
Notes on Adjoint Methods for 18.335

Steven G. Johnson

Created Spring 2006, updated April 30, 2021.

1 Introduction
Given the output x ∈ RM of a complicated computation,
such as the solution of a discretized PDE or some other set
of M equations, parameterized by P variables p (design
parameters, a.k.a. control variables or decision param-
eters), we often wish to compute some function g(x,p)
based on the parameters and the solution. For example,
if we solve a wave equation, we might want to know the
scattered power in some direction. Or, for a mechanical
simulation, we might want to know the load-bearing ca-
pacity of the structure. For the output of a neural network,
g might be the “loss” function comparing a prediction x to
data. Often, however, we want to know more than just the
value of g—we also want to know its gradient dg

dp . Adjoint

methods give an efficient way to evaluate dg
dp , with a cost

independent of P and usually comparable to the cost of
solving for x once. (In the context of neural networks, ad-
joint methods are known as backpropagation; whereas in
automatic differentiation they are known as reverse-mode
differentiation.)

The gradient of g with respect to p is extremely use-
ful. It gives a measure of the sensitivity of our answer
to the parameters p (which may, for example, come from
some experimental measurements with some associated
uncertainties). Or, we may want to perform an optimiza-
tion of g, picking the p that produce some desired re-
sult; in this case the gradient indicates a useful search
direction (e.g. for nonlinear conjugate-gradient optimiza-
tion). For large-scale optimization problems, the number
P of design parameters can be hundreds, thousands, or
more—this is common in shape or topology optimization
of PDEs, in which p controls the placement and shape of
arbitrary blobs of different materials constituting a given
structure/design [1]. Sometimes, this process is called in-
verse design: finding the problem that yields a given so-
lution instead of the other way around. In deep learning,
one might have neural networks with millions of degrees
of freedom parameterizing artificial “neurons.” When
P� 1, the amazing efficiency of adjoint methods makes
inverse design and deep learning possible.

When I started these notes in 2006, I hadn’t found any

textbook description of adjoint methods that I particularly
liked, which is part of my motivation for writing up these
notes. One introduction can be found in [2], and a more
general treatment can be found in [3]. Subsequently, Gil
Strang wrote a nice introduction to adjoint methods in his
book [4].

2 Linear equations
Suppose that the column-vector x solves the M×M linear
equation Ax = b where we take b and A to be real1 and
to depend in some way on p. To evaluate the gradient
directly, we would do

dg
dp

= gp +gxxp

where the subscripts indicate partial derivatives (gx is a
row vector, xp is an M×P matrix, etc.). Since g is a given
function, gp and gx are presumably easy to compute. On
the other hand, computing xp is hard: evaluating it directly
by differentiating Ax = b by a parameter pi gives xpi =
A−1(bpi −Apix). That is, we would have to solve an M×
M linear equation for P right-hand sides, once for every
compont of p; this is impractical if P and M are large.

More explicitly, the problematic term is:

gxxp = gx︸︷︷︸
1×M

[A−1︸︷︷︸
M×M

(bp−Apx)︸ ︷︷ ︸
M×P

] = [gxA−1]︸ ︷︷ ︸
1×M

(bp−Apx)︸ ︷︷ ︸
M×P

,

where Apx denotes the M×P matrix with columns Apix
for i = 1, . . .P.2 One way of looking at the difficulty is
that in the first equation we multiply a M×M matrix by a
M×P matrix, which costs O(M2P) work, or equivalently
we have multiplications of A−1 by P vectors (i.e., solves
of P right-hand sides, which in practice would likely use a

1This involves no loss of generality, since complex linear equations
can always be written as real linear equations of twice the size by taking
the real and imaginary parts as separate variables.

2Technically, Ap is a rank-3 tensor or “three-dimensional matrix,”
although it almost certainly isn’t stored this way. For example, Api x
could be computed for each i separately without saving Api . Often, Api
will be very sparse.

1

factorization of A or an iterative solver rather than explic-
itly computing A−1).3 However, this can be ameliorated
simply by parenthesizing in a different way [4],4 as shown
in the last expression. If we multiply λλλ

T = gxA−1 first,
that corresponds to only a single solution of an adjoint
equation5

AT
λλλ = gT

x . (1)

and then we multiply a single vector λλλ
T by our M×P

matrix for only θ(MP) work. Putting it all together, we
obtain:

dg
dp

∣∣∣∣
f=0

= gp−λλλ
T fp = gp−λλλ

T (Apx−bp).

Again, A(p) and b(p) are presumably specified analyt-
ically and thus Ap and bp can easily be computed (in
some cases automatically, by automatic program differ-
entiators such as ADIFOR). Note that the adjoint problem
is of the same size as the original Ax = b system, can
use the same factorization (e.g. LU factorization A = LU
immediately gives AT = UT LT), has the same condition
number, and has the same spectrum of eigenvalues (the
eigenvalues of A and AT are identical) so iterative algo-
rithms will have similar performance (and can use simi-
lar preconditioners)—in every sense, solving the adjoint
problem should be no harder than solving the original
problem.

3 Nonlinear equations
If x satisfies some general, possibly nonlinear, equations
f(x,p) = 0, the process is almost exactly the same. Dif-
ferentiating the f equation, we find fxxp + fp = 0 and thus
xp =−f−1

x fp. Hence, we write

dg
dp

= gp+gxxp = gp− gx︸︷︷︸
1×M

[f−1
x︸︷︷︸

M×M

fp︸︷︷︸
M×P

] = gp−[gxf−1
x]︸ ︷︷ ︸

1×M

fp︸︷︷︸
M×P

.

We solve for x by whatever method, then solve for λλλ from

fT
x λλλ = gT

x , (2)

3If M is sparse, then the cost might be significantly less than this
O(M2P) upper bound, but in any case solving P right-hand sides will
be significantly more costly than solving a single right-hand side for the
adjoint formulation.

4Another way of looking at this, and the source of the λλλ notation,
is to think of sort of a “Lagrange multiplier” process: replace g with
g̃ = g− λλλ

T f by adding a multiple λλλ of f = 0, and then choose λλλ is a
clever way to cancel the annoying derivative term. This gives the same
result, and may be easier to generalize to some more complicated cir-
cumstances, however, such as differential-algebraic equations [3].

5For complex-valued x and A and real g, instead of the transpose AT

one typically obtains the adjoint A† = AT∗ (the conjugate-transpose).

and finally obtain

dg
dp

∣∣∣∣
f=0

= gp−λλλ
T fp. (3)

The only difference is that the adjoint equation (2) is not
simply the adjoint of the equation for x. Still, it is a single
M×M linear equation for λλλ that should be of comparable
(or lesser) difficulty to solving for x (being equivalent to
the cost of one Newton iteration for f = 0).

4 Eigenproblems
As a more complicated example illustrating the use of
equations (2) and (3) from the previous sections, let us
suppose that we are solving a linear eigenproblem Ax =
αx and looking at some function g(x,α,p). For simplic-
ity, assume that A is real-symmetric and that α is simple
(non-degenerate; i.e., x is the only eigenvector for α).6 In
this case, we now have M+1 unknowns described by the
column vector:

x̃ =

(
x
α

)
.

The eigenequation f = Ax− αx only gives us M equa-
tions and doesn’t completely determine x̃, for two reasons.
First, of course, there are many possible eigenvalues, but
let’s assume that we have picked one in some fashion (e.g.
the smallest α , or the α closest to π , or the third largest
|α|, or ...). Second, the eigenequation does not determine
the length |x|; let’s arbitrarily pick |x| = 1 or xT x = 1.
This gives us M+1 equations f̃ = 0 where:

f̃ =
(

f
xT x−1

)
.

We’ll need M+1 adjoint variables λ̃λλ :

λ̃λλ =

(
λλλ

β

)
.

The adjoint equations (2) then give:

(A−αI)λλλ = gT
x −2βx, (4)

−xT
λλλ = gα . (5)

The first equation, at first glance, seems to be problem-
atic: A−αI is singular, with a null space of x. It’s, okay,

6Problems involving degenerate eigenvalues occur surprisingly of-
ten in optimization of eigenvalues (e.g. when maximizing the minimum
eigenvalue of some system), and must be treated with special care. In
that case, a generalization of the gradient is required to determine sen-
sitivities or the steepest-descent direction [5], a more elaborate version
of what is called degenerate perturbation theory in quantum mechanics
[?].

2

though! First, we have to choose β so that solutions of
equation (4) exist: the right-hand side must be orthogonal
to x so that it is not in the null space of A−αI. That is,
we must have xT (gT

x − 2βx) = 0, and thus β = xT gT
x /2

(since xT x = 1), and therefore λλλ satisfies:

(A−αI)λλλ = (1−xxT)gT
x = PgT

x (6)

where P= 1−xxT is the projection operator into the space
orthogonal to x. This equation then has a solution, and in
fact it has infinitely many solutions: we can add any mul-
tiple of x to λλλ and still have a solution. Equivalently, we
can write λλλ = λλλ 0 + γx for xT λλλ 0 = 0 and some γ . Fortu-
nately, γ is determined by (5): γ =−gα . Finally, with λλλ 0
determined by (6),7 we can find the desired gradient via
(3):

dg
dp

∣∣∣∣
f=0

= gp−λλλ
T Apx = gp−λλλ

T
0 Apx+gα xT Apx. (7)

If we compare with dg
dp = gp +gxxp +gα αp, we immedi-

ately see that αp = xT Apx. This is a well-known result
from quantum physics and perturbation theory, where it is
known as the Hellman-Feynman theorem.

5 Vector–Jacobian products (vJp)
and automatic differentiation
(AD)

Another way of thinking about adjoint methods is that
they correspond to the observation that the vector–
Jacobian product vT xp (a “vJp”), for any given vector
v ∈ RM , is much cheaper to compute than the M×P Ja-
cobian matrix xp itself. In our nonlinear-equation setting
f(x,p) = 0 of Sec. 3, we found that

vT xp =−λλλ
T fp

where λλλ solves the adjoint equation fT
x λλλ = v. Computing

the chain rule gxxp (v = gT
x) is just one application of this

general principle.
Nowadays, there are many software tools for “auto-

matic differentiation” or AD (such as autograd and JAX
in Python or Zygote in Julia): given a computer program
to compute g(p), they can automatically compute the gra-
dient dg

d p for you, using the analogue of an adjoint method
(called “reverse-mode” AD), applying the chain rule from

7Since P commutes with A−α , we can solve for λλλ 0 easily by an
iterative method such as conjugate gradient: if we start with an initial
guess orthogonal to x, all subsequent iterates will also be orthogonal
to x and will thus converge to λλλ 0 (except for roundoff, which can be
corrected by multiplying the final result by P).

left-to-right as a sequence of vJp operations. It is ex-
tremely useful to have an understanding of adjoint meth-
ods even if you are using AD tools, however:

• AD tools cannot differentiate many types of code,
especially code that calls out to external libraries
written in other programming languages.

– In such cases, however, you can supply a
“manual” vJp implementation for the compu-
tational steps that AD can’t handle, and then
AD will automatically compose your vJp into
the chain rule for all the surrounding pieces.

– For example, suppose you are performing a
composition g(x(y(z(p))) of several computa-
tions involving intermediate vectors {x,y,z},
and want the derivative gxxyyzzp, but the AD
tool doesn’t know how to analyze x(y) because
it calls an external Fortran linear-algebra li-
brary. You just need to implement a function
that computes the vJp vT xy for any given v us-
ing a “manual” adjoint method, and the AD
system will compute the rest of the derivatives
and put them together with your vJp into a
chain rule for dg

dp automatically.

• AD tools often generate suboptimal code for iter-
ative/approximate algorithms.

– For example, suppose that you have a pro-
gram solving for x by Newton’s method for
a nonlinear problem (or perhaps by a Krylov
method, such as GMRES, Arnoldi, etc., for a
linear problem). If you apply AD “blindly”
to this program, it will treat it as a generic
recurrence (see my notes on adjoint meth-
ods for recurrences) and try to backpropa-
gate adjoint variables through the recurrence,
which is costly because it requires storing all
intermediate iteration steps in general. In-
stead, you can apply the adjoint method (man-
ually, alas) directly to the final solution, which
only requires one additional linear solve and no
knowledge of the intermediate iterations that
yielded the solution.

– Put another way, if you have a function com-
puting x(p) approximately (e.g. by Newton it-
erations), you often only need the approximate
gradient as well, as long as you make the error
tolerances for both x and the vJp vT xp suffi-
ciently small. AD cannot do this, and ends up
wasting a lot of effort trying to exactly differ-
entiate the error in your approximation.

3

6 Initial-value problems
So far, we have looked at x that are determined by “sim-
ple” algebraic equations (which may come from a PDE,
etcetera). What if, instead, we are determining x by in-
tegrating a set of equations in time? The simplest exam-
ple of this is an initial-value problem for a linear, time-
independent, homogeneous set of ODEs:

ẋ = Bx

whose solution after a time t for x(0) = b is formally:

x = x(t) = eBtb.

This, however, is exactly a linear equation Ax = b with
A = e−Bt , so we can just quote our results from earlier!
That is, suppose we are optimizing (or evaluating the sen-
sitivity) of some function g(x,p) based on the solution x
at time t. Then we find the adjoint vector λλλ via (1):

e−BT t
λλλ = gT

x .

Equivalently, λλλ is the exactly the solution λλλ (t) after a time
t of its own adjoint ODE:

λ̇λλ = BT
λλλ

with initial condition λλλ (0) = gT
x . We should have ex-

pected this by now: solving for λλλ always involves a task
of similar complexity to finding x, so if we found x by
integrating an ODE then we find λλλ by an ODE too! Of
course, we need not solve these ODEs by matrix expo-
nentials; we can use Runge-Kutta, forward Euler, or (if B
comes from a PDE) whatever scheme we deem appropri-
ate (e.g. Crank-Nicolson).

One important property to worry about is stability, and
here we are in luck. The eigenvalues of B and BT are the
same, and so if one is stable (eigenvalues with real parts
≤ 0) then the other is!

Finally, we can write down the gradient dg
dp via equa-

tion (3):
dg
dp

= gp−λλλ
T (Apx−bp).

Now, since A = e−Bt , one might be tempted to write
Ap = −Bpt · A, but this is not true except in the very
special case where Bp commutes with B! Unfortu-
nately, the general expression for differentiating a ma-
trix exponential turns out to be more complicated: Ap =

−
∫ t

0 e−Bt ′Bpe−B(t−t ′)dt ′, and so,

dg
dp

= gp +
∫ t

0
λλλ

T (t− t ′)Bpx(t ′)dt ′+λλλ
T bp.

This is especially unfortunate because it usually means
that we have to store x(t ′) at all times 0 ≤ t ′ ≤ t in or-
der to compute the integral. Adjoint methods are storage-
intensive for time-dependent problems!

More generally, of course, one might wish to include
time-varying A, nonlinearities, inhomogeneous (source)
terms, etcetera, into the equations to integrate. A very
general formulation of the problem, for differential-
algebraic equations (DAEs), can be found in [3]. A simi-
lar general principle remains, however: the adjoint vari-
able λλλ is determined by integrating a similar (adjoint)
DAE, using the final value of x(t) to compute the ini-
tial condition of λλλ (0). In fact, the λλλ (t) equation is ac-
tually often interpreted as being integrated backwards in
time from t to 0 (a form of “backpropagation”). Alter-
natively, one can consider a “discrete-time” situation of
recurrence equations, in which case the adjoint problem
is a recurrence “backward in time”—see my online notes
on adjoint methods for recurrences.

References
[1] O. Sigmund and K. Maute, “Topology optimization

approaches,” Structural and Multidisciplinary Opti-
mization, vol. 48, pp. 1031–1055, 2013.

[2] R. M. Errico, “What is an adjoint model?,” Bulletin
Am. Meteorological Soc., vol. 78, pp. 2577–2591,
1997.

[3] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sen-
sitivity analysis for differential-algebraic equations:
The adjoint DAE system and its numerical solution,”
SIAM J. Sci. Comput., vol. 24, no. 3, pp. 1076–1089,
2003.

[4] G. Strang, Computational Science and Engineering.
Wellesley, MA: Wellesley-Cambridge Press, 2007.

[5] A. P. Seyranian, E. Lund, and N. Olhoff, “Multi-
ple eigenvalues in structural optimization problems,”
Structural Optimization, vol. 8, pp. 207–227, 1994.

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

ψ
0

ψ

V / 1000

Figure 1: Optimized V (x) (scaled by 1/1000) and ψ(x) for
ψ0(x) = 1+ sin[πx+ cos(3πx)] after 500 cg iterations.

7 Example inverse design
As a more concrete example of an inverse-design prob-
lem, let’s consider the Schrodinger eigen-equation in one
dimension, [

− d2

dx2 +V (x)
]

ψ(x) = Eψ(x),

with periodic boundaries ψ(x+2) = ψ(x). Normally, we
take a given V (x) and solve for ψ and E. Now, how-
ever, we will specify a particular ψ0(x) and find the V (x)
that gives ψ(x) ≈ ψ0(x) for the ground-state eigenfunc-
tion (i.e. for the smallest eigenvalue E). In particular, we
will find the V (x) that minimizes

g =
∫ 1

−1
|ψ(x)−ψ0(x)|2dx.

To solve this numerically, we will discretize the interval
x ∈ [−1,1) with M equally-spaced points xn = n∆x (∆x =

2
M+1), and solve for the solution ψ(xn) at these points,
denoted by the vector ψψψ . That is, to compare with the
notation of the previous sections, we have the eigenvector
x = ψψψ , the eigenvalue α = E, and the parameters V (xn) or
p = V. If we discretize the eigenoperator with the usual
center-difference scheme, we get Aψψψ = Eψψψ for:

A=
1

∆x2



2 −1 0 · · · 0 −1
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·
...

. . .
−1 2 −1

−1 0 · · · 0 −1 2


+diag(V).

As before, we normalize ψψψ (and ψψψ0) to ψψψT ψψψ = 1,8 giving
a projection operator P = 1−ψψψψψψT (or P = 1− |ψ〉〈ψ|,
in Dirac notation). The discrete version of g is now

g(ψψψ,V) = (ψψψ−ψψψ0)
T (ψψψ−ψψψ0)∆x

where ψψψ0 is ψ0(xn), our target eigenfunction. Therefore,
gψψψ = 2(ψψψ−ψψψ0)

T ∆x and thus, by eq. (6), we find λλλ via:

(A−E)λλλ = 2P(ψψψ−ψψψ0)∆x, (8)

with Pλλλ = 0 (λλλ = λλλ 0 since gE = 0). gV and gE are both
0. Moreover, AVn is simply the matrix with 1 at (n,n) and
0’s elsewhere, and thus from (7):

dg
dVn

=−λnψn

or equivalently dg
dV = −λλλ �ψψψ where � is the pointwise

product (.* in Matlab).
Whew! Now how do we solve these equations nu-

merically? This is illustrated by the Matlab function
schrodinger_fd_adj given below. We set up A as
a sparse matrix, then find the smallest eigenvalue and
eigenvector via the eigs function (which uses an itera-
tive Arnoldi method). Then we solve (8) for λλλ via the
Matlab pcg function (preconditioned conjugate-gradient,
although we don’t bother with a preconditioner).

Then, given g and dg
dV , we then just plug it into some

optimization algorithm. In particular, nonlinear conjugate
gradient seems to work well for this problem.9

7.1 Optimization results
In this section, we give a few example results from run-
ning the above procedure (nonlinear cg optimization) for
M = 100. As the starting guess for our optimization, we’ll
just use V (x) = 0. That is, we are doing a local optimiza-
tion in a 100-dimensional space, using the adjoint method
to get the gradient. It is somewhat remarkable that this
works—in a few seconds on a PC, it converges to a very
good solution!

We’ll try a couple of example ψ0(x) functions. To start
with, let’s do ψ0(x) = 1+ sin[πx+ cos(3πx)]. (Note that
the ground-state ψ will never have any nodes, so we re-
quire ψ0 ≥ 0 everywhere.) This ψ0(x), along with the
resulting ψ(x) and V (x) after 500 cg iterations, are shown
in figure 1. The solution ψ(x) matches ψ0(x) very well
except for a couple of small ripples, and V (x) is quite
complicated—not something you could easily guess!

8We also have an arbitrary choice of sign, which we fix by choosing∫
ψdx > 0.

9I used the nonlinear conjugate-gradient Matlab conj_grad routine
from:

http://www2.imm.dtu.dk/~hbn/Software/

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

ψ
0

ψ

V / 10000

Figure 2: Optimized V (x) (scaled by 1/10000) and ψ(x)
for ψ0(x) = 1−|x| for |x|< 0.5, after 5000 cg iterations.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

ψ
(x

)

10 cg iterations

20

40

80

160

320

5000

Figure 3: Optimized ψ(x) for ψ0(x) = 1− |x| for |x| <
0.5, after various numbers of nonlinear conjugate-gradient
iterations (from 10 to 10000).

Oh, but that ψ0 was too easy! Let’s try one with dis-
continuities: ψ0(x) = 1−|x| for |x|< 0.5 and 0 otherwise
(which looks a bit like a “house”). This ψ0(x), along with
the resulting ψ(x) and V (x) after 500 cg iterations, are
shown in figure 2. Amazingly, it still captures ψ0 pretty
well, although it has a bit more trouble with the disconti-
nuities than with the slope discontinuity. This time, we let
it converge for 5000 cg iterations to give it a bit more time.
Was this really necessary? In figure 3, we plot ψ(x) for
10, 20, 40, 80, 160, 320, and 5000 cg iterations. It gets the
rough shape pretty quickly, but the discontinuous features
are converging fairly slowly. (Presumably this could be
improved if we found a good preconditioner, or perhaps
by a different optimization method or objective function.)

6

7.2 Matlab code
The following code solves for g and dg

dV , not to mention
the eigenfunction ψψψ and the corresponding eigenvalue E,
for a given V and ψψψ0.

% Usage: [g,gp,E,psi] = schrodinger_fd_adj(x, V, psi0)
%
% Given a column-vector x(:) of N equally spaced x points and a column-vector
% V of the potential V(x) at those points, solves Schrodinger’s eigen-equation
% [-d^2/dx^2 + V(x)] psi(x) = E psi(x)
% with periodic boundaries for the lowest "ground state" eigenvalue E and
% wavefunction psi.
%
% Furthermore, it computes the function g = integral |psi - psi0|^2 and
% the gradient gp = dg/dV (at each point x).

function [g,gp,E,psi] = schrodinger_fd_adj(x, V, psi0)
dx = x(2) - x(1);
N = length(x);
A = spdiags([ones(N,1), -2 * ones(N,1), ones(N,1)], -1:1, N,N);
A(1,N) = 1;
A(N,1) = 1;
A = - A / dx^2 + spdiags(V, 0, N,N);

opts.disp = 0;
[psi,E] = eigs(A, 1, ’sa’, opts);
E = E(1,1);
if sum(psi) < 0

psi = -psi; % pick sign; note that psi’ * psi = 1 from eigs already
end

gpsi = psi - psi0;
g = gpsi’ * gpsi * dx;
gpsi = gpsi * 2*dx;

P = @(x) x - psi * (psi’ * x); % projection onto direction normal to psi

[lambda,flag] = pcg(A - spdiags(E*ones(N,1), 0, N,N), P(gpsi), 1e-6, N);
lambda = P(lambda);
gp = -real(conj(lambda) .* psi);

disp(g);

7

