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Rates of estimation for determinantal point processes
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1. Introduction

Determinantal point processes (DPPs) describe a family of repulsive point processes; they induce
probability distributions that favor configurations of points that are far away from each other. They
have played a central role in various corners of probability, algebra, combinatorics, and machine
learning (following the seminal work of Kulesza and Taskar (2012)), where their repulsive character
has been used to enforce the notion of diversity in subset selection problems.

Even though many applications necessitate estimation of the parameters of a DPP, statistical
inference for DPPs has received little attention. In this context, maximum likelihood estimation is a
natural method, but generally leads to a non-convex optimization problem. This problem has been
addressed by various heuristics, including Expectation-Maximization (Gillenwater et al. (2014)),
MCMC (Affandi et al. (2014)), and fixed point algorithms (Mariet and Sra (2015)). None of these
methods come with global guarantees, however. In this paper, we take an information geometric
approach to understand the asymptotic properties of the maximum likelihood estimator for discrete
DPPs. First, we study the curvature of the expected log-likelihood around its maximum. Our
main result is an exact characterization of when the maximum likelihood estimator converges at
a parametric rate. Moreover, we give quantitative bounds on the strong convexity constant that
translate into lower bounds on the asymptotic variance. This shed light on what combinatorial
parameters of a DPP control the variance.

2. Definitions

A (discrete) determinantal point process (DPP) on the finite space [N] = {1,2,..., N} is arandom
set Z C [N] that satisfies
P[] C Z] = det(K;), ¥J CI[N], @.1)
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for some symmetric matrix K € IRV>*Y with all its eigenvalues between 0 and 1. Here, we denote
by K the submatrix of K obtained from K by keeping the columns and rows indexed by .J.
If it holds further that I — K is invertible, then Z is called L-ensemble and
det(Ly)
PZ=J=—"7—7F7"<
[ ] det(I + L)’
where L = K (I — K)~!is called the kernel of Z.
In this work, we only consider DPPs that are L-ensembles. In that setup, we can identify L-
ensembles and DPPs, and the kernel L and correlation kernel K are related by the identities

L=K(I-K)™', K=L(I+L™" (2.3)

Note that we only consider kernels L that are positive definite. We denote by DPP(L) the
probability distribution associated with the DPP with kernel L and refer to L as the parameter of
the DPP in the context of statistical estimation.

The probability mass function (2.2) of DPP(L) depends only on the principal minors of L and
on det(I 4+ L). In particular, L is not fully identified by DPP(L) and the lack of identifiability of L
has been characterized exactly (Kulesza, 2012, Theorem 4.1). Denote by D the collection of N x N
diagonal matrices with +1 diagonal entries. Then, for a symmetric matrix L,

DPP(L') =DPP(L) <= 3D € D,L' = DLD. 2.4)
Hence, the parameter of a DPP is only indentified up to a flip of the signs of its columns and rows.

A DPP with kernel L is called irreducible whenever L is irreducible, i.e., if L does not have a
block diagonal structure. The following graph associated to L naturally describes its block structure.

v.J C [N, 2.2)

Definition 1 The determinantal graph G;, = ([N], EL) of a DPP with kernel L is the undirected
graph with vertices [N|] and edge set Ej, = {{i,j} ci# 5, Ly # 0}. Ifi,j € [N] withi # j,
write i ~p, j if there exists a path in Gy, that connects i and j.

It is not hard to see that a DPP with kernel L is irreducible if and only if its determinantal graph
Gy, is connected. If L is block diagonal, then its blocks correspond to the connected components of
Gr. Moreover, it follows directly from (2.2) that if Z ~ DPP(L) and L has blocks Ji, . .., Ji, then
ZN0Ji,...,Z N Jgare mutually independent DPPs with kernels L, ..., L, respectively.

3. Information geometry

Our goal is to estimate an unknown kernel L* from n independent copies of Z ~ DPP(L*). In this
paper, we study the statistical properties of what is arguably the most natural estimation technique:
maximum likelihood estimation.

First, we prove important properties of the Fisher information Z(L*). Our main result is the
following.

Theorem 2
The nullspace of Z(L*) is given by

{HeR"*N : H;,;=0foralli,j € [N] suchthat i ~r~j} . (3.1)
In particular, Z(L*) is positive definite if and only if L* is irreducible.

Theorem 2 is a qualitative result. In particular, we provide examples of irreducible kernels L*
for which Z(L*) have eigenvalues that are exponentially small in N.



MLE of DPPs

4. Maximum likelihood estimation

Let Z1,...,Z, be n independent copies of Z ~ DPP(L*), where the kernel L* is unknown. We
assume that L* is positive definite. Let L be the maximum likelihood estimator (MLE) of L* (unique
up to a flip of the sign of its columns and its rows).

We measure the performance of the MLE using the loss ¢ defined by

((L, L") = min L — DL*D)|r

where || - || 7 denotes the Frobenius norm.

Our statistical results establish asymptotic properties of the MLE. We use Op for big-O notation
in probability. For L € RN*N and J, J' C [N], we denote by L J,¢ the submatrix of L obtained
by keeping the rows indexed in J and the columns indexed in .J'.

Theorem 3

o (L, L*) —— 0, in probability.

n—oo
e If L* is irreducible, then, L is asymptotically normal. In particular, E(I:, L") = O]p(n_l/2).

e [f L* is block diagonal, then, for any pair of distinct blocks J, J' of L*,

. P x _ -1/4
glé%HLJJ DL yD|p = Op(n™%) 4.1
and
in|L; — D;L5Dyl||r = —1/2y, 4.2
glel%” J JL3Dy|lp = Op(n™7) (4.2)
References

Raja Hafiz Affandi, Emily B. Fox, Ryan P. Adams, and Benjamin Taskar. Learning the parameters
of determinantal point process kernels. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1224-1232, 2014.

Jennifer Gillenwater, Alex Kulesza, Emily Fox, and Ben Taskar. Expectation-maximization for
learning determinantal point processes. In Proceedings of the 27th International Conference
on Neural Information Processing Systems, NIPS’ 14, pages 3149-3157, Cambridge, MA, USA,
2014. MIT Press.

A. Kulesza. Learning with determinantal point processes. PhD thesis, University of Pennsylvania,
2012.

Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Now Publish-
ers Inc., Hanover, MA, USA, 2012. ISBN 1601986289, 9781601986283.

Zelda Mariet and Suvrit Sra. Fixed-point algorithms for learning determinantal point processes.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
2389-2397, 2015.



	Introduction
	Definitions
	Information geometry
	Maximum likelihood estimation

