
THOM COBORDISM THEOREM

MIGUEL MOREIRA

1. Introduction

In this short notes we will explain the remarkable theorem of Thom that classifies
cobordisms. This theorem was originally proven by René Thom in [] but we will
follow a more modern exposition. We want to give a precise idea of the everything
involved but we won’t give complete details at some points. Let’s define the concept
of cobordism.

Definition 1. Let M,N be two smooth closed n-manifolds. We say that M,N are
cobordant if there exists a compact (n + 1)-manifold W such that ∂W = M t N .
This is an equivalence relation.

Given a space X and f : M → X we call the pair (M, f) a singular manifold.
We say that (M, f) and (N, g) are cobordant if there is a cobordism W between M
and N and f t g extends to F : W → X.

We denote byNn(X) the set of cobordism classes of singular n-manifolds (M, f).
In particular Nn ≡ Nn(∗) is the set of cobordism sets.

We’ll already state the two amazing theorems by Thom. The first gives a
homotopy-theoretical interpretation of Nn and the second actually computes it.

Theorem 1. N∗ is a generalized homology theory associated to the Thom spectrum
MO, i.e.

Nn(X) = colim
k→∞

πn+k(MO(k) ∧X+).

Theorem 2. We have an isomorphism of graded Z/2-algebras

π∗MO ∼= Z/2[xi : 0 < i 6= 2` − 1] = Z/2[x2, x4, x5, x6, . . .]

where xi has grading i.

We’ll later define what the Thom spectrum is and the (graded) algebra structures
on both π∗MO and N∗. For now we consider a few examples of low dimension

Example 1. In particular we have

N0 = Z/2 , N1 = 0 , N2 = Z/2 , N3 = 0 , N4 = Z/2⊕ Z/2.
For N0 this is clear as closed 0-manifolds are finite collection of points which are
null-cobordant if and only if they are an even number. N1 = 0 is also clear since
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closed 1-manifolds are disjoint unions of S1’s which are null-cobordant. From the
classification theorem of surfaces the only possible non-trivial class is [RP 2]. For
n = 3 we get the already non-trivial result that any closed 3-manifold is null-
cobordant.

Thom’s paper was published in 1954 and it was ground breaking. It introduced
the notion of transversality, which will be of great importance in the first part.
Also, the computation of π∗MO used the method Serre had developed just a couple
of years before to compute the homology of Eilenberg-Maclane spaces. Thom was
awarded the Fields medal in 1958 for this work.

The concept of cobordism had a great influence in mathematics, in particular
in geometry and topology, and in physics. We list here a few influences:

(1) Cobordisms, and their more refined version of h-cobordisms, have a central
role in the development of surgery theory in the 60s by Milnor, Smale,
Hirsch and others. This led to great results in high dimensional topology,
such as the generalized Poincaré conjecture in dimension bigger then 5.

(2) Cobordism groups, such as π∗MO or its complex analogue π∗MU , are
naturally universal formal group laws.

(3) Cobordisms played a role in the famous Atiyah-Singer index theorem.
(4) Topological quantum field theories (TQFT) are monoidal functors from the

category of cobordisms (where the objects are manifolds and the morphisms
cobordisms) to VectC. These are relevant in quantum physics and had
incredible applications in geometry. 2-TQFT’s correspond to Frobenius
algebras. Moreover certain 3-TQFTs and 4-TQFTs led to invariants of
knots and 4-manifolds, respectively, that proved the existence of exotic
smooth structures in R4.

More detailed explanations of these can also be found in [?].
There is some extra structure we can give to N∗, which we now describe. The

disjoint union of manifolds induced a sum on Nn(X). Moreover the cartesian
product induced a graded product in Nn; more generally we get a map

Nn(X)⊗Nm(Y )→ Nn+m(X + Y ).

Since 2M is null-cobordant (consider the cobordism W = M × I) actually Nn is a
Z/2-algebra.

We also have functionality. A map f : X → Y induced Nn(X) → Nn(Y ) by
[M, g] 7→ [M, f ◦ g]. We also have a map from Nn(X) to Hn(X;Z/2) defined by
[M, g] 7→ g∗[M ] where [M ] ∈ Hn(M ;Z/2) is the fundamental class. This map
turns out to be a map of generalized homology theories.
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2. The Pontrjagin-Thom isomorphism

In this section we prove theorem 1. Before we enter in the actual proof we’ll
prove a lemma that will only be useful later but we want to use to motivate some
of the ideas:

Lemma 3. Let V,N be manifolds, V compact, and let A ⊆ N be a closed subman-
ifold. If f, g : V → N are smooth functions such that f t A, g t A and f ' g,
then f−1(A) and g−1(A) are cobordant.

Proof. Let H : V × I → N be a homotopy between f = H0 and g = H1. We can
perturb H without changing H0 and H1 so that H is smooth and H t A (see [?]).
Then H−1(A) ⊆ V × [0, 1] is a cobordism between f−1(A) and g−1(A). �

This means that given V,N,A as above we get a map

[V,N ]→ Nn
where n = dimV − dimN + dimA.

Now we would like to chose V,N,A in a way that we can cover every cobordism
class [M ] by such maps. The first restriction is that we need to be able to embed
M in V , so we will chose V = Sn+k with large enough k. The embedding of M
in Sn+k extends to an embedding of the total space of its normal bundle E(ν).We
would be very happy if we could map Sn+k to E(ν) and then M would be just
the pre-image of the zero section. Of course this is not possible. Thom’s idea was
simply to add an ∞ point to E(ν), creating the so called Thom space, and map
Sn+k \ E(ν) to ∞.

2.1. Vector bundles and Thom spaces. Given a vector bundle η we denote
by E(η) and B(η) its total and base spaces. Recall that k-vector bundles are
classified by their maps to the universal bundle E(γk) → BO(k). The classifying
space BO(k) can be obtained as a colimit of Grassmanians, i.e.

BO(k) = colim
`→∞

Grk(Rk+`).

Moreover the universal bundle E(γk) is the colimit of the tautological k bundle γk`
over Grk(Rk+`); this bundle has total space

E(γk` ) = {(P, x) ∈ Grk(Rk+`)× Rk+` : x ∈ P}.
Let’s now define the Thom space of a bundle which, as we explained, will play a
central role.

Definition 2. Let η be a vector bundle. Then we defined its Thom space Th(η) =
E(η)+ as the 1-point compactification of the total space.

We use here the convention that the one point compactification of a compact
X is just X with a disjoint base-point. An equivalent construction of the Thom
space when M = B(η) is compact is the following: considering a metric defined
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in the fibers, and let D(η), S(η) be the disk and sphere bundles, respectively, with
respect to this metric. Then Th(η) = D(η)/S(η). Note that the Thom space is
not a manifold as it has a singularity at ∞.

We note a few properties of the Thom space that will be useful. First, it’s easy
to see that (S × T )+ = S+ ∧ T+. It follows from this that if η1, η2 are two bundles
then Th(η1 × η2) = Th η1 ∧ Th η2. In particular, if we denote by kM the trivial
k-bundle over M , then

Th(η ⊕ 1M) = Th(η × 1∗) = Th(η) ∧ S1 = ΣTh(η).

Example 2. It follows from the above that

Th(kM) = ΣkTh(0M) = ΣkX+.

Note also that if η1 → η2 is a morphism of vector bundles that’s an isomorphism
(or monomorphism) on the fibers we have an induced map Th(η1)→ Th(η2).

2.2. Pontrjagin-Thom construction. We’re now ready to define a mapN∗(X)→
π∗(MO∧X+). Let M be a closed n-manifold and f : M → X. For k large enough
(more precisely k > n) there is an embedding M ↪→ Sn+k by Whitney’s theorem.
Moreover this embedding is unique up to isotopy if k > n+ 1:

Theorem 4 (Reference). If M has dimension n then any two embedding M ↪→ Sm

with m ≥ 2n+ 2 are isotopic.

Consider the normal bundle E(ν) ↪→M . The embedding of M in Sn+k extends
to an embedding of E(ν) into a tubular neighbourhood of M . This is a k-vector
bundle, so it admits a map (which we also call ν) to the universal bundle:

Sn+k E(ν) E(γk)

M BO(k)

ν̄

π

ν

To incorporate the information of f we create the following bundle morphism:

E(ν) E(γk)×X = E(γk × 0X)

M BO(k)×X

(ν̄.fπ)

π

(ν.f)

This induces a map of Thom spaces

Th(ν)→ Th(γk ⊕ 0X) = Th(γk) ∧X+.

Definition 3. Denote MO(k) = Th(γk) the universal Thom space where γk is the
universal k-bundle over BO(k).
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Composing with the collapse map Sn+k → Th(ν), that is the identity restricted
to E(ν) and sends Sn+k \ E(ν) to ∞, gives a map Sn+k → MO(k) ∧ X+. We
denote by αk(M, f) ∈ πn+kMO(k) the homotopy class of this map. This map αk,
for k > n, is precisely the Thom isomorphism! First we need to show that this is
indeed a well defined map from Nn(X) to πn+kMO(k).

Lemma 5. If (M, f) and (N, g) are cobordant singular manifolds then αk(M, f) =
αk(N, g).

Proof. It’s enough to prove that if (M, f) is null-cobordant then αk(M, f) = 0.
Let (W,F ) be a null-cobordism, i.e. M = ∂W and f = FM . It’s a theorem in
differential topology that the embedding M ↪→ Sn+k extends to a neat embedding
W ↪→ Dn+k+1. Neat means that W ∩ Sn+k = ∂W and TxW 6⊆ TxS

n+k.
Let ν̃ be the normal bundle of W in Dn+k+1. We can embed (by neatness) E(ν̃)

in Dn+k+1 in a way that E(ν) = E(ν̃) ∩ Sn+k.
Then the following diagram commutes:

Sn+k Th(ν) MO(k) ∧X+

Dn+k+1 Th(ν̃)

ν̃∧F

The upper composition is (a representative of) αk(M, f), so since it factors through
Dn+k+1 its homotopy class is trivial. �

2.3. MO as a (ring) spectrum. We can regard MO as a spectrum. Consider
the classifying map of the (k + 1)-bundle E(γk)× R→ BO(k). This bundle map
induces a map on Thom spaces

ΣMO(k) = Th
(
γk ⊕ 1BO(k)

)
→MO(k + 1).

These maps make MO a spectrum. We claim that the classes αk(M, f) are actually
stable. Suppose that M ↪→ Rn+k ↪→ Sn+k+1. Then we get an embedding of M in
Rn+k×R = Rn+k+1 ⊆ Sn+k+1. It’s clear that the normal bundle of this embedding
is now ν ⊕ 1M . We can check that the following diagram commutes:

Sn+k+1 Th(ν ⊕ 1M) MO(k + 1) ∧X+

ΣSn+k ΣTh(ν ⊕ 1M) ΣMO(k) ∧X+

∼= ∼=

Now the upper composition is αk+1(M, f) and the lower composition is Σαk(M, f).
Thus these maps arrange to give an element

α(M, f) ∈ πnMO = colim
k→∞

πn+kMO(k).
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Moreover we remark that MO is a ring spectrum. Indeed, the classifying map
of γk × γ` induces a map of thom spaces

MO(k) ∧MO(`) = Th(γk × γ`)→MO(k + `).

These maps are easily seen to be stable, so they induce a map of spectra MO ∧
MO →MO. This map makes MO a ring spectrum, and hence also induces a ring
structure on π∗MO with product defined as

π∗MO ⊗ π∗MO ∼= π∗(MO ∧MO)→ π∗MO.

We leave it as an exercise to the reader to check that the Pontrjagin-Thom map is
really a ring homomorphism with the product structure we just gave π∗MO and
the ring structure of N∗ induced by cartesian product of manifolds.

2.4. The inverse map. We now construct an inverse map β : πn(MO ∧X+) →
Nn(X). Suppose we are given a class [g] ∈ πn+kMO(k), that is, a map g : Sn+k →
MO(k) ∧X+. Consider the composition

g1 : Sn+k g−→MO(k) ∧X+ =
MO(k)×X
∞×X

π1−→MO(k).

Since MO(k) is the colimit of the cell complexes Th(γk` ) and Sn+k is compact, g1

must factor through Th(γk` ) for some ` large enough. By perturbing g slightly we
may assume that g1 is smooth in a neighbourhood of g−1

1

(
Grk(Rk+`)

)
⊆ Sn+k and

that g1 t Grk(Rk+`) ⊇MO(k).
Now we let M = g−1

1

(
Grk(Rk+`)

)
, which is a closed manifold of dimension n by

transversality. Note that this is the same as defining M = g−1(Grk(Rk+`) × X).
Now we define f as the composition

f : M
g−→ Grk(Rk+`)×X π2−→ X.

Finally define β([g]) = (M, f). One can see that this is well (i.e. doesn’t depend
on the representative g chosen) using lemma 3.

We sketch here a proof that these are indeed inverse maps, and hence we finish
the proof of theorem 1. We begin with β ◦ α = idN∗ . Let (M, f) be a singular
manifold and let g be a representative of αk(M, f). As before, g factors through
Th(γk` ) ∧X+. Now look at the commutative diagram

Sn+k Th(ν) Th(γk` ) ∧X+ Th(γk` ) ∧X+

M Grk(Rk+`)×X BO(k)×X X
π2

The composition at the top is g. It’s clear from this diagram thatM = g−1(Grk(Rk+`)×
X) and that the composition at the bottom is f , hence by the construction of beta
we have β([g]) = (M, f).



THOM COBORDISM THEOREM 7

Now we prove (or give an idea) of α ◦ β = idπ∗ . Chose [g] ∈ πn+kMO(k) as
before. Since g1 t Grk(Rk+`), g1 induces a morphism bundle from the normal
bundle of M ⊆ Sn+k to the normal bundle of Grk(Rk+`) ⊆ Th(γk` ). Note that
E(γ`k) ⊆ Th(γk` ) is a tubular neighborhood of Grk(Rk+`), and so the normal bundle
of Grk(Rk+`) is isomorphic to the tautological bungle γk` . Since the space of tubular
neighbourhood is contractible, we can assume without lost of generality that g1

maps E(ν) ⊆ Sn+k to E(γk` ). But then g is the collapse map we used to define α,
hence it’s clear from the construction of α that α(M, f) = [g].

3. Computation of π∗MO

In this section we’ ll prove theorem 2 and compute π∗MO. By the previous
question this is the same as the algebra of cobordism classes of manifolds, but
now we have an entirely homotopy theoretical problem. The reason why we can
actually compute π∗MO is because it decomposes as a wedge of Eilenberg-MacLane
spectra.

Theorem 6. The spectrum MO is a generalized EM spectrum, i.e.

MO '
∨
i

ΣαiK(Z/2)

where K(Z/2) is the Eilenberg-MacLane spectrum.

We will show this by proving that the cohomology of MO is a sum of (shifted)
copies of H∗K(Z/2). We denote A = H∗K(Z/2), known as the Steenrod algebra.
Actually there is a natural action of A on H∗MO and we’ll see that this makes
H∗MO a free A-algebra. To do this we need to understand A, H∗MO and the
action; actually we’ll look at the dual coaction.

In this entire subsection, if not explicit, everything is assumed to have Z/2
coefficients (homology, cohomology, tensor products, duals, etc.).

3.1. Thom isomorphism. The first tool we need is Thom isomorphism, relates
the cohomology of a Thom space and the cohomology of the base.

Theorem 7. Let X be a paracompact space and let η be a k-bundle over X. Then
there is an isomorphism

H̃j+k(Th(η);Z/2) ∼= Hj(X;Z/2).

A way to describe Thom isomorphism is the following. The map (id, π) : E(η)→
E(η)×X induced a map

Th(η)→ Th(η) ∧X+.

Applying cohomology we get a map

H∗X ⊗ H̃∗Th(η)→ H̃∗Th(η)



8 MIGUEL MOREIRA

that makes H̃∗Th(η) a module over H∗X. Thom theorem says that this module is
free of rank 1, generated by a cohomology class u ∈ HnTh(η) which is the image
of 1 ∈ H0X via the Thom isomorphism. This class u is called the Thom class of
the bundle and its pullback to X is called the Euler class e = e(η) of the bundle.

In the particular case of the universal k bundle γk we get an isomorphism

H̃n+kMO(K) ∼= HnBO(k). Moreover this isomorphism is stable in the sense
that the following diagram commutes:

HnBO(k) H̃n+kMO(K)

HnBO(k + 1) H̃n+k+1MO(K + 1)

∼=

∼=

where the left arrow is induced by the inclusion BO(k) ↪→ BO(k + 1) and the
left arrow by the structure maps of MO as a spectrum. Hence, if we denote by
BO = colim

k→∞
BO(k) we get a stable isomorphism

HnMO = lim
←−

H̃n+kMO(k) ∼= lim
←−

HnBO(k) ∼= HnBO.

Note that the cohomology of a spectrum E is defined by HnE = lim←− H̃
n+kE(k)

and that the last isomorphism comes from the fact that cohomology sends limits
to colimits.

3.2. Steenrod algebra. We need to understand the Steenrod algebraA = H∗K(Z/2).
Recall that by Yoneda’s lemma and Brown representability there is a correspon-
dence between natural transformations Hp to Hq and

[K(Z/2, p), K(Z/2, q)] = Hq(K(Z/2, p);Z/2).

Hence an element of A gives cohomology operations that are (in some sense we’ll
make precise when we talk about Steenrod squares) stable. Hence A acts on the
cohomology H∗X of any space. Because this action is stable, it also acts on the
cohomology of any spectrum.

We describe A in terms of the set of generators formed by the Steenrod squares.
Steenrod squares are certain (natural) cohomology operations Sqkn : HnX →
Hn+kX which obey the following properties:

(1) Sq0
n = id.

(2) Sqnnx = x2 for x ∈ HnX.
(3) If we write Sq =

∑
k≥0 Sqk then Sq(xy) = Sq(x)Sq(y) (Cartan formula)

(4) Sqkn = 0 for k < 0 and k > n.
(5) The following diagram commutes
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H̃mX H̃m+1ΣX

H̃m+kX H̃m+k+1ΣX

Sqk
m

∼= ∼=

Sqk
m

This property is called stability.
(6) If i < 2j we have

SqiSqj =
∑
k≥0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk.

These are Adem relations.

The stability property means that we can regard Sqk as an element in A. Even
more, we have the following:

Theorem 8. The Steenrod squares generate A = H∗K(Z/2). More precisely, the
action of {Sqk} on H∗K(Z/2) induces an isomorphism

Z/2〈Sq1, Sq2, . . .〉/Adem relations ∼= H∗K(Z/2) = A.

Moreover one can identify a basis of the Steenrod algebra. If I = (i1, . . . , in) we
write

SqI = Sqi1 . . . Sqin .

Proposition 9. We say that I = (i1, . . . , in) is admissible if ij ≥ 2ij+1. Then

{SqI : I is admissible}
is a basis of A.

Actually A has a Hopf algebra structure. Its coproduct is induced by the map
K(Z/2)×K(Z/2)→ K(Z/2) induced by the H-space structure on K(Z/2, n). On
generators the coproduct is written as

Sqn 7→
∑
i+j=k

Sqi ⊗ Sqj.

3.3. Stiefel-Whitney classes. Given a n-bundle E(η)→ X recall that H̃∗Th(η)
is freely generated by the Thom class u ∈ HnTh(η) as an H∗X-module. Hence
this means that for any k there is a uniquely defined wk(η) ∈ HkX such that

Sqku = wk(u)u.

The properties of the Steenrod squares assure that wk is natural (i.e. wk(f
∗η) =

f ∗wk(η)), that wk = 0 for k > n and that

w(η1 × η2) = w(η1)× w(η2)

where we write w(η) =
∑

k≥0wk(η).
We’ll use the Stiefel-Whitney classes of the universal bundle to understant the

cohomology of BO. We begin by looking how these things look in BO(1) = RP∞.
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Recall that the cohomology of RP∞ is isomorphic (as a ring) to a polynomial ring
Z/2[x] with |x| = 1. Since

Sqx = Sq1x+ Sq0x = x2 + x

and by Cartan formula

Sqxi = xi(x+ 1)i.

Hence Sqjxi =
(
i
j

)
xi+j.

Consider now the universal line bundle γ1 over RP∞. Note that S(γ1) is a
double cover of RP∞ and is not trivial, so S(γ1) = S∞ ' ∗ is contractible.
Thus the quotient map RP∞ ' D(γ1) → Th(γ1) is a homotopy equivalence or,
equivalently, the inclusion of the zero section in the Thom space is a homotopy
equivalence. Clearly the Thom class of γ1 is x ∈ H∗Th(ν) ∼= Z/2[x].

3.4. Cohomology of BO(n). We now use the Stiefel-Whitney classes to describe
the cohomology of BO(n). We do this by looking at the classifying map of the
bundle (γ1)n:

E(γ1)n E(γn)

(RP∞)n BO(n)

Note that H∗(RP∞)n ∼= Z/2[x]⊗n ∼= Z/2[x1, . . . , xn]. By Cartan formula for the
Stiefel-Whitney classes

w((γ1)n) = (1 + x1) . . . (1 + xn) =
n∑
k=0

σk(x1, . . . , xn)

where σk is the k elementary symmetric polynomial. In particular the Euler class
of (γ1)n is x1 . . . xn ∈ Hn((RP∞)n). By naturality of the Stiefel-Whitney classes
and the above discussion the following diagram commutes:

Z/2[w1, . . . , wn] H∗BO(n)

Z/2[x1, . . . , xn] H∗(RP∞)n

β

∼=

Here β is the map that sends the formal symbol wk to wk(γ
n), the left map sends

wk to σk(x1, . . . , xn) and the right map is induced by the classifying map of (γ1)n.

Proposition 10. The map β : Z/2[w1, . . . , wn] → H∗BO(n) is a (graded) ring
isomorphism, where |wi| = i.

Proof. Note that the left map in the above diagram is injective since the elementary
symmetric polynomials are algebraically independent.
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To prove surjectivity we consider the Schubert cell decomposition of BO(n) and
we note that the number of cells of dimension ` is the same as the dimension of
Z/2[w1, . . . , wn] in degree `. Indeed both numbers are equal to

# = {(s1, . . . , sd) : sj ∈ {1, . . . , n}, s1 + . . .+ sd = `}. �
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