
Crystalline and semistable representations

We assume familiarity with de Rham representations. We will mostly follow [2].
The motivation for the discussion of crystalline representations is (very briefly) as follows.

Let K be a p-adic field and A/K an abelian variety. Let ℓ be a prime different from p. One
has the following very useful criterion for detecting good reduction:

Theorem 0.1 (Néron–Ogg–Shafarevich). A has good reduction if and only if the (rational)
Tate module VℓA is unramified.

We could hope for the same to be true for the p-adic Tate module VpA. Let ρ : GK →
GL(VpA) denote the representation map; then det ρ is the GK-representation on H2g(A,Qℓ)
given by the gth power of the cyclotomic character. The cyclotomic character, however, is
not even potentially unramified.

Our goal, then, is to define a reasonable subcategory of p-adic GK-representations, de-
fined only in terms of Galois representations, such that A has good reduction if and only if
VpA belongs to this subcategory. The correct subcategory is that of the crystalline repre-
sentations, whose definition will arise later in the notes. This fits into Fontaine’s period ring
formalism; the crystalline representations will be those that are Bcris-admissible where Bcris

is a certain GK-regular period ring.
We note the following attractive feature of crystalline representations.

Theorem 0.2 (Colmez–Fontaine). The functor Dcris from Repcris
GK

to the category of weakly
admissible filtered ϕ-modules over K is an equivalence of categories.

We have yet to define all the terms in this theorem, but the point is that we can give a
robust description of crystalline representations in terms of (semi)linear algebraic data. We
recall that the functor DdR from de Rham representations to FilK is not fully faithful.

The semistable period ring Bst and the corresponding category of semistable representa-
tions serves a similar role for varieties with semistable reduction.

1 Isocrystals and filtered ϕ-modules

Let k be a perfect field of characteristic p and let K0 = W (k)[1
p
].

Definition 1.1. An isocrystal over K0 is a finite-dimensional K0-vector space M together
with a bijective Frobenius-semilinear endomorphism Φ :M →M .

We say M is isotypic of slope λ ∈ Q if there is a W (k)-lattice L ⊂ M and integers
r ∈ Z, s ∈ Z>0 with ΦsL = prL and λ = r/s.

We let Modϕ
K0

denote the category of isocrystals over K0.

Remark. Let Γ be a p-divisible group over k. The (covariant) Dieudonné module D(Γ) is
a free module over W (k) equipped with a Frobenius-semilinear endomorphism F : D(Γ) →
D(Γ) such that pD ⊆ FD. The functor Γ ⇝ D(Γ) ⊗ K0 is a functor from the isogeny
category of p-divisible groups over k to Modϕ

K0
.

Remark. The category Modϕ
K0

is abelian.
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Theorem 1.2 (Dieudonné–Manin). If k is algebraically closed, then Modϕ
K0

is semisimple
with one simple object Eλ for each λ ∈ Q. If λ = r/s with r ∈ Z, s ∈ Z>0 and (r, s) = 1,
then dimEλ = s.

Returning to our motivation, let us suppose that K is a p-adic field with residue field k
and A is an abelian variety over K with good reduction. Let A/OK be an abelian scheme
with generic fiber A. We have a comparison isomorphism

H1
dR(A/K) ∼= K ⊗K0 D(Ak[p

∞])K0

(this will hold for any X/K with model X/OK if we replace the Dieudonné crystal by
crystalline cohomology). The K-vector space H1

dR(A/K) is naturally equipped with its
Hodge filtration. We are led to introduce the following refined category of isocrystals.

Definition 1.3. A filtered ϕ-module over K is an isocrystal M over K0 equipped with an
exhaustive and separated filtration Fil• (indexed by Z) of MK .

We write MFϕ
K for the category of filtered ϕ-modules over K.

Remark. The category MFϕ
K is not abelian (we have no right to expect it to be so, since FilK

is not abelian).

To define the notion of weak admissibility for a filtered ϕ-module, we recall the notions
of convex polygons and in particular, the Hodge polygon and Newton polygon.

Definition 1.4. Let λ0 < · · · < λn be a given sequence of real numbers and d0, . . . , dn a
given sequence of positive integers. The convex polygon with slopes {λi} and multiplicities
{di} is constructed recursively as follows.

• Draw the point v0 = (0, 0) in the plane.

• For each 0 ≤ i ≤ n − 1, draw the line segment of horizontal distance di with slope λi
starting at vi, and label its endpoint as vi+1.

The resulting object is a finite union of line segments in the plane. Given two convex polygons
P and Q we say that P ≥ Q if P lies completely on or above Q.

Definition 1.5. Let L denote a field and M =
⊕

λ∈QMλ a finite-dimensional Q-graded
L-vector space. Let λ0 < · · · < λr denote the values for which Mλ ̸= 0 and for 0 ≤ i ≤ r
set di = dimLMλi

. The convex polygon P (M) associated to M is the convex polygon with
slopes {λi} and multiplicities {di}.

More generally if (M,Fil•) is a finite-dimensional filtered vector space over L indexed by
Q, we set P (M) := P (grM) (note that if the filtration on M is exhaustive and separated
then the rightmost point has x-coordinate equal to dimM).

Lemma 1.6. The y-coordinate of the rightmost point of P (M) coincides with that of P (detM).

This is quite useful because it allows us to reduce some arguments to the case of 1-
dimensional spaces.

Definition 1.7. Let M denote an object of MFϕ
K . There are two polygons associated to M :
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• the Hodge polygon PH(M), associated to the given filtration on MK , and

• the Newton polygon PN(M), associated to the slope grading on M .

We let tH(M) and tN(M) denote the y-coordinates of the rightmost endpoint of PH(M) and
PN(M), respectively.

Example 1.8. Let E/OK be an elliptic curve, and M = D(Ek)K0 . Then MK = H1
dR(E/K)

is 2-dimensional and has a filtration with dim gr0 = dimgr1 = 1, so it has Hodge polygon:
If E has good ordinary reduction, then PN(E) = PH(E), whereas if E has good super-

singular reduction, then its Newton polygon looks like:

Definition 1.9. Let M ∈ MFϕ
K . We say that M is weakly admissible if the following hold:

1. PN(M) and PH(M) have the same right endpoint, and

2. for every subobject M ′ of M , we have PN(M
′) ≥ PH(M

′).

We let MFϕ,wa
K denote the full subcategory of weakly admissible filtered ϕ-modules.

Lemma 1.10. Let M ∈ MFϕ
K. Then M is weakly admissible if and only if tN(M) = tH(M)

and for every subobject M ′ of M , we have tN(M
′) ≥ tH(M

′).
Furthermore, M is weakly admissible if and only if MK̂ur

0
is weakly admissible.

Theorem 1.11. The category MFϕ,wa
K is abelian (even though MFϕ

K is not!).

2 Crystalline representations

As we have seen, for a variety X/K with good reduction, the crystalline cohomology of Xk

has the structure of a filtered ϕ-module. However, there is no Frobenius structure on BdR

so the functor DdR is insufficient to study good reduction phenomena. To remedy this, we
will construct a ring Bcris ⊆ BdR with the following properties:

1. Bcris is a GK-stable Ainf [
1
p
]-subalgebra of BdR containing the element t = log([ε]).

2. Bcris is GK-regular with B
GK
cris = K0.

3. The natural map K ⊗K0 Bcris → BdR is injective and induces an isomorphism of
associated graded algebras (where the LHS has the subspace filtration).

4. There is an injective GK-equivariant map ϕ : Bcris → Bcris extending the Frobenius
map on Ainf , and ϕ(t) = pt.

5. We have an identification (Fil0Bcris)
ϕ=1 = Qp. That is, the Frobenius fixed points in

Bcris ∩B+
dR can be identified with Qp.
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Before we proceed with the construction, let us see what such properties will give us.
Properties (1) and (2) tell us that we can apply the period ring formalism, so that we

will have a functor V ⇝ Dcris(V ) that lands in the category of finite-dimensional K0-vector
spaces, and we obtain a category Repcris

GK
of Bcris-admissible representations, called crystalline

representations.
Via the injection K ⊗K0 Bcris ↪→ BdR and the Frobenius structure on Bcris, we see that

Dcris factors through MFϕ
K . Henceforth we consider Dcris as a functor Repcris

GK
→ MFϕ

K .

Proposition 2.1. Suppose k is algebraically closed. Then the crystalline characters of GK

are exactly the Tate twists.

Proof. Let ψ : GK → Q×
p be a crystalline character acting on 1-dimensional Qp-vector space

V . After a Tate twist, we may assume that ψ has Hodge–Tate weight 0. It follows from
Sen–Tate theory that ψ(GK) is finite and hence ψ has open kernel and is trivialized over a
finite extension L/K. Then we have

Dcris(ψ) = (Bcris ⊗Qp V )GK

= ((Bcris ⊗Qp V )GL)Gal(L/K)

= (K0 ⊗Qp V )Gal(L/K)

= K0 ⊗Qp V
Gal(L/K)

so we have

dimK0 Dcris(ψ) = dimQp V
Gal(L/K) ≤ dimQp V = dimK0 Dcris(ψ)

so we conclude that V Gal(L/K) = V and thus ψ is trivial.
To finish the proof, it will suffice to compute Dcris(Qp(r)). By definition, it is the space

Bcris[−r] on which GK acts by χ−r
cycl, and we know this space is at most 1-dimensional. On

the other hand, we know that GK acts on t by the cyclotomic character, so we see that
Dcris(Qp(r)) = K0t

−r. This is the filtered isocrystal of dimension 1, slope −r, and filtration
supported in degree −r.

Proposition 2.2. The functor Dcris has the following properties:

1. The map K ⊗K0 Dcris(V ) → DdR(V ) is an isomorphism in FilK and V is de Rham.

2. For V ∈ Repcris
GK

, the comparison isomorphism

α : Bcris ⊗K0 Dcris(V )
∼−→ Bcris ⊗Qp V

is Frobenius-equivariant, GK-equivariant, and the base change αK is an isomorphism
of filtered K-vector spaces.

3. Dcris is fully faithful.
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Proof. The map K⊗K0 Dcris(V ) → DdR(V ) is injective since K⊗K0 Bcris → BdR is injective.
So we have

dimK0 Dcris(V ) = dimK(K ⊗K0 Dcris(V ))

≤ dimK DdR(V )

≤ dimQp V

= dimK0 Dcris(V )

so we conclude that all the inequalities are equalities and in particular, K ⊗K0 Dcris(V ) →
DdR(V ) is an isomorphism and V is de Rham.

The second statement follows from the first as follows. We only need to check that αK is
a filtered isomorphism, so we need to check that grαK is an isomorphism. By property (3)
and the second statement we can write αK as

(K ⊗K0 Bcris)⊗K DdR(V )
∼−→ (K ⊗K0 Bcris)⊗Qp V

whose associated graded is then

gr(BdR ⊗K DdR(V )) → gr(BdR ⊗Qp V ).

So the statement reduces to the corresponding statement for BdR.
For fully faithfulness, it is enough to define a functor Vcris : MFϕ

K → RepGK
such that

Vcris(Dcris(V )) = V

for all V ∈ Repcris
GK

. This is provided by the Frobenius structure via property (5). We set

Vcris(M) = Fil0(Bcris ⊗K0 M)ϕ=1.

Then we compute for V crystalline:

Vcris(Dcris(V )) = Fil0(Bcris ⊗K0 Dcris(V ))ϕ=1

= Fil0(Bcris ⊗Qp V )ϕ=1

= Fil0(Bcris)
ϕ=1 ⊗Qp V

= V.

Proposition 2.3. Dcris factors through MFϕ,wa
K .

Proof. By Lemma 1.10 we may assume that k is algebraically closed.
We need to show that for any subobjectM ′ ofM , we have tN(M

′) ≥ tH(M
′) with equality

when M =M ′. We will reduce to the case that dimM ′ = 1. Indeed, let m′ = dimM ′. Since
Dcris is compatible with tensors, quotients, etc. the desired statement for ∧m′

V and subobject
detM ′ ⊆ ∧m′

M implies the statement for V and subobject M ′ ⊆M .
Thus we are reduced to the case of M ′ ⊆ M such that dimM ′ = 1. Again by Tate

twisting, we may suppose that tH(M
′) = 0.
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If M ′ =M , then by the above example, M is the trivial representation so we are done.
If M ′ ̸= M , let x ∈ M ′ be a K0-basis for M

′. We can write ϕ(x) = λx for some λ ∈ K0;
since k is algebraically closed we may assume that λ = pn for some n (by scaling x). We
also know x ∈ (Fil0(BdR)⊗Qp V ) \ (Fil1(BdR)⊗Qp V ). Let {v1, . . . , vn} a Qp-basis of V , and
write

x =
∑

bi ⊗ vi

for bi ∈ Bcris. Then ϕ(bi) = pnbi for all i, and there is at least one value i0 for which
bi0 ̸∈ Fil1(BdR)⊗Qp V .

Suppose (towards a contradiction) that n < 0. Letting b′ = bi0/t
n we see that ϕ(b′) = b′

and b′ ∈ Fil−n(Bcris) ⊆ Fil0(Bcris) but b
′ ̸∈ Fil−n+1(Bcris). Property (5) tells us that b′ ∈ Qp.

But Qp ∩ Fil1(Bcris) = 0 so b′ = 0, so bi0 = 0, a contradiction. So n ≥ 0, as desired.

Recall from the introduction that in fact the following optimal statement is true! But we
will not prove it here.

Theorem 2.4 (Colmez–Fontaine). Dcris : Rep
cris
GK

→ MFϕ,wa
K is an equivalence of categories.

3 Semistable representations

For this we take a brief aside into the theory of ℓ-adic Galois representations.

Definition 3.1. An ℓ-adic GK-representation is called semistable if the inertia subgroup
acts unipotently.

Theorem 3.2 (Grothendieck). If K/Qp is finite then any ℓ-adic GK-representation is po-
tentially semistable.

(In fact the theorem is somewhat more general in terms of which fields K are allowed.)
For any p-adic field K we can see that the tame inertia can be decomposed as I tK =∏

q ̸=p Zq(1). Any ℓ-adic Galois representation (ρ, V ) is also potentially tame, and after
passing to a further finite extension it will act through the pro-ℓ quotient I tK,ℓ

∼= Zℓ(1).
Hence we will assume we have a semistable representation V whose inertial action factors

through Zℓ(1). Since the inertia acts unipotently we see that for all g ∈ I tK,ℓ we have ρ(g) =
exp(c(g)N) where N ∈ Hom(V, V (−1)) is nilpotent and c(g) is the scalar corresponding to
g under the identification I tK,ℓ

∼= Zℓ(1). We call such N the monodromy operator associated
to V . Observe that if V is unramified we have N = 0.

The most naively stated monodromy theorem for p-adic Galois representations will of
course be false. We will define a suitable analogous notion of semistability for p-adic Ga-
lois representations such that we obtain an analogous theorem for the class of de Rham
representations. Varieties over K with semistable reduction will produce semistable repre-
sentations in this setup. With some care we see that their p-adic étale cohomology produces
the following structure.

Definition 3.3. A filtered (ϕ,N)-module over K is a filtered ϕ-module M together with a
K0-linear “monodromy operator” N : M → M such that Nϕ = pϕN . We write MFϕ,N

K for
the resulting category.
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To define the notion of semistability, we will construct a period ring Bst with the following
properties:

1. There are GK-stable inclusions Bcris ↪→ Bst ↪→ BdR.

2. Bst is GK-regular with B
GK
st

∼= K0.

3. The natural map K ⊗K0 Bst → BdR is injective (and thus induces an isomorphism on
associated gradeds).

4. There is an injective map ϕ : Bst → Bst extending the corresponding map on Bcris.

5. There is an element Y ∈ Bst such that ϕ(Y ) = pY , and the map Bcris[X] → Bst of
Bcris-algebras sending X 7→ Y is an isomorphism.

From this structure we can construct N : Bst → Bst given by N = − d
dY

. By construc-

tion, Nϕ = pϕN . Consequently the resulting functor Dst has natural target MFϕ,N
K . We

also note that BN=0
st = Bcris. The ring Bst gives rise to the category Repst

GK
of semistable

representations and a functor Dst : Rep
st
GK

→ MFϕ,N
K .

Theorem 3.4. For GK-representations we have the sequence of implications

crystalline =⇒ semistable =⇒ de Rham =⇒ Hodge–Tate.

Proof. We only have to prove the first two arrows. Let V be a crystalline representation;
then we have

dimK0 Dcris(V ) = dimK0 Dst(V )N=0

≤ dimK0 Dst(V )

≤ dimQp V

= dimK0 Dcris(V )

so we conclude that all inequalities are equalities; in particular N = 0 on Dst(V ) and V is
semistable.

The proof that semistable implies de Rham proceeds exactly as in Proposition 2.2.

Similarly to the crystalline case we get a linear algebra classification of semistable repre-
sentations.

Theorem 3.5. The functor Dst is fully faithful with essential image MFϕ,N,wa
K .

By the proof of Theorem 3.4 we can assert that the essential image of the crystalline
representations are those filtered (ϕ,N)-modules for which N = 0.

Most importantly, we can state a deep theorem which serves as a p-adic analogue of the
unipotent monodromy theorem, known as Fontaine’s semistability conjecture.

Theorem 3.6 (Berger, André–Kedlaya–Mebkhout). A representation is de Rham if and
only if it is potentially semistable.
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4 Crystalline and semistable period rings

Having deduced several formal consequences of the existence of period rings Bcris and Bst

with certain properties, it remains to actually construct such rings. This aspect of the theory
is the most technical; we will have to proceed in several steps.

We let I ⊆ Ainf denote the ideal ker θ, which is principal and generated by any choice of
distinguished element ξ. Recall that B+

dR was defined to be the I-adic completion of Ainf [
1
p
].

We define the subring Acris of B
+
dR via

Acris :=

{∑
n≥0

an
ξn

n!

∣∣∣ an ∈ Ainf , an → 0 p-adically

}
Alternatively, this can be characterized as the p-adic completion of the divided power enve-
lope of Ainf with respect to I. We claim that the natural Frobenius on Ainf [

1
p
] extends to

Acris. To verify this, we note that ϕ(ξ) ≡ ξp mod pAinf so we can write ϕ(ξ) = ξp + pa for
some a ∈ Ainf . We can rewrite this in the form

ϕ(ξ) = p ·
(
a+ (p− 1)! · ξ

p

p!

)
=⇒ ϕ

(
ξn

n!

)
=
pn

n!
·
(
a+ (p− 1)! · ξ

p

p!

)n

so we conclude that Acris has a natural Frobenius map extending that on Ainf .

Definition 4.1. We set B+
cris := Acris[

1
p
] ⊆ B+

dR.

Lemma 4.2. The element t ∈ B+
dR belongs to Acris and ϕ(t) = pt.

Proof sketch. That t ∈ Acris follows from the fact that [ε] − 1 = a′ξ for some a′ ∈ Ainf ; we
can take an = (n− 1)!(−a′)n.

Since t = log([ε]) with [ε] ∈ Ainf a Teichmüller lift, we expect ϕ(t) = pt. To make this
rigorous requires slightly more care working with the power series.

Definition 4.3. We set Bcris := B+
cris[

1
t
].

Verifying properties (1)–(5) of Bcris is quite tricky and involved; we omit the proofs (some
partial proofs appear in [2], with references to the literature). We note that Bcris is not a
field.

To construct Bst we consider an element

Y = log[p♭] :=
∑
n≥1

(1− [p♭]/p)n−1

n
.

This is a well-defined element of B+
dR. Again, it takes some additional technique to conclude

that this Y is transcendental over Bcris. We impose that ϕ(Y ) = pY .
Let us examine how GK acts on Y . For each g ∈ GK we have

g[p♭] = [p♭] · [ε]c(g)

for some c(g) ∈ Zp. So we have
gY = Y + c(g)t.

Remark. This is not the only valid choice of Y , i.e. Bst is not canonically defined as a subring
of BdR.
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5 Example: the Tate curve

Let E := C×
K/p

Z denote the (rigid analytic) Tate curve with parameter p. Then E has an
algebraization over K with bad semistable reduction.

The pn-power torsion of E is given by

E[pn](K) = {ζapn(p1/p
n

)b}a,b∈Z/pnZ

for some choices of ζpn , p
1/pn . So we see that

TpE ∼= Zp⟨e, f⟩

where e corresponds to the system of p-power roots of unity for ε and f corresponds to
a system of p-power roots of p for p♭. In this basis we have that the GK-representation
V = TpE is given by

g 7→
[
χcycl(g) c(g)

1

]
.

Using this explicit description, we see that the elements of Bst ⊗Qp V given by

t−1 ⊗ e, −Y t−1 ⊗ e+ 1⊗ f

are Galois invariant elements. So Dst(V ) is spanned by these, and we see that V is semistable
but not crystalline.

It can be checked in the same way that any parameter q ∈ OK with |q| < 1 yields a
semistable GK-representation.

Remark. Historically, Fontaine constructed Bst from Bcris by adjoining the necessary periods
coming from Tate curves. So we have done this a bit backwards.
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