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Abstract. Determinantal point processes (DPPs) have wide-ranging ap-
plications in machine learning, where they are used to enforce the no-
tion of diversity in subset selection problems. When defined on a finite
state space, they can be parametrized by a parameter whose dimension
grows with the size of the state space. Many estimators of that param-
eter have been proposed, but surprisingly the basic properties of the
maximum likelihood estimator (MLE) have received little attention.
The difficulty is that it is a non-concave maximization problem, and
such problems are notoriously difficult to understand in high dimen-
sions, despite their importance in modern machine learning. Here we
study both the local and global geometry of the expected log-likelihood
function. Given independent copies of a DPP, we prove several rates of
convergence for the MLE and give a complete characterization of the
case where these are parametric. We also exhibit a potential curse of
dimensionality where the asymptotic variance of the MLE scales expo-
nentially with the dimension of the problem, i.e., the size of the state
space. Moreover, we exhibit an exponential number of saddle points,
and give evidence that these saddle points, together with the global
maxima, may be the only critical points.
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1. INTRODUCTION

Determinantal point processes (DPPs) describe a family of repulsive point pro-
cesses; they induce probability distributions that favor configurations of points
that are far away from each other. DPPs are often split into two categories:
discrete and continuous. In the former category, the finite case is most widely
encountered, where realizations of the DPP are vectors from the Boolean hyper-
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cube t0, 1uN , while in the latter, they occupy a continuous space such as IRd. In
both settings, the notion of distance can be understood in the sense of the natural
metric with which the space is endowed. In this work, we always refer to DPPs
defined on a finite space as discrete DPPs. DPPs are canonically parametrized
by a correlation kernel, which is an N �N symmetric matrix in the discrete case
and a symmetric function in the continuous case. They were formally introduced
in the context of quantum mechanics to model systems of fermions [Mac75] that
were known to have a repulsive behavior, though DPPs have appeared implic-
itly in earlier work on random matrix theory, e.g. [Dys62]. Since then, they have
played a central role in various corners of probability, algebra and combinatorics
[ST03a, ST�03b, BO00, BS03, Bor11, Oko01, OR03], for example, by allowing
exact computations for integrable systems.

Following the seminal work of Kulesza and Taskar [KT12], both discrete and
continuous DPPs have recently gained attention in the machine learning litera-
ture where the repulsive character of DPPs has been used to enforce the notion of
diversity in subset selection problems. Such problems are pervasive to a variety
of applications such as document or timeline summarization [LB12, YFZ�16],
image search [KT11, AFAT14], audio signal processing [XO16], image segmenta-
tion [LCYO16], bioinformatics [BQK�14], neuroscience [SZA13] and wireless or
cellular networks modelization [MS14, TL14, LBDA15, DZH15]. DPPs have also
been employed as methodological tools in Bayesian and spatial statistics [KK16,
BC16], survey sampling [LM15, CJM16] and Monte Carlo methods [BH16].

Even though most of the aforementioned applications necessitate estimation
of the parameters of a DPP, statistical inference for DPPs has received little at-
tention. In this context, maximum likelihood estimation is a natural method, but
generally leads to a non-convex optimization problem. This problem has been
addressed by various heuristics, including Expectation-Maximization [GKFT14],
MCMC [AFAT14], and fixed point algorithms [MS15]. However, these methods
only come with weak guarantees. Another route used to overcome the compu-
tational issues associated with maximizing the likelihood of DPPs consists in
imposing additional modeling constraints, initially in [KT12, AFAT14, BT15],
and, more recently, [DB16, GPK16a, GPK16b, MS16], in which assuming a spe-
cific low rank structure for the problem enabled the development of sublinear
time algorithms.

Statistical estimation for continuous DPPs is generally tackled in a setup where
only one screenshot of the DPP is available, in a domain whose size goes to
infinity, and under strong parametric assumptions [LMR15][BL16]. In a general
setup, [Bar13] uses T -estimation, closely related to model selection (see [Bir06]),
in order to estimate the distribution of general (including discrete and continuous)
DPPs under possible model misspecification, when independent copies of the
point process are observed.

However, despite its acute relevance to machine learning and several algorith-
mic advances (see [MS15] and references therein), the theory of estimation of
the parameter of general discrete DPPs have not been tackled. Qualitative and
quantitative characterizations of the likelihood function would shed light on the
convergence rate of the maximum likelihood estimator, as well as aid in the design
of new estimators.

In this paper, we take an information geometric approach to understand the
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asymptotic properties of the maximum likelihood estimator, given iid observation
of a discrete DPP with unknown kernel, without extra parametric assumptions.
First, we study the curvature of the expected log-likelihood around its maximum.
Our main result is an exact characterization of when the maximum likelihood es-
timator converges at a parametric rate (Theorem 9). Moreover, we give quantita-
tive bounds on the strong convexity constant (Proposition 10) that translate into
lower bounds on the asymptotic variance and shed light on what combinatorial
parameters of a DPP control said variance. Second, we study the global geome-
try of the expected log-likelihood function. We exhibit an exponential number of
saddle points that correspond to partial decouplings of the DPP (Theorem 12).
We conjecture that these are the only critical points, which would be a key step
in showing that the maximum likelihood estimator can be computed efficiently
after all, in spite of the fact that it is attempting to maximize a non-concave
function.

The remainder of the paper is as follows. In Section 2, we provide an intro-
duction to DPPs together with notions and properties that are useful for our
purposes. In Section 3, we study the information landscape of DPPs and specifi-
cally, the local behavior of the expected log-likelihood around its critical points.
Finally, we translate these results into rates of convergence for maximum like-
lihood estimation in Section 4. All proofs are gathered in Section 6 in order to
facilitate the narrative.

Notation. Fix a positive integer N and define rN s � t1, 2, . . . , Nu. Throughout
the paper, X denotes a subset of rN s. We denote by ℘pX q the power set of X .

We implicitly identify the set of |X |� |X | matrices to the set of mappings from
X � X to IR. As a result, we denote by IX the identity matrix in IRX�X and
we omit the subscript whenever X � rN s. For a matrix A P IRX�X and J � X ,
denote by AJ the restriction of A to J � J . When defined over X �X , AJ maps
elements outside of J � J to zero.

Let SX denote the set of symmetric matrices in IRX�X matrices and denote by
SΛ
X the subset of matrices in SX that have eigenvalues in Λ � IR. Of particular

interest are S�X � Sr0,8qX , S��X � Sp0,8qX , the subsets of positive semidefinite and
positive definite matrices respectively.

For a matrix A P IRX�X , we denote by }A}F , detpAq and TrpAq its Frobenius
norm, determinant and trace respectively. We set detAH � 1 and TrAH � 0.
Moreover, we denote by diagpAq the vector of size |X | with entries given by the
diagonal elements of A. If x P IRN , we denote by Diagpxq the N � N diagonal
matrix with diagonal given by x.

For A P SX , k ¥ 1 and a smooth function f : A Ñ IR, we denote by dkfpAq
the k-th derivative of f evaluated at A P A. This is a k-linear map defined on A;
for k � 1, dfpAq is the gradient of f , d2fpAq the Hessian, etc.

Throughout this paper, we say that a matrix A P SX is block diagonal if there
exists a partition tJ1, . . . , Jku, k ¥ 1, of X such that Aij � 0 if i P Ja, j P Jb and
a � b. The largest number k such that such a representation exists is called the
number of blocks of A and in this case J1, . . . , Jk are called blocks of L.
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2. DETERMINANTAL POINT PROCESSES AND L-ENSEMBLES

In this section we gather definitions and useful properties, old and new, about
determinantal point processes.

2.1 Definitions

A (discrete) determinantal point process (DPP) on X is a random variable
Z P ℘pX q with distribution

(2.1) IPrJ � Zs � detpKJq, @ J � X ,

where K P Sr0,1sX , is called the correlation kernel of Z.

If it holds further that K P Sr0,1qrNs , then Z is called L-ensemble and its proba-

bility mass function satisfies

(2.2) IPrZ � Js � detpLJq
detpI � Lq , @ J � X ,

where L � KpI �Kq�1 P S�X . Using the multilinearity of the determinant, it is
easy to see that (2.2) defines a probability distribution (see Lemma 19). We call
L the kernel of the L-ensemble Z.

Using the inclusion-exclusion principle, it follows from (2.1) that IPpZ � Hq �
detpI �Kq. Hence, a DPP Z with correlation kernel K is an L-ensemble if and
only if Z can be empty with positive probability.

In this work, we are interested in maximum likelihood estimation of the pa-
rameter of a discrete DPP, given independent and identically distributed iid ob-
servations of that DPP and we assume that K is in the interior of the domain
Sp0,1qX , that is, K P Sp0,1qX . In that setup, we can identify L-ensembles and DPPs,
and the kernel L and correlation kernel K are related by the identities

(2.3) L � KpI �Kq�1 , K � LpI � Lq�1,

with L P S��X . We denote by DPPX pLq the probability distribution associated
with the DPP with kernel L and refer to L as the parameter of the DPP in the
context of statistical estimation. If X � rN s, we drop the subscript and only
write DPPpLq for a DPP with kernel L on rN s.
2.2 Negative association

Perhaps one of the most distinctive feature of DPPs is their repellent nature. It
can be characterized by the notion of negative association, which has been exten-
sively covered in the mathematics literature [BBL09]. To define this notion, we
recall that a function f : t0, 1uN Ñ IR is non decreasing if for all x � px1, . . . , xN q,
y � py1, . . . , yN q P t0, 1uN such that xi ¤ yi, @ i P rN s, it holds that fpxq ¤ fpyq.

Let Z be a DPP on rN s with kernel L P S��rNs and correlation kernel K � LpI�
Lq�1 P Sp0,1qrNs . Denote by χpZq P t0, 1uN the (random) characteristic vector of Z.

Note that IErχpZqs � diagpKq, moreover, the entries of χpZq are conditionally
negatively associated.

Definition 1. Let Z be a random subset of rN s with characteristic vector
X � χpZq P t0, 1uN . The coordinates X1, . . . , XN P t0, 1u of X are said to be
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negatively associated Bernoulli random variables if for all J, J 1 � rN s such that
J X J 1 � H and all non decreasing functions f and g on t0, 1uN , it holds

IE
�
fpχpZ X JqqgpχpZ X J 1qq� ¤ IE

�
fpχpZ X Jqq�IE�gpχpZ X J 1qq� .

Moreover, X1, . . . , XN are conditionally negatively associated if it also holds that
for all S � rN s ,

IE
�
fpχpZ X JqqgpχpZ X J 1qq��Z X S

�
¤ IE

�
fpχpZ X Jqq��Z X S

�
IE
�
gpχpZ X J 1qq��Z X S

�
almost surely.

Negative association is much stronger than pairwise non positive correlations.
Conditional negative association is even stronger, and this property will be es-
sential for the proof of Theorem 12. The following lemma is a direct consequence
of Theorem 8.1 of [Lyo03].

Lemma 2. Let Z � DPPpLq for some L P S��rNs and denote by χpZq �
pX1, . . . , XN q P t0, 1uN its characteristic vector. Then, the Bernoulli random
variables X1, . . . , XN are conditionally negatively associated.

Now we introduce the notion of a partial decoupling of a DPP. This notion will
be relevant in the study of the likelihood geometry of DPPs.

Definition 3. Let P be a partition of rN s. A partial decoupling Z 1 of a DPP
Z on rN s according to partition P is a random subset of rN s such that tχpZ 1 X
Jq, J P Pu are mutually independent and χpZ 1 X Jq has the same distribution as
χpZ X Jq for all J P P. We say that the partial decoupling is strict if and only if
Z 1 does not have the same distribution as Z.

It is not hard to see that a partial decoupling Z 1 associated to a partition P
of a DPP Z is also a DPP with correlation kernel K 1 given by

K 1
i,j �

"
Ki,j if i, j P J for some J P P ,
0 otherwise.

In particular, note that if Y 1 is a strict partial decoupling of a DPP Y , then its
correlation kernel K and thus its kernel L are both block diagonal with at least
two blocks.

Example 4. Consider the block diagonal matrix L �
�

2 1 0 0 0
1 3 0 0 0
0 0 1 0 1
0 0 0 2 1
0 0 1 1 2

�
P S��rNs . The

correlation kernel of DPPpLq is K � LpI � Lq�1 �

���
7{11 1{11 0 0 0
1{11 8{11 0 0 0

0 0 5{13 �1{13 3{13
0 0 �1{13 8{13 2{13
0 0 3{13 2{13 7{13

��� .
Take the partition P � tt1u, t2, 3u, t4, 5uu; The corresponding decoupling is

strict and its correlation kernel is K 1 �

���
7{11 0 0 0 0

0 8{11 0 0 0
0 0 5{13 0 0
0 0 0 8{13 2{13
0 0 0 2{13 7{13

���. The correspond-
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ing kernel is given by L1 � K 1pI�K 1q�1 �
�
� 28{11 0 0 0 0

0 24{11 0 0 0
0 0 40{13 0 0
0 0 0 2 1
0 0 0 1 3{2

�
�, which is block

diagonal with three diagonal blocks. It is easy to see that DPPpLq has 25 possible
decouplings. More generally, the number of decouplings of a DPP with kernel L
is

¹
BPBpLq

p|B|, where BpLq is the set of blocks of L, |B| is the size of the block B

and pk is the k-th Bell number, i.e., the number of partitions of a set of size k.
In particular, the number of decouplings of a DPP with irreducible kernel is super
exponential in N .

2.3 Identifiability

The probability mass function (2.2) of DPPpLq depends only on the principal
minors of L and on detpI �Lq. In particular, L is not fully identified by DPPpLq
and the lack of identifiability of L has been characterized exactly [Kul12, Theorem
4.1]. Denote by D the collection of N � N diagonal matrices with �1 diagonal
entries. Then, for L1, L2 P S��rNs ,

(2.4) DPPpL1q � DPPpL2q ðñ DD P D, L2 � DL1D.

We define the degree of identifiability of a kernel L as follows.

Definition 5. Let L P S��rNs . The degree DegpLq of identifiability of L is the

cardinality of the family tDLD : D P Du. We say that L is irreducible whenever
DegpLq � 2N�1 and reducible otherwise. If Z � DPPpLq for some L P S��rNs , we

also say that Z is irreducible if L is irreducible, and that Z is reducible otherwise.

For instance, the degree of identifiability of a diagonal kernel is 1. It is easy
to check that diagonal kernels are the only ones with degree of identifiability
equal to 1. These kernels are perfectly identified. The degree of identifiability of
the kernel L given in Example 4 is 23 � 8 and the degree of identifiability of
the kernel L1 is 22 � 4. Intuitively, the higher the degree, the less the kernel is
identified. It is clear that for all L P S��rNs , 1 ¤ DegpLq ¤ 2N�1.

As we will see in Proposition 7, the degree of identifiability of a kernel L is com-
pletely determined by its block structure. The latter can in turn be characterized
by the connectivity of certain graphs that we call determinantal graphs.

Definition 6. Fix X � rN s. The determinantal graph GL � pX , ELq of a
DPP with kernel L P S��X is the undirected graph with vertices X and edge set
EL �

 ti, ju : Li,j � 0
(

. If i, j P X , write i �L j if there exists a path in GL that
connects i and j.

It is not hard to see that a DPP with kernel L is irreducible if and only if its
determinantal graph GL is connected. The blocks of L correspond to the connected
components of GL. Moreover, it follows directly from (2.2) that if Z � DPPpLq
and L has blocks J1, . . . , Jk, then Z X J1, . . . , Z X Jk are mutually independent
DPPs with correlation kernels KJ1 , . . . ,KJk respectively, where K � LpI �Lq�1

is the correlation kernel of Z.
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Consider the kernel L define in Example 4. It is reducible, and its determinantal
graph can be represented as follows:

The connected components of this graph are t1, 2, 3u and t4, 5u, which are also
the diagonal blocks of L (and K). The main properties regarding identifiability
of DPPs are gathered in the following straightforward proposition.

Proposition 7. Let L P S��rNs and Z � DPPpLq. Let 1 ¤ k ¤ N and

tJ1, . . . , Jku be a partition of rN s. The following statements are equivalent:

1. L is block diagonal with k blocks J1, . . . , Jk,
2. K is block diagonal with k blocks J1, . . . , Jk,
3. Z X J1, . . . , Z X Jk are mutually independent irreducible DPPs,
4. GL has k connected components given by J1, . . . , Jk,
5. L � DjLDj, for Dj � Diagp2χpJjq � 1q P D, for all j P rks.

In particular, Proposition 7 shows that the degree of identifiability of L P S��rNs
is DegpLq � 2N�k, where k is the number of blocks of L.

Now that we have reviewed useful properties of DPPs, we are in a position
to study the information landscape for the statistical problem of estimating the
kernel of a DPP from independent observations.

3. GEOMETRY OF THE LIKELIHOOD FUNCTIONS

3.1 Definitions

Our goal is to estimate an unknown kernel L� P S��rNs from n independent

copies of Z � DPPpL�q. In this paper, we study the statistical properties of
what is arguably the most natural estimation technique: maximum likelihood
estimation.

Let Z1, . . . , Zn be n independent copies of Z � DPPpL�q for some unknown
L� P S��rNs . The (scaled) log-likelihood associated to this model is given for any

L P S��rNs ,

(3.1) Φ̂pLq � 1

n

ņ

i�1

log pZipLq �
¸

J�rNs

p̂J log detpLJq � log detpI � Lq ,

where pJpLq � IPrZ � Js is defined in (2.2) and p̂J is its empirical counterpart
defined by

p̂J � 1

n

ņ

i�1

1IpZi � Jq .
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Here 1Ip�q denotes the indicator function.
Using the inclusion-exclusion principle and the multilinearity of the determi-

nant, it is also possible to write pJpLq as

pJpLq � |detpK � IJ̄q|,
where J̄ is the complement of J . Hence, the log-likelihood function can be defined

with respect to K P Sp0,1qrNs as

(3.2) Ψ̂pKq �
¸

J�rNs

p̂J log |detpK � IJ̄q| .

We denote by ΦL� (resp. ΨL�) the expected log-likelihood as a function of L
(resp. K):

(3.3) ΦL�pLq �
¸

J�rNs

pJpL�q log detpLJq � log detpI � Lq .

and

(3.4) ΨL�pKq �
¸

J�rNs

pJpL�q log |detpK � IJ̄q| .

For the ease of notation, we assume in the sequel that L� is fixed, and write
simply Φ � ΦL� , Ψ � ΨL� and p�J � pJpL�q, for J � rN s.

We now proceed to studying the function Φ. Namely, we study its critical points
and their type: local/global maxima, minima and saddle points. We also give a
necessary and sufficient condition on L� so that Φ is locally strongly concave
around L � L�, i.e., the Hessian of Φ evaluated at L � L� is definite negative.
All our results can also be rephrased in terms of Ψ.

3.2 Global maxima

Note that ΦpLq is, up to an additive constant that does not depend on L, the
Kullback-Leibler (KL) divergence between DPPpLq and DPPpL�q:

ΦpLq � ΦpL�q � KL pDPPpL�q,DPPpLqq ,@L P S��rNs ,
where KL stands for the Kullback-Leibler divergence between probability mea-
sures. In particular, by the properties of this divergence, ΦpLq ¤ ΦpL�q for all
L P S��rNs , and

ΦpLq � ΦpL�q ðñ DPPpLq � DPPpL�q ðñ L � DL�D, for some D P D.
As a consequence, the global maxima of Φ are exactly the matrices DL�D, for D
ranging in D. The following theorem gives a more precise description of Φ around
L� (and, equivalently, around each DL�D for D P D).

Theorem 8. Let L� P S��rNs , Z � DPPpL�q and Φ � ΦL�, as defined in (3.3).

Then, L� is a critical point of Φ. Moreover, for any H P SrNs,

d2ΦpL�qpH,Hq � �VarrTrppL�Zq�1HZqs.
In particular, the Hessian d2ΦpL�q is negative semidefinite.
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The first part of this theorem is a consequence of the facts that L� is a global
maximum of a smooth Φ over the open parameter space S��rNs . The second part

of this theorem follows from the usual fact that the Fisher information matrix
has two expressions: the opposite of the Hessian of the expected log-likelihood
and the variance of the score (derivative of the expected log-likelihood). We also
provide a purely algebraic proof of Theorem 8 in the appendix.

Our next result characterizes the null space of d2ΦpL�q in terms of the deter-
minantal graph GL� .

Theorem 9. Under the same assumptions of Theorem 8, the null space of
the quadratic Hessian map H P SrNs ÞÑ d2ΦpL�qpH,Hq is given by

(3.5) N pL�q �  
H P SrNs : Hi,j � 0 for all i, j P rN s such that i �L� j

(
.

In particular, d2ΦpL�q is definite negative if and only if L� is irreducible.

The set N pL�q has an interesting interpretation using perturbation analysis
when L� is reducible. On the one hand, since L� is reducible, there exits D0 P
Dzt�I, Iu such that L� � D0L

�D0 is a global maximum for ΦL� . On the other
hand, take any small perturbation H P SrN s such that L� � H P S��rNs and

observe that both L� � H and D0pL� � HqD0 are global maxima for ΦL��H ,
that merge when H � 0. The Frobenius distance between L� and D0pL��HqD0

is }H � D0HD0}F , which is maximized over H with fixed norm if and only if
D0HD0 � �H. Such matrices H are precisely the matrices that span the null
spaceN pL�q (see Lemma 21). This leads to the following interpretation ofN pL�q:
The directions along which ΦL� has vanishing second derivative are spanned by
the matrices H that push away any two merged modes of ΦL� (e.g., for D � I
and D � D0) as much as possible.

It follows from Theorem 9 that ΦL� is locally strongly concave around L� if and
only if L� is irreducible since, in that case, the smallest eigenvalue of �d2ΦpL�q
is positive. Nevertheless, this positive eigenvalue may be exponentially small in
N , leading to a small curvature around the maximum of ΦL� . This phenomenon
is illustrated by the following example.

Consider the tridiagonal matrix L� given by:

L�i,j �

$'&
'%
a if i � j,

b if |i� j| � 1,

0 otherwise,

where a and b are real numbers.

Proposition 10. Assume that a ¡ 0 and a2 ¡ 2b2. Then, L� P S��rNs and

there exist two positive numbers c1 and c2 that depend only on a and b such that

0   inf
HPSrNs:}H}F�1

�d2ΦpL�qpH,Hq ¤ c1e
�c2N .

While the Hessian cancels in some directions H P N pL�q for any reducible
L� P S��rNs , the next theorem shows that the fourth derivative is negative in any

nonzero direction H P N pL�q so that Φ is actually curved around L� in any
direction.
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Theorem 11. Let H P N pL�q. Then,

(i) d3ΦpL�qpH,H,Hq � 0;
(ii) d4ΦpL�qpH,H,H,Hq � �3 Var

�
Tr

�ppL�Zq�1HZq2
�� ¤ 0;

(iii) d4ΦpL�qpH,H,H,Hq � 0 ðñ H � 0.

The first part of Theorem 11 is obvious, since L� is a global maximum of Φ.
However, we give an algebraic proof of this fact, which is instructive for the proof
of the two remaining parts of the theorem.

3.3 Other critical points

The function ΦL� is not concave and so finding its global maximum is fraught
with difficulty. A standard approach is to work with a concave relaxation [CT04,
CR09, ABH16], which has proven to be successful in applications such as com-
pressed sensing, matrix completion and community detection. More recently, al-
gorithms that attempt to directly optimize a non-concave objective have received
growing attention, primarily driven by a good empirical performance and simple
implementation (see [AGMM15, CLS15, BWY17] for example).

In fact, there are two issues that confound such approaches. The first is spu-
rious local maxima where gradient ascent can get trapped. In some instances
such as matrix completion [GLM16] it can be shown that the non-concave ob-
jective has no spurious local maxima, while in others such as Gaussian mixture
models [JZB�16], it does. The second issue is the presence of a large and often ex-
ponential number of saddle points. Empirically, it has been postulated [DPG�14]
that escaping saddle points is the main difficulty in optimizing large non-concave
objectives. However if certain conditions on the saddle points are met then it is
known that one can efficiently find a local maximum [NP06, GHJY15].

Here we show that the function ΦL� has exponentially many saddle points that
correspond to all possible partial decouplings of the DPP.

Theorem 12. Let L� P S��rNs and K� � L�pI � L�q�1. Let Z � DPPpL�q.
Then, the kernel L of any partial decoupling of Z is a critical point of ΦL�.
Moreover, it is always a saddle point when the partial decoupling is strict.

We conjecture that these are the only critical points, which would be a major
step in showing that despite the fact that ΦL� is non-concave, one can find its
maximum via first and second order methods. This would give a compelling
new example of a problem arising from big data where non-concave optimization
problems can be tamed.

Conjecture 13. Let L� P S��rNs and Z � DPPpL�q. The kernels of the partial

decouplings of Z are the only critical points of ΦL�.

The following proposition provides some evidence, by verifying a consequence
of the conjecture:

Proposition 14. Let L� P S��rNs and let L be a critical point of ΦL�. Let

K� � L�pI � L�q�1 and K � LpI � Lq�1. Then, K� and K have the same
diagonal.
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Therefore, the correlation kernel of any critical point has the same diagonal as
the correlation kernel of any decoupling of the initial DPP, and we believe that
more than just the diagonal entries, any diagonal block must be a subblock of
K�.

4. MAXIMUM LIKELIHOOD ESTIMATION

Let Z1, . . . , Zn be n independent copies of Z � DPPpL�q with unknown kernel
L� P S��rNs . The maximum likelihood estimator (MLE ) L̂ of L� is defined as a

maximizer of the likelihood Φ̂ defined in (3.1). Since for all L P S��rNs and allD P D,

Φ̂pLq � Φ̂pDLDq, there is more than one kernel L̂ that maximizes Φ̂ in general.
We will abuse notation and refer to any such maximizer as “the” MLE. Since
there is a bijection (2.3) between kernels L and correlation kernels K, the random
correlation kernel K̂ � L̂pI� L̂q�1 maximizes the function Ψ̂ defined in (3.2) and
therefore, is the maximum likelihood estimator of the unknown correlation kernel
K� � L�pI � L�q�1.

We measure the performance of the MLE using the loss ` defined by

`pL̂, L�q � min
DPD

}L̂�DL�D}F

where we recall that } � }F denotes the Frobenius norm.
The loss `pL̂, L�q being a random quantity, we also define its associated risk Rn

by
RnpL̂, L�q � IE

�
`pL̂, L�q�,

where the expectation is taken with respect to the joint distribution of the iid
observation Z1, . . . , Zn � DPPpL�q.

Our first statistical result establishes that the MLE is a consistent estimator.

Theorem 15.
`pL̂, L�q ÝÝÝÑ

nÑ8
0 , in probability.

Theorem 15 shows that consistency of the MLE holds for all L� P S��rNs . How-

ever, the MLE can be
?
n-consistent only when L� is irreducible. Indeed, this is

the only case when the Fisher information is invertible, by Theorem 9.
Let M P SrNs and Σ be a symmetric, positive definite bilinear form on SrNs.

We write A � NSrNs
pM,Σq to denote a Wigner random matrix A P SrNs, such

that for all H P SrNs, TrpAHq is a Gaussian random variable, with mean TrpMHq
and variance ΣpH,Hq.

Assume that L� is irreducible and let L̂ be the MLE. Let D̂ P D be such that

}D̂L̂D̂ � L�}F � min
DPD

}DL̂D � L�}F

and set L̃ � D̂L̂D̂. Recall that by Theorem 9, the bilinear operator d2ΦpL�q is
invertible and let V pL�q be denote its inverse. Moreoever, it is clear that the third
derivative of log pJpLq can be bounded uniformly with respect to J � rN s and L
in a small neighborhood of L�. By Theorem 5.41 in [vdV98], this yields

(4.1)
?
npL̃� L�q � �V pL�q 1?

n

ņ

i�1

�pL�Zi
q�1 � pI � L�q�1

�� ρn,
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where }ρn}F ÝÝÝÑ
nÑ8

0 in probability. Hence, we get the following theorem.

Theorem 16. Let L� be irreducible. Then, L̃ is asymptotically normal, with
asymptotic covariance operator V pL�q:

?
npL̃� L�q ÝÝÝÑ

nÑ8
NSrNs

p0, V pL�qq ,

where the above convergence holds in distribution.

Recall that we exhibited in Proposition 10 an irreducible kernel L� P S��rNs that

is non-degenerate—its entries and eigenvalues are either zero or bounded away
from zero—such that V pL�qrH,Hs ¥ cN for some positive constant c and unit
norm H P SrNs. Together with Theorem 16, it implies that while the MLE L̃ con-

verges at the parametric rate n1{2,
?
nTrrpL̃� L�qJHs has asymptotic variance

of order at least cN for some positive constant c. It implies that the MLE suffers
from a curse of dimensionality.

In the sequel, we say that an estimator θ̂ of an unknown quantity θ is nα-
consistent (for a given α ¡ 0) if the sequence nαpθ̂� θq is bounded in probability.
In particular, if the sequence nαpθ̂ � θq converges in distribution, then θ̂ is nα-
consistent.

When L� is not irreducible, the MLE is no longer granted to be
?
n-consistent,

because the Fisher information is not definite. However, by Theorem 9, the re-
striction of the Fisher information to the set of matrices supported on the blocks
of L� is definite, and it is only the fourth order of the expected log-likelihood that
does not vanish, if restricted to the set of matrices that coincide with L� on its
blocks. This suggests that the blocks of L� are estimated at the speed n�1{2 be
the maximum likelihood estimator, whereas the off-block entries of L� (that are
zeroes) are only estimated at the speed n�1{4. This is formalized in the following
theorem, where, for all A P IRN�N and J, J 1 � rN s, we denote by AJ,J 1 the N�N
matrix whose entry pi, jq is Ai,j if pi, jq P J � J 1 and 0 otherwise.

Theorem 17. Let L� P S��rNs be block diagonal with blocks P. Then, for J, J 1 P
P, J � J 1,

(4.2) min
DPD

}L̂J,J 1 �DL�J,J 1D}F � OIPpn�1{4q

and

(4.3) min
DPD

}L̂J �DL�JD}F � OIPpn�1{2q.

A standard argument entails that K̂ � L̂pI � L̂q�1 is the maximum likelihood
estimator of K�. It follows from Theorem 17 that min

DPD
}L̂�DL�D}F � OIPpn�1{4q.

As a consequence, min
DPD

}K̂ � DK�D}F � OIPpn�1{4q. However, it is possible to

see that, as it is the case for L�, the blocks of K� are also estimated by K̂ at
the parametric rate n�1{2. Let J be a block of K�. Then, it is also a block of L�.
Without loss of generality, assume that }L̂ � L}F � minDPD }L̂ � DL�D}F . A
Taylor expansion yields
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K̂J �K�
J

�
�
L̂pI � L̂q�1

�
J
� �

L�pI � L�q�1
�
J

�
�
pL̂� L�qpI � L�q�1 � L�pI � L�q�1pL̂� L�qpI � L�q�1

�
J
�O

�
}L̂� L�}2F

	
� pL̂J � L�JqpIJ � L�Jq�1 � L�JpIJ � L�Jq�1pL̂J � L�JqpIJ � L�Jq�1 �OIP

�
n�1{2

	
� OIP

�
n�1{2

	
.

Hence, Theorem 17 can also be stated in terms of K�.

Theorem 18. Let L� P S��rNs be block diagonal with blocks P and K� �
L�pI � L�q�1. Then, for J, J 1 P P, J � J 1,

(4.4) min
DPD

}K̂J,J 1 �DK�
J,J 1D}F � OIPpn�1{4q

and

(4.5) min
DPD

}K̂J �DK�
JD}F � OIPpn�1{2q.

A computation of the MLE in dimension N � 2 shows that, when L� is re-
ducible (i.e., diagonal, in that case), the off-diagonal entry of L̂ converges at
the speed n�1{4 exactly, which shows that the rate n�1{4 cannot be improved in
general.

Theorem 18 is somewhat surprising, since the diagonal blocks of K̂ depend on
the off-diagonal blocks of L̂, which are only n1{4-consistent. A blockwise compu-
tation actually shows that the diagonal blocks of K̂ depends on the off-diagonal
blocks of L̂ in a quadratic way.

It is also possible to compute K̂j,j , for all j P rN s: It coincides with the esti-
mator of K�

j,j obtained by the method of moments. Indeed, recall that L̂ satisfies
the first order condition

(4.6)
¸

J�rNs

p̂J L̂
�1
J � pI � L̂q�1

Post-multiplying by L̂ both sides of this equality and identifying the diagonal
entries yields

K̂j,j �
¸

J�rNs:JQj

p̂J � 1

n

ņ

i�1

1jPZi ,

for all j � 1, . . . , N . This is the estimator of K�
j,j obtained by the method of

moments and it is
?
n-consistent by the central limit theorem. More generally,

the same argument implies that for all critical points L̃ of Φ̂, the diagonal entries
of the corresponding matrix K̃ � L̃pI � L̃q�1 are K̂j,j , j � 1, . . . , N . In addition,

a simple computation shows that the diagonal matrix Diag
�

diagpK̂q
	

always

satisfies (18), hence, is a critical point of the log-likelihood Φ̂. This matrix is a
decoupling of K̂, in the sense that it is the kernel of a decoupling of the DPP
with kernel K̂. However, in general, unlike for the population case (see Theorem
12), intermediate decouplings of K̂ are not critical points of Φ̂.
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5. CONCLUSION AND OPEN PROBLEMS

In this paper, we studied the local and global geometry of the log-likelihood
function. We gave a nuanced treatment of the rates achievable by the maximum
likelihood estimator and we establish when it can achieve parametric rates, and
even when it cannot, which sets of parameters are the bottleneck. The main open
question is to resolve Conjecture 13, which would complete our geometric picture
of the log-likelihood function.

In a companion paper [BMRU17], using an approach based on the method of
moments, we devise an efficient method to compute an estimator that converges
at a parametric rate for a large family of kernels. Moreover, the running time and
sample complexity are polynomial in the dimension of the DPP, even though here
we have shown that the strong convexity constant can be exponentially small in
the dimension.

6. PROOFS

6.1 A key determinantal identity and its consequences

We start this section by giving a key yet simple identity for determinants.

Lemma 19. For all square matrices L P IRN�N ,

(6.1) detpI � Lq �
¸

J�rNs

detpLJq.

This identity is a direct consequence of the multilinearity of the determinant.
Note that it gives the value of the normalizing constant in (2.2). Successive dif-
ferentiations of (6.1) with respect to L lead to further useful identities. To that
end, recall that if fpLq � log detpLq, L P S��rNs , then for all H P SrNs,

dfpLqpHq � TrpL�1Hq.

Differentiating (6.1) once over L P S��rNs yields

(6.2)
¸

J�rNs

detpLJqTrpL�1
J HJq � detpI � LqTrppI � Lq�1Hq, @H P SrNs.

In particular, after dividing by detpI � Lq,

(6.3)
¸

J�rNs

pJpLqTrpL�1
J HJq � TrppI � Lq�1Hq, @H P SrNs.

In matrix form, (6.3) becomes

(6.4)
¸

J�rNs

pJpLqL�1
J � pI � Lq�1.

Here we use a slight abuse of notation. For J � rN s, L�1
J (the inverse of LJ) has

size |J |, but we still denote by L�1
J the N � N matrix whose restriction to J is

L�1
J and which has zeros everywhere else.
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Let us introduce some extra notation, for the sake of presentation. For any
positive integer k and J � rN s, define

aJ,k � Tr
�pL�1

J HJqk
�

and ak � Tr
�ppI � Lq�1Hqk� ,

where we omit the dependency in H P SrNs. Then, differentiating again (6.2) and
rearranging terms yields

(6.5)
¸

J�rNs

pJpLqaJ,2 � a2 �
¸

J�rNs

pJpLqa2
J,1 � a2

1,

for all H P SrNs. In the same fashion, further differentiations yield
(6.6)¸
J�rNs

pJpLqaJ,3�a3 � �1

2

� ¸
J�rNs

pJpLqa3
J,1�a3

1

	
� 3

2

� ¸
J�rNs

pJpLqaJ,1aJ,2�a1a2

	
and ¸

J�rNs

pJpLqaJ,4 � a4

� 1

6

� ¸
J�rNs

pJpLqa4
J,1 � a4

1

	
�
� ¸
J�rNs

pJpLqa2
J,1aJ,2 � a2

1a2

	
� 4

3

� ¸
J�rNs

pJpLqaJ,1aJ,3 � a1a3

	
� 1

2

� ¸
J�rNs

pJpLqa2
J,2 � a2

2

	
,(6.7)

for all H P SrNs.
6.2 The derivatives of Φ

Let L� P S��rNs and Φ � ΦL� . In this section, we give the general formula for

the derivatives of Φ.

Lemma 20. For all positive integers k and all H P SrNs,

dkΦpL�qpH, . . . ,Hq

� p�1qk�1pk � 1q!
�
� ¸
J�rNs

p�J Tr
�
ppL�Jq�1HJqk

	
� Tr

�
ppI � L�q�1Hqk

	�
.
Proof

This lemma can be proven by induction, using the two following facts. If fpMq �
log detpMq and gpMq �M�1 for M P S��rNs , then for all M P S��rNs and H P SrNs,

dfpMqpHq � TrpM�1Hq

and
dgpMqpHq � �M�1HM�1.

�
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6.3 Auxiliary lemma

Lemma 21. Let L� P S��rNs and N pL�q be defined as in (3.5). Let H P N pL�q.
Then, H can be decomposed as H � Hp1q� . . .�Hpkq where for each j � 1, . . . , k,
Hpjq P SrNs is such that DpjqHpjqDpjq � �Hpjq, for some Dpjq P D satisfying

DpjqL�Dpjq � L�.

Proof. Let H P N pL�q. Denote by J1, . . . , JM the blocks of L� (M � 1 and
J1 � rN s whenever L� is irreducible). For i � 1, . . . ,M , let Dpiq � Diagp2χpJiq�
1q P D. Hence, DpiqL�Dpiq � L�, for all i � 1, . . . , k.

For i, j P rks with i   j, define

Hpi,jq � DiagpχpJiqqH DiagpχpJjqq �DiagpχpJjqqH DiagpχpJiqq .

Then, it is clear that

H �
¸

1¤i j¤M

Hpi,jq and DpiqHpi,jqDpiq � �Hpi,jq, @ i   j .

The lemma follows by renumbering the matrices Hpi,jq.

6.4 Proof of Theorem 8

Theorem 8 is a direct consequence of Lemma 20 and identities (6.3) and (6.5).
�

6.5 Proof of Theorem 9

Let H P SrNs be in the null space of d2ΦpL�q, i.e., satisfy d2ΦpL�qpH,Hq � 0.
We need to prove that Hi,j � 0 for all pairs i, j P rN s such that i �L� j. To that
end, we proceed by (strong) induction on the distance between i and j in GL� ,
i.e., the length of the shortest path from i to j (equal to 8 if there is no such
path). Denote this distance by dpi, jq.

By Theorem 8, VarrTrppL�Zq�1HZqs � 0 so the random variable TrppL�Zq�1HZq
takes only one value with probability one. Therefore since p�J ¡ 0 for all J � rN s
and TrppL�Hq�1HHq � 0, we also have

(6.8) TrppL�Jq�1HJq � 0, @J � rN s.

We now proceed to the induction.
If dpi, jq � 0, then i � j and since L� is definite positive, L�i,i � 0. Thus, using

(6.8) with J � tiu, we get Hi,i � 0.
If dpi, jq � 1, then L�i,j � 0, yielding Hi,j � 0, using again (6.8), with J � ti, ju

and the fact that Hi,i � Hj,j � 0, established above.
Let now m ¥ 2 be an integer and assume that for all pairs pi, jq P rN s2

satisfying dpi, jq ¤ m, Hi,j � 0. Let i, j P rN s be a pair satisfying dpi, jq �
m � 1. Let pi, k1, . . . , km, jq be a shortest path from i to j in GL� and let J �
tk0, k1, . . . , km, km�1u, where k0 � i and km�1 � j. Note that the graph GL�

J

induced by L�J is a path graph and that for all s, t � 0, . . . ,m � 1 satisfying
|s� t| ¤ m, dpks, ktq � |s� t| ¤ m, yielding Hks,kt � 0 by induction. Hence,

(6.9) Tr
�pL�Jq�1HJ

� � 2
�pL�Jq�1

�
i,j
Hi,j � 0,



MLE FOR DISCRETE DPPS 17

by (6.8) with J � ti, ju. Let us show that
�pL�Jq�1

�
i,j
� 0, which will imply that

Hi,j � 0. By writing pL�Jq�1 as the ratio between the adjugate of L�J and its
determinant, we have

(6.10)
�pL�Jq�1

�
i,j
� detLJztiu,Jztju

detLJ
,

where LJztiu,Jztju is the submatrix of LJ obtained by deleting the i-th line and
j-th column. The determinant of this matrix can be expanded as

detLJztiu,Jztju �
¸

σPMi,j

εpσqL�i,σpiqL�k1,σpk1q . . . L�km,σpkmq ,(6.11)

where Mi,j stands for the collection of all one-to-one maps from Jztju to Jztiu
and, for any such map σ, εpσq P t�1, 1u. There is only one term in (6.11) that
is nonzero: Let σ P Mi,j for which the product in (6.11) is nonzero. Recall
that the graph induced by L�J is a path graph. Since σpiq P Jztiu, L�i,σpiq � 0

unless σpiq � k1. Then, L�k1,σpk1q is nonzero unless σpk1q � k1 or k2. Since we

already have σpiq � k1 and σ is one-to-one, σpk1q � k2. By induction, we show
that σpksq � ks�1, for s � 1, . . . ,m � 1 and σpkmq � j. As a consequence,
detL�Jztiu,Jztju � 0 and, by (6.9) and (6.10), Hi,j � 0, which we wanted to prove.

Hence, by induction, we have shown that if d2ΦpL�qpH,Hq � 0, then for any
pair i, j P rN s such that dpi, jq is finite, i.e., with i �L� j, Hi,j � 0.

Let us now prove the converse statement: Let H P SrNs satisfy Hi,j � 0, for all
i, j with i �L� j. First, using Lemma 21 with its notation, for any J � rN s and
j � 1, . . . , k,

D
pjq
J pL�Jq�1D

pjq
J �

�
D
pjq
J L�JD

pjq
J

	�1
� pL�Jq�1

and

D
pjq
J H

pjq
J D

pjq
J � �Hpjq

J .

Hence,

Tr
�
pL�Jq�1H

pjq
J

	
� Tr

�
DpjqpL�Jq�1DpjqH

pjq
J

	
� �Tr

�
pL�Jq�1H

pjq
J

	
� 0 .

Summing over j � 1, . . . , k yields

(6.12) Tr
�pL�Jq�1HJ

� � 0.

In a similar fashion,

(6.13) Tr
�pI � Lq�1H

� � 0.

Hence, using (6.5),

d2ΦpL�qpH,Hq � �
¸

J�rNs

p�J Tr2
�pL�Jq�1HJ

�� Tr2
�pI � L�q�1H

� � 0,

which ends the proof of the theorem. �
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6.6 Proof of Proposition 10

Consider the matrix H P SrNs with zeros everywhere but in positions p1, Nq
and pN, 1q, where its entries are 1. Note that Tr

�pL�Jq�1HJ

�
is zero for all J � rN s

such that J � rN s. This is trivial if J does not contain both 1 and N , since HJ

will be the zero matrix. If J contains both 1 and N but does not contain the whole
path that connects them in GL� , i.e., if J does not contain the whole space rN s,
then the subgraph GL�

J
has at least two connected components, one containing 1

and another containing N . Hence, L�J is block diagonal, with 1 and N being in
different blocks. Therefore, so is pL�Jq�1 and Tr

�pL�Jq�1HJ

� � 2
�pL�Jq�1

�
1,N

� 0.

Now, let J � rN s. Then,

Tr
�pL�Jq�1HJ

� � 2
�pL�q�1

�
1,N

� 2p�1qN�1
detpL�rNszt1u,rNsztN�1uq

detL�

� 2p�1qN�1 b
N�1

detL�
.(6.14)

Write detL� � uN and observe that

uk � auk�1 � b2uk�2, @k ¥ 2

and u1 � a, u2 � a2 � b2. Since a2 ¡ 4b2, there exists µ ¡ 0 such that

(6.15) uk ¥ µ

�
a�?

a2 � 4b2

2

�k

, @k ¥ 1.

Hence, (6.14) yields

��Tr
�pL�Jq�1HJ

��� ¤ 2

µ|b|
�

2|b|
a�?

a2 � 4b2


N
,

which proves the second part of Proposition 10, since a�?
a2 � 4b2 ¡ a ¡ 2|b|.

Finally note that (6.15) implies that all the principal minors of L� are positive
so that L P S��rNs . �

6.7 Proof of Theorem 11

Let H P N pL�q. By Lemma 20, the third derivative of Φ at L� is given by

d3ΦpL�qpH,H,Hq � 2
¸

J�rNs

p�J Tr
�ppL�Jq�1HJq3

�� 2 Tr
�ppI � L�q�1Hq3� .

Together with (6.6), it yields

d3ΦpL�qpH,H,Hq � �
� ¸
J�rNs

pJpLqa3
J,1 � a3

1

	
� 3

� ¸
J�rNs

pJpLqaJ,1aJ,2 � a1a2

	
.

Each of the three terms on the right hand side of the above display vanish because
of (6.12), H P N pL�q and (6.13) respectively. This concludes the proof of (i).
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Next, the fourth derivative of Φ at L� is given by

d4ΦpL�qpH,H,H,Hq � �6
¸

J�rNs

p�J Tr
�ppL�Jq�1HJq4

�� 6 Tr
�ppI � L�q�1Hq4�.

Using (6.7) together with (6.12), (6.13) and d3ΦpL�qpH,H,Hq � 0, it yields

d4ΦpL�qpH,H,H,Hq � �3
� ¸
J�rNs

p�J Tr2
�pL�Jq�1HJq2

��Tr2
�ppI�L�q�1Hq2�	.

Since H P N pL�q, meaning d2ΦpL�qpH,Hq � 0, we also have

Tr
�ppI � L�q�1Hq2� � ¸

J�rNs

p�J Tr2
�pL�Jq�1HJq2

�
.

Hence, we can rewrite d4ΦpL�qpH,H,H,Hq as

d4ΦpL�qpH,H,H,Hq � �3
�
IE
�
Tr2

�pL�Zq�1HZq2
��� IE

�
Tr2

�pL�Zq�1HZq2
��2 �

.

This concludes the proof of (ii).
To prove (iii), note first that if H � 0 then trivially d4ΦpL�qpH,H,H,Hq � 0.

Assume now that d4ΦpL�qpH,H,H,Hq � 0, which, in view of (ii) is equivalent
to VarrTrpppL�Zq�1HZq2qs � 0. Since TrpppL�Hq�1HHq2q � 0, and p�J ¡ 0 for all
J � rN s, it yields

(6.16) TrpppL�Jq�1HJq2q � 0 @ J � rN s .

Fix i, j P rN s. If i and j are in one and the same block of L�, we know by
Theorem 9 that Hi,j � 0. On the other hand, suppose that i and j are in different
blocks of L� and let J � ti, ju. Denote by h � Hi,j � Hj,i. Since L�J is a 2 � 2
diagonal matrix with nonzero diagonal entries and Hi,i � Hj,j � 0, (6.16) readily
yields h � 0. Hence, H � 0, which completes the proof of (iii). �

6.8 Proof of Theorem 12

Denote by Φ � ΦL� and K� � L�pI � L�q�1. Let L be the kernel of a partial
decoupling of Z according to a partition P of rN s. By definition, the correlation
kernel K � LpI �Lq�1 is block diagonal, with blocks KJ � DJK

�
JDJ , J P P, for

some matrix D P D. Without loss of generality, assume that D � I. Since L �
KpI �Kq�1, L is also block diagonal, with blocks LJ � K�

J pIJ �K�
J q�1, J P P.

To see that L is a critical point of Φ, note that the first derivative of Φ can be
written in matrix form as

(6.17) dΦpLq �
¸

J 1�rNs

p�J 1L�1
J 1 � pI � Lq�1,

where L�1
J 1 stands for the N �N matrix with the inverse of LJ 1 on block J 1 and

zeros everywhere else. Note that since L is block diagonal, so are each of the
terms of the right-hand side of (6.17), with the same blocks. Hence, it is enough
to prove that for all J P P, the block J of dΦpLq (i.e., pdΦpLqqJ) is zero. Using
elementary block matrix operations, for all J � rN s, the block J of L�1

J 1 is given
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by L�1
JXJ 1 , using the same abuse of notation as before. Hence, the block J of dΦpLq

is given by
pdΦpLqqJ �

¸
J 1�rNs

p�J 1L�1
J 1XJ � pIJ � LJq�1,

which can also be written as

(6.18) pdΦpLqqJ �
¸
J 1�J

p̃�J 1L�1
J 1 � pIJ � LJq�1,

where

p̃�J 1 �
¸
J2� sJ

p�J 1YJ2 �
¸
J2� sJ

IP
�
Z � J 1 Y J2

� � IP
�
Z X J � J 1

�
.(6.19)

Recall that Z X J is a DPP on J with correlation kernel K�
J . Hence, its kernel

is LJ and (6.19) yields
p̃�J 1 � pJ 1pLJq.

Together with (6.18), it yields

pdΦpLqqJ � dΦLJ
pLJq,

which is zero by Theorem 8. This proves that L is a critical point of Φ.
Next, we prove that if L is the kernel of a strict partial decoupling of Z, then

it is a saddle point of Φ. To that end, we exhibit two matrices H,H 1 P SrNs such
that d2ΦpLqpH,Hq ¡ 0 and d2ΦpLqpH 1, H 1q   0.

Consider a strict partial decoupling of Z according to a partition P. Let L and
K be its kernel and correlation kernel, respectively. In particular, there exists
J P P, i P J and j P sJ such that K�

i,j � 0. Consider the matrix H with zeros
everywhere but in positions pi, jq and pj, iq, where its entries are 1. By simple
matrix algebra,

d2ΦpLqpH,Hq
� �

¸
J 1�rNs

p�J 1 Tr
�pL�1

J 1 HJ 1q2�� Tr
�ppI � Lq�1Hq2�

� �2
¸

J 1�rNs

p�J 1

�
L�1
J 1XJ

�
i,i

�
L�1
J 1X sJ

	
j,j
� 2

�pI � Lq�1
�
i,i

�pI � Lq�1
�
j,j
,

(6.20)

where we recall that for all J 1 � rN s and k P rN s, pL�1
J 1 qk,k is set to zero if k R J 1.

Denote by Yi � pL�1
ZXJqi,i and Yj � pL�1

ZXJ̄
qj,j . Note that IErYis �

�pI � Lq�1
�
i,i

.
Indeed,

IErYis �
¸

J 1�rNs

p�J 1

�
L�1
J 1XJ

�
i,i
�

¸
J 1�J

¸
J2� sJ

p�J 1YJ2

�
L�1
J 1

�
i,i

�
¸
J 1�J

IPrZ X J � J 1spL�1
J 1 qi,i �

¸
J 1�J

pJ 1pLJq
�
L�1
J 1

�
i,i

� pIJ � LJq�1
i,i � pI � Lq�1

i,i .

Here, the third equality follows from the fact that LJ is the kernel of the DPP
ZXJ , the fourth equality follows from (6.4) and the last equality comes from the
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block diagonal structure of L. It can be checked using the same argument that
IErYjs �

�pI � Lq�1
�
j,j

. Together with (6.20), it yields

(6.21) d2ΦpLqpH,Hq � �2IErYiYjs � 2IErYisIErYjs.
Next, recall that pX1, . . . , XN q � χpZq denotes the characteristic vector of Z

and observe that YiYj � 0 whenever Xj � 0 or Xj � 0 so that YiYj � YiYjXiXj .
Hence,

IErYiYjs � IErYiYj |Xi � 1, Xj � 1sIPrXi � 1, Xj � 1s .
Since L P S��rNs , we have IErYiYjs ¡ 0, yielding IErYiYj |Xi � 1, Xj � 1s ¡ 0 by

the previous equality. Moreover,

IPrXi � 1, Xj � 1s � K�
i,iK

�
j,j � pK�

i,jq2   K�
i,iK

�
j,j � IPrXi � 1sIPrXj � 1s ,

where the inequality follows from the assumption K�
i,j � 0. Hence,

(6.22) IErYiYjs   IErYiYj |Xi � 1, Xj � 1sIPrXi � 1sIPrXj � 1s .
We now use conditional negative association. To that end, we check that Yi �

fipχpZ X Jqq and Yj � fjpχpZ X sJqq, for some non decreasing functions fi and
fj . For any J 1 � J , define fipJ 1q � pL�1

J 1 qi,i. It is sufficient to check that

(6.23) pL�1
J 1 qi,i ¤ pL�1

J 1Ytkuqi,i , @ k P JzJ 1

First, note that (6.23) is true if i R J 1, since in this case, pL�1
J 1 qi,i � 0 and

pL�1
J 1Ytkuqi,i ¥ 0. Assume now that i P J 1 and consider the matrix LJ 1Ytku, of

which LJ 1 is a submatrix. Using the Schur complement, we get that

(6.24)
�
L�1
J 1Ytku

�
J 1 �

�
LJ 1 � 1

Lk,k
AAJ

��1
,

where A � LJ 1,tku. Since Lk,k ¡ 0 and AAJ is positive semidefinite, then

LJ 1 � 1

Lk,k
AAJ

¨ LJ 1 ,

where ¨ denotes the Löwner order on S�rNs. Moreover, it follows from the Löwner-

Heinz theorem that if A ¨ B, then B�1
¨ A�1 for any nonsingular A,B P SrNs.

Therefore,

L�1
J 1 ¨

�
LJ 1 � 1

Lk,k
AAJ

��1
.

In particular, the above display yields, together with (6.24),�
L�1
J 1

�
i,i
¨

��
LJ 1 � 1

Lk,k
AAJ

��1�
i,i
� �

L�1
J 1Ytku

�
pi,iq

.

This completes the proof of (6.23) and monotonicity of fj follows from the same
arguments.

We are now in a position to use the conditional negative association property
from Lemma 2. Together with (6.22), it yields
(6.25)

IErYiYjs   IErYi|Xi � 1, Xj � 1sIErY2|Xi � 1, Xj � 1sIPrXi � 1sIPrXj � 1s .
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Next, note that
IErYi|Xi � 1, Xj � 1s ¤ IErYi|Xi � 1s ,

and
IErYj |Xi � 1, Xj � 1s ¤ IErYj |Xj � 1s .

These inequalities are also a consequence of the conditional negative association
property. Indeed, using Bayes formula and the fact that j R J respectively, we
get

IErYi|Xi � 1, Xj � 1s � IErYiXj |Xi � 1s
IErXj |Xi � 1s

¤ IErYi|Xi � 1sIErXj |Xi � 1s
IErXj |Xi � 1s � IErYi|Xi � 1s .

The second inequality follows from the same argument and the fact that i R sJ .
Finally, (6.25) becomes

IErYiYjs   IErYisIErYjs
and hence, (6.21) yields that d2ΦpLqpH,Hq ¡ 0.

We now exhibit H 1 such that d2ΦpLqpH,Hq   0. To that end, let H 1 be the
matrix with zeros everywhere but in position p1, 1q, where H 1

1,1 � 1. Let J be the
element of P that contains 1. By simple matrix algebra,

d2ΦpLqpH 1, H 1q � �
¸

J 1�rNs

p�J 1

�
L�1
J 1

�2

1,1
� �pI � Lq�1

�2

i,i

� �
¸
J 1�J

¸
J2� sJ

p�J 1YJ2

�
L�1
J 1

�2

1,1
� �pI � Lq�1

�2

i,i

� �
¸
J 1�J

� ¸
J2� sJ

p�J 1YJ2

	�
L�1
J 1

�2

1,1
� �pIJ � LJq�1

�2

i,i

� �
¸
J2�J

pJ 1pLJq
�
L�1
J 1

�2

1,1
� �pI � Lq�1

�2

i,i

� d2ΦLJ
pH 1

J , H
1
Jq.(6.26)

By Theorem 8, d2ΦLJ
pH 1

J , H
1
Jq ¤ 0. In addition, by Theorem 9, d2ΦLJ

pH 1
J , H

1
Jq �

0 since H 1
J has at least one nonzero diagonal entry. Hence, d2ΦLJ

pH 1
J , H

1
Jq   0

and it follows from (6.26) that d2ΦpLqpH 1, H 1q   0, which completes the proof of
Theorem 12. �

6.9 Proof of Proposition 14

Let L be a critical point of Φ and K � LpI � Lq�1. Then, for all N � N
matrices H,

dΦpLqpHq �
¸

J�rNs

p�J Tr
�
L�1
J HJ

�� Tr
�pI � Lq�1H

� � 0.

Fix t1, . . . , tN P IR and define T � Diagpt1, . . . , tN q, H � LT . Then, since T is
diagonal, HJ � LJTJ , for all J � rN s. Using the above equation and the fact
that L and pI � Lq�1 commute, we have

(6.27)
¸

J�rNs

p�J
¸
jPJ

tj � TrpKT q �
Ņ

j�1

Kj,jtj .
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Since (6.27) holds for any t1, . . . , tN P IR, we conclude that

Kj,j �
¸

J�rNs:JQj

p�J � K�
j,j ,

for all j P rN s, which ends the proof. �

6.10 Proof of Theorem 15

Our proof is based on Theorem 5.14 in [vdV98]. We need to prove that there
exists a compact subset E of S��rNs such that L̂ P E eventually almost surely. Fix

α, β P p0, 1q to be chosen later such that α   β and define the compact set of
S��rNs as

Eα,β �
 
L P S��rNs : K � LpI � Lq�1 P Srα,βsrNs

(
.

Let δ � minJ�rNs p
�
J . Since L� is definite positive, δ ¡ 0. Define the event A

by
A �

£
J�rNs

 
p�J ¤ 2p̂J ¤ 3p�J

(
.

and observe that on A, we have 3ΦpLq ¤ 2Φ̂pLq ¤ ΦpLq simultaneously for all
L P S��rNs . In particular,

(6.28) ΦpL̂q ¥ 2Φ̂pL̂q ¥ 2Φ̂pL�q ¥ 3ΦpL�q,
where the second inequality follows from the definition of the MLE.

Using Hoeffding’s inequality together with a union bound, we get

(6.29) IPrAs ¥ 1� 2N�1e�δ
2n{2 .

Observe that ΦpL�q   0, so we can define α   expp3ΦpL�q{δq and β ¡ 1 �
expp3ΦpL�q{δq such that 0   α   β   1. Let L P S��rNszEα,β and K � LpI�Lq�1.

Then, either (i) K has an eigenvalue that is less than α, or (ii) K has an eigenvalue
that is larger than β. Since all the eigenvalues of K lie in p0, 1q, we have that
detpKq ¤ α in case (i) and detpI �Kq ¤ 1� β in case (ii). Recall that

ΦpLq �
¸

J�rNs

p�J log |detpK � IJ̄q|, ,

and observe that each term in this sum is negative. Hence, by definition of α and
β,

ΦpLq ¤
#
p�rNs logα ¤ δ logα   3ΦpL�q ¤ ΦpL̂q in case (i)

p�H logp1� βq ¤ δ logp1� βq   3ΦpL�q ¤ ΦpL̂q in case (ii)

using (6.28). Thus, on A, ΦpLq   ΦpL̂q for all L P S��rNszEα,β. It yields that on

this event, L̂ P Eα,β.
Now, let ε ¡ 0. For all J � rN s, pJp�q is a continuous function; hence, we can

apply Theorem 5.14 in [vdV98], with the compact set Eα,β. This yields

IPr`pL̂, L�q ¡ εs ¤ IPr`pL̂, L�q ¡ ε, L̂ P Eα,βs � IPrL̂ R Eα,βs
¤ IPr`pL̂, L�q ¡ ε, L̂ P Eα,βs � p1� IPrAsq .

Using Theorem 5.14 in [vdV98], the first term goes to zero, and the second term
goes to zero by (6.29). This ends the proof of Theorem 15. �
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6.11 Proof of Theorem 17

In order to prove this theorem, we use [Kos08, Theorem 14.4]. For L P S��rNs ,
let D P D such that }DLD � L�}F � minD1PD }D1LD1 � L�}F . In the proof
of Theorem 17, all functions evaluated at L are invariant under conjugations
by elements of D. Hence, we always assume that D is the identity matrix. We
decompose L � L� � H � K where H is supported on the blocs of L� and K
is supported off blocks and we denote by d̃pL,L�q � }H}F � }K}2F . We start
with the following lemma, where we denote by N pL�qK the space of symmetric
matrices that are orthogonal to N pL�q with respect to the canonical dot product.

Lemma 22. There exist c ¡ 0 and δ0 ¡ 0 such that the following holds. For all
L in a neighborhood of L�, write L�L� � H�K, with pH,Kq P N pL�qK�N pL�q,
then,

ΦpLq � ΦpL�q ¤ �c �}H}2F � }K}4F
�
.

This lemma proves that the first assumption of [Kos08, Theorem 14.4] is satis-
fied. In order to check the second assumption of [Kos08, Theorem 14.4], we first
write that for all L P S��rNs ,

�
Φ̂pLq � Φ̂pL�q

	
� pΦpLq � ΦpL�qq(6.30)

�
¸

J�rNs

pp̂J � p�Jq pln pJpLq � ln pJpL�qq .(6.31)

Write L � L� � H � K, where H is supported on the blocs of L� and K is
supported off blocks of L�. A Taylor expansion yields

ln pJpLq � ln pJpL�q
� Tr

�pL�Jq�1HJ

�� 1

2
Tr

�ppL�Jq�1KJq2
�� o

�}H}F � }K}2F
�
.

Hence, if }H}F ¤ δ and }K}F ¤
?
δ, for some small δ ¡ 0,

(6.32) |ln pJpLq � ln pJpL�q| ¤ cδ,

for some positive constant c.
Hence, by [vdV98, Lemma 19.38], the second assumption of [Kos08, Theorem

14.4] is satisfied, with ψnpδq � δ. This yield Theorem 17.

6.12 Proof of Lemma 22

Let L be in a small neighborhood of L� and write L � H�K, where pH,Kq P
N pL�qK�N pL�q. Since dΦpL�q � 0 and d2ΦpL�qpK,Kq � 0, a Taylor expansion
of Φ yields:
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ΦpLq � ΦpL�q
� 1

2
d2ΦpL�qpH �K,H �Kq � 1

6
d3ΦpL�qpH �K,H �K,H �Kq

� 1

24
d4ΦpL�qpH �K,H �K,H �K,H �Kq � o

�}H}4F � }K4}F
�

� 1

2
d2ΦpL�qpH,Hq � d2ΦpL�qpH,Kq � 1

2
d3ΦpL�qpH,K,Kq

� 1

6
d4ΦpL�qpH,K,K,Kq � 1

24
d4ΦpL�qpK,K,K,Kq � o

�}H}2F � }K4}F
�
,

(6.33)

Note that since dΦpL�q is semi-definite and K is in its null space, it also holds
that dΦpL�qpH,Kq � 0. By Theorem 8, d2ΦpL�qpH,Hq � �VarrTrppL�Zq�1HZqs
and, by Theorem 11, d4ΦpL�qpK,K,K,Kq � �18 Var

�
Tr

�ppL�Zq�1HZq2
��

. The
only quantities that remain to be computed are d3ΦpL�qpH,K,Kq and d4ΦpL�qpH,K,K,Kq.

Claim 23. d3ΦpL�qpH,K,Kq � � cov
�
Tr

�pL�Zq�1HY

�
,Tr

�ppL�Zq�1KY q2
��

.

Proof. The idea is the same as for the proofs of Theorems 8 and 11 and it
is based on differentiating (6.1) with respect to L. Though, unlike in Section 6.1,
we do not differentiate in one and the same direction. First, recall (6.2):

(6.34)
¸

J�rNs

detpLJqTrpL�1
J HJq � detpI � LqTrppI � Lq�1Hq.

For simplicity’s sake, we denote by:

• aHpJq � TrpL�1
J Hq,

• aKpJq � TrpL�1
J Kq,

• aHKpJq � Tr
�
L�1
J HL�1

J K
�
,

• aKKpJq � Tr
�pL�1

J Kq2�,
• aHKKpJq � Tr

�pL�1
J Kq2�,

• aKKKpJq � Tr
�pL�1

J Kq3�,
• aHKKKpJq � Tr

�
L�1
J HpL�1

J Kq3�,
• aKKKKpJq � Tr

�pL�1
J Kq4�,

for J � rN s, and by:

• aH � TrppI � Lq�1Hq,
• aK � TrppI � Lq�1Kq,
• aHK � Tr

�pI � Lq�1HpI � Lq�1K
�
,

• aKK � Tr
�ppI � Lq�1Kq2�,

• aHKK � Tr
�ppI � Lq�1Kq2�,

• aKKK � Tr
�ppI � Lq�1Kq3�,

• aHKKK � Tr
�pI � Lq�1HppI � Lq�1Kq3�,

• aKKKK � Tr
�ppI � Lq�1Kq4�.

Note that, for instance, differentiating aHKpJq in the direction K produces
�2aHKKpJq, or differentiating aHKK in the direction K produces �3aHKKK . In
addition, differentiating detpLJq in the direction K yields detpLJqaKpJq.
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Differentiating (6.2) in the direction K yields

¸
J�rNs

detpLJqaHpJqaKpJq �
¸

J�rNs

detpLJqaHKpJq

� detpI � LqaHaK � detpI � LqaHK .(6.35)

By differentiating again in the direction K,

¸
J�rNs

detpLJqaHpJqaKpJq2 �
¸

J�rNs

detpLJqaHKpJqaKpJq

�
¸

J�rNs

detpLJqaHpJqaKKpJq �
¸

J�rNs

detpLJqaKpJqaHKpJq

� 2
¸

J�rNs

detpLJqaHKKpJq

� detpI � LqaHa2
K � 2 detpI � LqaHKaK

� detpI � LqaHaKK � 2 detpI � LqaHKK .(6.36)

Now, similarly to Lemma 20,

d3ΦpL�qpH,K,Kq

� 2

�
� ¸
J�rNs

p�JaHKKpJq � aHKK

�

,

where the quantities a�pJq, a� are evaluated at L � L�.
Note that since H P N pL�qK and K P N pL�q, by Theorem 9, H is supported

on the blocks of L� and K� is supported off blocs of L�. Hence, simple algebra
yields that aKpJq � aHKpJq � aK � aHK � 0 when evaluated at L � L�,
therefore, (6.36) entails

d3ΦpL�qpH,K,Kq
� �

¸
J�rNs

p�JaHpJqaKKpJq � aHaKK .(6.37)

By (6.2),
°
J�rNs p

�
JaHpJq � aH and since K P N pL�q, °J�rNs p

�
JaKKpJq �

aKK . Thus, by (6.37),

d3ΦpL�qpH,K,Kq
� �IEraHpZqaKKpZqs � IEraHpZqsIEraKKpZqs,

which yields Claim 23.

Claim 24. d4ΦpL�qpH,K,K,Kq � 0.

Proof. This claim follows from differentiating (6.36) in the direction K and
noticing that each term contains vanishing factors, when evaluated at L � L�.
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Now, if L� is in a small neighborhood of L�, (6.33) yields

ΦpLq � ΦpL�q
� �1

2
VarrTrppL�Zq�1HZqs � 1

2
cov

�
Tr

�pL�Zq�1HZ

��
� 1

8
Var

�
Tr

�ppL�Zq�1KZq2
��� o

�}H}2F � }K}4F
�

� �1

8
Var

�
2 TrppL�Zq�1HZq � Tr

�ppL�Zq�1KZq2
��� o

�}H}2F � }K}4F
�
.

(6.38)

Claim 25. If H and K are nonzero, then Var
�
2 TrppL�Zq�1HZq � Tr

�ppL�Zq�1KZq2
�� ¡

0.

Proof. Assume that

(6.39) Var
�
2 TrppL�Zq�1HZq � Tr

�ppL�Zq�1KZq2
�� � 0.

Then, for all J � rN s, 2 TrppL�Jq�1HJq�Tr
�ppL�Jq�1KJq2

� � 0, since the random
variable inside the variance has mean zero. Recall that H needs to be supported
on the diagonal blocks of L�, whereas K needs to be supported outside of the
diagonal blocks of L�. Let i P rN s and take J � tiu in (6.39). Since Ki,i � 0, it
follows that pL�i,iq�1Hi,i � 0, i.e., Hi,i � 0. Let i, j P rN s be in the same block
of L� with i � j and take J � ti, ju in (6.39). Since KJ � 0, we obtain that
TrppL�Jq�1HJq � 0, which readily yields that Hi,j � 0. Hence, H � 0. Therefore,
(6.39) implies that Tr

�ppL�Zq�1KZq2
� � 0 for all J � rN s, which, by Theorem

11, implies that K � 0.

Let gpH,Kq � ��corr �2 TrppL�Zq�1HZq,Tr
�ppL�Zq�1KZq2

����, for H P N pL�qK
and K P N pL�q with H � 0 and K � 0. Here, corr stands for the corre-
lation. The function g is well defined, since H � 0 and K � 0 imply that
both random variables in the correlation have nonzero variance, by Theorems
8 and 11. Assume that there exists pH,Kq P N pL�qK �N pL�q with H � 0 and
K � 0 such that gpH,Kq � 1. Since 2 TrppL�Zq�1HZq and Tr

�ppL�Zq�1KZq2
�

are not identically zero, Cauchy-Schwartz inequality yields the existence of a
nonzero real number λ such that 2 TrppL�Zq�1HZq � λTr

�ppL�Zq�1KZq2
�

al-
most surely. Hence, the pair pλ�1H,Kq contradicts Claim 25. Let E be the
collection of all pairs pH,Kq P N pL�qK � N pL�q with }H}F � }K}F � 1.
Since g is a continuous function on the compact set, and gpH,Kq   1 for
all pH,Kq P E , there must exist t P r0, 1q such that gpH,Kq ¤ t,@pH,Kq P
E . Therefore, for all pH,Kq P E ,

��cov
�
2 TrppL�Zq�1HZq,Tr

�ppL�Zq�1KZq2
���� ¤

t
b

Var
�
2 TrppL�Zq�1HZq

�
Var

�
Tr

�ppL�Zq�1KZq2
��

. By positive homogeneity, this

must hold for all pair pH,Kq P N pL�qK � N pL�q. Therefore, by writing U �
2 TrppL�Zq�1HZq and V � Tr

�ppL�Zq�1KZq2
�
,

Var rU � V s � VarrU s �VarrV s � 2 covpU, V q
¥ VarrU s �VarrV s � 2t

a
VarrU sVarrV s

¥ p1� tq pVarrU s �VarrV sq ,(6.40)
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using the inequality 2ab ¤ a2 � b2, for all real numbers a, b.
We end the proof of Lemma 22 with the following claim.

Claim 26. Let L� be reducible. There exists a positive constant C such that
the following holds. For all H P SrNs supported on the blocks of L� and all K P
SrNs supported off the blocks of L�,

VarrTrppL�Zq�1HZqs ¥ C}H}2F
and

Var
�
Tr

�ppL�Zq�1KZq2
�� ¥ C}K}4F .

Proof. The first part of the claim is a consequence of Theorem 9, for any
choice of C that is smaller or equal to the smallest nonzero eigenvalue of�d2ΦpL�q.
For the second part of the claim, note that K P SrNs is supported off the blocks of
L� if and only ifK P N pL�q. By Theorem 11 and sinceK ÞÑ d4ΦpL�qpK,K,K,Kq
is continuous on the compact set tK P N pL�q : }K}F � 1u,

C1 :� � sup
KPN pL�q,}K}F�1

d4ΦpL�qpK,K,K,Kq ¡ 0

and the second part of the claim holds if C P p0, C1q.

This ends the proof of Lemma 22, together with (6.40) and (6.38).
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