a− 1, a}. If b = a− 1, then a = 1 and g1 = 1, so C is an elliptic curve.
If b = a, then all gi are zero, so Ci

∼= P1. Since ωC is trivial, each ωCi
(bi) admits a global

section, hence bi ≥ 2. But

2a = 2b =
a∑

i=1

bi ≥ 2a

implies bi = 2 for all i. So C is a Néron a-gon.

Morphisms in the category of generalized elliptic curves over S consist of those S-
morphisms which restrict to S-group morphisms on smooth loci.

We can now define new moduli functors F 0, F 1 : (Sch /Z[1/N ])opp → Set just as before,
but with elliptic curves replaced by generalized elliptic curves. To be precise, F 0 parametrizes
nontrivial homomorphisms whose kernel intersects every irreducible component.
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It takes some additional work to show that F 1 is representable (see [2]). Let X1(N)
denote the resulting curve over Z[1/N ]. Again (Z/NZ)× acts on X1(N) and the quotient by
this action yields a smooth proper curve X0(N) which serves as a coarse moduli space for
F 0.

Example 1.5. Let us exhibit families of elliptic curves which degenerate to Néron polygons.
Let R a DVR with uniformizer π. For a 1-gon, this is easy, we can just write down

y2 = x(x− 1)(x− π)

which degenerates to a nodal cubic on the special fiber. Families degenerating to 2-gons and
3-gons are not much harder; we can take

y2 + xy = πx3 + x, y2 + πy = πx3 + x2,

respectively. For more sides, it will be necessary to depart from plane cubics. One method of
constructing such families is to begin with any Weierstrass equation that is an elliptic curve
on the generic fiber, then perform blowups at the singularities on the special fiber.

On X1(N) we have the reduced relative Cartier divisor Cusp1(N) := X1(N) \ Y1(N).
Similarly on X0(N) we have Cusp0(N) := X0(N) \ Y0(N). The schemes Cusp0(N) and
Cusp1(N) are finite étale over SpecZ[1/N ], and étale locally consist of constant sections
given by isogenies of standard Néron polygons [2].

It is first a bit simpler to consider the case where N = p is prime. In this case, cusps on
X1(p) correspond to cuspidal cubics or Néron p-gons. In the cubic case, the torsion section
must be a generator of µp hence there are p− 1 choices, ambiguous up to the action of σ. So
there are p−1

2
cusps corresponding to cuspidal cubics. In the p-gon case, we see that Aut(Cp)

acts transitively on the µp in each connected component of Csm
p , so to specify a cusp is the

same as specifying a connected component of Csm
p up to the action of σ. Hence there are

p−1
2

cusps in this case as well. In all, there are p− 1 cusps.
When we quotient by the action of (Z/pZ)×, each of these two sets of cusps is collapsed

to a single point. So X0(p) has two cusps.
Now we say a word or two about general N . For each d | N , we have the standard

Néron d-gon Cd, whose smooth locus is isomorphic to Gm × Z/dZ. We need to determine
the elements P of exact order N in µN × Z/dZ whose projection to Z/dZ is a generator.
Fix a primitive Nth root of unity ζ0 and a ∈ (Z/dZ)×. Then for 0 ≤ k ≤ N − 1 we have

(ζk0 , a) has exact order N iff (k,N/d) = 1. Also (ζk0 , a) and (ζ
k+mN/d
0 , a) are related by an

automorphism, so it suffices to consider 0 ≤ k < N/d. There are ϕ(N/d) choices of k in
this range. After considering the automorphism σ, we see that there are 1

2
ϕ(d)ϕ(N/d) cusps

corresponding to d-gons and therefore Cusp1(N) is finite of order

1

2

∑
d|N

ϕ(d)ϕ(N/d).

We can conduct a similar analysis for Cusp0(N). The end result will be that there are
ϕ((d,N/d)) cusps corresponding to d-gons. In particular there is a single cusp corresponding
to 1-gons (labeled ∞) and one corresponding to N -gons (labeled 0).

Remark. When N is squarefree these formulas simplify; there are ϕ(N)/2 cusps on X1(N)
for each d, and on X0(N) these are collapsed to a single cusp for each d.
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1.3 Correspondences

I don’t have a lot to add here beyond that in [5]. For the rest of this section, I will restrict
attention to the curve X = X0(N) (with open subcurve Y = Y0(N)).

We will start with an involution on Y . We have an involution of the functor F0 which
sends an isogeny ϕ : E → E ′ to its dual isogeny ϕ̂ : E ′ → E. We correspondingly get an
involution wN : Y → Y on the coarse moduli space, and it will extend to an involution on
X. As such, it must permute the cusps. Because there is an isogeny mapping the N -gon to
the 1-gon (extending the projection Gm × Z/NZ → Gm), we see that the cusps 0 and ∞
are exchanged by wN .

There are additional Atkin–Lehner involutions wd for each d | N such that (d,N/d) = 1.
Given ϕ : E → E ′ we let D and D′ denote the order d subgroups of kerϕ and ker ϕ̂, and
define

wd(ϕ) : E/D → E/ kerϕ ∼= E ′ → E ′/D′

Note that the kernel is ϕ−1(D′)/D which is indeed cyclic of order N (using the fact that
(d,N/d) = 1).

An alternate description, perhaps one that is easier to work with, is as follows. We have
a commuting diagram of isogenies

Ed

E E ′

EN/d

ϕd

ϕN/d

where the compositions along the top and bottom are both ϕ, and ϕd has degree d, ϕN/d has
degree N/d. Then

wd(ϕ) = ϕN/d ◦ ϕ̂d : Ed → EN/d (1.1)

The condition that (d,N/d) = 1 ensures that there is a unique diagram as above.
The other correspondences to be considered are the Hecke correspondences. Fix m ≥ 1,

then Tm ⊆ X ×X is the cycle consisting of pairs

(ϕ : E → E ′, ϕ/C : E/C → E ′/ϕ(C))

where C is any finite flat subgroup of order m that intersects kerϕ trivially. The two
projections pr1, pr2 : Tm → X are each finite. As such, there is an endomorphism

Tm = (pr2)∗ pr
∗
1 : Div(XQ) → Div(XQ)

which restricts to an endomorphism of J = Jac(XQ). We write Tm : J → J for this
endomorphism as well. Let T denote the subalgebra of EndQ(J) generated by {Tm}m≥1.
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1.4 Analytic theory

We will briefly recall the analytic description of X(C). The points of Y (C) parametrize
isogenies ϕ : E → E ′ of elliptic curves over C, cyclic of degree N . Any such isogeny can be
written as C/Λ → C/Λ′, where Λ ⊆ Λ′ is a sublattice with Λ′/Λ ∼= Z/NZ. After homothety,
we can assume that Λ = ⟨τ, 1⟩, Λ′ = ⟨τ, 1/N⟩. For M = [ a b

c d ] ∈ SL2(Z) to preserve the pair
(Λ,Λ′) we need

cτ + d

N
≡ a

N
mod Λ

for some unit a modulo N . This is equivalent to c ≡ 0 mod N . Letting Γ0(N) denote the
subgroup of SL2(Z) with c ≡ 0 mod N , we obtain the description Y ≃ Γ0(N)\H. The
compactification X is realized as Γ0(N)\H∗, where H∗ = H ∪ P1(Q). One must take some
care in describing the complex structure at the cusps; we omit this discussion. One can give
a direct calculation of the number of cusps by computing the cardinality of Γ0(N)\P1(Q)
(ultimately it is equivalent to the calculation with Néron polygons).

Given Λ,Λ′ as above, we have a chain of inclusions Λ ⊆ Λ′ ⊆ N−1Λ via

⟨τ, 1⟩ ⊆ ⟨τ, 1/N⟩ ⊆ ⟨τ/N, 1/N⟩

The dual isogeny is described asC/Λ′ → C/N−1Λ. After scaling by −1/τ this is described by
the inclusion of lattices ⟨−1/Nτ, 1⟩ ⊆ ⟨−1/Nτ, 1/N⟩. Thus the operation of “dual isogeny”
induces τ 7→ −1/Nτ in the complex uniformization. We conclude that the Atkin–Lehner
involution wN acts by matrix

wN =

[
−1

N

]
∈ GL2(Q)+.

One can similarly find matrices for the other Atkin–Lehner involutions. The involution wd

can be represented as follows. Choose a, b ∈ Z such that ad− b(N/d) = 1. Then

wd =

[
da b
N d

]
.

Hecke correspondences can also be described explicitly in the analytic picture. Consider
an inclusion of lattices (Λ ⊆ Λ′) representing a cyclic isogeny of degree N . Applying Tm

yields ∑
Ω∩Λ′=Λ
[Ω:Λ]=m

(Ω ⊆ Ω + Λ′)

In terms of the uniformization, this translates as follows. Set

RN := {[ a b
c d ] ∈ Mat2(Z) : c ≡ 0 mod N}.

Then
Tm(τ) =

∑
γ∈Γ0(N)\RN

det γ=m

(γτ)
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1.5 Heegner points

Let x = (ϕ : E → E ′) be an isogeny of elliptic curves over C, cyclic of degree N . By abuse we
identify x with the corresponding C-valued point of Y . If EndE = EndE ′ = OK where K
is some imaginary quadratic field, we say that x is a Heegner point (for the order O = OK).

Henceforth we will fix a choice of K of discriminant D and consider only Heegner points
for O. By the theory of complex multiplication, if x is such a Heegner point, then x ∈ X(H)
where H is the Hilbert class field of K. If X has a Heegner point for O, then D ≡ □
mod 4N (the existence of a Heegner point implies that N is the norm of some ideal).

For simplicity, we will often make the following assumptions on K:

• |D| > 4 (equivalent to K ̸= Q(µ3),Q(µ4)).

• D is odd.

• Every prime p | N splits in O.

The last assumption implies that O/n ∼= Z/NZ for some ideal n.
Let H = H (O, N) denote the set of Heegner points on X0(N)(H). Clearly H admits

an action of Gal(H/K) ∼= ClK . We also see that the Atkin–Lehner involutions act on H ,
and this action commutes with the Galois action.

Let x ∈ H . Then x is given by a map C/a → C/b cyclic of degree N , where a, b are
fractional ideals of O. In other words, b/a should be cyclic of degree N , which is equivalent
to O/ab−1 being cyclic of degree N . So to specify a Heegner point, we must give the data of
an ideal class [a] ∈ ClK and an integral ideal n with O/n ∼= Z/NZ. We will write x = (n, [a]).

Remark. Suppose d, e are relatively prime and de = N . Let xd = (ϕ : E → E ′) and
xe = (ρ : E ′ → E ′′) two isogenies of CM elliptic curves with endomorphisms by O. The
composition xe ◦ xd defines a point xN = (ρ ◦ ϕ : E → E ′′). On pairs this is

(e, [ad−1]) ◦ (d, [a]) = (ed, [a]).

Proposition 1.6. The set H is a torsor for W × ClK.

Proof. The theory of complex multiplication tells us that ClK acts via [b].(n, [a]) = (n, [ab−1]).
So it will suffice to exhibit the W -action explicitly.

First we determine the effect on (n, [a]) of taking the dual isogeny. Given the isogeny
C/a → C/an−1, the dual isogeny is given by

C/an−1 → C/aN−1

so taking dual isogenies corresponds to the operation

(n, [a]) 7→ (n, [an−1]).

To deal with a general Atkin–Lehner involution, write N = pkm where (p,m) = 1. Write
n = pkm where p is a prime over p. The above description of the effect of dualizing on pairs,
along with the description of wpk from (1.1), yields

wpk(n, [a]) = (pkm, [ap−k]).

Hecke operators also act on Heegner points, if one allows consideration of Heegner points
for non-maximal orders. See [3] for details.

8



2 Modular curves II

In this section we will pay greater intention to the subtleties of moduli problem for elliptic
curves with level structure, following Katz–Mazur [6].

2.1 Moduli problems on elliptic curves

It is desirable to have a model for X0(N) over Z, though it is too much to hope that it will
be smooth in general. Katz–Mazur offer a way to do this by considering moduli of elliptic
curves with Drinfeld level structure rather than the usual level structure we have been using.
We will state most of our results for the curves Y0(N), ignoring the cusps.

Let Ell denote the moduli stack of elliptic curves. For a ring A, let EllA denote the base
change to A.

Definition 2.1. A moduli problem for EllA is a contravariant functor P : EllA → Set.

Definition 2.2. A moduli problem on EllA is relatively representable if for every elliptic
curve E/A, the functor (Sch /A)opp → Set defined by T 7→ P(ET/T ) is representable by an
A-scheme PE/A.

In §1 we have seen examples of moduli problems, for example, Γ1(N) and Γ0(N) level
structures (for A = Z[1/N ]). The notion of representability of a moduli problem is the
obvious one. Given a representable moduli problem P , we let M(P) denote its fine moduli
space. Given a relatively representable moduli problem, we let M(P) denote its coarse
moduli space1.

Definition 2.3. Given a scheme S and a an elliptic curve E/S, we define Drinfeld level
structures as follows:

• A Drinfeld Γ(N)-structure on E is a map ϕ : (Z/NZ)2 → E(S) such that

E[n] =
∑

a,b∈Z/NZ

[ϕ(a, b)]

as (relative S-)Cartier divisors on E.

• A Drinfeld Γ1(N)-structure on E is an isogeny f : E → E ′ and a map ϕ : Z/NZ →
ker f such that

ker f =
∑

a∈Z/NZ

[ϕ(a)]

as (relative S-)Cartier divisors on E.

1We can always construct M(P) as follows. Let S be a representable moduli problem, finite étale Galois
over Ell with Galois group G. Then joint (P,S)-level structure is a representable moduli problem, and
M(P) ∼= M(P,S)/G.
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• A Drinfeld Γ0(N)-structure on E is an isogeny f : E → E ′ of degree N such that ker f
fppf locally on S admits a generator (as in the definition of Γ1(N)-level structure).
Equivalently, we can specify a finite flate subgroup scheme G ⊂ E of rank N which
fppf locally admits a generator.

Henceforth we will omit the adjective “Drinfeld.”

Each of the above types of level structures defines a moduli problem, which we will denote
[Γ(N)], etc.

Theorem 2.4. The moduli problems [Γ(N)] and [Γ1(N)] are representable moduli problems
with Y (N) := M(Γ(N)), Y1(N) := M(Γ1(N)) affine, regular, and of relative dimension 1
over Z. The moduli problem [Γ0(N)] is relatively representable with Y0(N) = M(Γ0(N))
affine and of relative dimension 1 over Z.

Each of the three moduli problems above is finite flat over Ell. Over EllZ[1/N ] they are
finite étale.

Our goal is to study these moduli problems over Fp, where p | N . The main tool will
be a general theorem on “crossings.” The setup is as follows; we are given a field k and a
commuting diagram ⊔

i∈I Zi X

Y

k

where Y is a smooth curve over k and X is finite flat over Y . For each i, the map Zi → X
is a closed immersion. We assume that

• Each Zi is finite flat over Y .

• Each (Zi)
red is smooth over k.

We assume that there is a given set of supersingular points Y ss ⊂ Y (k) such that:

• For each y ∈ Y ss, there is a unique preimage x ∈ X(k) such that

ÔX,x
∼= kJx, yK/f

for some f ∈ kJx, yK.

• For each y ∈ Y ss and each i ∈ I, there is a unique preimage zi ∈ Zi(k).

• Over the “ordinary locus” Y \ Y ss the map ⊔iZi → X is an isomorphism.
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Theorem 2.5. Let the setup be as above. Let y ∈ Y ss and x ∈ X(k), zi ∈ Zi(k) above y.

Then for each i there is fi ∈ kJx, yK such that ÔZi,zi
∼= kJx, yK/f ei

i , and furthermore we have

ÔX,x
∼= kJx, yK/

∏
i

f ei
i .

If Y is connected, then so is each Zi, and then the Zi’s are the irreducible components of X.

We will not give a proof here, but ignoring the statements about complete local rings, we
can at least justify the last assertion (that if Y is connected then so is each Zi and the Zi’s
are the components of X). This is the easy part of the theorem, but is also the statement
that will be most important to us.

To justify that the Zi are connected, observe that each Zi is finite flat over Y and that
there is a unique preimage over each supersingular point. This immediately precludes the
possibility of multiple connected components. Once Zi is connected, it is irreducible since we
have assumed its reduced subscheme is smooth. Now the Zi are the irreducible components
of X since the map ⊔iZi → X is an isomorphism over Y \ Y ss.

2.2 Prime level

For the rest of this section we will work entirely over EllFp (so e.g. [Γ0(p
n)] refers to a moduli

problem over Fp). We will start by examining the reduction [Γ0(p)] modulo p. Though the
theory for prime power level will still be tractable, it is still instructive to first look at this
special case where things are simpler.

By definition now [Γ0(p)] is the moduli stack of p-isogenies ϕ : E → E ′ over base schemes
S/Fp. Given an elliptic curve E/S, we let F : E → E(p) denote the relative Frobenius over
S, and V : E(p) → E its dual isogeny.

Lemma 2.6. Any p-isogeny of ordinary elliptic curves is of the form F : E → E(p) or
V : E(p) → E, up to isomorphism.

Proof. First suppose E is ordinary and ϕ : E → E ′ is a p-isogeny. Then kerF is étale locally
isomorphic to µp. Let H = kerϕ. Then H = kerF or H ∩ kerF = {O}. If H = kerF , we’re
done. If H ∩ kerF = {O}, the composite map

H −→ E[p]
F−→ ker(V : E(p) → E)

is an isomorphism. So H is étale locally isomorphic to Z/pZ. Let H ′ = ker(ϕ̂ : E ′ → E).
Then H ′ is étale locally µp, so H ′ ∼= ker(F : E ′ → E ′(p)). We conclude that E ∼= E ′(p) and ϕ
is up to automorphisms V : E ′(p) → E ′.

Lemma 2.7. Let ιF , ιV : EllFp → [Γ0(p)] be defined via

E/S 7→ (F : E → E(p)), (V : E(p) → E),

respectively. Then ιF , ιV are closed immersions.
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The composite maps

EllFp

ιF−→ [Γ0(p)] −→ EllFp

EllFp

ιV−→ [Γ0(p)] −→ EllFp

have degrees 1 and p, respectively.

Lemma 2.8. Let k a field of characteristic p. Then any p-isogeny of supersingular elliptic
curves is the Frobenius morphism (up to isomorphism).

Proof. In the supersingular case, any p-isogeny is inseparable, hence must factor through the
Frobenius.

Theorem 2.9. Let S be a representable moduli problem. Then ιF , ιV : M(S) → M(S,Γ0(p))
as above are closed immersions, and M(S,Γ0(p)) is the disjoint union of the two copies of
M(S) with crossings at the supersingular points.

Proof. Follows from the preceding lemmas and the crossings theorem.

Corollary 2.10. Let ιF , ιV : A1
j → Y0(p) the induced maps on coarse moduli spaces. Then

ιF , ιV are closed immersions and Y0(p) is the disjoint union of the two copies of A1
j with

crossings at the supersingular points.

More generally, Theorem 2.9 shows that for any m coprime to p, we have that Y0(mp) is
the disjoint union of two copies of Y0(m) with crossings at supersingular points.

Corollary 2.11. The scheme Y0(p)/Z fails to be regular only at crossings on the fiber at p
with automorphism group larger than {±1}.

For example, Y0(13)/Z is regular.

2.3 Prime power level

By looking at [Γ0(p)] modulo p we have done enough to handle [Γ0(N)] over Z when N is
squarefree. We will later feel free to assume that N is squarefree, so this is all we need.
However, we will anyway briefly address the case that a prime power pn divides N (without
proofs, which can be found in [6]). So we need to examine [Γ0(p

n)] modulo p. Again, from
now on we’ll consider all moduli problems modulo p.

As an intermediate step, it is useful to consider the moduli problem [pn−Isog] of pn-
isogenies (not necessarily cyclic). Similarly to the case of n = 1, we can describe such
isogenies very explicitly.

Lemma 2.12. Any pn-isogeny of ordinary elliptic curves factors uniquely as

E
Fa

−→ E(pa) ∼= E ′(pb) V b

−→ E ′

for a unique choice of a, b ≥ 0 with a+ b = n.

12



Let [(a, b)] denote the moduli problem of pn-isogenies that factor as in Lemma 2.12
(henceforth called (a, b)-isogenies, note that we allow supersingular curves though the lemma
is stated for ordinary curves). For any d ≥ 0, let ιd : EllFp → EllFp denote the functor

E 7→ E(pd). From Lemma 2.12 we see that [(a, b)] can be described as (ιa×ιb)
−1(∆) where ∆ is

the diagonal in EllFp ×EllFp . If S is a representable moduli problem on EllFp , this concretely
means that M(S, [(a, b)]) ∼= (ιa × ιb)

−1(∆) where ∆ is the diagonal in M(S)×M(S).
Proposition 2.13. Let a, b ≥ 1. An (a, b) isogeny E → E ′ of ordinary elliptic curves over
S is cyclic iff there is a closed subscheme S0 ↪→ S so that S is a thickening of S0 of order

≤ p− 1, such that E
(pa−1)
S0

∼= E
(pb−1)
S0

compatibly with the isomorphism E(pa) ∼= E(pb).

For a proof see [6, Theorem 13.3.5]. I do not have something both short and convincing
to say, but I will anyway say a little for a = b = 1. In this case the diagram is

E
F−→ E(p) ε−→ E ′(p) V−→ E ′

where ε is an isomorphism. The defining equation for the coarse moduli space of p2-isogenies
as a subscheme of A1

j × A1
j′ should be jp = j′p; however if j = j′ the given isogeny is [p]

which is not cyclic. The defining equation for Y0(p
2; 1, 1) ends up being (j − j′)p−1.

For a, b ≥ 1, let [Γ0(p
n); a, b] denote the moduli problem determined by (ιa×ιb)

−1(Infp−1(∆)).
If a = 0 or b = 0, instead take (ιa × ιb)

−1(∆).

Theorem 2.14. The natural map [(a, b)] → [pn−Isog] is a closed immersion. The diagram

[Γ0(p
n); a, b] [Γ0(p

n)]

[(a, b)] [pn−Isog]

is Cartesian, and in particular the top arrow is a closed immersion as well.

Corollary 2.15. Let S be a representable moduli problem. Then M(S, [Γ0(p
n)]) is the

disjoint union of M(S, [Γ0(p
n); a, b]) with crossings at the supersingular points.

We then get similar descriptions of the coarse moduli spaces, as we did for prime level.
It remains to ascertain the geometric properties of the natural map [Γ0(p

n); a, b] → EllFp

(the map remembering the source E of the isogeny). Suppose a, b ≥ 1. This map is still
finite flat. Let us again start by considering a = b = 1. On the level of coarse moduli spaces
over Fp, we have seen that this corresponds to the inclusion of rings

Fp[x] ↪→ Fp[x, y]/(x− y)p−1.

In particular we will see that Y0(p
2; 1, 1) has degree p − 1 over A1

j , and that Y0(p
2; 1; 1) is

nonreduced of multiplicity p− 1, with Y0(p
2; 1; 1)red ∼= A1

j .
Similarly, for [Γ0(p

n); a, b] with a, b ≥ 1, the corresponding inclusion is

Fp[x] ↪→ Fp[x, y]/(x
pa−1 − yp

b−1

)p−1

which has degree pb−1(p − 1) and is nonreduced of multiplicity pmin{a,b}−1(p − 1). If a ≥ b
the underlying reduced subscheme is cut out by xpa−b − y; similarly for a ≤ b.

For a = 0 we get defining equation x − yp
n
so the coarse scheme is reduced (itself

isomorphic to P1
j) of degree p

n over P1
j . For b = 0 we get xpn − y so again the coarse scheme

is P1
j and has degree 1 over P1

j .

13



2.4 Cusps

Let us again work over Z and restrict to the case of X0(p). We omit the discussion of how to
define the moduli problem over Z, it is completely analogous to how it was done in §1 except
now we use Drinfeld level structure. There are still two cusps which are given by sections
SpecZ → X0(p) corresponding to Néron polygons; as before ∞ denotes the p-gon cusp and
0 denotes the 1-gon cusp.

In the case of X0(p) we have seen that on the fiber at p there are only two irreducible
components X0(p; 1, 0) and X0(p; 0, 1), each isomorphic to P1

j . We have seen that the p-gon
cusp has kernel Z/pZ while the 1-gon cusp has kernel µp; it is then clear that on the fiber
at p we have ∞ ∈ X0(p; 1, 0) and 0 ∈ X0(p; 0, 1).

Similar statements can be made for general X0(N); see [5, §III.1].

3 L-functions of modular forms

3.1 L-functions and modularity

In the historical development of this subject, people including (but not limited to) Birch,
Stephens, and Swinnerton–Dyer had noticed relationships between the structure of the group
E(Q) and “central values” of the L-function L(E, s) for an elliptic curve E/Q. Of course, for
the term “central value” to make sense, L(E, s) must possess a functional equation, which
was only known in the case that E is modular. In this section we will explain the meaning
of this term. (Of course following the work of Wiles and subsequent developements, it is
known that all E/Q are modular). In this section, all modular forms for Γ0(N) will be of
weight 2 unless otherwise specified.

Definition 3.1. An elliptic curve E/Q is modular if L(E, s) = L(f, s) for some newform f
for Γ0(N).

Definition 3.2. An elliptic curve E/Q is modular if there is a nonconstant morphism
X0(N) → E for some N . Equivalently, there is a nonconstant homomorphism J0(N) → E
for some N .

We usually normalize the mapX0(N) → E so that∞ 7→ O, and consider the Abel–Jacobi
map X0(N) ↪→ J0(N) with respect to the point ∞.

These two definitions are equivalent, but this is not trivial. Let us at least briefly discuss
how one obtains a modular form from a homomorphism J0(N) → E.

We will now fix N ≥ 1 and return to the notation X = X0(N).
Let N0(N) denote the set of normalized cuspidal Hecke eigenforms for Γ0(N). For f ∈

N0(N) we let [f ] denote its class in N0(N)/GQ.
Recall that T ⊆ EndQ(J0(N)) is the algebra of Hecke operators. For each f ∈ N0(N),

we obtain a character λf : T → C. Set Mf | N so that f is a newform for Γ0(Mf ). We set
If = kerλf and consider the abelian variety

Af := J0(Mf )/IfJ0(Mf )

By construction, there is an action by Rf := T/If ∼= Z[{an(f)}] which is finite over Z.

14



Theorem 3.3. The Jacobian J0(N) is isogenous to the product⊕
[f ]∈N0(N)/GQ

A
σ0(N/Mf )

f .

This is essentially a consequence of the decomposition of S2(Γ0(N)) as a direct sum of
spaces spanned by eigenforms f(mz) where m | (N/Mf ).

Corollary 3.4. An elliptic curve admits a modular parametrization iff there is some N and
some newform f for Γ0(N) for which there is a nonconstant map Af → E.

The equivalence between the two definitions is now easy to state; given a nonconstant
map X0(N) → E we take f so that Af → E is nonconstant. To prove that f with the same
L-function as E yields a nonconstant map Af → E takes some work, which we will omit.
Even further work is needed for the following refinement.

Theorem 3.5. Suppose f is a newform for Γ0(N) and Af ↠ E. Then NE = N .

3.2 Quadratic extensions and Hecke characters

Let K an imaginary quadratic field, and χ : GK → C× a nontrivial unramified character.
By class field theory, we get an unramified automorphic character χ : K×\A×

K → C×, or
equivalently a character of the class group ClK . Now IndQ

K χ is a 2-dimensional representa-
tion of GQ, and Langlands tells us that correspondingly we should obtain an automorphic
representation πχ of GL2 over Q.

Lemma 3.6. When χ2 ̸= 1 the representation πχ is cuspidal.

The corresponding fact on the Galois side is that when χ2 ̸= 1, the representation IndQ
K χ

is irreducible. This fact is equivalent to showing that if τ is complex conjugation, then the
twisted character χτ of GK given by χτ (g) = χ(τgτ−1) is not the same as χ. In fact by class
field theory we have χτ = χ, so we get what we want.

Gross tells us how to write down a Hecke eigenform gχ which will generate the represen-
tation πχ. For ease I will assume that K ̸= Q(µ3),Q(µ4).

For each ideal class A ∈ ClK we consider the θ-series

θA =
1

2
+

∑
a∈A

a integral

qN(a) =
∑
n≥0

rA (n)qn

where for n ≥ 1, rA (n) denotes the number of integral ideals in A of norm n, and rA (0) = 1
2
.

Let b be an integral ideal in −A . The integral ideals in the class A are parametrized by

{x ∈ F×/{±1} : xb−1 ⊆ O}

so we get

θA =
1

2
+

1

2

 ∑
x∈b−{0}

qN(xb−1)

 =
1

2

∑
x∈b

qN(x)/N(b)
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Now b is a rank 2 lattice equipped with the norm form, so this is the usual θ-function
of a rank 2 lattice. By the general theory for lattices, it is not hard to check that it yields
a modular form of weight 1 for Γ1(D) with quadratic character αD corresponding to the
extension K/Q.

We now consider the series

gχ =
∑

a integral

χ(a)qN(a) =
∑

A ∈ClK

χ(A )θA

From this it follows that gχ is a modular form of weight 1 for Γ1(D) with character αD.
Now let f be a newform for Γ0(N). We define

LA (f, s) := L(N)(αD, 2s− 1) ·
∑
n≥0

anrA (n)n−s

L(f, χ, s) :=
∑
χ

χ(A )LA (f, s),

where L(N) denotes the product of Euler factors over places prime to N . We define

L∗
A (f, s) = (2π)−2s(N |D|)sΓ(s)2LA (f, s)

and likewise define L∗(f, χ, s). Observe that the above L-functions are closely related to the
Rankin–Selberg convolutions L(f ⊗ θA , s) and L(f ⊗ gχ, s). This will be the main tool for
proving the relevant functional equations, etc.

By some standard arguments (which we will expound later), it can be seen that L∗
A

satisfies the functional equation

L∗
A (f, s) = −αD(N)L∗

A (f, 2− s)

and hence so does L∗(f, χ, 1). In our preferred situation when D ≡ □ mod 4N , this implies
that L(f, χ, 1) = 0.

3.3 The Gross–Zagier formula

Fix N ≥ 1 and let X = X0(N), J = J0(N). Let K/Q an imaginary quadratic field with
assumptions as in §1.5. Let x ∈ X(H) be a Heegner point, and let c = AJ(x) ∈ J(H) its
image under the Abel–Jacobi map.

Since J is isogenous to a product
⊕

A
mf

f , we see that

J(H)⊗C ∼=
⊕
[f ]

V
mf

f
∼=

⊕
[f ],χ

V
mf

f,χ

as complex representations of Gal(H/K) ∼= ClK , where Vf = Af (H) ⊗ C and χ runs over
ideal class characters.

Let cf,χ = hK · prVf,χ
(c) (the constant factor is just a convention).
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Theorem 3.7 (Gross–Zagier). Let f be a newform for Γ0(N) and x ∈ X(H) a Heegner
point for OK. With setup as above,

L′(f, χ, 1) =
8π2(f, f)

hK

√
D

ĥ2Θ(cχ,f )

where ĥ2Θ denotes the Néron–Tate canonical height on J/H associated to the divisor 2Θ.

Remark. The divisor 2Θ is characterized as follows: let Θ0 denote the divisor on Picg−1(C)
given as the image of the map Symg−1C → Picg−1(C). Then 2Θ = 2Θ0 − ωC is a divisor on
the Jacobian. It is both ample and symmetric, so ĥ is quadratic.

As of now, we have been given no reason to suspect any relationship between the L-
function on the LHS and the Heegner point on the RHS. The entire purpose of these notes
is to explicate this relationship, but for now we just offer one piece of evidence that they are
related.

Proposition 3.8. For (m,N) = 1, the multiplicity of A .x in Tmx is rA (m).

Proof. Suppose we are given an elliptic curve E with CM by OK , so E ∼= C/b for some
integral ideal b of OK . If a is a fractional ideal representative of A −1, then A .E ∼= C/ba.
To exhibit an isogeny E → A .E of degree m is then the same as to exhibit an inclusion
α−1b ⊆ ba of index m for some α ∈ K, or equivalently an α ∈ K for which (αa)−1 is integral
of norm m. So the desired multiplicity is r−A (m) = rA (m).

Thus the series θA can be expressed in terms of Heegner points and Hecke operators.
We can reduce the Gross–Zagier theorem to a version involving the L-function LA (f, s).

Let σ denote the element of Gal(H/K) corresponding to A .

Theorem 3.9 (Gross–Zagier for fixed ideal class). The q-series

gA :=
∑
m≥1

⟨c, Tmc
σ⟩qm

is a cusp form of weight 2 for Γ0(N). With notation as before,

L′
A (f, 1) =

8π2

√
D
(f, gA ).

The assertion that gA is a cusp form follows from the following more general result:

Proposition 3.10. Let α : T → C any Q-linear character. Then
∑

m≥1 α(Tm)q
m is a cusp

form of weight 2 on Γ0(N).

Proof. Let J = J0(N)Q and recall the algebra of Hecke operators T ⊆ EndQ(J). We have
a canonical identification Lie(J) ≃ S2(Γ0(N),Q) from which it is evident that the natural
map

T → EndQ(Lie(J))

17



is injective. We define a pairing

T× Lie(J) → Q

via (T, f) 7→ a1(Tf). We claim that this is a perfect pairing. Indeed for fixed T , suppose
a1(Tf) = 0 for all f . Applying this to Tmf , we see that am(Tf) = 0 for all f and all m, so
Tf = 0 for all f , so T = 0 (from the aforementioned injectivity of T → EndQ(Lie(J))). For
fixed f , if a1(Tf) = 0 for all T , then am(f) = 0 for all m, so f = 0.

Since this pairing is perfect, there is some f ∈ S2(Γ0(N),C) for which α(T ) = a1(Tf),
and then f is the desired cusp form.

We will later see that Theorem 3.9 implies Theorem 3.7.

3.4 Implications for BSD

Recall the simplest statement of the BSD conjecture.

Conjecture 3.11. Let E/Q be an elliptic curve. Then

ords=1 L(E, s) = rankZE(Q)

i.e. the analytic rank ran(E) of E coincides with the Mordell–Weil rank rMW(E) of E.

There are further refinements of this conjecture (i.e. explicit conjectural formulae for
L(r)(E, s) in terms of the Mordell–Weil lattice).

The Gross–Zagier formula gives some modest but still notable progress towards this.

Theorem 3.12. If ran(E) = 1 then rMW(E) ≥ 1.

Proof. Let f be a normalized newform of level N = NE so that L(E, s) = L(f, s); then there
is a modular parametrization π : X0(N) → E such that π∗ω = cωf for some c ∈ Q.

Let x ∈ X0(N)(H) be a Heegner point on X0(N), let Q = π(x) ∈ E(H), and let

P = TrH/K Q :=
∑

σ∈Gal(H/K)

Qσ = π(c1,f )

so P ∈ E(K). Then
ĥE(P ) = ĥ(c1,f ) · deg π

Now we use the Gross–Zagier formula to conclude:

L′(f, χtriv, 1) = C0ĥE(P )

where C0 is a nonzero constant.
On the other hand,

L(f, χtriv, s) = L(f, s)L(f ⊗ αD, s) = L(E, s)L(ED, s)

where αD is the quadratic character associated to K. Since ran(E) = 1 we see that

L′(E, 1)L(ED, 1) = C0ĥE(P )

According to a theorem of Waldspurger (apparently) we can chooseK so that L(ED, 1) ̸=
0. In that situation, we see that ĥE(P ) ̸= 0 so TrK/Q P is a point of E(Q) of infinite order.
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4 Local heights on curves

In this section we will give some basic definitions of arithmetic intersection theory, so as to
be able to understand nonarchimedean local heights on curves. The substantial proofs are
omitted, we refer the reader to [7] and [8] (all the material on arithmetic surfaces comes from
here). All the material on local heights comes from [4].

4.1 Arithmetic surfaces

Let (R,m = (π), k) a DVR with fraction field F .

Definition 4.1. An arithmetic surface is a scheme X that is integral, normal, excellent, is
flat and finite type over R, and such that the generic fiber XF is a smooth curve over F .

Lang [7] replaces the assumption of “excellent” with the assumption that any normal-
ization of X in a finite extension of its function field is finite over X . In any case, this
assumption is largely a technical one that we can ignore in all applications.

Proposition 4.2. Let X/R a regular arithmetic surface. Then every point in the image of
the natural map

X (R) → Xm(k)

is a smooth point of Xm/k.

Corollary 4.3. Let X/R a regular arithmetic surface and X sm the smooth locus over R.
Then the natural map X sm(R) → X (R) is a bijection.

Definition 4.4. Let X/F a smooth curve. A model for X is an arithmetic surface X/R and
an isomorphism X ≃ XF .

Theorem 4.5. A smooth proper curve X/F admits a proper regular model X/R.

A smooth model need not exist.
Henceforth in this section assume that X/R is a proper regular arithmetic surface, with

generic fiber X = XF .

Definition 4.6. A horizontal divisor on X is a Weil divisor that arises as the Zariski closure
of a Weil divisor on X.

A vertical divisor or fibral divisor on X is a Weil divisor of X supported on the special
fiber.

Note that any irreducible Weil divisor on X is either horizontal or vertical.

4.2 Intersections on arithmetic surfaces

For this entire subsection, we continue to assume that X/R is a proper regular arithmetic
surface. In particular, recall that all Weil divisors on X are combinations of horizontal and
vertical ones.

19



Definition 4.7. Let D,E two effective divisors on X without common component, and let
x ∈ X a closed point contained in both. We define the intersection multiplicity at x

ix(D,E) := lengthRx
(Rx/(f, g))

where f, g are equations locally cutting out D,E in a neighborhood of x. We define their
intersection

D · E =
∑
x

ix(D,E)[x]

and use the shorthand
(D · E) = degD · E =

∑
x

ix(D,E)

for the total degree of the intersection.

The pairing ix is bilinear (check this for yourself) so all the quantities defined above
extend to any pair of divisors with disjoint supports.

However, these pairings do not respect linear equivalence. If R is a DVR we can consider
in P1

R = ProjR[X, Y ] the hyperplanes Γ1,Γ2,Γ3 cut out by X,X+πY, Y , respectively. Note
that Γ1 and Γ2 intersect on the special fiber at [0 : 1] with multiplicity 1, but Γ1 and Γ3 do
not intersect.

Let Divf (X ) denote the group of fibral divisors. It is clear that a principal divisor will
pair to 0 with a fibral divisor. More precisely, if D is principal and E is fibral (say reduced
and irreducible), then D · E is a principal divisor on E. So we have the following.

Theorem 4.8. There is a (unique) bilinear pairing Div(X ) × Divf (X ) → Z which extends
the above pairing (D,E) 7→ (D · E) and which respects linear equivalence in the first slot.

Perhaps more precisely, we have exhibited an intersection form

CH1(X )×Divf (X ) → CH0(X )

and we can compose with the degree map CH0(X) → Z.
The only nontrivial thing to compute in the above pairing is the self-intersection of a

fibral component. Write Xm =
∑

i niFi where each Fi is a proper irreducible curve over k.
Now Xm is a principal divisor, so it follows that (Xm · Fi) = 0. This allows us to compute
the self-intersection (F 2

i ) in terms of the other intersection numbers (Fi · Fj); in particular
(F 2

i ) ≤ 0.
Let Gi = niFi denote an irreducible component of Xm. Let A denote the matrix with

Aij = (Gi · Gj). Observe that all rows and all columns of A sum to zero, and entries are
nonnegative off the diagonal.

Proposition 4.9. A is negative semidefinite (over R) with kernel spanned by (1, 1, · · · , 1).

Proof. For any x = (xi) we have

x⊤Ax =
∑
i,j

Aijxixj = −1

2

∑
i,j

Aij(xi − xj)
2 ≤ 0.
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Suppose xi ̸= xj for some i ̸= j. Choose a sequence of indices i = i0, i1, . . . , ik = j such that
Gim intersects Gim+1 . Consider the sum

k∑
m=1

Aim−1im(xim − xim−1)
2

Each term is nonnegative and at least one is strictly positive, so x⊤Ax < 0.

Corollary 4.10. The intersection pairing on QDivf (X )/QXm is negative definite.

4.3 Construction of local heights

Let Fv be a local field with absolute value |·|v and corresponding valuation v(x) = − logqv |x|v.
Let X/Fv a smooth projective variety. Note that the set X(Fv) comes equipped with a
canonical topology induced by the topology on Fv.

Definition 4.11. A local height pairing for X/Fv is a real-valued symmetric bilinear map
which takes as input two relatively prime divisors D,E ∈ Div0(X)(Fv) (Weil divisors over
Fv) and outputs the number ⟨D,E⟩v, with the following properties:

1. For D = (f) principal and E ∈ Z0(X(Fv)), ⟨D,E⟩v = log |f(E)|v.

2. Symmetry: ⟨D,E⟩v = ⟨E,D⟩v.

3. For D ∈ Div0(X)(Fv) and P0 ̸∈ suppD, the map λD,P0 : X(Fv) − suppD → R given
by

P 7→ ⟨D, [P ]− [P0]⟩v
is continuous.

(Note that the last condition does not depend on the choice of P0, for given different P ′
0 the

two maps differ by a constant).

Theorem 4.12 (Néron). Local heights for curves exist and are unique.

Let Lw/Fv be a finite extension of degree r = ef (ramification and inertia). Then qw = qfv
and πv ∈ (πe

w) \ (πe+1
w ), so we see that

log |πv|w = log |πe
w|w = −e log qw = −ef log qv = r log |πv|v

and consequently
⟨·, ·⟩w = r⟨·, ·⟩v.

The term “height” refers to the assignment D 7→ λD,P0 ; this can be viewed as a sort of
height machine.
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Proof of Theorem 4.12 (nonarchimedean). We will start by exhibiting a pairing for D ∈
Div0(X)(Fv), E ∈ Z0(X(Fv)). Let X/Ov a proper regular model for X. Let D,E the
Zariski closures. By Corollary 4.10 there is a Q-divisor D′ such that D′ − D is fibral and
D′ · Fi = 0 for all i (furthermore D′ is unique up to QXm). Likewise we obtain an E′. We
set

⟨D,E⟩v := −(D′ · E′) log qv

Write E =
∑

nipi for pi ∈ X(Fv) so that E =
∑

nipi. Suppose D′ and E intersect on the
special fiber at x ∈ Xm, and let p be a point in the support of E so that p contains x. In a
neighborhood of p, we can assume D′ is principal and is cut out by s ∈ K(X). Then

ix(D
′,p) = lengthOX ,x

OX ,x/((s) + Ip,x) = lengthOX ,x
Op,x/s(p) = lengthR R/s(p) = v(s(p))

When D = (f) is principal, then D = (f) (now the principal divisor on X ), and the above
considerations show that

(D · E) =
∑

niv(f(pi)) = − logqv |f(E)|v
Since D = D′ in this case, we have demonstrated that ⟨·, ·⟩v has the desired behavior for
principal divisors (it is fine that we used E rather than E′ in our calculation, since D′ cannot
detect fibral divisors).

The remaining properties of ⟨·, ·⟩v are easy to check and are left as an exercise.
To extend this to E ∈ Div0(X)(Fv), consider an extension Lw/Fv over which E ∈

Z0(X(Lw)) and apply the previous construction (renormalizing as necessary).
To show uniqueness, observe that the difference of any two such pairings descends to a

pairing J(Fv) × J(Fv) → R, continuous in each variable. Such a pairing must vanish since
J(Fv) is compact.

Proof of Theorem 4.12 (archimedean). To be added.

Theorem 4.13. Let F a number field and X/F a smooth curve. Let ⟨·, ·⟩F denote the
Néron–Tate canonical height pairing on J(F ) associated to 2Θ. Then

⟨·, ·⟩F =
∑
v

⟨·, ·⟩v

for pairs of relatively prime divisors.

Proving this decomposition theorem would take us too far afield (plus I do not know
where a proof exists); we accept it on faith.

5 Non-archimedean local heights for X0(N)

Recall that we have so far reduced the main theorem to a statement relating L′
A (−, 1) to

the series gA of Theorem 3.9, given explicitly as

gA =
∑
m≥1

⟨c, Tmc
σ⟩qm

To study this q-series, we need to unravel the global height pairings ⟨c, Tmc
σ⟩ in terms of

local height pairings. This occurs in [5, §III] and the deformation-theoretic arguments that
appear are carried out in detail in [1].
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5.1 Reducing to intersection products

We want to compute the quantities ⟨c, Tmc
σ⟩v for each place v of H.

Fix a place v of H, let Hv the completion of H at v, with residue field kv. Via Drinfeld
level structures, we always have a proper model X/Ov of the modular curve X = X0(N).
For ease, we will assume we are in a situation where this model is regular2 (for example when
v ∤ N , or when v | N and j = 0, 1728 are not supersingular).

Lemma 5.1. Let d = (x)− (0) ∈ Div0(X)(H). Then ⟨c, Tmc
σ⟩ = ⟨c, Tmd

σ⟩.

Proof. We have c − d = (0) − (∞), which is a torsion point in J(H) (for example, by the
Manin–Drinfeld theorem).

As such, we can just compute ⟨c, Tmd
σ⟩ (this is useful because it gets rid of the common

∞ in the supports of our divisors). Let c and d denote the extensions to divisors on X via
Zariski closure. Let p be the prime of Z under v. Write N = ptr where (r,N) = 1.

Proposition 5.2. Either c or d intersects every fibral divisor trivially.

We will need the following lemma.

Lemma 5.3. Suppose p splits in OK. Let E/OHv be an elliptic curve with complex multipli-
cation by OK. Let p be the prime of OK under v and choose β ∈ OK − p. Then [β] : E → E
is étale.

Proof. The module H0(E ,Ω1
E/OHv

) is free of rank 1 over OHv . We can fix an embedding
OKp ↪→ OHv so that α ∈ OK acts on 1-forms by multiplication by α. After reducing modulo
v, the module H0(Ekv ,Ω1

Ekv/kv
) is free of rank 1 over kv and has an action by OK/p. So β

acts by a unit on global 1-forms modulo v.
On the other hand, if β is not étale, then [β] is inseparable and so acts by zero on

1-forms.

Proof of Proposition 5.2. If p ∤ N the conclusion is clear, so assume p | N . Then Xm is
the disjoint union with crossings of components Xa,b ≃ X0(r)kv parametrizing cyclic (a, b)-
isogenies. Suppose x is a Heegner section representing a cyclic isogeny ϕ : E → E ′ of elliptic
curves over OHv . Let n denote the ideal of OK annihilating kerϕ, so that N = nn and v
divides exactly one of n or n.

If v | n, then ϕ is étale by Lemma 5.3 and consequently x reduces to a non-crossings
point on X0,n. In this case, since 0 also reduces to a point on X0,n, we see that d has zero
intersection with each fibral component.

If v | n, then ϕ̂ is étale, so x reduces to a point on Xn,0 and we similarly see that c has
zero intersection with each fibral component.

For the remainder of this section, we assume that rA (m) = 0 and (m,N) = 1.

Corollary 5.4. We have ⟨c, Tmd
σ⟩v = −(c · Tmd

σ) log qv.

2The situation where the model is not regular is treated by taking a regular resolution, which does not
affect the cusps or the Heegner points.
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So our question is reduced to computing (c · Tmd
σ).

Lemma 5.5. We have (c · Tmd
σ) = (x · Tmx

σ).

Proof. Expanding out definitions we have

(c · Tmd
σ) = (x · Tmx

σ)− (∞ · Tmx
σ)− (x · 0) + (∞ · Tm0).

The last three terms all vanish because the pairs of divisors in question are disjoint.

5.2 Intersection products in terms of deformation theory

We observe that all intersection products can be computed after a base change to W =
W (kv). For ease write k = kv. We now write X/W for the proper regular arithmetic
surface over W corresponding to the X from the previous section. The following key result
transforms our questions about intersection products to questions about deformation theory.

Theorem 5.6. Let x,y ∈ X (W ) any two non-cuspidal horizontal sections on X intersecting
properly at a point z on the special fiber, and assume that Aut(z) = {±1}. Then (x ·y) may
be computed as the minimal value n0 ≥ 0 such that y and x are not isomorphic over Wn0.

Proof. Because Aut(z) = {±1}, the completed local ring ÔX ,z is the universal deformation
space for z to local artinian W -algebras (the completed local ring on the moduli stack is
always the universal deformation space; the condition on the automorphism group ensures
that the local ring on the coarse space is canonically isomorphic). By [6, Chapter 5], ÔX ,z is
a complete 2-dimensional regular local W -algebra; since z lies in the relative smooth locus
of X/W (by Proposition 4.2), we see that ÔX ,z ≃ W JT K. Since x,y are deformations of z to
W , they correspond to W -valued points on the universal deformation space, i.e. a W -valued
choice of T . Let these choices be Tx, Ty ∈ W JT K. We are now just computing the intersection
(Tx · Ty) on the formal disc SpecW JT K over W . This intersection number is evidently the
maximal m for which Tx ≡ Ty mod πm, which in turn is equivalent to the specified n0.

Theorem 5.7. Let x ∈ X (W ) be a Heegner section. Then

(x · Tmx
σ) =

1

2

∑
n≥0

|HomWn(x
σ,x)degm|

where HomWn(−,−)degm denotes degree m morphisms of elliptic curves over Wn.

Proof when p ∤ m. The assumption rA (m) = 0 ensures that x and Tmx
σ are relatively prime

on the generic fiber. Write Tmx
σ =

∑
C xσ

C . We claim that there is a natural bijection

HomWn(x
σ,x)degm ≃

⊔
C

IsomWn(x
σ
C ,x).

Given an isogeny xσ → x over Wn of degree m, its kernel is a group scheme C of order
m which is then automatically étale. It therefore uniquely lifts to some an étale subgroup
scheme C ⊂ xσ over W , and there is a corresponding isomorphism xσ

C → x over Wn.
The result now follows from Theorem 5.6.

The arguments will necessarily be more complicated when p | m. To address this case,
we need the theory of canonical and quasi-canonical liftings. We will treat the theory of
canonical liftings, and for the moment omit the theory of quasi-canonical liftings.
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5.3 Deformation theory of ordinary elliptic curves

For context we recall some general results about the deformation theory of elliptic curves.
The discussion will be simplified by the assumption that we are working over the algebraically
closed field k, but many of the results work more generally.

Throughout we let R denote a complete noetherian local domain with algebraically closed
residue field k as before (we will apply our results to the context where R is a finite integrally
closed extensions of W ). Let F = Frac(R).

Definition 5.8. Let Def(R) denote the category of triples

(E/k,Γ/R, ε : Γk
∼−→ E(p∞))

where E/k is an elliptic curve, Γ/R is a p-divisible group, and ε is an isomorphism of p-
divisible groups over k.

Theorem 5.9 (Serre–Tate). The functor Ell(R) → Def(R) given by

E/R 7→ (Ek, E(p∞), ε)

(where ε is the natural choice of isomorphism) is an equivalence of categories.

Theorem 5.10 (Tate). The p-adic Tate module functor{
p-divisible

groups over R

}
→

{
Zp-lattices with

GF -action

}
Γ 7→ T (Γ)(F )

is fully faithful.

We now turn to the specific case of ordinary elliptic curves. Recall that an elliptic curve
E/k is ordinary iff its p-divisible group Γ0 := E(p∞) has connected étale sequence

0 −→ Γ0
0 −→ Γ0 −→ Γét

0 −→ 0

where Γ0
0 ≃ µp∞ and Γét

0 ≃ Qp/Zp. Furthermore, this exact sequence is uniquely split.
Let Γ/R be any lift of Γ0. Examining its connected étale sequence, we see that we have

0 −→ Γ0 −→ Γ −→ Γét −→ 0 (5.1)

where necessarily Γ0 ≃ µp∞ and Γét ≃ Qp/Zp.

Definition 5.11. Let E/k an ordinary elliptic curve. A deformation E/R of E is a (Serre–
Tate) canonical lift of E if E(p∞) has split connected-étale sequence, i.e. is the trivial
extension class in (5.1).

Given an elliptic curve E/R, we will say that E is a (Serre–Tate) canonical lift if Ek is
ordinary and E is a Serre–Tate canonical lift of Ek.

The splittings are always unique as there are no morphisms Γét → Γ0.
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Lemma 5.12. Let E,E ′/k be ordinary elliptic curves with Serre–Tate canonical lifts E , E ′/R.
Then the natural map

HomR(E , E ′) → Homk(E,E ′)

is a bijection.

Proof. By the Serre–Tate theorem, to give a map E → E ′ over R is the same as giving a
map E → E ′ and a compatible map E(p∞) → E ′(p∞) over R. Every endomorphism of
µp∞ ×Qp/Zp over k lifts uniquely over R, so we’re done.

Lemma 5.13. Let E/R be an elliptic curve with complex multiplication by OK and of ordi-
nary reduction. Then E is a canonical lift.

Proof. Let Γ = E(p∞) denote the associated p-divisible group over R. By Theorem 5.10, it
will suffice to show that T (Γ)(F ) ∼= Zp ⊕ Zp(1). We know already from the connected étale
sequence that T (Γ)(F ) is an extension of Zp(1) by Zp.

To show the extension is split, we make use of the CM action. We observe that T (Γ)(F )
is a free rank-1 module over Zp ⊗OK

∼= Zp × Zp (since p splits in OK) compatibly with the
GF -action, since the GF -action commutes with the CM action. So T (Γ)(F ) is a sum of two
GF -characters. Since we already know it is an extension of Zp(1) by Zp, we conclude that
this extension is split.

Remark. We didn’t really need to pass to Tate modules, we could also argue directly in terms
of the p-divisible groups.

Now we can treat our intersection products for primes p | m such that p splits in K.
Note that the assumption p | m implies p ∤ N , so all level structures are étale.

Proof of Theorem 5.7 when p | m and p splits in K. We claim that both sides vanish. On
the RHS (deformation theory side) it suffices to show that Homk(x

σ,x)degm = 0. By
Lemma 5.12 this is equivalent to HomW (xσ,x)degm = 0 which is true because rA (m) = 0.

On the LHS (intersection theory side) we need to show that (x · Tmx
σ) = 0. Write

m = ptr where (r, p) = 1. Since r is prime to p, we can write Trx
σ as a sum of irreducible

divisors zi defined over W . It will suffice to show that for any z = zi, we have (x ·Tptz) = 0.
We work over a finite integrally closed extension W ′/W so that Tptz splits as a sum of

irreducible divisors y representing diagrams of elliptic curves over W ′, none of which are
equal to x. Suppose that x and y intersect on the special fiber; then there is a pt-isogeny
zk → xk on special fibers which lifts uniquely to a pt-isogeny z → x since z and x are each
canonical lifts. This contradicts that x and Tptz didn’t meet on the generic fiber.

We will not give a proof of Theorem 5.7 for the supersingular cases, i.e. when p | m and
does not split in K.

5.4 Counting via quaternion algebras

In light of Theorem 5.7 we are reduced to computing the quantities

|HomWn(x
σ,x)degm| .
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We have already seen that this vanishes when p is split in K, so we can focus on the case
when p is not split.

In this situation, x has supersingular reduction and R := Endk(x) is an order in a
quaternion algebra B/Q which is nonsplit exactly at p and ∞. One has the following more
refined statement:

Proposition 5.14. With setup as above, Rp := R⊗Zp is a maximal order in Bp := B⊗Qp.
At all primes ℓ ̸= p, the order R⊗ Zℓ is conjugate in B ⊗Qℓ ≃ M2(Qℓ) to the order{[

a b
c d

]
∈ M2(Zℓ) : c ≡ 0 mod N

}
.

Since x has CM by OK , we obtain an embedding OK ↪→ R and therefore also K ↪→ B.
We can write B = Q[α, β] subject to α ∈ K, α2 = d ∈ Z, β2 = e ∈ Z, β ̸∈ K, and
αβ = −βα. Now α acts as an involution on B by conjugation; its decomposition into ±1
eigenspaces is

B = B+ ⊕B−

where B = K and B− = Kβ. Recall the reduced norm

N(p+ qα + rβ + sαβ) = p2 − dq2 − er2 + des2,

and one sees easily that according to the above decomposition b = b+ + b− we have

N(b) = N(b+) + N(b−).

Lemma 5.15. We have a canonical identification

EndWn(x) ≃ OK + pnR

compatible with the identification Endk(x) ≃ R.

Giving a full proof would take too much space, but let us do a quick sanity check. When
n = 0 we get Endk(x) = R and as n → ∞ we recover EndW (x) = OK .

Corollary 5.16. Suppose p is nonsplit in K. Then there is a canonical identification

EndWn(x) ≃ {b ∈ R : N(b−) ≡ 0 mod pε(n)}, ε(n) =

{
2n+ 1, p is inert

n, p is ramified

Proof. Follows from Lemma 5.15.

Proposition 5.17. We have a canonical identification

HomWn(x
σ,x) ≃ EndWn(x) · a ⊆ B

where a ∈ A is any representative. For any isogeny ϕ on the LHS corresponding to b ∈ B,
we have deg ϕ = N(b)/N(a).
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We will omit the explanation of how to justify this over an arbitrary base; let us discuss
the situation over H. Given a CM elliptic curve E/H with complex uniformization C/b, the
elliptic curve Eσ is given by C/a−1b and an isogeny Eσ → E is determined by an inclusion
of O-modules a−1b ↪→ b, or equivalently an inclusion O ↪→ a, i.e. an element of a. So we get
an identification HomH(E

σ, E) ∼= a, and the degree of an isogeny corresponding to γ ∈ a is
given by N(γ)/N(a).

Corollary 5.18. We have

∑
n≥0

HomWn(x
σ,x)degm =

∑
b∈Ra/±1

N(b)/N(a)=m

{
1
2
(1 + ordp(N(b−))), p is inert

ordp(N(b−)), p is ramified
.

It is desirable to remove the reference to the quaternion algebra B and express the
intersection number (x · Tmx

σ) entirely in terms of K. To do this, we provide an explicit
realization of the algebra B. First assume p is inert, and choose a prime q such that q ≡ −p
mod D. Then we can take B to be the quaternion algebra with α =

√
D, β =

√
−pq.

By computing explicitly in this algebra, one finds the following formula:

Proposition 5.19. If p is inert in K, then

⟨c, Tmd
σ⟩p :=

∑
v|p

⟨c, Tmd
σ⟩v = −(log p)

⌊m|D|
Np

⌋∑
n=1

2ω((n,D))(2 + ordp(n))rA (m|D| − pnN)rA qn(n)

where ω(−) denotes number of distinct prime factors.

For the details, see [5, §III.9]. We get a similar formula in the case that p is ramified.
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