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We present a refinement of the work of Miroslav Fiedler
regarding bisections of irreducible matrices. We consider
graph bisections as defined by the cut set consisting of
characteristic edges of the eigenvector corresponding to the
smallest non-zero eigenvalue of the graph Laplacian (the so-
called Fiedler vector). We provide a simple and transparent
analysis, including the cases when there exist components
with value zero. Namely, we extend the class of graphs for
which the Fiedler vector is guaranteed to produce connected
subgraphs in the bisection. Furthermore, we show that for
all connected graphs there exist Fiedler vectors such that
connectedness is preserved by the bisection, and estimate the
measure of the set of connectedness preserving Fiedler vectors
with respect to the set of all Fiedler vectors.
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1. Introduction

The focus of our considerations is the graph bisection problem. In general, a two-way
partition (or bisection) of a graph refers to cutting the graph into two parts, where
the order (number of vertices) of each subgraph is similar in size, while minimizing the
number of edges that connect the two subgraphs. Formally, the goal is to minimize some
objective function, most commonly chosen to be either the edge cut, combined with
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strict equality constraints on the order of the two subgraphs, or the ratio or normalized
cut, which allows the subgraphs to differ somewhat in order [10]. Finding the optimal
bisection is an NP-complete problem. However, approximations to optimal partitions
which can be computed in reasonable time are well known and can be obtained in
several different ways. One approach, with very good performance in practice, is the
multilevel graph partitioning algorithms introduced in [8,9]. Another approach, which
also provides approximation to other important graph quantities is the so-called spectral
bisection algorithms.

Roughly speaking, the spectral bisection algorithms use the eigenvector of the graph
Laplacian matrix corresponding to the algebraic connectivity of the graph. The approx-
imation to the optimal ratio cut is comprised of all the edges where this eigenvector
changes sign. Theoretical background for such approximations is based on the works of
Fiedler [4,5]. For additional algorithmic and theoretical results, especially for results re-
lated to approximating minimal cuts with spectral bisection, we refer to Pothen, Simon
and Liou [16], and also to Chan, Ciarlet Jr. and Szeto [1]. For general spectral results
with respect to the Laplacian, we refer to Merris [11–13]. In addition to the Laplacian
spectral bisection, partitionings based on spectral decomposition of the adjacency matrix
have also been investigated by Powers [17].

The works of Fiedler discuss the connectedness of the subgraphs obtained via spec-
tral bisection in the case where the aforementioned eigenvector does not contain any
zero components (characteristic vertices). Our results are a refinement of the results by
Fiedler and characterize the connectedness of the subgraphs in all cases. In particular,
we extend the results of Fiedler for when the eigenvector has zero components. Namely,
we extend the class of graphs for which spectral bisection via the cut set of characteristic
edges always produces connected subgraphs. In addition, we show that for all graphs
there exists an eigenvector corresponding to the algebraic connectivity such that the
corresponding spectral bisection preserves connectivity in the subgraphs.

2. Preliminaries

We introduce the necessary background theory with which we will work. Consider
the set of connected, undirected graphs with no self-loops, which we will denote by G.
We will represent the set of graphs in G with |V | = n by Gn. In the following, the
standard (Euclidean) �2-inner product is denoted by (·,·) and the corresponding norm
by ‖ · ‖. The superscript T denotes a transposition (taking an adjoint with respect to
the �2-inner product). Further, 0m is the zero element of Rm, and 1m is the vector of
all ones in R

m, namely, 1m = (1, . . . , 1︸ ︷︷ ︸
m

)T . Often, when no confusion is possible, we shall

omit the subscripts on 1m and 0m.
For a given matrix A ∈ R

n×n and set J ⊂ {1, 2, . . . , n}, we define A(J) to be the
matrix generated by A on the indices J , that is, the submatrix of A obtained by deleting
all rows and columns of A whose indices are not in J . We define the signature of a ma-
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trix A, denoted s(A) = (p, q), to be the row vector containing the number of positive
eigenvalues, p, and the number of negative eigenvalues, q, of A.

In addition, let us introduce notation which is helpful when dealing with signs of
components of vectors. We introduce, for a given vector x ∈ R

n, the following subsets of
{1, . . . , n}.

i0(x) = {j | 1 � j � n, xj = 0},
i−(x) = {j | 1 � j � n, xj < 0},
i+(x) = {j | 1 � j � n, xj > 0}.

For any x ∈ R
n, we have i0(x) ∪ i+(x) ∪ i−(x) = {1, . . . , n}.

With this notation in hand, we recall a few useful results regarding symmetric ma-
trices. We have the following regarding the signature of symmetric matrices from [3],
namely, [3, Results (1,10)–(1,12)].

Lemma 2.1. If a matrix A is symmetric block-diagonal,

A =

⎛⎜⎜⎜⎝
A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak

⎞⎟⎟⎟⎠ ,

then s(A) =
∑k

i=1 s(Ai).

Lemma 2.2. Let A be symmetric and let A1 be a principal submatrix of A. If s(A) = (p, q)
and s(A1) = (p, q), then p1 � p and q1 � q.

Lemma 2.3. Let

A =
(

B c

cT d

)
be an n×n matrix, B an (n−1)×(n−1) matrix. If for some vector x, Bx = 0, cTx �= 0,
then s(A) = s(B) + (1, 1).

From Lemmas 2.2 and 2.3, the following two results follow naturally.

Lemma 2.4. Let A be an n× n symmetric matrix with eigenvalues λ1 � λ2 � · · · � λn.
Then no principal submatrix of A− λsI has more than s− 1 negative eigenvalues.

Proof. The matrix A−λsI has eigenvalues λ1−λs � · · · � λs−1−λs � 0 � λs+1−λs �
· · · � λn − λs. Therefore, A− λsI has s− 1 negative eigenvalues. Applying Lemma 2.2,
we obtain the desired result. �



4 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 449 (2014) 1–16
Lemma 2.5. Let

A =
(

B C

CT D

)
be an n×n matrix, B an (n−j)×(n−j) matrix. If for some vector x, Bx = 0, CTx �≡ 0,
then s(A) � s(B) + (1, 1).

Proof. If CTx �≡ 0, then there must be some index i such that the i-th column of C,
denoted Ci, satisfies CT

i x �= 0. Consider the principal submatrix generated by the indices
S = {1, 2, . . . , n− j, n− j + i},

A[S] =
(

B Ci

CT
i Dii

)
.

By Lemma 2.2, we have s(A) � s(A[S]). Applying Lemma 2.3 to A[S], the result fol-
lows. �

In addition, we recall the eigenvalue interlacing theorem, from [7, Theorem 2.1(i)].

Theorem 2.6 (Interlacing theorem). Let S be a real n × m matrix (n > m) such that
STS = I and let A be a symmetric n × n matrix with eigenvalues λ1 � λ2 � · · · � λn.
Define B = STAS and let B have eigenvalues μ1 � μ2 � · · · � μm. Then the eigenvalues
of B interlace those of A, namely

λn−m+i � μi � λi.

We now introduce the graph Laplacian. Let G = (V,E) ∈ Gn be a graph. The (graph)
Laplacian matrix of G is given by L(G) = D(G)−A(G), where D(G) and A(G) are the
diagonal degree and adjacency matrices of G, respectively. We note that L(G)1n = 0n.
In addition, L is positive semi-definite. It is also well known that for the null-space of L,
Ker(L(G)), we have that dim(Ker(L(G))) equals the number of connected components
in G. Because we only consider connected graphs, the kernel of L(G) is one dimensional
and Ker(L(G)) = span{1n}. Thus, λ = 0 is an eigenvalue of L, with corresponding
eigenvector proportional to 1n. Let us order the eigenvalues of L(G) as follows: 0 = λ1 <

λ2 � · · · � λn, and denote by ϕ1 = 1√
n
1n, ϕ2, . . . , ϕn the corresponding eigenvectors.

The second eigenvalue λ2 and the corresponding eigenvector ϕ2 have special signif-
icance and, for this reason, are given special names. The eigenvalue λ2 is called the
algebraic connectivity of the graph and is denoted by a(G). Any eigenvector correspond-
ing to the eigenvalue a(G) is called a characteristic valuation, or Fiedler vector, of G.
For a given characteristic valuation, a vertex which has a zero valuation is called a char-
acteristic vertex, and an edge for which the valuation changes sign (taking zero-valuated
vertices as positive) is called a characteristic edge.
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The Fiedler vector proves to be a useful tool for bisecting a graph (partitioning a graph
into two parts). This can be seen by noting the connection between the Rayleigh quo-
tient of L and an edge cut, and recalling also that the eigenvector corresponding to λ2
minimizes the Rayleigh quotient in the subspace {x | (x,1) = 0}.

We now recall several results from linear algebra related to reducibility. The reducibil-
ity of a matrix is an important notion, and, following Varga [18], we have the following
definitions.

Definition 2.7. A matrix A ∈ R
n×n is reducible if there exists a permutation matrix

π ∈ R
n×n such that

πAπT =
(
A1,1 A1,2

0 A2,2

)
.

Definition 2.8. A matrix A ∈ R
n×n has degree of reducibility r if there exists a permu-

tation matrix π ∈ R
n×n such that

πAπT =

⎛⎜⎜⎜⎝
A1,1 A1,2 · · · A1,r+1

0 A2,2 · · · A2,r+1
...

. . . . . .
...

0 · · · 0 Ar+1,r+1

⎞⎟⎟⎟⎠
with Ai,i irreducible, 1 � i � r + 1.

It is well known that a graph G is connected if and only if its corresponding Laplacian
matrix L(G) is irreducible. In addition, reducibility is also closely related to articulation
points. We have the following definition.

Definition 2.9. Let G = (V,E) ∈ G be a graph. If upon the removal of vertex i ∈ V the
resulting graph is disconnected, we say vertex i is an articulation point (or cut vertex)
of G. In addition, if the removal of a subset V0 ⊂ V results in a disconnected graph, we
say that the set of vertices V0 is an articulation set of G.

The following results on reducibility can be found in Fiedler’s paper [4, Theorem (2,1),
Results (1,5), (1,7)].

Theorem 2.10. Let A be an n×n non-negative, irreducible, symmetric matrix with eigen-
values η1 � η2 � · · · � ηn. Let v be a vector such that, for fixed s � 2, Av � ηsv. Then
M = i+(v) ∪ i0(v) is non-void, and the degree of reducibility of A(M) is less than or
equal to s− 2.

Lemma 2.11. If a matrix A with all off-diagonal entries non-positive and all principal
minors non-negative is irreducible and singular, then zero is a simple eigenvalue, there



6 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 449 (2014) 1–16
exists a unique vector x �= 0 such that Ax = 0, and this vector is either positive or
negative.

Lemma 2.12. If a symmetric irreducible matrix has all off-diagonal entries non-positive
and Ax = 0 for a vector x �= 0 that has both positive and negative components, then A

is not positive semi-definite.

We now state a connectivity proposition combining two results from [4], namely,
[4, Theorem (3,3)] and [4, Corollary (3,6)].

Theorem 2.13. Let G = (V,E) ∈ Gn and let y be an eigenvector of the Laplacian L(G)
corresponding to a(G). Let V1 = i+(y) ∪ i0(y). Then

i. The subgraph G1 of G induced by the subset V1 of V is connected.
ii. If i0(y) = ∅, then the set of all alternating edges, i.e. edges (i, k) for which yiyk < 0,

forms a cut of G such that both banks of G are connected.

While the above theorem shows connectedness for a spectral bisection with i0(y) = ∅,
it says nothing about the case when i0(y) is non-empty. In the following sections we
treat the latter case and, for any graph G ∈ Gn, show the existence of a characteristic
valuation such that the spectral bisection preserves connectedness.

3. Properties of characteristic vertices of Fiedler vectors

Consider a graph G ∈ Gn, and the set of its characteristic valuations U ⊂ R
n. We

are interested in results on connectedness of the subgraphs when the assumption in the
second item in Theorem 2.13 does not hold, namely when the characteristic valuations
have at least one zero component. To begin, let us define the following equivalence
relation:

u ∼ v if and only if i0(u) = i0(v). (1)

This relation splits U into non-overlapping equivalence classes. We allow the following
abuse in notation, and denote by [J ] the equivalence class {u | i0(u) = J}. We have
either ⋂

u∈U

i0(u) = ∅ or
⋂
u∈U

i0(u) �= ∅.

In the first case we have the following result, showing that if the intersection of charac-
teristic vertices is empty there exists a characteristic valuation without zero-components.

Lemma 3.1. Let G = (V,E) ∈ Gn be a graph and U be the eigenspace of characteristic
valuations of G. If

⋂
u∈U i0(u) = ∅, then there exists a vector w ∈ U such that i0(w) = ∅.
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Proof. We will explicitly construct a vector w with non-zero components. Let m =
dimU , and {ϕ1, ϕ2, . . . , ϕm} be a basis for U . Clearly, we have

⋂m
j=1 i0(ϕj) = ∅. Indeed,

if this was not true, then there is a k such that (φj)k = 0 for all j = 1, . . . ,m. Holding
this k fixed, for any u ∈ U with u =

∑m
j=1 αjφj we have that the k-th component of u

vanishes. This contradicts the condition in the lemma, namely, that
⋂

u∈U i0(u) = ∅. We
thus conclude that

⋂m
j=1 i0(ϕj) = ∅. We now consider

w =
m∑
j=1

αjϕj , where α1 = 1, and

αj = 1 + 2 max
k/∈i0(ϕj)

|
∑j−1

l=1 αl(ϕl)k|
|(ϕj)k|

, j = 2, . . . ,m.

We aim to show that |w�| > 0, for all � = 1, . . . , n. To do this, we introduce

δj = min
k/∈io(ϕj)

∣∣(ϕj)k
∣∣.

Note that directly from the definition, we have that αj � 1 for all j = 1, . . . ,m. Note
also that for k /∈ i0(ϕj), we have |(ϕj)k| � δj > 0 for all j = 1, . . . ,m. Consider now the
set

k� =
{
j
∣∣ (ϕj)� �= 0

}
.

It is immediate to see that k� �= ∅. Indeed, k� = ∅ implies that (ϕj)� = 0 for all
j = 1, . . . ,m and this in turn is equivalent to saying that � ∈

⋂m
j=1 i0(ϕj). However, by

the considerations given at the beginning of the proof, this is not possible and hence k�
is not empty.

We now denote k∗ = max k� and observe that (ϕj)� = 0 for all j such that k∗ < j � m.
We then have

|w�| =

∣∣∣∣∣
m∑
j=1

αj(ϕj)�

∣∣∣∣∣ =
∣∣∣∣∣
k∗∑
j=1

αj(ϕj)�

∣∣∣∣∣ � αk∗
∣∣(ϕk∗)�

∣∣− ∣∣∣∣∣
k∗−1∑
j=1

αj(ϕj)�

∣∣∣∣∣
=
∣∣(ϕk∗)�

∣∣(αk∗ −
|
∑k∗−1

j=1 αj(ϕj)�|
|(ϕk∗)�|

)
�
∣∣(ϕk∗)�

∣∣(αk∗ − max
k/∈i0(ϕk∗ )

|
∑k∗−1

j=1 αj(ϕj)k|
|(ϕk∗)l|

)
>
∣∣(ϕk∗)�

∣∣(αk∗ − 1
2αk∗

)
� 1

2δk
∗αk∗ > 0.

Since � was arbitrary, this completes the proof. �
As a consequence of Lemma 3.1, we have a vector w ∈ U such that i0(w) = ∅,

and can apply Theorem 2.13. There are other, more straightforward ways to prove such
a result, however, we use a constructive proof to illustrate a procedure guaranteed to
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find a valuation with no zero components. We can prove an even stronger result. We
have the following.

Theorem 3.2. Let G = (V,E) ∈ Gn be a graph, and U ∼= R
m the set of characteristic val-

uations of G. Suppose
⋂

u∈U i0(u) = ∅. Let W ⊂ U be the set of characteristic valuations
such that i0(u) is non-empty. Then W has zero m-dimensional volume.

Proof. Let us denote the set of all characteristic valuations u such that j ∈ i0(u) by Uj .
We have that W =

⋃n
j=1 Uj . By Lemma 3.1, there exists some characteristic valuation v

such that v /∈ W . Therefore W is a proper subset of U . Let us consider the set Uj . One
can verify that Uj is a subspace of U . Then we may conclude that Uj

∼= R
mj , for some

mj < m. We may thus conclude that each Uj has zero m-dimensional volume. Therefore,
W has zero m-dimensional volume. �

The second case, when the entire subspace of characteristic valuations has a common
zero component, is more intricate. Let us denote the intersection of the zero components
of all the characteristic valuations by i0(U) :=

⋂
u∈U i0(u). With this notation in hand,

we now show the existence of a characteristic valuations whose zero components are
exactly the common zero components.

Lemma 3.3. Let i0(U) =
⋂

u∈U i0(u). Then there exists a characteristic valuation u such
that i0(u) = i0(U).

Proof. Assume that there is no vector for which i0(u) = i0(U). This implies that there is
no characteristic valuation which is zero-valuated for only the components i0(U). There-
fore, upon removing the components in i0(U) from every characteristic valuation, we
see that the remaining subspace has a basis with an empty intersection of zero-valuated
vertices. But, by Lemma 3.1, we can construct a vector w in this subspace which has no
zero-valuated vertices. Extending this vector as zero on the vertices from i0(U) gives us
a characteristic valuation such that its zero components are precisely i0(U). �

In addition, we aim to show that almost every characteristic valuation is in the equiv-
alence class [i0(U)]. We have the following result.

Theorem 3.4. Let G = (V,E) ∈ Gn be a graph, and U ∼= R
m the set of characteristic

valuations of G. Let i0(U) =
⋂

u∈U i0(u), and W ⊂ U be the set of Fiedler vectors u such
that i0(U) is a proper subset of i0(u). Then the set W has zero m-dimensional volume.

Proof. Upon the removal of the components i0(U), |i0(U)| = j, from every characteristic
valuation, the remaining subspace has an empty intersection of zero-valuated vertices.
Thus, by Theorem 3.2, the set of elements of this subspace which has zero components
has zero (m− j)-dimensional volume. Extending the vectors back to U , we can conclude



J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 449 (2014) 1–16 9
that the set of elements for which i0(U) is a proper subset of its zero valuated vertices
has zero m-dimensional volume. �

Based on the results of Theorem 3.4, we can restrict ourselves to the equivalence class
corresponding to i0(U). Without loss of generality we may renumber the vertices of the
graph so that i0(U) = {1, . . . , j}. We then have the following 2 × 2 block form of the
graph Laplacian

L =
(

L0 −XT

−X L̃

)
∈ R

n×n, L0 ∈ R
j×j , X ∈ R

(n−j)×j , L̃ ∈ R
(n−j)×(n−j).

Clearly, for y ∈ [i0(U)] we have y =
(

0j

ỹ

)
, where ỹ ∈ R

n−j , and, moreover, i0(ỹ ) = ∅.
Direct computation shows that L̃ỹ = a(G)ỹ and XT ỹ = 0.

We consider the reducibility properties of L̃. We have two cases: (1) the set of zero-
valuated vertices is not an articulation set, in which case L̃ is irreducible; (2) the set of
zero-valuated vertices is an articulation set, in which case L̃ has degree of reducibility r

for some r � 1.
For the moment we concern ourselves with the latter case. If L̃ has degree of reducibil-

ity r, then we have

L̃ =

⎛⎜⎜⎜⎝
L1 0 · · · 0

0 L2
. . .

...
...

. . . . . . 0
0 · · · 0 Lr+1

⎞⎟⎟⎟⎠ , (2)

with Li ∈ R
ni×ni , i = 1, . . . , r + 1. Further, the characteristic valuations and block

matrix X can be put in a form which is in accordance with the reduced form above,
namely,

y =
(

0j

ỹ

)
, ỹ =

⎛⎝ y1
...

yr+1

⎞⎠ , X =

⎛⎜⎝ X1
...

Xr+1

⎞⎟⎠ . (3)

We characterize the form that these eigenvectors take explicitly.

Theorem 3.5. Let G = (V,E) ∈ Gn be a graph and U the set of characteristic valuations
of G. If i0(U) is an articulation set with degree of reducibility r, namely, L(G) takes the
block form (2), then y, in corresponding block notation (3), is a characteristic valuation
of G if and only if Liyi = a(G)yi for all i = 1, . . . , r + 1 and

∑r+1
i=1 1T yi = 0. Moreover,

a(G) is the minimal eigenvalue for each Li.

Proof. We begin by restricting our considerations to the equivalence class [i0(U)] and
take a characteristic valuation y ∈ [i0(U)]. We recall that a(G) is an eigenvalue of L̃,
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with corresponding eigenvector ỹ. This implies that (Li − a(G)I) is singular and (Li −
a(G)I)yi = 0. We first aim to show that none of the vectors yi has both positive and
negative components.

Suppose, to the contrary, that one of the vectors, say y1, has both positive and negative
components. By Lemma 2.12, this implies that L1 − a(G)I has at least one negative
eigenvalue. However, L̃−a(G)I is a principal submatrix of L−a(G)I. Using Lemma 2.4
with s = 2, we see that L̃− a(G)I has at most one negative eigenvalue, and, therefore,
Li − a(G)I are positive semi-definite for all i > 1. We fix one such i, and note that Li

is irreducible. Therefore, by Lemma 2.11, the components of the vector yi are either all
positive or all negative. In addition, L is also irreducible, and, therefore, we have that
Xi �≡ 0. Hence, XT

i yi is nonzero. By Lemmas 2.1 and 2.5, we have s(L − a(G)I) �∑r+1
i=1 s(Li − a(G)I) + (1, 1). This implies that L − a(G)I has at least two negative

eigenvalues. We have reached a contradiction. Therefore, y2 = y3 = · · · = yr = 0.
However, because we assumed that ỹ has no zero-valuated vertices, we can conclude
that our initial assumption that y1 has both positive and negative components was false.
This implies that a(G) is the minimal eigenvalue for each Li, and furthermore, by the
Perron–Frobenius theorem, the corresponding eigenvector yi is simple, and either positive
or negative.

The considerations above readily extend from characteristic valuations from the equiv-
alence class i0(U) to the entire eigenspace U of characteristic valuations. For any such y

there will be a zero block in the decomposition in irreducible components. This zero
block corresponds to indices from i0(y) \ i0(U).

What remains is to show that y ∈ U if and only if 1T
ny = 0 and Liyi = a(G)yi for all

i = 1, . . . , r + 1.
First, suppose y ∈ U . This clearly implies 1T

ny = 0, because y is in the eigenspace
corresponding to a(G). Writing out Ly = a(G)y block-wise, we easily verify that Liyi =
a(G)yi for all i = 1, . . . , r + 1.

To show the other direction, suppose 1T
ny = 0 and Liyi = a(G)yi for all i = 1, . . . , r+1.

This implies that L̃ỹ = a(G)ỹ and we have

yTLy =
(
0T
j , ỹ

T
)( L0 −XT

−X L̃

)(
0j

ỹ

)
=
(
0 T
j , ỹ T

)(−XT ỹ

L̃ỹ

)
= ỹ T L̃ỹ = a(G)ỹ T ỹ = a(G)yT y.

Such an identity can only hold if y = z+z0, where z is an eigenvector of L corresponding
to eigenvalue a(G) and z0 is an element from the null space of L, namely, z0 ∈ span{1n}.
Since 1T

ny = 0 we conclude that y must be an eigenvector corresponding to the eigenvalue
a(G). The proof is complete. �

From the above result we have the following corollary regarding the multiplicity of
a(G).
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Corollary 3.6. Let G = (V,E) ∈ Gn be a graph, and U the set of characteristic valuations
of G. If i0(U) is an articulation set with degree of reducibility r, then the eigenvalue a(G)
of L has multiplicity r.

Proof. Let us fix some y ∈ [i0(U)], and construct a basis for U . Consider the vectors
ϕT
j = (0T

j ,0T
n1
, . . . ,−1T yr+1

1T yj
yTj , . . . ,0T

nr
, yTr+1), j = 1, . . . , r. Each vector is an eigenvector

corresponding to a(G). In addition, one can verify by inspection that the set {ϕj}rj=1 is
linearly independent, and spans U . Therefore, a(G) has multiplicity r. �
4. Bisection and connectedness of the subgraphs

We now investigate the connectivity properties of characteristic valuations under spec-
tral bisections defined by the cut set of characteristic edges. Namely, we aim to extend
Fiedler’s Theorem 2.13 to cases where there exist zero components. It suffices to consider
graphs for which i0(U) is non-empty. For graphs in which i0(U) = ∅ we have shown, in
Lemma 3.2, that almost every characteristic valuation has no zero components. We be-
gin with the case in which i0(U) is not an articulation set and show that, for this case,
[i0(U)] is connectedness-preserving.

Theorem 4.1. Let G = (V,E) ∈ Gn be a graph, and y a characteristic valuation of G. If G
is still connected upon the removal of the vertices i0(y) ⊂ V , then the graphs generated
by i+(y) ∪ i0(y) and i−(y) are non-empty and connected.

Proof. Recall that if y ∈ U is a characteristic valuation of L then we may reorder the
vertices such that yT = (0T

j , ỹ
T ), where i0(ỹ ) = ∅, and L̃ỹ = a(G)ỹ.

Let 0 = λ1 < λ2 � · · · � λn and μ1 � μ2 � · · · � μn−j be the eigenvalues of L

and L̃, respectively. We see λ1 = 0 and λ1 < λ2 from the properties of the Laplacian
of a connected graph. We do not have the same properties for L̃, because L̃ does not
satisfy L̃1n−j = 0n−j . However, it is immediate to see that L̃ is an M-matrix. From the
interlacing Theorem 2.6 we have that

0 = λ1 � μ1 and a(G) = λ2 � μ2.

From L̃ỹ = a(G)ỹ, we have that a(G) is an eigenvalue and ỹ an eigenvector of L̃.
Therefore, μ1 = a(G) or μ2 = a(G), or both. By the Perron–Frobenius theorem applied
to L̃−1, (see Perron [14, p. 47], [15, p. 261] and Frobenius [6]) the eigenvector of μ1
is either non-negative, or non-positive. Because ỹ contains both positive and negative
values (it is, after all, orthogonal to 1n−j), ỹ must be an eigenvector of μ2 = a(G).

By Theorem 2.10 applied to gI − L̃, where g is the Gershgorin bound g =
2 max1�i�n−j |L̃ii|, we have that the matrix generated by i+(ỹ ) ∪ i0(ỹ ) is non-void
and irreducible. However, we have that i0(ỹ ) = ∅ and hence i+(y) = i+(ỹ ) also is ir-
reducible. Applying the same considerations to (−ỹ ), we conclude that both i+(ỹ ) and
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i−(ỹ ) are non-void and generate irreducible matrices. This implies that the subgraphs
generated by i+(y) and i−(y) are non-empty and connected. Therefore, on the larger
graph, represented by L, we have that the graphs generated by i+(y) ∪ i0(y) and i−(y)
are non-empty and connected. �

This extends the bisection results of Fiedler to include characteristic valuations for
which the zero valuated set is not an articulation set. We can go a step further, and show
the existence of a connectedness-preserving characteristic valuation for any graph G.

Theorem 4.2 (Generalized bisection theorem). For any graph G ∈ Gn there exists a char-
acteristic valuation u such that the subgraphs generated by i+(u) ∪ i0(u) and i−(u) are
connected.

Proof. We proceed with this proof through cases. For a graph G with i0(U) = ∅ we
have, by Lemma 3.1, the existence of a valuation u such that i0(u) = ∅, in which we can
apply Theorem 2.13. For the case where i0(U) �= ∅, we first suppose i0(U) to not be an
articulation set. This is covered by Theorem 4.1. Therefore, it suffices to consider the
case in which i0(U) is an articulation set.

Suppose i0(U) is an articulation set with degree of reducibility r � 1. We consider
the valuation uT = (0T

j , y
T
1 , . . . , y

T
r , γy

T
r+1), where each yj is a positive eigenvector of Lj

corresponding to a(G) and γ = −
∑r

j=1 1T yj

1T yr+1
. One can verify that u is a characteristic val-

uation. The set i−(u) consists of the components of Lr+1. However, Lr+1 is an irreducible
matrix and, therefore, the subgraph generated by i−(u) is connected. This completes the
proof. �

We now proceed to consider the volume of the connectedness-preserving characteristic
valuations of graphs. From Theorem 4.1, we see that for the case when i0(U) is not an
articulation set, we have that the entire set [i0(U)] is connectedness-preserving.

To consider the case when i0(U) is an articulation set, we need the following iso-
morphism. Let y1, . . . , yr+1 be given vectors such that each yj is an eigenvector of Lj

corresponding to a(G), yk ∈ R
nk , 1T

nk
yk = 1, k = 1, . . . , r + 1. We define C to be the

natural isomorphism between the Cartesian product of span{yk} and R
r+1, namely

C : span{y1} × · · · × span{yr+1} 
→ R
r+1,

C(α1y1, . . . , αr+1yr+1) = (α1, . . . , αr+1)T . (4)

With this isomorphism, we also associate a set of normalized vectors. For example, Cp will
denote the isomorphism given above followed by a normalization in �p(Rr+1), namely,

Cp(α1y1, . . . , αr+1yr+1) := (α1, . . . , αr+1)T
. (5)
‖α‖�p
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We now show that the set of connectedness-preserving characteristic valuations has pos-
itive volume.

Theorem 4.3. Let G = (V,E) ∈ Gn be a graph, U ∼= R
m the eigenspace of a(G), and

W ⊂ U the set of valuations u ∈ U such that the subgraphs generated by i+(u) ∪ i0(u)
and i−(u) are connected. Then W has positive m-dimensional volume.

Proof. The case when i0(U) is not an articulation set is covered by Theorem 4.1 and,
therefore, it suffices to consider the case when i0(U) is an articulation set. For i0(U) an
articulation set, we have m = r. The proof is completed by considering the mapping
C : U 
→ R

r+1 as defined in Eq. (4). The set C(U) is an r-dimensional manifold, which
can be defined as C(U) = {α | αr+1 = −

∑r
i=1 αi}. Let us consider the set S = {α ∈

C(U) | αj > 0, j = 1, . . . , r}. One can verify this to be a subset of C(W ). We see
immediately that S has positive r-dimensional volume. The proof is complete. �

In the following lemma we estimate the ratio between the volumes of the �1-normalized
image of the connectedness-preserving characteristic valuations C1(W ) ⊂ R

r and the
�1-normalized image of the subspace of all characteristic valuations C1(U) ⊂ R

r, to give
an estimate of what ratio of characteristic valuations preserves connectedness when i0(U)
is an articulation set.

Lemma 4.4. Let G ∈ Gn be a graph, U the set of characteristic valuations of G, and
W ⊂ U the set of elements u ∈ U such that the subgraphs generated by i+(u)∪ i0(u) and
i−(u) are connected. Suppose that i0(U) is an articulation set with degree of reducibility
r � 1. Then

ρ = μ(C1(W ))
μ(C1(U)) = (r + 1)

[
r∑

i=1

(
r + 1
i

)(
r − 1
i− 1

)√
i(r − i + 1)

r

]−1

where μ(·) denotes the (r − 1)-dimensional volume (measure).

Proof. In the following, we denote by χS the characteristic function of a set S and we
also set

∫
:=
∫
Rr−1 where the integration is with respect to the Lebesgue measure in

R
r−1. We introduce the following sets

Ti =
{
α ∈ C1(U)

∣∣ α1 > 0, . . . , αi > 0 and αi+1 < 0, . . . , αr+1 < 0
}
.

We next compute ρ for r > 1 (for r = 1, one can verify ρ = 1). The set C1(W ) consists
of all subsets of C1(U) in which precisely one component is negative. Therefore, ρ takes
the form

ρ =
∫
χC1(W )∫
χ

=
(r + 1)

∫
χTr∑r (

r+1) ∫ .

C1(U) i=1 i χTi
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Given the signs of the individual components αi, we can decompose the conditions
‖α‖�1 = 1 and (α,1) = 0 in terms of the sets of positive and negative components,
T+ and T− (T+ and T− partition {1, . . . , r + 1}), respectively:

1 = ‖α‖�1 =
r+1∑
i=1

|αi| =
∑
i∈T+

|αi| +
∑
j∈T−

|αj | =
∑
i∈T+

αi −
∑
j∈T−

αj ,

0 = (α,1) =
r+1∑
i=1

αi =
∑
i∈T+

αi +
∑
j∈T−

αj .

We see that
∑

i∈T+
αi = 1

2 and
∑

j∈T−
αj = −1

2 . We can now write the expression for ρ

in a more explicit manner. Introducing the simplices

Si =
{
α ∈ R

i
∣∣∣ i∑
j=1

αj = 1
2 , α1 > 0, . . . , αi > 0

}
,

we obtain

ρ =
(r + 1)

∫
χTr∑r

i=1
(
r+1
i

) ∫
χTi

=
(r + 1)

∫
χSr∑r

i=1
(
r+1
i

)
(
∫
Ri χSi

)(
∫
Rr+1−i χSr+1−i

)
.

We recall that the volume of a k-dimensional simplex Δk in R
k+1

Δk =
{
β ∈ R

k+1
∣∣∣ k+1∑
i=1

βi = c, β1 > 0, . . . , βk+1 > 0
}
,

is given by (see, for example, [2])

|Δk| =
∫
Rk

χΔk
= ck

√
k + 1
k! .

This allows us to rewrite ρ in terms of the volumes of simplices.

ρ = (r + 1)|Δr−1|∑r
i=1
(
r+1
i

)
|Δi−1||Δr−i|

=
(r+1)

√
r

2r−1(r−1)!∑r
i=1
(
r+1
i

) √
i

2i−1(i−1)!

√
r−i+1

2r−i(r−i)!

= (r + 1)
[

r∑
i=1

(
r + 1
i

)(
r − 1
i− 1

)√
i(r − i + 1)

r

]−1

.

This completes the proof. �
As a corollary from Lemma 4.4, we can see that as the degree of reducibility r increases,

the ratio between C1(W ) and C1(U) decreases exponentially. To show this, we note that
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i(r−i+1)
r � 1 and

(
r−1
i−1
)

� 1 for 1 � i � r. Using these inequalities and the identity∑n
i=1
(
n
i

)
= 2n gives

ρ = (r + 1)
[

r∑
i=1

(
r + 1
i

)(
r − 1
i− 1

)√
i(r − i + 1)

r

]−1

< (r + 1)
(

r∑
i=1

(
r + 1
i

))−1

= r + 1
2r+1 − (r + 1) .

In addition, all �p-norms in finite-dimensional space are equivalent with constants of
equivalence at worst linear in dimension, i.e., for p > q > 1

‖β‖�p � ‖β‖�q � n(1/q−1/p)‖β‖�p , for all β ∈ R
n.

Since for p = 1 the decay is exponential, this equivalence implies that the ratio of
connectedness-preserving characteristic valuations decreases exponentially with degree
of reducibility r, irrespective of �p normalization choice.

Acknowledgements

The research of Ludmil Zikatanov was supported in part by NSF grant DMS-1217142,
and Lawrence Livermore National Laboratory through subcontract B603526.

References

[1] Tony F. Chan, P. Ciarlet Jr., W.K. Szeto, On the optimality of the median cut spectral bisection
graph partitioning method, SIAM J. Sci. Comput. 18 (3) (1997) 943–948.

[2] Richard S. Ellis, Volume of an N -simplex by multiple integration, Elem. Math. 31 (3) (1976) 57–59.
[3] Miroslav Fiedler, Eigenvectors of acyclic matrices, Czechoslovak Math. J. 25 (4) (1975) 607–618.
[4] Miroslav Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory, Czechoslovak Math. J. 25 (4) (1975) 619–633.
[5] Miroslav Fiedler, Laplacian of graphs and algebraic connectivity, in: Combinatorics and Graph

Theory, Warsaw, 1987, in: Banach Center Publ., vol. 25, PWN, Warsaw, 1989, pp. 57–70.
[6] Ferdinand Georg Frobenius, Über Matrizen aus positiven Elementen, in: Sitzungsberichte der

Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften zu Berlin, 1908, pp. 471–476,
reprinted in: Abhandlungen, vol. 3, 1968, pp. 404–409.

[7] Willem H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995)
593–616.

[8] George Karypis, Vipin Kumar, A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering, J. Parallel Distrib. Comput. 48 (1998) 71–85.

[9] George Karypis, Vipin Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs,
SIAM Rev. 41 (2) (1999) 278–300 (electronic).

[10] Ulrike Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (December 2007) 395–416.
[11] Russell Merris, Laplacian matrices of graphs: a survey, in: Second Conference of the International

Linear Algebra Society (ILAS), Lisbon, 1992, Linear Algebra Appl. 197/198 (1994) 143–176.
[12] Russell Merris, Laplacian graph eigenvectors, Linear Algebra Appl. 278 (1–3) (1998) 221–236.
[13] Russell Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1–3) (1998) 33–35.
[14] Oskar Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann.

64 (1) (1907) 1–76.
[15] Oskar Perron, Zur Theorie der Matrices, Math. Ann. 64 (2) (1907) 248–263.

http://refhub.elsevier.com/S0024-3795(14)00074-3/bib313939374368616E545F436961726C6574505F537A65746F572D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib313939374368616E545F436961726C6574505F537A65746F572D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib45s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib466965646C657231393735s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4632s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4632s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4633s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4633s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib3139303846726F62656E697573462D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib3139303846726F62656E697573462D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib3139303846726F62656E697573462D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib313939354861656D657273572D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib313939354861656D657273572D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D6574697330s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D6574697330s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D6574697331s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D6574697331s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4C7578s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D31s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D31s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D32s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib4D33s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393037506572726F6E4F2D6162s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393037506572726F6E4F2D6162s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393037506572726F6E4F2D6161s1


16 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 449 (2014) 1–16
[16] Alex Pothen, Horst D. Simon, Kang-Pu Liou, Partitioning sparse matrices with eigenvectors of
graphs, in: Sparse Matrices, Gleneden Beach, OR, 1989, SIAM J. Matrix Anal. Appl. 11 (3) (1990)
430–452.

[17] David L. Powers, Graph partitioning by eigenvectors, Linear Algebra Appl. 101 (1988) 121–133.
[18] Richard S. Varga, Matrix Iterative Analysis, expanded edition, Springer Ser. Comput. Math., vol. 27,

Springer-Verlag, Berlin, 2000.

http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393930506F7468656E415F53696D6F6E485F4C696F754B2D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393930506F7468656E415F53696D6F6E485F4C696F754B2D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393930506F7468656E415F53696D6F6E485F4C696F754B2D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib31393838506F77657273442D6161s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib56s1
http://refhub.elsevier.com/S0024-3795(14)00074-3/bib56s1

	Spectral bisection of graphs and connectedness
	1 Introduction
	2 Preliminaries
	3 Properties of characteristic vertices of Fiedler vectors
	4 Bisection and connectedness of the subgraphs
	Acknowledgements
	References


