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Abstract

A nodal domain of a function is a maximally connected subset of the domain for which the func-
tion does not change sign. Courant’s nodal domain theorem gives a bound on the number of nodal
domains of eigenfunctions of elliptic operators. In particular, the kth eigenfunction contains no
more than k nodal domains. We prove a generalization of Courant’s theorem to discrete graphs.
Namely, we show that for the kth eigenvalue of a generalized Laplacian of a discrete graph, there
exists a set of corresponding eigenvectors such that each eigenvector can be decomposed into at
most k nodal domains. In addition, we show this set to be of co-dimension zero with respect to the
entire eigenspace.
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1. Introduction

In the 1923 paper titled “Ein allgemeiner Satzt zur Theorie der Eigenfunktionen selbsad-
jungierter Differentialausdrücke” [10], as well as in the 1924 text co-authered with David Hilbert
“Methoden der mathematischen Physik I” [9], Richard Courant proved a result regarding the zeros
of elliptic eigenfunctions, the so-called Courant nodal domain theorem.

Theorem 1.1 (Courant’s nodal domain theorem, [10, 9]). Given the self-adjoint second order
differential equation L[u]+λρu = 0, (ρ 6= 0), for a domain G with arbitrary homogeneous boundary
conditions; if its eigenfunctions are ordered according to increasing eigenvalues, then the nodes of
the nth eigenfunction un divide the domain into no more than n subdomains. No assumptions are
made about the number of independent variables.

The “nodes” are the nodal set {x|un(x) = 0} and the “sub-domains” are now referred to as nodal
domains. Extensions of Courant’s nodal domain theorem are abundant, including to p-Laplacians,
Riemannian manifolds, and domains with low regularity assumptions [13, 23, 7, 11, 1]. Most
notably, Pleijel’s nodal domain theorem is an extension of Theorem 1.1 to vibrating membranes
using Faber-Krahn results [24]. Theorem 1.1 is also closely related to the work of Chladni involving
the modes of vibration of a rigid surface; the patterns of nodal lines on the surface are referred to
as Chladni figures [28, 8]. For further information regarding the importance of Theorem 1.1, the
author refers the reader to [2].

Courant’s theorem has extensions not only in differential equations, but in graph theory as
well. To see the natural extension, we note that many of the matrix representations of graphs,
such as the graph Laplacian, have properties that are analogous to continuous elliptic operators.
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In fact, there are many connections between spectral graph theory and elliptic partial differential
equations. For a thorough and detailed treatment of these connections, we refer the reader to [18].

Nodal decompositions of graphs have applications in graph partitioning, most notably in spectral
bisections. The first nodal domain-type theorem for graphs was proved by Davies et al [5], though
similar results were previously mentioned, though not fully proved, by Colin de Verdiere in [12]
and by Friedman in [17]. A number of results have also been proved by Biyikoglu et al [3, 4] and
Gladwell and Zhu [19]. These results will be discussed in greater detail in Section 2. Miroslav
Fiedler produced many results related to the nodal domains of eigenvectors corresponding to the
algebraic connectivity of a graph [14, 15, 16]. For this reason, such eigenvectors are now referred to
as Fielder vectors of the graph. The nodal domains of the Fiedler vector have been used with great
success in spectral partitioning [26, 6, 25, 22, 20]. Recently, in [27] it was shown that for every
connected graph, there exists a Fiedler vector that produces connected subgraphs in the spectral
bisection .

In what follows, we aim to prove a new, direct analogue of Theorem 1.1 for graphs. Namely,
we aim to show that for any k, there exists an eigenvector uk corresponding to the kth eigenvalue
that can be decomposed into k or fewer nodal domains. The remainder the paper is as follows.
In Section 2, we define the notation of the paper, give basic definitions, and recall existing results
in the literature. In Section 3, we give a complete characterization of eigenvectors that take the
value zero at some vertex. We will see that the existence of vertices that take the value zero plays
a crucial role in the theory of nodal domains on graphs. Finally, we prove a discrete analogue of
Theorem 1.1 for graphs, the main result of the paper.

2. Notation and Existing Results

We begin by defining the necessary notation. Let the set of connected, undirected, simple
graphs G = (V,E) be denoted by G. For a given graph G ∈ G, let d(u, v) be the distance between
the vertices u, v ∈ V , N(u) be the set of vertices v ∈ V for which d(u, v) = 1, and d(u) := |N(u)| be
the degree of vertex u ∈ V . For a given graph G = (V,E) and subset X ⊂ V , we denote by G(X)
the subgraph of G induced by the vertices X. In addition, if, for a given graph G, there exists a
bipartition X,Y of V such that E ⊂ X × Y , then G is said to be bipartite and may be written as
G = (X,Y,E).

The superscript ·T denotes the adjoint with respect to the standard Euclidean `2 inner product.
We define the Lebesgue covering dimension of a set X by dim(X), and define the co-dimension of
a subset Y of a vector space X by codim(Y ) = dim(X) − dim(Y ). In what follows, the vector
space X will always be an eigenspace. Let [n] = {1, ..., n} and 1{·} be the indicator function. For
a matrix A ∈ IRn×n and some J ⊂ [n], we denote by A(J) the sub-matrix of A induced by the
indices J . In addition, for a given vector f ∈ IRn, we introduce a partition of [n] based on the sign
of the components of f ,

i+(f) = {1 ≤ i ≤ n|f(i) > 0},

i−(f) = {1 ≤ i ≤ n|f(i) < 0},

i0(f) = {1 ≤ i ≤ n|f(i) = 0}.

For a given matrix A ∈ IRn×n and eigenvalue λ, we denote the corresponding eigenspace by

E(λ;A) := {f ∈ IRn|Af = λf}.

When it is clear which matrix is being used, we may simply write E(λ).
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In spectral graph theory literature, there is some debate over which matrix representation of a
graph is best, and often the answer changes according to setting and application. In what follows,
we take a rather general approach. Namely, we consider the set of generalized Laplacians, defined
as follows.

Definition 2.1. Let G = (V,E) ∈ G, |V | = n. A matrix M ∈ Rn×n, M = MT , is a generalized
Laplacian of G if

M(i, j) < 0 for all {vi, vj} ∈ E,
M(i, j) = 0 for all {vi, vj} 6∈ E, i 6= j.

We note that the degree matrix, the unnormalized and normalized Laplacian matrix, and the
negative of the adjacency and signless Laplacian matrix are all generalized Laplacians of G. The
random walk Laplacian is not usually in this class, but is similar (in a linear algebraic sense) to the
normalized Laplacian.

Any generalized Laplacian can be written in the form

M(G) = L+D,

where L is a symmetric M-matrix and D is a diagonal matrix. This bears immediate similarity to
a continuous Laplacian plus a potential term (for this reason, generalized Laplacian matrices are
often called discrete Schrödinger operators).

For an eigenvector f of a generalized Laplacian M of a graph G, the nodal set is defined as

{{u, v} ∈ E|f(u)f(v) ≤ 0} ∪ {u ∈ V |f(u) = 0}.

In particular, we may refer to {{u, v} ∈ E|f(u)f(v) ≤ 0} and {u ∈ V |f(u) = 0} as the set of nodal
edges and the set of nodal vertices, respectively.

The comparison between the continuous and discrete case is not without its difficulties. In
particular, for the continuous case, it is well known that {x|un(x) = 0} is of co-dimension one
[7]. However, for a finite graph, the nodal set is some positive proportion of the edges and may
include vertices as well. It is the latter property that leads to problems. In fact, the existence
of eigenvectors with nodal vertices is the major barrier to an exact graph analogue to Courant’s
theorem. For this reason, in the graph theory literature, there is a key distinction between nodal
domains that do include nodal vertices, and nodal domains that do not.

Definition 2.2. A strong (resp. weak) nodal domain of a graph G with respect to an eigenvector
f is a maximally connected subgraph H satisfying f(u)f(v) > 0 (resp. f(u)f(v) ≥ 0) for all
u, v ∈ VH . The number of strong (resp. weak) nodal domains of a graph G with respect to f is
denoted by G(f) (resp. W(f)).

When the set of nodal vertices {u|f(u) = 0} is empty, the definition of a weak and strong nodal
domain is equivalent, and G(f) =W(f).

In spite of the complications introduced by nodal vertices, certain results are still possible. Most
notably, Biyikoglu et al proved the following.

Theorem 2.3 (Biyikoglu et al, [3, 4]). Let M be a generalized Laplacian of a connected undi-
rected graph with n vertices. Then any eigenvector fk corresponding to the kth eigenvalue λk with
multiplicity r has at most k weak nodal domains and k + r − 1 strong nodal domains, namely,

W(fk) ≤ k and G(fk) ≤ k + r − 1.
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This analogue of Courant’s theorem is exact, save for when nodal vertices exist. The bounds
W(fk) ≤ k and G(fk) ≤ k + r − 1 have been shown to be tight for numerous examples, including
the star graph and Peterson’s graph. In addition to Theorem 2.3, the following corollary for
disconnected graphs was proven in [3, 4].

Corollary 2.4. Let M be a generalized Laplacian of a graph G with c connected components. Then
any eigenfunction fk corresponding to eigenvalue λk with multiplicity r satisfies

W(fk) ≤ k + c− 1 and G(fk) ≤ k + r − 1.

The most notable extensions of Theorem 2.3 to date are from Gladwell and Zhu.

Theorem 2.5 (Gladwell-Zhu, [19]). There exist orthogonal eigenfunctions fk of M(G) such that
G(fk) ≤ k for k = 1, ..., n.

Corollary 2.6. Suppose that λk is an eigenvalue with multiplicity r and eigenspace E(λk). Then
there exists a basis {fk, ..., fk+r−1} of E(λk) such that G(fk) ≤ k for all j = k, ..., k + r − 1.

While Theorem 2.5 and Corollary 2.6 are strong extensions, examples exist where the set of eigen-
vectors fk ∈ E(λk) satisfying G(fk) ≤ k may be of positive co-dimension. We supply one such
example for illustration.

Example 2.7. Consider the graph Laplacian of the star graph Sn on n vertices. We can quickly
verify that λ2 = 1 and has multiplicity n − 2. The corresponding eigenspace E(λ2) = {f |f(v0) =
0, 〈f, 1〉 = 0} h IRn−2 has a zero valuated vertex at the centroid v0. However, for a Fiedler vector
to satisfy G(f) ≤ 2, precisely n − 3 of the vertices vi, i > 0, must equal zero. Therefore, this is a
set of co-dimension n− 3 with respect to E(λk).

Rather than dealing with strong or weak domains, we concern ourselves with nodal decomposi-
tions of graphs. In the continuous case, the nodal domains make up a decomposition of the domain
minus a set of positive co-dimension, which can be adjoined to the partition in an arbitrary way.
In contrast, for the discrete case, the results of weak and strong nodal domain theorems do not
give any information regarding nodal decompositions of graphs. In some ways, for graphs, nodal
decompositions rather than weak and strong nodal domains are the most natural analogue. We
have the following definition.

Definition 2.8. A nodal decomposition of a graph G with respect to an eigenvector f is a partition
of the vertex set V ,

{Vi}si=1,
s⋃
i=1

Vi = V, Vi ∩ Vj = ∅ for all i 6= j,

such that the subgraphs G(Vi), i = 1, .., s, are the strong nodal domains of some vector g satisfying

g(v) =

{
+1 or − 1

f(v)
if f(v) = 0
if f(v) 6= 0 .

The minimum number s for which a nodal decomposition exists is denoted by D(f).

If, in a decomposition, a nodal vertex is treated like a positively or negatively valuated vertex, then
we will say the vertex is positively or negatively “charged.” In what follows, we will prove that the
kth eigenvalue of a generalized Laplacian has a set of corresponding eigenvectors U ⊂ E(λk) such
that U has co-dimension zero with respect to E(λk) and every fk ∈ U satisfies D(fk) ≤ k. This
result is stated explicitly in Theorem 3.6.
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3. Main Result

In this section, we prove the main result of the paper. First, we give a complete characterization
of the nodal vertices of an eigenvalue. We must make a clear distinction between the nodal vertices
of an eigenvalue and of an eigenvector. The nodal vertices of an eigenvector are the indices for
which the eigenvector takes the value zero. The nodal vertices of an eigenvalue, on the other hand,
are the indices for which every corresponding eigenvector takes the value zero. When an eigenvalue
is simple, these two definitions are equivalent. For a repeated eigenvalue, there always exists an
eigenvector with a nodal vertex, though the eigenvalue itself may have no nodal vertices.

We can use nodal vertices to define an equivalence relation on an eigenspace. Namely, if λ is
an eigenvalue of a generalized Laplacian M of the graph G = (V,E) ∈ G, V = [n], then we have an
equivalence relation on E(λ)

f ∼ g if and only if i0(f) = i0(g).

Let us formally define the nodal vertices of an eigenvalue

i0(λ) :=
⋂

f∈E(λ)

i0(f),

and denote the equivalence class induced by i0(λ) by [i0(λ)]. This equivalence class is non-empty.
In fact, we can show that E(λ)\[i0(λ)] has positive co-dimension.

Theorem 3.1. Let λ be an eigenvalue of a generalized Laplacian M of the graph G = (V,E) ∈ G
with corresponding eigenspace E(λ). Then

codim(E(λ)\[i0(λ)]) > 0.

Proof. We will first prove that [i0(λ)] is non-empty. It suffices to show that for any given f1, f2 ∈
E(λ), there exists some f3 ∈ E(λ) such that i0(f3) = i0(f1)∩ i0(f2). One such example is given by

f3 = f1 + αf2, where α >

max
u∈[n]

|f1(u)|

min
u∈([n]\i0(f2))

|f2(u)|
.

By induction, we see that [i0(λ)] is non-empty. Let |i0(λ)| = r. Let us define the space

W = {g ∈ IRn−r|g = f([n]\i0(λ)) for some f ∈ E(λ)}.

W is a subspace of IRn−r and dim(W ) = dim(E(λ)). Now let us define the set

Uj = {g ∈W |j ∈ i0(g)}.

We note that Uj is a subspace of W , but there exists some element g∗ ∈W , i0(g
∗) = ∅. Therefore

dim(Uj) < dim(W ) = dim(E(λ)). The proof is complete.

Based on Theorem 3.1, we may safely restrict our attention to the equivalence class [i0(λ)]. We
briefly recall the concepts of matrix reducibility and articulation points.

Definition 3.2. A matrix A ∈ IRn×n is reducible if there exists a permutation matrix π ∈ IRn×n

such that

πAπT =

(
A1,1 A1,2

0 A2,2

)
.
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Definition 3.3. A matrix A ∈ IRn×n has degree of reducibility r if there exists a permutation
matrix π ∈ IRn×n such that

πAπT =


A1,1 A1,2 · · · A1,r+1

0 A2,2 · · · A2,r+1
...

. . .
. . .

...
0 · · · 0 Ar+1,r+1

 ,

with Ai,i irreducible, 1 ≤ i ≤ r + 1.

Definition 3.4. Let G = (V,E) ∈ G be a graph. If the removal of vertex v ∈ V results in a
disconnected graph, we say vertex v is an articulation point (or cut vertex) of G. In addition, if
the removal of a subset V0 ⊂ V results in a disconnected graph, we say that the set of vertices V0 is
an articulation set of G.

It is well known that a graph G is connected if and only if its corresponding generalized Laplacian
matrix M(G) is irreducible. Let us write M in block notation, i0(λ) = {1, ..., r}, [n]\i0(λ) =
{r + 1, ..., n},

M =

(
N −A
−AT M̃

)
,

N ∈ IRr×r, M̃ ∈ IR(n−r)×(n−r), A ∈ IRr×(n−r), and also write vectors f ∈ IRn in a similar fashion
f = (fT0 , f̃

T )T , f0 ∈ IRr, f̃ ∈ IRn−r. Even further, suppose the matrices N and M̃ have degree of

reducibility p and q, respectively. Then we may write the matrices N , M̃ , and A in the form

N =


N1 0 · · · 0

0 N2
. . .

...
...

. . .
. . . 0

0 · · · 0 Np

 , M̃ =


M1 0 · · · 0

0 M2
. . .

...
...

. . .
. . . 0

0 · · · 0 Mq

 , A =


A1,1 A1,2 · · · A1,q

A2,1 A2,2 · · · A2,q
...

...
. . .

...
Ap,1 Ap,2 · · · Ap,q

 ,

where Ni, i = 1, ..., p, and Mj , j = 1, ..., q, are irreducible. Here, some Ai,j may be zero. Again, we

may write f̃ in a similar fashion f̃ = (fT1 , f
T
2 , ..., f

T
q )T . We may naturally associate each submatrix

Ni and Mj with a corresponding vertex subset Vi and Ṽj in V , respectively. This structure induces
a natural bipartite graph H = (X,Y,EH), X = {x1, ..., xp}, Y = {y1, ..., yq}, with {xi, yj} ∈ EH if
and only if Ai,j 6≡ 0.

Suppose we are concerned with the kth eigenvalue λk of M with multiplicity m,

λ1 ≤ ... < λk = ... = λk+m−1 < λk+m ≤ ... ≤ λn.

We note that λk and f̃ are an eigenpair of M̃ , and f̃ is in the null space of A. In addition, the
multiplicity of λk with respect to M̃ is at least m. In fact, we can fully characterize the eigenspace
E(λk). Indeed, this space is precisely the set of all f such that fj ∈ E(λk;Mj), j = 1, ..., q, and

q∑
j=1

Ai,jfj = 0

for all i = 1, ..., p. Let us denote the multiplicity and index of λk with respect to Mj by mj and kj ,

respectively. Then we immediately have that the multiplicity and index of λk with respect to M̃ is
given by

m̃ =

q∑
j=1

mj and k̃ = [

q∑
j=1

kj ]− q + 1.

We recall the well-known eigenvalue interlacing theorem.
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Theorem 3.5 (Eigenvalue interlacing theorem, [21]). Let S be a real n×m matrix (n > m) such
that STS = I, and let A be a symmetric n× n matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. Define
B = STAS and let B have eigenvalues µ1 ≤ µ2 ≤ ... ≤ µm. Then the eigenvalues of B interlace
those of A, namely

λi ≤ µi ≤ λn−m+i.

By eigenvalue interlacing,

λk = λk+m−1(M) < λk+m(M) ≤ λk+m(M̃),

which implies that
k̃ ≤ k +m− m̃.

For each eigenspace E(λk;Mj), we can construct a basis {f̃ (1)i , ..., f̃
(mi)
i } ⊂ IR|Ṽj | satisfying i0(f̃

(σ)
j ) =

∅ for all j = 1, ..., q, σ = 1, ...,mj . Let f
(σ)
j ∈ IRn be the extension of f̃

(σ)
j to IRn, namely,

f
(σ)
j (v) = f̃

(σ)
j (v) for all v ∈ Ṽj , f

(σ)
j (v) = 0 otherwise.

For every f ∈ E(λk;M), we can define a mapping from f to its corresponding representation

in the basis {f (σ)j }
σ=1,...,mj
j=1,...,q ,

f =

q∑
j=1

mj∑
σ=1

α
(σ)
j f

(σ)
j .

Indeed, in this new basis, E(λ,M) is the subspace of IRm̃ = {{α(σ)
j }

σ=1,...,mj
j=1,...,q | − ∞ < α

(σ)
j < ∞}

satisfying
q∑
j=1

mj∑
σ=1

α
(σ)
j [Aijf

(σ)
j ] = 0 for all i = 1, ..., p.

Furthermore, because λk has multiplicity m with respect to M , E(λ;M) can be represented by a

system of ` = m̃−m homogeneous linear equations in the variables {α(σ)
j }

σ=1,...,mj
j=1,...,q ,

hi({α(σ)
j }

σ=1,...,mj
j=1,...,q ) =

q∑
j=1

mj∑
σ=1

c
(σ)
ij α

(σ)
j = 0 i = 1, ..., `,

for some set of constants c
(σ)
ij ∈ IR, i = 1, ..., `, j = 1, ..., q, σ = 1, ...,mj .

Now that we have sufficiently detailed the structure of eigenvalues with nodal vertices, we are
prepared to prove the main result of the paper.

Theorem 3.6. Let G = (V,E) be a connected graph and M be an associated generalized Laplacian.
Then for any eigenvalue λk, there exists a corresponding eigenvector fk such that D(fk) ≤ k.
Furthermore, the set of fk ∈ E(λk) with D(fk) ≤ k has co-dimension zero.

Proof. By Theorem 3.1, we may restrict ourselves to [i0(λk)]. If i0(λk) = ∅, then W(f) = G(f) =
D(f) for all f ∈ E(λk) and, using Theorem 2.3, we have D(f) ≤ k. Therefore, in what follows, we
may suppose that i0(λk) is non-empty.

Let H = (X,Y,EH), |X| = p, |Y | = q, be the bipartite graph induced by the nodal vertices
i0(λk). Because G ∈ G, H is connected. Suppose without loss of generality that the irreducible
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components of N and M̃ are ordered such that in the corresponding graph H, for all i > 1,
d(xi, xj) = 2 for some j < i, and the vertices of Y , y1, ..., yq, are ordered such that

min
xi∈N(yj1 )

i ≤ min
xi∈N(yj2 )

i if and only if j1 ≤ j2.

Let m and m̃ be the multiplicity of the eigenvalue λk with respect to M and M̃ , respectively,
and ` = m̃ −m. Let k̃ be the index of λk with respect to M̃ . By Corollary 2.4, for any f̃ with
M̃f̃ = λkf̃ , i0(f̃) = ∅, we have

W(f̃) = G(f̃) ≤ k̃ + q − 1,

giving
W(f̃) = G(f̃) ≤ k +m− m̃+ q − 1 = k + (q − `− 1).

For the remainder of the proof, we will consider vectors f ∈ E(λ;M) in the basis {f (σ)j }
σ=1,...,mj
j=1,...,q

and work within the space IRm̃ = {{α(σ)
j }

σ=1,...,mj
j=1,...,q | −∞ < α

(σ)
j <∞}. Let us define

ji, σi := argmax
j,σ

(
j +

σ

mj

)
1{c(σ)ij 6= 0}, i = 1, ..., `,

and without loss of generality suppose (ji1 , σi1) = (ji2 , σi2) if and only if i1 = i2. If this is not the
case, then by manipulation of the equations {hi}`i=1 this can be achieved in a manner similar to
reducing a matrix to row echelon form.

Let us fix the values of {α(σi)
ji
}`i=1 as a function of the values of other variables, namely,

α
(σi)
ji

= − 1

c
(σi)
iji

∑
α
(σ)
j 6=α

(σi)
ji

c
(σ)
ij α

(σ)
j , i = 1, ..., `.

We now have E(λk;M) = {{α(σ)
j }

σ=1,...,mj
j=1,...,q \{α

(σi)
ji
}i=1,...,`| −∞ < α

(σ)
j <∞}. Let us define

W := {yj ∈ Y | j = ji for some i}.

We will now inductively create vectors f ∈ E(λk;M) with D(f) ≤ k.
For any f ∈ E(λk;M), i0(f̃) = ∅, f̃ already has at most k + (q − `− 1) strong nodal domains.

We aim to produce a set of decompositions that decreases the number of nodal domains by at least
q − ` − 1. We will do this inductively, by traversing the elements of Y \W , |Y \W | ≥ q − `, in
chronological order.

Consider the first element ŷ1 ∈ Y \W , ŷ1 ∈ N(xî1), ŷ1 6∈ N(xi) for all i < î1. Let Ṽĵ1 be

the vertex set corresponding to ŷ1, and v ∈ Ṽĵ1 ∩ N(Vî1). Without loss of generality, suppose

every element in the basis of E(λk;Mĵ1
) takes a positive value at v. We define α

(σ)

ĵ1
> 0 for all

σ = 1, ...,mĵ1
. We give all the vertices in Vî1 a positive charge.

Now, let us consider the tth element ŷt ∈ Y \W , ŷt ∈ N(xît), ŷt 6∈ N(xi) for all i < ît. Let Ṽĵt be

the vertex set corresponding to ŷt, and v ∈ Ṽĵt ∩N(Vît). Without loss of generality, suppose every
element in the basis of E(λk;Mĵt

) takes a positive value at v. If Vît already has a charge, let us

define α
(σ)
jt

, σ = 1, ...,mĵt
, to be the same sign as the charge of Vît . If Vît has not been assigned a

charge, we choose the charge to be the same sign as an attached non-nodal vertex that has already
been given a valuation. By our ordering of Y , such a non-nodal vertex must exist. In this case,
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again, we define α
(σ)

ĵt
, σ = 1, ...,mĵt

, to be the same sign as the charge of Vît . We have decreased

the number of nodal domains in our decomposition by at least one.
Recalling that |Y \W | ≥ q− `, we have constructed a set of eigenvectors f with nodal decompo-

sitions that reduce the number of domains by at least q − `− 1, as desired. Because we have only
restricted the signs of certain elements, the set of eigenvectors which we have restricted ourselves
to is of co-dimension zero with respect to E(λk;M). The proof is complete.
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