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Abstract

In this dissertation we will introduce Floer homology for (compact and Calabi-Yau) global quotient

orbifolds, which are obtained as quotients [X/G] of a symplectic manifold X by a finite group G. We

study a variation of Floer homology on X defined using Hamiltonian orbits and Floer trajectories which

are not 1-periodic but obey a “g-periodicity” condition for a fixed symplectomorphism g, and then we

use this variation to define the orbifold Floer complex. We discuss the grading, coherent orientations,

the use of Novikov rings and transversality. Transversality is particularly interesting as the orbifold

case poses new difficulties. Our main result is an isomorphism between the Floer homology and Chen-

Ruan cohomology of an orbifold; this generalizes the well-known isomorphism between Floer and singular

homologies in the smooth case.

Keywords – Symplectic geometry, Floer homology, orbifolds, Chen-Ruan cohomology.



Resumo

Nesta dissertação vamos introduzir homologia de Floer para orbivariedades (compactas e Calabi-Yau)

que são quocientes globais, obtidas como quocientes [X/G] de uma variedade simplética X por um grupo

finito G. Estudamos uma variante de homologia de Floer em X definida usando órbitas Hamiltonianas

e trajetórias de Floer que não são 1-periódicas mas obedecem a uma condição de “g-periodicidade” para

um simplectomorfismo g fixo. Discutimos a graduação, orientações coerentes, o uso de anéis de Novikov e

transversalidade. A transversalidade é particularmente interessante uma vez que o caso das orbivariedades

coloca dificuldades novas. O nosso resultado principal é um isomorfismo entre a homologia de Floer e a

cohomologia de Chen-Ruan de uma orbivariedade; este generaliza o célebre isomorfismo entre a homologia

de Floer e homologia singular no caso suave.

Palavras-chave – Geometria simplética, homologia de Floer, orbivariedades, cohomologia de Chen-

Ruan.



Chapter 1

Introduction

1.1 Historical overview of Floer homology

Floer homology was introduced in the ’80s by Floer [Flo87, Flo89, FHS95]. Its original purpose was to

prove Arnol’d conjecture on the number of fixed points of a Hamiltonian symplectomorphism. Arnol’d

conjecture says the following: if Ht is a time dependent Hamiltonian on a compact symplectic manifold

X, the number of 1-periodic orbits of the Hamiltonian flow of Ht is at least the sum of the Betti numbers

of X (assuming all the 1-periodic orbits are non-degenerate).

Floer’s idea was to construct a chain complex generated by the 1-periodic orbits of the Hamiltonian

flow whose homology coincided with the singular homology of the manifold. This complex would be

something that formally looks like the Morse complex of an action functional AH : ΛX → R defined on

the loop space ΛX and whose critical points are precisely the Hamiltonian orbits. However, it turns out

that, after this formal similarity, Floer homology gets much different (and more complicated) flavours.

Due to the infinite dimension of ΛX the formal equation for the gradient flow of the action functional

AH is no longer an ordinary differential equation (as in the finite dimensional Morse case) but a partial

differential equation imposed on maps S1 × R→ X. Indeed it’s a perturbed Cauchy-Riemann equation,

which is an elliptic partial differential equation. Thus Floer theory consists largely in the study of the

moduli spaces of solutions to these elliptic equations and their compactifications – elliptic regularity,

Fredholm theory, Gromov compactness and gluing are some crucial tools in doing so. Another complica-

tion of Floer homology is that the indices of the orbits as critical points of AH (in the usual Morse sense)

are typically infinite. We should remark that both Gromov’s earlier introduction of pseudo-holomorphic

curves in symplectic manifolds (in the seminal paper [Gro85]) and Conley-Zehnder ideas in the proof of

Arnol’d conjecture for T2n (in [CZ83]) were highly influential in the development of Floer homology.

Floer was able to construct Floer homology, and hence prove Arnol’d conjecture, when the symplectic

manifold was monotone (see definition 3.3.8). Essentially this condition was needed to avoid the existence

of bubbles ruining the compactness of the moduli spaces, which is needed to prove for instance that the

differential satisfies ∂2 = 0. Later Salamon and Hofer extended the proof of Arnol’d conjecture to weakly

monotone manifolds (see [HS95]), a case that includes Calabi-Yau manifolds. The general case of Arnol’d

conjecture was claimed to be solved by Fukaya-Ono in [FO99]; for this much more sophisticated tools,

which are not consensual in the symplectic geometry community, had to be developed. Some key words

are multivalued perturbations, Kuranishi structures and virtual transversality.
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1.2 Why extending Floer homology to orbifolds?

The goal of this thesis is to give a first approach to Hamiltonian Floer theory for orbifolds. We will

construct (under some conditions) Floer homology HF (X ) when X is a compact global quotient orbifold,

that is, X is obtained as the quotient X/G of a manifold X by a finite group G acting on X. Restricting

ourselves to global quotients allows us to use well established Floer theory in our construction and not

have to do everything from scratch.

There are several ways why this is reasonably interesting. The first obvious reasons are that orbifolds

arise naturally in symplectic geometry – for example as a result of symplectic reduction – and that there

are a lot of interesting examples of symplectic orbifolds.

Our particular starting motivation for studying this problem was an observation made in [AMM] by

Abreu, Macarini and the author. We showed that one could relate the contact homology of Gorenstein

toric contact manifolds to the Chen-Ruan cohomology of certain (toric) fillings. This was done by

establishing a combinatorial interpretation for the dimensions of the contact homology groups. However,

when the filling is smooth, there is a more direct proof using the work of Oancea-Bourgeois [BO13,BO17]

that passes by the symplectic homology (and its positive and/or S1-equivariant versions) of the filling.

Of course that when the filling is an orbifold no such route is possible yet. Another similar looking

situation is the recent interpretation of the generalized McKay correspondence using Floer homology by

McLean-Ritter in [MR18]. In both cases the results could be proven very directly if we had a construction

of orbifold symplectic homology and appropriate adaptations of the tools in [BO13,BO17]. More details

about these expected applications will be given in 7.4.

We won’t pursue the goal of defining symplectic homology (and its versions) in the orbifold setting in

this thesis; we’ll restrict ourselves to the compact case. In the smooth compact setting Floer homology

is well known to be isomorphic to the singular homology of the manifold (up to a correction of the

grading). The above mentioned motivating observations suggested that in the orbifold case we should

replace singular homology by Chen-Ruan cohomology. This leads to the main theorem of this thesis; we

state it here, omitting some details in the formulation:

Theorem. Let X = [X/G] be a Calabi-Yau global quotient orbifold with symplectic form ω. If (H,J) is

a pair of Hamiltonian and almost complex structure that allows us to define Floer homology of X then

we have an isomorphism

HF∗(X , H, J ; Λ) ∼= Hn−∗
CR (X ; Λ)

between Floer homology and Chen-Ruan cohomology with coefficients in the rational Novikov ring Λ.

This will be theorem 6.0.1. The appearance of Chen-Ruan cohomology seems quite interesting – for

instance the fact that the the degree shifting numbers of Chen-Ruan cohomology appear naturally in

the Floer construction is quite remarkable for us. The fact that both Chen-Ruan cohomology and Floer

homology (more precisely, the Fukaya category) play a role in mirror symmetry may also spark interest

in this result.

As far as we know, the main content of this thesis is essentially new. However, there is some work in

the direction of an orbifold version of Lagrangian Floer theory and of the Fukaya category. Cho, Hong

and others seem to be pursuing this goal for instance in [CH17,CP14]. Our construction was motivated

by the orbifold Morse homology defined by Cho-Hong in [CH14], which had precisely this goal in mind.

Another work worth mentioning is the definition of a Z/2-invariant Lagrangian Floer homology by Seidel

and Smith in [SS10]; contrary to us, they used a Borel type construction.
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1.3 Structure of the dissertation

We begin this thesis by laying out some of the foundations of orbifolds in chapter 2. Although after this

chapter we’ll only consider global quotient orbifolds, we opted to present this introductory chapter in the

more general setting. We will define orbifolds, morphisms between orbifolds, cohomology of orbifolds and

Chen-Ruan cohomology. We also explain the construction of the Morse complex in [CH14].

The Floer complex of an orbifold X should be generated by 1-periodic Hamiltonian orbits. When X =

[X/G] is a global quotient, such orbits lift to Hamiltonian orbits γ : [0, 1] → X such that γ(1) = gγ(0).

For this reason, in chapter 3 we study a variation of the Hamiltonian Floer complex of a smooth manifold

X that replaces 1-periodic orbits by orbits satisfying the condition γ(1) = gγ(0) (we call this condition g-

periodicity) for a fixed symplectomorphism g. This is a reasonably straightforward adaptation of standard

Hamiltonian Floer theory and there is nothing essentially new in this chapter (see [DS94,FHS95]), besides

giving a bit more detail than what’s in the literature at some points. We also mention a way to interpret

this in terms of Lagrangian Floer homology in 3.4.

Chapter 4 gives the key definition of Floer homology for global quotient orbifolds. We explain in

4.2 how to define a grading on the Floer homology when X is Calabi-Yau. It turns out that (as already

observed in the Morse case) there is a need to exclude some Hamiltonian orbits from the complex according

to how the group acts on their orientation spaces. Because of this we need to give a more detailed account

of orientations in 4.3, again only in the Calabi-Yau case.

We discuss the important problem of equivariant transversality in chapter 5, that is, we ask if we

can define Floer theory from generic data (H,J). It seems that in general the answer is no because of

an obstruction that is explained in 5.1. We give a partial transversality result in section 5.2: we show

that we can get transversality for Floer trajectories which aren’t fixed by some g ∈ G \ {1}. This result

follows very closely an idea in [KS02] (although our context is slightly different). Given this unsatisfactory

situation, in section 5.3 we sketch how to redefine Floer homology of orbifolds in a way that avoids the

problem of equivariant transversality.

Our main result, the isomorphism between Floer homology and Chen-Ruan cohomology of a global

quotient Calabi-Yau orbifold, is stated and proved in chapter 6. We note that our result is an isomor-

phism only for some pairs (H,J) (with H a C2-small autonomous Hamiltonians) because we haven’t yet

established an invariance result, but it seems to us that such a result should follow from standard Floer

theoretical arguments and the ideas in 5.3 to avoid transversality problems again.

Finally, in chapter 7 we discuss a few possible directions for future work. We speculate about the

possibilities of extending our definition to general orbifolds and of defining a product structure on Floer

homology of orbifolds. We also discuss in a bit more detail the applications that we could get from

extending the tools of symplectic homology to orbifolds.
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Chapter 2

Orbifolds

Orbifolds are a generalization of smooth manifolds in which we allow some “not too bad” singularities:

more precisely, we allow singularities that locally look like quotients of a smooth manifold by a finite

group.

A precise definition and a lot of examples will be given in a while, but first let us digress a little bit

about the role of orbifolds in mathematics. Orbifolds have been studied from long ago from an algebraic

geometry point of view, and indeed algebraic geometry can provide many examples of orbifolds. They

were firstly defined, as analytical objects, by Satake in [Sat56]. In the ’70s Thurston studied orbifolds

in the context of his geometrization program for 3-manifolds. But it was in the ’80s that an immense

rise of interest in orbifolds happened, due to work of Dixon, Harvey, Vafa and Witten (see [DHVW85]),

who showed that orbifolds could play a role in string theory. Indeed this motivated later the definition of

Chen-Ruan cohomology that we’ll see, and will play an important role (see 6.0.1), and of Gromov-Witten

invariants of orbifolds.

There are several interesting examples of orbifolds appearing naturally. The most obvious source

of examples is the study of actions of Lie groups which aren’t free but only almost free. A symplectic

version of this is that it’s very common for a symplectic reduction of a smooth symplectic manifold to

be an orbifold; a particular example are toric orbifolds (see [LT97]), which provide a nice large family

of symplectic orbifolds. Orbifolds (or their algebraic geometry version – stacks) also arise naturally as

moduli spaces (see example 2.1.7). Orbifolds play a crucial role in mirror symmetry: it may happen that

the mirror to a smooth variety is an orbifold (see example 2.1.9). Indeed the Chen-Ruan cohomology

of an orbifold is very important in mirror symmetry as its product structure encodes information about

counting genus 0 holomorphic curves. Finally, considering resolutions of (simple to describe) orbifolds is

a good way to get very rich examples of smooth spaces.

2.1 Orbifolds – definitions and examples

2.1.1 Orbifold atlas

We will now give our first definition of orbifold. This definition is in terms of an orbifold atlas and it’s

the most natural way of capturing the idea that an orbifold is something that locally is a quotient of a

manifold by a finite group. This was the original definition of orbifold (called at the time V -manifold)

given by Satake in [Sat56]. We start with the definition of orbifold charts, which is slightly technical.
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Definition 2.1.1. Let X be a topological space and n ≥ 1 an integer. An orbifold chart (of dimension

n) on X is a triple (Ũ , G, φ) where Ũ ⊆ Rn is an open subset, G is a finite group acting smoothly and

effectively on Ũ and φ : Ũ → X is a continuous map inducing a homeomorphism Ũ/G onto an open

subset U ⊆ X.

An embedding of orbifold charts (Ũ1, G1, φ1) ↪→ (Ũ2, G2, φ2) consists of a smooth embedding ι : Ũ1 ↪→
Ũ2 such that φ2 ◦ ι = φ1.

An orbifold atlas is a family {(Ũ , G, φ)} of orbifold charts covering X and compatible in the following

sense: given any two charts (Ũ1, G1, φ1) and (Ũ2, G2, φ2) and a point x ∈ U1 ∩ U2 there is a third chart

(Ṽ ,H, ψ) with x ∈ ψ(Ṽ ) embedding in (Ũj , Gj , φj) for j = 1, 2.

We say that an orbifold atlas refines other if every chart of the former embeds into some chart of the

latter. Two orbifold charts are equivalent if they admit a common refinement.

With this we can give the definition of (effective) orbifold.

Definition 2.1.2. An (effective) orbifold is a Hausdorff and second countable topological space endowed

with an equivalence class of orbifold atlas. We generally denote an orbifold by X and we denote its

underlying topological space by |X |. Sometimes we will abuse notation and write x ∈ X meaning that

x ∈ |X |.

The singularities of an orbifold are associated to isotropy of the local group actions (recall that the

quotient of a manifold by a free action of a finite group is smooth). So, given x ∈ X and an orbifold

chart (Ũ , G, φ) around x we let Gx = {g ∈ G : gx̃ = x̃} where x̃ ∈ Ũ is some lift of x. It can be shown

that, up to conjugacy, this does not depend on the chart we choose. The singular set of X is the set

{x ∈ X : Gx 6= 1}.

2.1.2 Examples

Let’s now discuss some examples of orbifolds. The most basic way in which we can get an orbifold is by

taking the quotient of a smooth manifold by the action of a finite group. Then it’s clear that an usual

smooth atlas for the original manifold gives an orbifold atlas on the quotient. These are the examples

we’re mainly interested in.

Definition 2.1.3. Let X be a manifold and G be a finite group acting on X. Then we denote by

X = [X/G] the orbifold with underlying topological space X/G and orbifold atlas induced by a smooth

atlas of X. We call such orbifolds global quotient orbifolds.

More generally, suppose G is a compact Lie group acting on X; we say that the action of G on X is

almost free if the isotropy groups Gx are finite for every x ∈ X. Then we can give an orbifold structure

to the quotient X/G; this is true by the slice theorem, which roughly speaking says that near x ∈ X

the quotient X/G looks like (G× TxS) /Gx where TxS = TxX/Tx(G · x). We still denote by [X/G] the

resulting orbifold. This is the most natural way to describe orbifolds, and indeed every orbifold is of this

form.

Theorem 2.1.4. Every orbifold can be obtained as the quotient [X/G] of a smooth manifold X by a

compact Lie group G acting on X almost freely.

Proof. See [ALR07, Corollary 1.24].
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We now give some very concrete examples of orbifolds. This is mainly intended to show the richness

of the world of orbifolds and to mention a few places where they appear.

Example 2.1.5. Let T4 = R4/Z4 be the four dimensional torus and consider the involution τ : T4 → T4

given by

τ(x1, x2, x3, x4) = (−x1,−x2,−x3,−x4).

Then 〈τ〉 ∼= Z/2 acts on T4 and the resulting quotient T4/(Z/2) is called the Kummer surface. This

orbifold has 16 singular points, of the form (ε1, ε2, ε3, ε4) with εj ∈ {0, 1/2}.

Example 2.1.6. Let X be a smooth manifold. The symmetric product of X is Xn/Sn where Sn acts on

Xn by permuting the coordinates. This space is the configuration space of n undistinguishable points in

X. Singularities come from elements of Xn having some coordinates repeated.

Example 2.1.7. The moduli spacesMg,n and their Deligne-Mumford compactificationMg,n, for 2g−2+

n > 0, have an orbifold structure. The simplest interesting example isM1,1, which is the moduli space of

elliptic curves, that is, holomorphic structures on the torus. An elliptic curve takes the form C/(Z+ τZ)

for some τ ∈ H = {τ ∈ C : Im(τ) > 0} and the elliptic curves corresponding to τ, τ ′ ∈ H are isomorphic

if and only if there is [
a b

c d

]
∈ SL(2;Z) such that τ ′ =

aτ + b

cτ + d
.

This action is not effective as −I acts trivially, so we can replace SL(2;Z) by PSL(2;Z) = SL(2;Z)/〈−I〉
to get an effective orbifld H/PSL(2;Z). There are two singular points: i with isotropy group Z/2 and

e
2πi
3 with isotropy group Z/3.

Example 2.1.8. Let a1, . . . , an ∈ Z be coprime integers and consider the action of S1 on

S2n−1 =

(z1, . . . , zn) ∈ Cn :

n∑
j=1

|zj |2 = 1


given by

e2πit · (z1, . . . , zn) =
(
e2πia1tz1, . . . , e

2πiantzn
)
.

This action is almost free and the resulting quotient is an orbifold, called a weighted projective space and

denoted CPn(a1, . . . , an). For example at (1, 0, . . . , 0) the isotropy group of the action is Z/a1. It can be

shown that weighted projective spaces are not global quotients.

Example 2.1.9. Let

Y =
{

[z0 : . . . : z4] : z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + φz0z1z2z3z4

}
⊆ CP 4

be a quintic hypersurface in CP 4 with φ ∈ C a generic constant. Let ζ = e
2πi
5 and consider automorphisms

e1, e2, e3 : Y → Y given by

e1(z0, z1, z2, z3, z4) = (z0, ζz1, z2, z3, ζ
−1z4)

e2(z0, z1, z2, z3, z4) = (z0, z1, ζz2, z3, ζ
−1z4)

e3(z0, z1, z2, z3, z4) = (z0, z1, z2, ζz3, ζ
−1z4).

Then e1, e2, e3 generate a group isomorphic to (Z/5)3 acting on Y . The quotient orbifold is called the

mirror quintic and it really is the mirror of a quintic (see [LS14]).

Example 2.1.10. A big family of orbifolds is given by toric varieties. Toric orbifolds are classified by

simplicial fans (see [CLS11, Theorem 3.1.19]). If one wants to consider toric orbifolds with a symplectic

structure, a classification in terms of certain labelled polytopes is given in [LT97].
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2.1.3 Orbifolds as Lie groupoids

A more conceptual way of thinking of orbifolds is in terms of (proper étale) Lie groupoids. This approach

was pioneered in [MP97] and it has some advantages: it allows us to deal with non-effective orbifolds, it

makes some concepts associated to orbifolds much more natural looking, such as the orbifold classifying

space or orbifold morphisms, and it avoids the local treatment of orbifolds. This also makes the definition

of orbifold more related to the definition of stacks, its algebraic counterpart.

Recall that a Lie groupoid G consists of a manifold of objects G0 and a manifold of arrows G1 with the

following structure maps: the target and source maps s, t : G1 → G0, unit map u : G0 → G1, inverse map

i : G1 → G1 and composition map m : G1 ×s t G1 → G1. All these maps are required to be smooth and

to obey the “obvious” properties: composition has to be associative and has to interact in the expected

way with the unit and inverse maps. Moreover we require s, t to be submersions – this is needed so that

G1 ×s t G1 is a manifold. We sometimes write g : x→ y meaning that g ∈ G1 and s(g) = x, t(g) = y.

Definition 2.1.11. A Lie groupoid G is said to be proper if the map (s, t) : G1 → G0 ×G0 is proper.

The Lie groupoid G is said to be étale if s and t are local diffeomorphisms; in this case we can define

the dimension of G to be dimG = dimG0 = dimG1.

An orbifold groupoid is an étale and proper Lie groupoid. Associated to it we have an underlying

topological space: its orbit space |G| = G0/∼ where ∼ is the equivalence relation defined by x ∼ y if and

only if there is g ∈ G1 such that x = s(g) and y = t(g).

Note that in an étale proper Lie groupoid the isotropy groups Gx = s−1(x) ∩ t−1(x) (that is, the

arrows from an object x ∈ G0 to itself) are finite since they are discrete and compact because G is étale

and proper, respectively.

Before we proceed, let’s sketch how this is related to the previous definition of orbifold in terms of

orbifold atlases. First, global quotients [X/G] can be represented by a Lie groupoid G = GnX with

G0 = X , G1 = G×X , s(g, x) = x and t(g, x) = g · x.

Its orbit space |G| is clearly X/G. In general, if we have an orbifold atlas {(Ũα, Gα, φα)} we can construct

an orbifold groupoid by gluing Gα n Ũα is a way along the lines of [ALR07, Example 1.33].

Conversely, given an orbifold groupoid we can construct an atlas as follows: given x ∈ G0 the isotropy

group Gx acts on a neighborhood Ũx of x, as we will now explain. Given g ∈ Gx let σ : Ũx → Vg be a

local inverse to s such that σ(x) = g where x ∈ Ũx ⊆ G0 and g ∈ Vg ⊆ G1 are open neighbourhoods;

also, assume that t maps Vg to Ũx. Then we get a map g = t ◦ σ : Ũx → Ũx that is the action of g on

Ũx. With this we construct an orbifold atlas {(Ũx, Gx, φx)}x∈G0
where φx : Ũx ↪→ G0 → |G|. We’ll use

repeatedly this idea that an arrow g : x → y extends to a diffeomorphism g : Ũx → Ũy from an open

neighbourhood of x to an open neighbourhood of y mapping x to y.

Of course different orbifold groupoids may lead to the same orbifold, just in the same way as different

atlases may be equivalent (if they admit a common refinement). For groupoids, this notion is captured

in the definition of Morita equivalence.

Definition 2.1.12. An equivalence of Lie groupoids is a homomorphism φ : H → G such that the map

tπ1 : G1 ×s φ H0 → G0

sending a pair (g, y) ∈ G1 ×H0 such that s(g) = φ(y) to t(g) is a surjective submersion and the diagram
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H1 G1

H0 ×H0 G1 ×G1

φ

(s,t) (s,t)

φ×φ

is a fibered product in the category of manifolds.

A Morita equivalence of orbifold groupoids H and G is a diagram of the form

H ←− K −→ G

where both morphisms are equivalences of Lie groupoids.

The first condition implies that an equivalence φ is an essentially surjective functor, that is, every

object in G is isomorphic to some object in the image of φ. The second condition implies that φ is full

and faithful, that is, the map φ : G1(x, y) → H1(φ(x), φ(y)) is a bijection for any x, y ∈ G0. Indeed

this is what one gets by asking that tπ1 is surjective and and that the diagram is a fibered product

in the category of sets, respectively. So this strange looking definition is just an enhancement of usual

equivalence of categories to this smooth setting. It should be noted that if φ : H → G is an equivalence

then the induced continuous map on the orbit spaces |φ| : |H| → |G| is a homeomorphism.

Informally, one can think of an orbifold groupoid as extra structure on the underlying topological

space in analogy to an atlas being extra structure on a manifold/orbifold. In this analogy, equivalence

of groupoids can be thought as a refinement of atlases, and thus Morita equivalence is analogous to the

existence of a common refinement.

Definition 2.1.13. An orbifold is a Morita equivalence class of orbifold groupoids. If G is some groupoid

in this class, we say that it presents the corresponding orbifold.

Remark 2.1.14. Some care is in order with this definition since the notion of étale groupoid is not stable

under Morita equivalence. For instance if G is a compact non-finite Lie group acting almost freely on X

then G = GnX is not étale but it’s Morita equivalent to an étale groupoid. Even if G is not étale but is

Morita equivalent to an orbifold groupoid we will say that it presents the corresponding orbifold.

2.2 Orbifold morphisms, orbibundles and the orbifold loop space

Giving a correct definition of morphisms between orbifolds that has good properties is something trickier

than it might seem. Unfortunately, with the “straightforward” definition of a smooth map between

orbifolds as a map between the underlying topological spaces that lifts in an appropriate manner to

charts, which was originally given by Satake [Sat56], the pullback of orbibundles may be not an orbibundle.

Nevertheless we state this definition here.

Definition 2.2.1. Let X , Y be effective orbifolds with underlyng topological spaces X,Y . A smooth

morphism is a continuous map f : X → Y together with (an equivalence class of) lifts f̃α : Ũα →
Ṽα, where {(Ũα, Gα, φα)} and {(Ṽα, Hα, ψα)} are orbifold atlases of X and Y, respectively, such that

f(φ(Ũα)) ⊆ ψ(Ṽα) and ψα ◦ f̃α = f|φ(Ũα) ◦ φα.

As we mentioned, this definition is not quite good enough. Two better suited versions are the notions

of good map by Chen-Ruan [CR04] and of strong map by Moerdijk-Pronk [MP97], which turn out to be

equivalent. We give the latter, which is formulated in the groupoid language (unlike good maps, which

are defined using charts). We give the definition using a categorical language.
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Definition 2.2.2. Let OGpoid be the category of orbifold groupoids (which is a full subcategory of Lie

groupoids) and let OGpoid′ be the category obtained by identifying two morphisms in OGpoid if they

are related by a natural transformation. Let Σ ⊆ Mor(OGpoid′) be the collection of equivalences of Lie

groupoids. Then the orbifold category Orb is defined as the localization

Orb = OGpoid′[Σ−1].

An orbifold morphism is a morphism in this category. Every such morphism can be represented (in a

non-unique way) by a diagram

G ε←− K φ−→ H

where ε is an equivalence of Lie groupoids and φ is a homomorphism of Lie groupoids.

It can be shown that orbifold morphisms are smooth orbifold maps in the “local lifts” sense. This

definition is definitely not very practical: to understant orbifold morphisms from G → H we have to

consider every equivalence ε : K → G (in our analogy, we have to consider every possible refinement of a

cover). It’s impossible to compute anything (except very simple examples) directly. To understand the

loop space of an orbifold, which will play a role later, we need a brief introduction to orbibundles.

2.2.1 Orbibundles

The notion of orbibundle generalizes vector bundles for smooth manifolds.

Definition 2.2.3. Let G be an orbifold groupoid. A vector bundle over an orbifold presented by G consists

in a vector bundle π : E → G0 together with a linear action of G, that is, for every g : x → y we get a

linear map between the fibers Ex → Ey.

The total space of the vector bundle is the orbifold presented by the groupoid E = G n E defined by

E0 = E, E1 = G1 ×s p E, s(g, e) = e and t(g, e) = g(e).

We have a natural projection map π : E → G. This map is said to be a (vector) orbibundle.

Following a similar idea define principal orbibundles. We note that an orbibundle is not a vector

bundle. Indeed the fiber at x ∈ G0 is Ex/Gx, which is a quotient of a vector space by a finite group. If

Gx acts trivially on Ex for every x ∈ G0 we call E a honest bundle.

Note that orbibundles over a global quotient orbifold [X/G] are precisely the same as G-equivariant

vector bundles over X, which we discuss in appendix B.1.

Example 2.2.4. The tangent space TG to an orbifold can be defined as an orbibundle. Take E = TG0 and

consider the following G-action: for each g : x → y we extend to a diffeomorphism g : Ux → Uy from a

neighbourhood of x to a neighbourhood of y. Taking the differential we get a map (dg)x : TxG0 → TyG0.

Orbibundles can be pulled-back by orbifold morphisms. Indeed if ε : K → G is an equivalence, then

there is a correspondence between orbibundles over K and orbibundles over G, which we denote by ε∗.

Thus, the pull-back of a vector bundle E over H by an orbifold morphism represented by G ε←− K φ−→ H
is defined to be ε∗φ

∗E . The same applies for principal bundles.
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2.2.2 Orbifold loop space

We can describe the loop space of a global quotient, that is, classify orbifold morphisms S1 → X where

X = [X/G]. This is done in [ALR07, Example 2.48] and here we sketh the idea. The projection map

X → X is a principal G-orbibundle over X ; thus, if we have an orbifold morphism S1 → X we can

pull-back via this morphism and we get a G-bundle π : E → S1 with a G-equivariant map ϕ : E → X.

Conversely, given the bundle E and the map ϕ, the quotient by G induces the map S1 → X . So there

is a correspondence between loops in X and such data: this is made precise in [ALR07, Corollary 2.46].

Since E → S1 is a (possibly disconnected) covering space we can lift the loop id : S1 → S1 to

a path σ : [0, 1] → E such that σ(1) = gσ(0) for some g ∈ G. Composing with ϕ we get a path

γ = ϕ ◦ σ : [0, 1] → X such that γ(1) = gγ(0). If we choose a different lift σ′ = hσ for some h ∈ G we

would get the pair (hγ, hgh−1) instead of (γ, g), so these pairs should correspond to the same loop.

[0, 1] E X

S1 X

γ

σ

π

ϕ

Proposition 2.2.5. The orbifold loop space ΩX of a global quotient orbifold X = [X/G] is the (infinite

dimensional) orbifold presented by the orbifold groupoid

ΩX = Gn {(γ, g) ∈ C∞([0, 1], X)×G : γ(1) = gγ(0)}

where G acts by h · (γ, g) = (hγ, hgh−1).

A particular case of this is when we take X = pt to be a point. Then the loop space of [pt/G] is the

set of conjugacy classes of G. This shows a very important phenomenon: we might have different orbifold

morphisms with the same topological realization. In other words, the forgetful functor Orb → Top

sending an orbifold to its underlying topological space is not faithful.

We now take the opportunity to introduce the inertia orbifold. This is the set of orbifold loops

|γ| : S1 → G such that the topological realization S1 → |G| is constant. If |γ| is constant equal to x ∈ |G|
then γ factors through S1 → [pt/Gx] ↪→ G. Thus the set of constant loops is

|ΛG| = {(x, (g)Gx) : x ∈ |G| and g ∈ Gx}

where (g)Gx denotes the conjugacy class of g in Gx. This set can be given an orbifold structure as follows:

Definition 2.2.6. Let G be an orbifold groupoid. Consider the set of arrows

SG = {g ∈ G1 : s(g) = t(g)}

and the obvious G-action on SG. Then the inertia orbifold ΛG of G is the orbifold presented by the orbifold

groupoid

G n SG .

Once again, Morita equivalence of groupoids induces a Morita equivalence of the inertia groupoids

G n SG , so the inertia orbifold is well defined.

A particular case is that of global quotients, that is, G = GnX (or more generally when G is a Lie

group acting almost freely on X). In this case, the inertia orbifold can be described as follows:
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Proposition 2.2.7. Let G = G nX where G is a compact Lie group acting almost freely on X. Then

ΛG is presented by the groupoid ⊔
(g)

C(g) nXg

where C(g) = {h ∈ G : hg = gh} is the centralizer of g, Xg is the fixed point set of g and the disjoint

union runs over the conjugacy classes of G.

Proof. In this case SG = {(g, x) : gx = x} =
⊔
g∈GX

g, so

G n SG = Gn

⊔
g∈G

Xg


where h ∈ G acts on

⊔
g∈GX

g by sending x ∈ Xg to hx ∈ Xhgh−1

. The groupoid
⊔

(g) C(g)nXg embeds

in an obvious way in GnSG and this embedding is an equivalence. Note that there are no arrows between

Xg and Xg′ if g, g′ are in different conjugacy classes, that the arrows from Xg to Xg are of the form

(x, g) for some x ∈ Xg and g ∈ C(g), and that if x ∈ Xg′ and g = hg′h−1 then x is isomorphic (as an

object in the category G n SG) to hx ∈ Xg.

2.3 Cohomology of orbifolds

We will now give an appropriate definition of cohomology for orbifolds. Unless we take coefficients in

Q or R we don’t expect the cohomology of the orbifold to be simply the cohomology of the underlying

topological space |G| as this doesn’t retain any information about the orbifold structure. For instance

when G = GnX it’s reasonable to expect that H∗(G) = H∗G(X) is equivariant cohomology (see appendix

B). This is done by constructing a “homotopically correct” version of the underlying topological space.

Definition 2.3.1. Let G be an orbifold groupoid (or, more generally, a category). Let

Gn = {(g1, . . . , gn) ∈ Gn1 : s(gi) = t(gi+1) for i = 1, . . . n− 1}

denote the set of n composable arrows. These sets form a simplicial set, called the nerve of G, with face

operators di : Gn → Gn−1 given by

di(g1, . . . , gn) =


(g2, . . . , gn) if i = 1

(g1, . . . , gn−1) if i = n

(g1, . . . , gigi+1 . . . , gn) otherwise

.

The classifying space of G is the the geometric realization of its nerve

BG =

⊔
n≥0

Gn ×∆n

/(di(g), x) ∼ (g, δi(x))

where ∆n is the n-simplex and δi : ∆n−1 → ∆n is the inclusion of the i-th facet.

When G is the groupoid with one object and morphism group G, that is, G = G n pt, this recovers

the usual construction of the classifying space of G (see appendix B). When G = G nX the classifying

space of G is the Borel construction

BG = EG×G X.
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It can be shown that Morita equivalent groupoids have classifying spaces which are weakly homotopy

equivalent. Thus, any homotopy invariant of BG gives rise to an invariant of the orbifold represented by

G. In particular we can define cohomology.

Definition 2.3.2. Let G be a groupoid presenting an orbifold. We define its cohomology with coefficients

in any ring R to be the singular cohomology of BG:

H∗(G;R) = H∗(BG;R).

In particular if G = GnX then

H∗(GnX) = H∗(X ×G EG) = H∗G(X).

Proposition 2.3.3. With rational coefficients the cohomology of an orbifold is the singular cohomology

of its underlying topological space:

H∗(G;Q) ∼= H∗(|G|;Q)

Proof. There is a canonical map BG → |G| with fiber BGx at x ∈ |G|. Since Gx are finite, the fibers

BGx have trivial rational cohomology. By the Vietoris-Begle theorem the induced homomorphism in

(rational) cohomology is an isomorphism.

Note that in particular this implies proposition B.0.4. Rational cohomology of orbifolds satisfies

Poincaré duality.

Proposition 2.3.4 (Poincaré duality). Let G present a compact and oriented orbifold of dimension n.

Then

dimH∗(G,Q) = dimHn−∗(G,Q).

Proof. It’s enough to show that X = |G| is a Q-homology manifold, i.e. to prove that for every x ∈ X
there is an open neighborhood U ⊆ X of x such that

H∗(U,U \ {x};Q) ∼=

Q if ∗ = n

0 otherwise.

But by choosing a coordinate chart around x we have

H∗(U,U \ {x};Q) ∼= H∗(Rn/G,Rn/G \ {0};Q) ∼= H∗G(Rn,Rn \ {0};Q).

Now

H∗(Rn,Rn \ {0};Q) ∼=

Q if ∗ = n

0 otherwise.

and since G is oriented the action of G on Hn(Rn,Rn \ {0};Q) is trivial, so the result follows.

2.3.1 Forms and de Rham cohomology

Cohomology with real coefficients can also be obtained as a de Rham cohomology. We take this as an

excuse to introduce forms on orbifolds.
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Definition 2.3.5. Given an orbifold groupoid G let

Ωp(G) = {ω ∈ Ωp(G0) : s∗ω = t∗ω}

denote the set of p-forms of G. The usual exterior derivative on G0 defines a differential d : Ωp(G) →
Ωp+1(G). We call (Ω∗(G), d) the de Rham complex of G and we denote by H∗dR(G) its cohomology, called

the de Rham cohomology of G.

It can be shown that the set of forms Ωp(G) does not change with Morita equivalent groupoids, so this

gives a good definition of forms on an orbifold. When our orbifold is a global quotient, G = GnX, forms

on G are the same as G-invariant forms on X. Indeed if ω ∈ Ωp(G0) = Ωp(X) then (after identifying

T(g,x)G×X ∼= TxX)

(s∗ω)(g,x) = ωx and (t∗ω)(g,x) = (g∗ω)x.

Theorem 2.3.6. Let G be an orbifold groupoid. Then

H∗dR(G) ∼= H∗(|G|;R) ∼= H∗(G;R).

Proof. The first isomorphism is [Sat56, Theorem 1] and the second is proposition 2.3.3.

With a notion of forms, we can finally define a symplectic obifold.

Definition 2.3.7. A symplectic orbifold is an orbifold, presented by some groupoid G, and a 2-form

ω ∈ Ω2(G) such that ωx ∈ Λ2T ∗xG0 is non-degenerate for every x ∈ G0 and dω = 0.

2.4 Morse homology of orbifolds

Recently, in [CH14], an orbifold Morse complex was introduced; earlier works in that direction were [LT97]

and [Hep09]. This will be very important for us for two reasons. First, because some of the ideas can

be adapted to construct an orbifold Floer complex, which we’ll do in detail in section 4.4. And second

because we’ll use the isomorphism between the homology of this complex and the singular homology of

the orbifold in the proof of 6.0.1. We will be quite brief in this exposition and refer the reader to [CH14].

We will also only consider the case of global quotients, as this is the case that will be important for us.

Let X = [X/G] be a global quotient orbifold where X is a compact oriented manifold and G is a

finite group acting on X preserving its orientation. Consider a fixed G-invariant Riemannian metric g.

Let H : X → R be a G-invariant Morse function on X. This condition is generic amongst G-invariant

functions (see [Was69, Lemma 4.8]). We denote by Critk(H) the set of critical points of H of index k

and Crit(H) =
⋃
k≥0 Critk(H). Recall that for each critical point x ∈ Crit(H) we have a stable manifold

W s
H(x) = {y ∈ X : lim

t→+∞
ϕt(y) = x}

and an unstable manifold

Wu
H(x) = {y ∈ X : lim

t→−∞
ϕt(y) = x}

where ϕt denotes the flow at time t of ∇H (note that the gradient is computed from the Riemannian

metric g). The index of x is the dimension of the stable manifold. A striking fact is that the correct

Morse complex is not generated by all the critical points, but only by the so called orientable critical

points.
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Definition 2.4.1. Let x ∈ Crit(H). We say that x is an orientable critical point if the Gx action on the

unstable manifold Wu
H(x) is orientation preserving. We denote by Crit(H)

+
the set of orientable critical

points and by Crit(H)
−

the set of non-orientable critical points.

Let now R be a ring. The usual Morse complex of H (computing the homology of X, not X ) is the

R-module generated by the critical points graded by their index

CMk(X,H;R) =
⊕

x∈Critk(H)

R · x.

For coherence with notation we’ll use later we write C̃Mk(X , H;R) instead of CMk(X,H;R). This

complex decomposes in a positive and negative part, that is,

C̃Mk(X , H;R) ∼= C̃Mk(X , H;R)+ ⊕ C̃Mk(X , H;R)−

where

C̃Mk(X , H;R)± =
⊕

x∈Critk(H)±

R · x.

Since H is G-invariant, if x is a critical point then so is gx for any g ∈ G; hence there is an action

of G on Crit(H) and this action extends R-linearly to C̃Mk(X , H;R). It’s easy to see that this action

sends (non-)orientable critical points to (non-)orientable critical points. Finally the Morse complex of X
is defined to be the G-invariant part

CMk(X , H;R) =
(
C̃Mk(X , H;R)+

)G
. (2.1)

The differential on C̃M∗(X , H;R) is defined by counting gradient flow trajectories between critical

points. To do so we define the moduli space

M̂
(
x−, x+;H, g

)
=

{
u ∈ C∞(R, X) : u̇(s) = ∇H(u(s)) and lim

s→±∞
u(s) = x±

}
. (2.2)

This moduli space admits an R-action by translation, that is, (σ · u)(s) = u(s+ σ) for σ ∈ R; we denote

by M (x−, x+;H, g) the quotient M̂ (x−, x+;H, g) /R. Note that the map u 7→ u(0) ∈ X identifies the

moduli space M̂(x−, x+) with

Wu
H(x−) ∩W s

H(x+).

We assume that the pair (H, g) is Morse-Smale, meaning that all the intersections Wu
H(x−) ∩W s

H(x+)

for x−, x+ ∈ Crit(H) are transverse. Then M̂(x−, x+) is a manifold of dimension |x+| − |x−| (where |x|
denotes the index of a critical point x). If |x+| − |x−| = 1 then M(x−, x+) is a finite set. Finally, the

differential ∂ = ∂H,g : C̃Mk(X , H;R)→ C̃Mk−1(X , H;R) is defined on generators x+ ∈ Critk(H) by

∂x+ =
∑

x−∈Critk−1(H)

 ∑
u∈M(x−,x+)

ν(u)

x− (2.3)

where ν(u) ∈ {+1,−1} are determined as we will now explain: for each x ∈ Crit(H) we fix an orientation

ofWu
f (x). SinceX is oriented this also determines an orientation ofW s

f (x), and this induces an orientation

on M̂(x−, x+) = Wu
f (x−) ∩ W s

f (x+). Each u ∈ M(x−, x+) corresponds to a connected component

u(R) ⊆ M̂(x−, x+). If the orientation given in this way is the one induced by the standard orientation

of R via u we set ν(u) = 1; otherwise ν(u) = −1.
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It’s a fact that the differential preserves CM(X , H;R) ⊆ C̃M(X , H;R). This is proved in [CH14,

Lemmas 2.6 and 2.7]. Thus (CM∗(X , H; J), ∂) is a complex and we can define its homology

HMk(X , H, g;R) =
ker (∂ : CMk → CMk−1)

im (∂ : CMk+1 → CMk)
.

Remark 2.4.2. Our conventions differ from the ones in [CH14] in two aspects: our moduli space consists

of gradient flow trajectories instead of negative gradient flow trajectories, and our differential is from x+

to x−. These differences cancel out.

Remark 2.4.3. There are at least two good reasons for why we should only consider the complex generated

by orientable orbits. First, because otherwise the differential wouldn’t preserve C̃M(X )G; we will explain

this better in section 4.1.1 in the context of Floer homology. Second, the topology of the sub-level sets

doesn’t change when we cross a non-orientable critical point; this was observed in [LT97].

The Morse homology of an orbifold is isomorphic to its singular homology as long as we use coefficients

in Q (or other characteristic 0 field):

Theorem 2.4.4. Suppose that R is a field of characteristic 0. Then the homology of the Morse complex

of X is isomorphic to the singular homology of X with coefficients in R

HMk(X , H, g;R) ∼= Hk(X ;R).

Proof. See [CH14, Theorem 2.9].

Finally, we would like to note that this construction is naturally homological. Not only because our

the differential we defined has degree −1, but also because in theorem 2.4.4 the isomorphism is with

singular homology; of course with coefficients in a field of characteristic 0 Hk(X ;R) ∼= Hk(X ;R), but if

X were smooth the isomorphism with singular homology would still hold with coefficients in R = Z. We

could also define Morse cohomology by defining the differential using flow trajectories of −∇H instead of

∇H. If x ∈ Critk(H) then x ∈ Critn−k(−H), so we have a natural Poincaré duality in Morse homology:

HMk(X , H, g;R) ∼= HMn−k(X ,−H, g;R).

Although with coefficients in a field of characteristic 0 homology and cohomology are the same, we will

try to always use the natural version; for instance the statement of theorem 6.0.1 follows this philosophy.

2.5 Chen-Ruan cohomology

Chen and Ruan introduced in [CR04] a new cohomology theory for orbifolds, now called Chen-Ruan coho-

mology. This is fundamentally different from the topological cohomology we described earlier: it encodes

a lot of information about the singularities of the orbifold. Chen and Ruan were inspired by physics and

by models for string theory which were being constructed over orbifolds, namely in [DHVW85]. Their

cohomology theory was seen as the classical part of a quantum cohomology for orbifolds, constructed

using the space of morphisms from (orbifold) Riemann surfaces to our orbifold. Chen-Ruan cohomology

has been playing a very important role in the development of mathematics (and physics) in the last 20

years; for instance, open-closed mirror symmetry predicts that the quantum cohomology of an orbifold

can be “seen” from its mirror.
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Although the product in Chen-Ruan cohomology is reasonably complicated, involving a Gromov-

Witten theory for orbifolds, the definition of Chen-Ruan cohomology as a graded vector space is actually

quite elementary, and this is only what we’ll need. Indeed, if we ignore the grading, Chen-Ruan coho-

mology of an orbifold is simply the singular cohomology of its inertia orbifold – the space of topologically

constant morphisms S1 → X , see 2.2.6. In a philosophical way, we’re replacing the cohomology of the

space of points (particles) by the cohomology of the space of constant loops (strings).

What happens to the grading is more interesting. We need to shift the usual cohomology grading in

each of the connected components of ΛX , called the twisted sectors of X .

2.5.1 Twisted sectors

Let us parametrize the twisted sectors, that is, the connected components of ΛG. Recall that

|ΛG| = {(x, (g)Gx) : x ∈ |G| and g ∈ Gx}

where (g)Gx is the conjugacy class of g in Gx. We define a relation ≈ in ΛG as follows: given an orbifold

chart (Ũ , G, φ) and x, y ∈ φ(Ũ) = U consider lifts of x, y to x̃, ỹ ∈ U . Then Gx and Gy are naturally

identified with the isotropy subgroups Gx̃, Gỹ ⊆ G. Then ≈ is the equivalence relation generated by

(x, (g)Gx) ≈
(
y, (g′)Gy

)
if g and g′ are conjugate in G.

Given (x, (g)Gx) ∈ |ΛG| we denote by (g) its equivalence class with respect to ≈ and we write T for the

set of equivalence classes.

Definition 2.5.1. Given (g) ∈ T we let

G(g) = G n {g′ ∈ SG : (x, (g′)Gx) ∈ (g)}.

The orbifolds G(g), for each (g) ∈ T , g 6= 1, are called the twisted sectors of G and G(1) is called the

untwisted sector.

It can easily be seen that the underlying space |G(g)| of the twisted sectors, together with the untwisted

sector, form the connected components of |ΛG|. Moreover it’s also clear that the untwisted sector G(1) is

naturally identified with the original groupoid G. The twisted sectors appear from isotropy which occurs

in the presence of singularities, so the twisted sectors arise from the singular set.

An enlightening example is that of global quotients or more generally of quotients by Lie groups, that

is, G = G nX where G is a finite (or compact Lie) group acting (almost freely) on X. In this case we

saw in proposition 2.2.7 that the inertia orbifold is presented by the groupoid⊔
(g)

C(g) nXg.

If each fixed point set Xg is connected, then the twisted sectors are precisely G(g) = C(g) nXg and T is

the set of conjugacy classes (g) of G for which Xg 6= ∅. If the fixed point sets aren’t connected there is a

twisted sector for each connected component.

2.5.2 Degree shifting numbers

We now define the index shifting numbers of Chen-Ruan cohomology. These are also known by the names

of age-grading and fermionic degree shifting numbers. From now on assume that G admits an almost
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complex structure; similarly to how we defined forms on G, an almost complex structure on G is an almost

complex structure J on G0 such that s∗J = t∗J .

Let g ∈ SG be an arrow with s(g) = t(g) = x. Choose an orbifold chart (Ũ , Gx, φ) with Ũ embedded

in G0. Then g ∈ Gx is a map g : Ũ → Ũ . Its differential at x is a map (dg)x : TxG0 → TxG0. The

almost complex structure Jx endows TxG0 with the structure of a complex vector space, hence identifying

TxG0 with Cn where 2n = dimG; the condition that s∗J = t∗J implies that (dg)x preserves the almost

complex structure Jx on TxG0, so it can be regarded as a linear transformation of complex vector spaces

or, equivalently, a matrix in GL(n,C).

Since g has finite order, say m ∈ Z≥1, the eigenvalues of (dg)x (always regarded as a complex linear

transformation) are of the form e2πiλ1 , . . . e2πiλn where λj ∈ Q are such that mλj ∈ Z. We then define a

map ι : SG → Q by mapping g ∈ SG to

ι(g) =

n∑
j=1

{λj} ∈ Q (2.4)

where {λ} denotes fractional part of λ. Since eigenvalues don’t change under conjugation, ι is invariant

with respect to the G-action on SG and thus induces a map (still called ι) ι : |ΛG| → Q. By continuity of

eigenvalues, the map ι is continuous and since it takes values in Q is must be locally constant. Hence, ι is

constant in each of the (un)twisted sectors, so we denote by ι(g) the value that ι takes in the (un)twisted

sector |G(g)|. In particular it’s clear that ι(1) = 0. We can define Chen-Ruan cohomology.

Definition 2.5.2. Let R be a field of characteristic 0. We define the Chen-Ruan cohomology as the

Q-graded vector space

H∗CR(G;R) =
⊕

(g)∈T

H∗−2ι(g)
(
G(g);R

)
.

A few notes about the definition. First, there is no reason at this point to take coefficients in a field of

characteristic 0 and not in a general ring, but that is necessary if we want to define a product structure.

Also, by taking coefficients in a field of characteristic 0 we can use propositions 2.3.6 and 2.4.4 to interpret

the cohomology H∗(G(g);R) either as cohomology of BG(g), cohomology of |G(g)|, de Rham cohomology

or Morse (co)homology.

Note also that the summand corresponding to (1) ∈ T is just the usual cohomology of the untwisted

sector G(1) = G. So in a way Chen-Ruan cohomology adds to the usual cohomology contributions from

the singularities. Of course when the orbifold is smooth Chen-Ruan cohomology reduces to singular

cohomology.

The grading for sure looks mysterious, especially the fact that it can be rational. The case in which

this degree shifting numbers are integers forms an important class of orbifolds.

Definition 2.5.3. An almost complex orbifold of dimension 2n presented by G is Gorenstein if one of

the following 3 equivalent conditions holds:

1. For every (g) ∈ T the degree shifting number ι(g) is an integer.

2. For each x ∈ G0 and g ∈ Gx the complex linear transformation (dg)x has determinant 1.

3. The determinant bundle ΛnCTG is a honest bundle.

But even in this case the meaning of the degree shifting numbers is not clear at all. We can give two

reasons that justify their presence. The first is that the product structure that can be defined on H∗CR
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respects the grading constructed this way. It seems that this was the original motivation to define the

grading in this way.

Theorem 2.5.4. Let G a groupoid presenting an almost complex orbifold. Then the Q-graded vector

space H∗CR(G) can be given an associative and unital algebra structure, with a product that respects the

grading. Moreover, the restriction of this product to the summand H∗(G) is the usual cup product.

This algebra structure was constructed by Chen and Ruan in [CR04]. It is constructed as the classical

limit of a “natural” generalization of the quantum cup product to orbifolds. As in quantum cohomology,

this product is defined using a 3-point function which is essentially an orbifold Gromov-Witten invariant

– the theory of these was developed in [CR02]. Formally, this 3-point function is defined by integrating

over a virtual fundamental class of the moduli spaceM3(G) of topologically constant maps S2 → G with

3 possibly singular marked points on S2. The numbers ι(g) appear in a formula for the virtual dimension

of the connected components of the moduli space M3(G). Details for this very interesting topic can be

found in [CR04,CR02,ALR07].

Another very good reason for this grading is that it makes the crepant resolution conjecture true (at

the level of graded vector spaces, at least). We will discuss this briefly later, see theorem 2.5.7. Finally,

another nice thing (and more down to earth) about this grading is that it gives a Poincaré duality for

Chen-Ruan cohomology.

Proposition 2.5.5. Let G present a compact almost complex orbifold of dimension 2n. Then we have

dimH∗CR(G) = dimH2n−∗
CR (G).

Proof. Let I : |ΛG| → |ΛG| be the involution sending

(x, (g)Gx) 7→
(
x, (g−1)Gx

)
.

Restricted to G(g) it induces an isomorphism |G(g)|
∼=→ |G(g−1)|. Since

{λ}+ {−λ} =

0 if λ ∈ Z

1 otherwise

we see that

ι(g) + ι(g−1) = #{eigenvalues of (dg)x different from 1} = n− 1

2
dimG(g).

By Poincaré duality for (singular) cohomology of orbifolds (see 2.3.4) we have

dimH∗−2ι(g)(G(g)) = dimH∗−2n+dimG(g)+2ι(g−1)(G(g)) = dimH2n−∗−2ι(g−1)(G(g−1))

and summing over (g) ∈ T finishes the proof.

2.5.3 Crepant resolution conjecture

The crepant resolution conjecture is certainly one of the big attractions of Chen-Ruan cohomology.

Definition 2.5.6. Let X be a complex orbifold of dimension 2n. A resolution of X is a holomorphic

map f : Y → X from a smooth complex manifold Y to X such that the restriction f : f−1(Xreg)→ Xreg

18



is an isomorphism and f−1(Xsing) is a (necessarily codimension 1) complex sub-manifold of Y , called the

exceptional divisor. If we allow Y to also be an orbifold we say that we have a partial resolution.

A resolution is called crepant if it respects the canonical classes, that is

f∗(ΛnCTX ) ∼= ΛnCTY.

We’ll give some examples later. For a crepant resolution of X to exist, the bundle ΛnTX must be a

honest bundle (as pullbacks induce isomorphisms on the fibers), that is, X needs to be Gorenstein. When

X is Gorenstein and has dimension at most 3, X always admits a crepant resolution, and if the dimension

is at most 2 then this resolution is unique. However, in higher dimension the situation is much more

complicated: for instance an orbifold as simple as [C4/{Id,−Id}] doesn’t admit a crepant resolution.

It was expected by string theorists that the string theory of an orbifold and the string theory of

a crepant resolution should be somehow equivalent. This led to the prediction that the Chen-Ruan

cohomology of an orbifold should be isomorphic to the usual cohomology of its resolution. As graded

vector spaces, this was shown to be true by Yasuda in [Yas04] using the machinery of motivic integration

due to Kontsevich and developed by Batyrev and others.

Theorem 2.5.7. Let Y → X be a crepant resolution of a complex Gorenstein orbifold X . Then

dimH∗(Y ) = dimH∗CR(X ).

Proof. See [Yas04, Theorem 1.5].

The equivalence of the product structures is a much more subtle question, still unanswered. In

general, it’s not true that H∗(X ) is isomorphic to H∗(Y ) as graded algebras. However, in [Rua06] Ruan

formulated a precise way to add a quantum correction to the cup product on H∗(Y ); the new graded

algebra is denoted by H∗π(Y ).

Conjecture 2.5.8 (Crepant resolution conjecture). Let Y → X be a crepant resolution of a complex

Gorenstein orbifold X . Then we have a graded algebra isomorphism

H∗π(Y ) ∼= H∗CR(X ).

When Y is a hyperkähler the quantum correction vanishes and H∗π(Y ) = H∗(Y ). Even in this case

the crepant resolution conjecture isn’t known. Let’s finish this chapter with a few examples of interesting

crepant resolutions.

Example 2.5.9. The orbifold [C2/(Z/2)] admits a crepant resolution by the total space KP1 of the canon-

ical bundle OP1(2)→ P1.

Example 2.5.10. When G ⊆ SL(n,C) is a finite subgroup the orbifold Cn/G is Gorenstein. In this case the

crepant resolution conjecture (or even theorem 2.5.7) is a form of the generalized McKay correspondence.

Example 2.5.11. The Kummer surface (see example 2.1.5) admits a crepant resolution Y , known as the

K3 surface. The K3 surface and the torus T4 are the two only compact Calabi-Yau smooth surfaces. We

can use theorem 2.5.7 to compute the Betti numbers of the K3 surface to be

dimH∗(Y ) =


1 if ∗ = 0, 4

22 if ∗ = 2

0 otherwise

.
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Example 2.5.12. If X is a complex manifold of dimension at most 2 then the symmetric product Xn/Sn

(see example 2.1.6) admits a famous crepant resolution X [n] called the Hilbert scheme of points. For

example if X is C2, T4 or a K3 surface then X [n] is hyperkähler and in all these cases the crepant

resolution conjecture has been verified.
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Chapter 3

Floer homology with g-periodic

boundary conditions

When we try to define Floer homology for a global quotient [X/G] we will consider Hamiltonian 1-periodic

orbits in [X/G]. Such Hamiltonian loops will lift to Hamiltonian orbits γ : [0, 1]→ X that “close” in the

quotient, that is, γ(1) = gγ(0) for some g ∈ G (see 2.2.5). Moreover the Floer cilinders will also lift to

some maps u : [0, 1] × R → X with a boundary condition u(1, s) = gu(0, s) for s ∈ R. In this section

we consider a fixed symplectomorphism g and develop Floer homology based on Hamiltonian orbits

and Floer trajectories with such boundary conditions, which we’ll generally call g-periodic boundary

conditions. Note that when g = idX these conditions reduce to the usual 1-periodicity. This is actually a

common extension of Floer homology (see for instance [DS94] or [FHS95]) since we can always reduce the

usual Floer homology to Floer homology with g-periodic boundary conditions but H = 0 (see proposition

3.4.1).

3.1 Setup

Let (X,ω) be a compact symplectic manifold and g : X → X a symplectomorphism, that is, a diffeomor-

phism such that g∗ω = ω.

Recall that an almost complex structure J on X is a section of the endomorphism bundle End(TX)→
X such that for each x ∈ X we have J(x)2 = −idTxX . An almost complex structure is said to be

compatible with ω if

〈v, w〉 = ω(v, Jw)

defines a Riemannian metric on X.

Denote by J (X,ω) the set of time dependent almost complex structures J = (Jt)t∈R such that each

Jt is compatible with ω. Note that a time dependent almost complex structure gives a time dependent

Riemannian metric 〈v, w〉t = ω(v, Jtw). We denote

Jg(X,ω) = {J = (Jt)t∈R ∈ J (X,ω) : Jt = g∗Jt+1 for t ∈ R}.

Here the pullback of an almost complex form J by g means the usual pullback of tensors when we regard J

as a (1, 1) tensor (recall that End(TX) ∼= TX⊗T ∗X as bundles over X). This means that g∗J = g−1
∗ Jg∗
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or, more explicitly with base points,

(g∗J)(x) = (dg)−1
g(x)J(g(x))(dg)x.

Moreover we’ll consider (time dependent) Hamiltonians H : R×X → R also with a certain periodicity

condition. More precisely, we define

C∞g (R×X) = {H ∈ C∞(R×X) : Ht = Ht+1 ◦ g for t ∈ R}.

We write Ht(x) for H(t, x). A Hamiltonian H induces a Hamiltonian vector field XH
t defined by the

equation

ι(XH
t )ω = dHt.

We sometimes omit H and write simply Xt, if H is clear from the context. Note that

〈∇tHt, Y 〉t = (dHt)Y = ω(Xt, Y ) = 〈JtXt, Y 〉t

where the gradient ∇t is calculated with respect to 〈 , 〉t, thus

∇tHt = JtXt or, equivalently, Xt = −Jt∇tHt (3.1)

We let ϕHt (or simply ϕt) be the flow of XH
t , satisfying:

ϕH0 (x) = x and
dϕHt (x)

dt
= XH

t (ϕHt (x)).

Note that the condition Ht = Ht+1 ◦ g implies that XH
t = g∗X

H
t+1. We say that γ : R → X is a

Hamiltonian trajectory if γ(t) = ϕt(γ(0)) or, equivalently, if γ satisfies the ordinary differential equation

γ̇(t) = Xt(γ(t)). In this version of Floer homology with g-periodic boundary conditions we consider

Hamiltonian orbits in

Pg(H) = {γ ∈ C∞([0, 1], X) : γ̇(t) = XH
t (γ(t)) and γ(1) = g(γ(0))}.

Note that if g = idX then these are the Hamiltonian 1-periodic orbits.

Remark 3.1.1. If γ ∈ Pg(H) then we can extend γ to R by continuity by asking that γ(t+ 1) = g(γ(t)).

The condition that γ(1) = g(γ(0)) ensures that γ is continuous. Moreover this extension of γ still satisfies

Hamilton’s equation for every t ∈ R since H ∈ C∞g (R ×X), so the extension of γ is actually smooth in

R. Something similar will also happen with solutions of Floer equation; in that case we can appeal to

elliptic regularity to show that the extension is smooth.

Since Hamiltonian orbits are given by γ(t) = ϕt(x0) for some x0 ∈ X the set Pg(H) is in bijection

with points x0 ∈ X such that ϕ1(x0) = g(x0), that is, fixed points of ϕ−1
1 ◦ g; we observe that ϕ−1

1 ◦ g is

a symplectomorphism, but might not be Hamiltonian. A condition that will be crucial in defining Floer

homology is that of non-degeneracy:

Definition 3.1.2. Given a Hamiltonian H ∈ C∞g (R×X) and γ ∈ Pg(H) we say that γ is non-degenerate

if the linearized return map

d(ϕ−1
1 ◦ g)x0 : Tx0X → Tx0X

does not admit 1 as an eigenvalue, where x0 = γ(0).

We say that H satisfies the non-degeneracy condition if every γ ∈ Pg(H) is non-degenerate.
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If H satisfies the non-degeneracy condition then the fixed points of ϕ−1
1 ◦ g form a discrete set

(see [AD14, Lemma 6.5.11]), so Pg(X) is finite (because X is compact). We also note that the non-

degeneracy condition is generic (see [HS95, Theorem 3.1] for a proof when g = idX).

We now consider Floer trajectories between these Hamiltonian orbits. These are maps u : [0, 1]×R→
X that

1. Satisfy Floer equation

∂su+ Jt(u)
(
∂tu−XH

t (u)
)

= 0. (3.2)

where t, s are the [0, 1] and R variables, respectively.

2. Tend to Hamiltonian orbits, that is, the limits

γ±(t) = lim
s→±∞

u(t, s)

exist and define Hamiltonian orbits γ± ∈ Pg(H). We usually write for brevity γ±(t) = u(t,±∞).

3. For every s ∈ R we have u(1, s) = g(u(0, s)).

Remark 3.1.3. If we assume that H satisfies the non-degeneracy condition then the solutions of Floer

equation (3.2) that tend to Hamiltonian orbits (condition (2) above) are precisely the ones that have

finite energy

E(u) =
1

2

∫
[0,1]×R

(
|∂su|2 + |∂tu−XH

t (u)|2
)
dt ds < +∞.

In that case the energy is given by∫
[0,1]×R

u∗ω +

∫
[0,1]

Ht(γ
+(t)) dt−

∫
[0,1]

Ht(γ
−(t)) dt.

Moreover, if this happens the convergence u(t, s)→ γ±(t) when s→ ±∞ is uniform in t and ∂su decays

exponentially when s→ ±∞.

These are all very standard facts when g = idX and they certainly follow from an easy adaptation of the

proof in that case, although we don’t know of an explicitly written proof in the literature. Alternatively

we can use the proof of proposition 3.4.2 and appeal to known results in Lagrangian Floer homology, for

instance [RS01, Theorem A].

Definition 3.1.4. We define the moduli spaces

M̂g(γ
−, γ+;H,J) = {u ∈C∞([0, 1]× R, X)|u is a solution of (3.2),

u(t,±∞) = γ±(t), u(1, s) = g(u(0, s))}. (3.3)

If γ− 6= γ+ then M̂g(γ
−, γ+;H,J) admits an R-action by translation in the s variable and we define

Mg(γ
−, γ+;H,J) = M̂g(γ

−, γ+;H,J)/R. (3.4)

Sometimes we will omit the information about H,J and write only M̂g(γ
−, γ+),Mg(γ

−, γ+). When

we write M̂g = M̂g(H,J),Mg =Mg(H,J) we mean the unions of M̂g(γ
−, γ+;H,J) andMg(γ

−, γ+;H,J)

over every pair of orbits γ−, γ+ ∈ Pg(H) (corresponding to all g-periodic solutions of Floer equation with

finite energy).
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3.2 Fredholm property and the relative index

In suitable transversality conditions the moduli spaces Mg(γ
−, γ+) should be finite dimensional mani-

folds. This is controlled by the differential of the Floer operator.

The Floer operator F is defined as an operator

F : C∞g ([0, 1]× R, X)→
⋃
u

C∞g (u∗TX)

given by

F(u) = ∂su+ Jt(u)(∂tu−Xt(u)) ∈ C∞g (u∗TX).

Here C∞g ([0, 1]× R, X) denotes the space of smooth maps [0, 1]× R→ X such that

u(1, s) = g(u(0, s)).

The space C∞g (u∗TX) is the space of sections of u∗TX with a g-boundary condition, that is, maps

ξ : [0, 1]× R→ TX such that

ξ(t, s) ∈ Tu(t,s)X and ξ(1, s) = (dg)u(0,s)ξ(0, s).

We are interested in the linearization of F at some point u ∈ C∞g ([0, 1]× R, X) (and in particular at

u ∈ M̂g). The tangent space of C∞g ([0, 1]× R, X) at u can be identified with C∞g (u∗TX); indeed given

a curve

]− ε, ε[3 τ 7→ uτ ∈ C∞g ([0, 1]× R, X)

the vector tangent to it at τ = 0 is defined by

ξ(t, s) =
d

dτ
uτ (t, s)|τ=0 ∈ Tu(t,s)X

and clearly ξ ∈ C∞g (u∗TX). So (dF)u is an operator defined on C∞g (u∗TX). Let W k,p
g (u∗TX) be the

completion of the compactly supported sections in C∞g (u∗TX) with respect to the Sobolev W k,p norm,

and let Lpg(u
∗TX) = W 0,p

g (u∗TX). Then we can extend by continuity (dF)u to an operator

Du : W 1,p
g (u∗TX)→ Lpg(u

∗TX).

To study this operator we would like to write it in local coordinates, and we can do this by trivializing

the bundle u∗TX in an appropriate way.

Proposition 3.2.1. Given a symplectomorphism g of (X,ω), J ∈ Jg(X,ω) and u ∈ C∞g ([0, 1] × R, X)

there is a trizialization

Ψ(t, s) : R2n → Tu(t,s)X for each (t, s) ∈ [0, 1]× R

preserving the symplectic form and almost complex structure (where on R2n these are the standard ones)

such that

Ψ(1, s) = (dg)u(0,s)Ψ(0, s).

Moreover, if ∂su satisfies an exponential decay condition (which is the case if u is a finite energy solution

of Floer equation) then

‖Ψ‖1,∞, ‖Ψ−1‖1,∞ <∞.
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In the proposition ‖Ψ‖1,∞ denotes

‖Ψ‖1,∞ = sup
(t,s)

(‖Ψ(t, s)‖+ ‖DΨ(t, s)‖) .

Proof. We consider the total space u∗TX/∼ where we identify Tu(0,s)X and Tu(1,s)X via

dg : Tu(0,s)X → Tu(1,s)X.

The the projection map u∗TX → [0, 1] × R induces a projection u∗TX/∼ → S1 × R. This is a U(n)

bundle over S1×R since it inherits the symplectic form and almost complex structures of u∗TM , as g is

a symplectomorphism and J ∈ Jg(X,ω), respectively; note that the almost complex structure in u∗TX

at (t, s) ∈ [0, 1]× R is given by Jt(u(t, s)). It’s well known, and we’ll see in 4.2.4, that any U(n)-bundle

over S1 × R is trivial. Thus there is a trivialization of U(n)-bundles

Ψ̃ : S1 × R× R2n → u∗TX/ ∼ .

This lifts to a trivialization

Ψ : [0, 1]× R× R2n → u∗TX

such that Ψ(1, s, v) ∼ Ψ(0, s, v), that is, Ψ(1, s, v) = (dg)u(0,s)Ψ(0, s, v). Hence

Ψ(t, s) = Ψ(t, s, ·) : R2n → Tu(t,s)X

satisfies the condition required. It preserves the symplectic form and almost complex structure since Ψ̃

is a U(n)-bundle isomorphism.

For the last assertion we refer the reader interested in the details to [dS18, Section 8.1] (where this

is done only in the case g = id). But the key point is that the exponential decay condition on ∂su

ensures that u can be extended to a map u : [0, 1] × R → X where R = R ∪ {−∞,+∞} is the two-

point compactification of X with a differential structure pulled-back from [−1, 1] via an appropriate

homeomorphism R→ [−1, 1]. Then we pick a trivialization

S1 × R× R2n → u∗TX/ ∼

and restrict it to S1 × R. And now compactness of S1 × R gives the bound.

We fix now a trivialization Ψ as in proposition 3.2.1; this induces a correspondence between sections

of u∗TX and sections of the trivial bundle [0, 1]× R× R2n → [0, 1]× R, that is, maps [0, 1]× R→ R2n;

that is, we associate to ξ ∈ C∞(u∗TX) the map

[0, 1]× R 3 (t, s) 7→ Ψ(t, s)−1ξ(t, s) ∈ R2n.

We note that if ξ ∈ C∞g (u∗TX) then

Ψ(1, s)−1ξ(1, s) = Ψ(1, s)−1(dg)u(0,s)ξ(0, s) = Ψ(0, s)−1ξ(0, s).

Hence Ψ induces a correspondence between C∞g (u∗TX) and C∞(S1 × R,R2n). If ∂su decays expo-

nentially then the last part of proposition 3.2.1 implies that Ψ also induces isomorphisms (of Banach

spaces)

W 1,p(u∗TX) ∼= W 1,p(S1 × R,R2n) and Lp(u∗TX) ∼= Lp(S1 × R,R2n).

Under this isomorphisms, Du takes the form of a perturbed Cauchy-Riemann operator. These are very

well understood: under a non-degeneracy assumption they are Fredholm and we know how to compute

their Fredholm indices – see [dS18, Section 7], [AD14, Sections 8.7-8.9].
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Definition 3.2.2. Let S : S1×R→M2n×2n(R) be continuous. We denote by LS : W 1,p(S1×R,R2n)→
Lp(S1 × R,R2n) the perturbed Cauchy-Riemann operator given by

LS = ∂s + J0∂t + S

where J0 is the standard complex structure on Cn × R2n.

We say that such S is admissible if

1. S can be extended by continuity to S1 × R;

2. The limits S±(t) = S(t,±∞) are paths of symmetric matrices;

3. If we let R± : [0, 1]→M2n×2n(R) be the solutions of the ordinary differential equation

R±(0) = I and
d

dt
R±(t) = J0S

±(t)R±(t)

then the matrices R±(1) don’t have 1 as an eigenvalue.

Proposition 3.2.3. Let Ψ be a trivialization as in proposition 3.2.1. Then through this trivialization Du

is a perturbed Cauchy-Riemann operator, that is,

Du ◦Ψ = Ψ ◦ LS (3.5)

where S is defined by

ΨS = ∇sΨ + J(∇tΨ−∇ΨX
H
t ) + (∇ΨJ)(∂tu−XH

t ). (3.6)

Moreover, if we denote Ψ±(t) = lims→±∞Ψ(t, s) and

Φ±(t) = Ψ±(t)−1(dϕHt )γ±(0)Ψ
±(0) ∈ Sp(R2n) (3.7)

then

Φ̇± = J0S
±Φ±. (3.8)

Proof. This is a straightforward computation, see for instance [DS94, Theorem 2.2].

The known theory of such operators, together with proposition 3.2.3, gives a Fredholm property for

the operator Du when we have a non-degeneracy assumption.

Theorem 3.2.4 (Fredholm property). Suppose that γ−, γ+ ∈ Pg(H) are non-degenerate (see definition

3.1.2) and u ∈ M̂g(γ
−, γ+). Then the operator Du is Fredholm and has index

indDu = µCZ(Φ+)− µCZ(Φ−) ≡ µ(u)

where Φ± are defined by (3.7).

Proof. It’s well known that when S is admissible (see definition 3.2.2) then LS is a Fredholm operator

with index indLS = µCZ(R+)−µCZ(R−) ( [dS18, Theorem 7.9.2] or [AD14, Proposition 8.7.1, Theorem

8.8.1]).

By equation (3.8) we have that R± = Φ±, so the non-degeneracy condition of S is that the following

matrices don’t have 1 as eigenvalue:

Φ±(1) = Ψ±(1)−1(dϕ1)x±0
Ψ±(0) = Ψ±(0)−1(dg)−1

x±0
(dϕ1)x±0

Ψ±(0)
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Here x±0 = γ±(0). But this happens if and only if γ± are non-degenerate.

Since ϕt are symplectomorphisms it’s clear that Φ±(t) is a path of matrices in Sp(n), hence by (3.8)

J0S
±(t) is in the Lie algebra sp(n) = {T ∈M2n×2n(R) : (J0T )t = J0T} and thus S±(t) is symmetric. We

conclude that S is admissible and the cited theory on the perturbed Cauchy-Riemann operators shows

the result.

A key point in the definition of Floer homology is that we need the moduli spaces above defined to

be finite dimensional manifolds. This happens when the differential Du is surjective. The proof of this

with our g-periodicity condition is a straightforward adaptation of the proof in the classical 1-periodic

situation.

Theorem 3.2.5. Suppose γ−, γ+ ∈ Pg(H) are non-degenerate. If Du is a surjective operator for every

u ∈ M̂g(γ
−, γ+) then M̂(γ−, γ+), M(γ−, γ+) are smooth manifolds; moreover, their local dimensions at

u ∈ M̂g(γ
−, γ+) are

dimu M̂(γ−, γ+) = µCZ(Φ+)− µCZ(Φ−)

and

dimuM(γ−, γ+) = µCZ(Φ+)− µCZ(Φ−)− 1

where Φ± are defined by 3.7.

Sketh. Essentially this result is an application of transversality in Banach manifolds – see [Lan99, Section

II.§2]. However, we have to choose the said Banach manifold in an appropriate manner, as done in [dS18,

Notation 8.2.1] or [AD14, Definition 8.2.2]) for g = idX . The correct space of cylinders to consider is

B1,p
g (γ−, γ+) consisting of “W 1,p-maps” (with p > 2) u : [0, 1]× R→ X such that

u(1, s) = g(u(0, s))

and

u(t, s) −→ γ±(t) when s→ ±∞.

To be precise,

B1,p
g (γ−, γ+) = {expu(Y ) : u ∈ C∞g ([0, 1]× R, X), u(t,±∞) = γ±(t),

∂su, ∂tu−Xt(u) satisfy exponential decay,

Y ∈W 1,p
g (u∗TX), ‖Y ‖ < ru} (3.9)

where exp means the geodesic exponential and for each u in the conditions stated ru > 0 is the injectivity

radius of expu. Note that by requiring p > 2 we have a Sobolev embedding W 1,p
g (u∗TX) ↪→ C0

g (u∗TX),

so the expression expu(Y ) makes sense as a globally defined (continuous) function.

This is a Banach manifold locally modelled by W 1,p
g (u∗TX). The Floer differential extends by conti-

nuity to an operator

F : B1,p
g (γ−, γ+)→ E

where E is a bundle over B1,p
g (γ−, γ+) where the fiber over u ∈ B1,p

g (γ−, γ+) is L2
g(u
∗TX); this is also a

Banach manifold and F is a smooth map between the said Banach manifolds.

We need to show that F is transverse to the zero section of E . Suppose that F(u) = 0. The tangent

space of E at (u, 0) splits as

T(u,0)E = TuB1,p
g (γ−, γ+)⊕ L2

g(u
∗TX)
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and the differential (dF)u is

(id, Du) : TuB1,p
g (γ−, γ+)→ T(u,0)E = TuB1,p

g (γ−, γ+)⊕ L2
g(u
∗TX).

Note that TuB1,p
g (γ−, γ+) is the tangent space to the zero section and that π2 ◦ (dF)u = Du where

π2 : T(u,0)E → T(u,0)E/TuB1,p
g (γ−, γ+) = L2

g(u
∗TX)

is the projection map. Since Du = π2 ◦ (dF)u is a surjective Fredholm operator it follows that the space

of solutions of Floer equation

{u ∈ B1,p
g (γ−, γ+) : F(u) = 0} = F−1(zero section of E)

is a smooth manifold of dimension µ(u) = indDu. By elliptic regularity any such solution is smooth,

so is in M̂g(γ
−, γ+). On the other hand, M̂g(γ

−, γ+) ⊆ B1,p(γ−, γ+) because finite energy solutions of

Floer equation are such that ∂su, Xt(u)− ∂tu have an exponential decay.

Remark 3.2.6. By local dimension at u we mean the following: the space M̂g(γ
−, γ+) is a disjoint union

of connected smooth manifolds of possibly different dimensions each, and the component where u lies has

the said dimension.

Remark 3.2.7. The difference µ(u) = µCZ(Φ+)−µCZ(Φ−) does not depend on the choice of trivialization

Ψ, since it’s the Fredholm index of Du. However, in general the indices µCZ(Φ±) don’t depend only on

the orbit γ±, but they do depend in an important way on the trivialization Ψ of u∗TX we chose. This

makes unclear how to assign an absolute grading to orbits in M̂g, and without further assumptions this

is not possible. For instance if c1(X) 6= 0 it’s possible that we have u, v ∈ M̂g(γ
−, γ+) with µ(u) 6= µ(v).

We will discuss this issue in greater detail in section 4.2.

Theorem 3.2.5 motivates the definition of a regular pair.

Definition 3.2.8. We say that (H,J) ∈ Cg(R × X) × Jg(X,ω) is a regular pair if H satisfies the

non-degeneracy condition 3.1.2 and Du is surjective for every u ∈ M̂g(H,J).

3.3 Floer complex

We would now like to define the Floer complex and its differential. For this we fix a (possibly Novikov)

ring R and we let the Floer complex CF be the R-module generated by Pg(H), that is,

CF (X, g,H;R) =
⊕

γ∈Pg(H)

R · γ.

Defining the differential is the hard part. We would like to do this by counting trajectories u ∈
Mg(γ

−, γ+;H,J) with µ(u) = 1, but to do so we need that this is a finite set. In general this is not

guaranteed just by asking that (H,J) is a regular pair, but one needs some compactness results which

don’t hold for general symplectic manifolds. The general tool to prove such results is Gromov compact-

ness theorem, which we now describe before discussing more specifically the problem of constructing the

differential. The original Gromov compactness for (pseudo-)holomorphic was proved by Gromov in the

seminal paper [Gro85]. Here we describe a statement as used in [HS95]. For a more complete statement

(and proof) we refer to [Zil02].

28



Definition 3.3.1 (Convergence modulo bubbling). Let γ−, γ+ ∈ Pg(H) and let uν ∈ M̂g(γ
−, γ+)

be a sequence of solutions of Floer equation. We say that uν converges directly modulo bubbling to

u ∈ M̂g(γ
−, γ+) if there is finite set Z ⊆ [0, 1]×R such that, in every compact set contained in [0, 1]×R\Z

the sequence uν (and its derivatives) converges uniformly to u (and its derivatives). We call Z the set of

singularities.

Given Hamiltonian orbits γ− = γ0, γ1, . . . , γm = γ+ and Floer trajectories uj ∈ M̂g(γ
j−1, γj), j =

1, . . . ,m, we say that uν converges to (u1, . . . , um) modulo bubbling if the following happens: for every

sequence sν ∈ R the sequence vν(t, s) = uν(t, s + sν) converges directly modulo bubbling to uj(t, s + sj)

for some j = 1, . . . ,m and sj ∈ R or converges modulo bubbling to γj for some j = 0, . . . ,m. Moreover

every uj can be approximated by uν in this way.

Note that there is a slight subtlety in this definition. Convergence modulo bubbling of uν to a single

u = u1, defined in the second paragraph, is not the same as direct convergence, defined in the first

paragraph: it is direct convergence of uν to some translation of u in the s variable. Indeed uν converges

to u if the classes of uν in Mg(γ
−, γ+) = M̂g(γ

−, γ+)/R converge to the class of u in the topology of

Mg(γ
−, γ+), and uν converges directly to u if it converges in M̂g(γ

−, γ+).

We now state a version of Gromov-Floer compactness that’s enough for our purposes. Recall that

a J-holomorphic sphere is a map v : (S2, j0) → (X, J) such that dv ◦ j0 = J ◦ dv (here j0 denotes the

standard complex structure on S2 ∼= CP 1). The energy of a holomorphic sphere is

E(v) =

∫
S2

v∗ω =
1

2

∫
S2

|dv|2 ≥ 0.

Theorem 3.3.2 (Gromov-Floer compactness). Let γ−, γ+ ∈ Pg(H) and let uν ∈ M̂g(γ
−, γ+) be a

sequence of solutions of Floer equation with bounded energy E(uν) (see remark 3.1.3) and constant index

µ(uν) = µ.

Then there is a subsequence of uν that converges modulo bubbling to (u1, . . . , um). Moreover if Z =

{z1, . . . , z`} is the set of singularities of the subsequence, then there are J-holomorphic spheres v1, . . . , v` :

S2 → X such

lim
ν→∞

E(uν) =

m∑
j=1

E(uj) +
∑̀
k=1

E(vk) µ =

m∑
j=1

µ(uj) + 2
∑̀
k=1

〈c1(TX), vk〉 (3.10)

and u1, . . . , um, v1, . . . , v` is a connected family, that is,

m⋃
j=1

uj([0, 1]× R) ∪
⋃̀
k=1

vj(S2)

is connected.

We see from Gromov-Floer compactness that there are essentially two obstructions to the 0-dimensional

manifold {u ∈ Mg(γ
−, γ+);H,J) : µ(u) = 1} being compact/finite. The first is that the energy of such

solutions may be unbounded, and so we cannot apply the theorem to get convergent subsequences. The

second is the existence of bubbles. We begin by stating precisely what we mean by the non-existence of

bubbles for our purposes:

Definition 3.3.3. Let (H,J) be a regular pair. We say that (H,J) has no-bubbling if for every sequence

uν ∈ M̂g(γ
−, γ+) with bounded energy and µ(uν) = µ for µ = 1 or µ = 2 there is a subsequence

converging without bubbling. More precisely:
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1. If µ = 1 then a subsequence of uν converges to u ∈ M̂g(γ
−, γ+) with µ(u) = 1.

2. If µ = 2 then a subsequence of uν converges either to u ∈ M̂g(γ
−, γ+) with µ(u) = 2 or to (u1, u2)

with u1 ∈ M̂g(γ
−, γ1), u2 ∈ M̂g(γ

1, γ+) for some γ1 ∈ Pg(H) and µ(u1) = µ(u2) = 1.

Part 1. of the no-bubbling assumption says that

{u ∈Mg(γ
−, γ+) : µ(u) = 1, E(u) ≤ C} ⊆ Mg(γ

−, γ+)

is compact, and hence finite since it’s a 0-dimensional manifold. Part 2. says that we can compactify the

1-dimensional manifold

{u ∈Mg(γ
−, γ+) : µ(u) = 2, E(u) ≤ C}

by adding a boundary formed by pairs (u1, u2) ∈ Mg(γ
−, γ1) × Mg(γ

1, γ+) for some γ1 such that

µ(u1) = µ(u2) = 1 and E(u1) + E(u2) ≤ C. These are the conditions we should need to define a

differential ∂ (with Novikov coefficients) and to prove that ∂2 = 0, respectively.

Even if we assume that there are no bubbles, the moduli space {u ∈Mg(γ
−, γ+) : µ(u) = 1} can still

be infinite if we don’t bound the energy of its elements. Further impositions can be made on (X,ω) so

that we can bound the energy (the simplest of which is ω being atoroidal) of such trajectories, but we

can also use the algebraic formalism of Novikov rings to contour this problem and define a differential

even without energy bounds.

Definition 3.3.4 (Novikov ring). Let R be a ring. We define the universal Novikov ring Λuniv(R) with

coefficients in R to be the ring of formal series

∞∑
j=1

cjT
λj

where cj ∈ R and λj ∈ R are such that λj → +∞.

If (X,ω) is a symplectic manifold we define its Novikov ring Λω(X;R) to be the ring of formal series∑
A∈H2(X;Z)

cAe
A

with cA ∈ R such that for every c ∈ R we have

#{A ∈ H2(X;Z) : cA 6= 0 and ω(A) < c} <∞.

Note that we have a canonical homomorphism from the Novikov ring of a symplectic manifold to the

universal Novikov ring given by

eA 7→ Tω(A).

In our definitions we’ll use the universal Novikov ring, but we could also use the one corresponding to

our symplectic manifold. The latter has the advantage that it can be used to correct grading problems

when c1(X) 6= 0 and we need to consider the homotopy class relative to the boundary of solutions of

Floer equation; on the other hand, it would require us to pick a fixed non-canonical homotopy between

each pair of Hamiltonian orbits γ−, γ+ as done in [BO09]. To keep the exposition slightly cleaner we

stick to the universal Novikov ring, since when we consider gradings we’ll assume that the first Chern

class vanishes. When R is a field (we’ll use R = Q) the Novikov rings with coefficients in R are also fields

(see [HS95, Theorem 4.1]).
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The last ingredient needed to define the Floer complex in characteristic different from 2 are coherent

orientations. These were introduced in the first place in [FH93], only in the case g = 1, but a generalization

to our setup is straightforward. Coherent orientations essentially consist in orienting all the moduli

spaces Mg(γ
−, γ+) in a way that’s coherent with the gluing construction and thus allows us to define

an orientation in the compactified moduli space. For now all the reader has to retain is that when

u ∈ M̂g(γ
−, γ+) has relative index µ(u) = 1 the moduli spaceMg(γ

−, γ+) has local dimension 0 at u, so

an orientation is simply an assignment of a sign ν(u) ∈ {+1,−1}. Later in section 4.2 we’ll give a more

detailed explanation of coherent orientations in a more specific setting.

Definition 3.3.5. Let (X,ω) be a symplectic manifold, g : X → X a symplectomorphism, H ∈ Cg(R×X)

a Hamiltonian and J ∈ Jg(X,ω) an almost complex structure.

Assume that (H,J) is a regular pair 3.2.8 (in particular H satisfies the non-degeneracy condition) and

has no-bubbling 3.3.3. Then we define the Floer complex CF (X, g,H; Λ) with coefficients in the Novikov

ring Λ = Λuniv(R) to be the Λ-module generated by Pg(H):

CF (X, g,H; Λ) =
⊕

γ∈Pg(H)

Λ · γ.

We define a differential ∂ = ∂H,J : CF (X, g,H; Λ) → CF (X, g,H; Λ) by counting (with signs) isolated

Floer trajectories between Hamiltonian orbits corresponding to generators. More precisely let ∂ be the

Λ-linear map defined on generators γ+ ∈ Pg(H) by

∂γ+ =
∑

γ−∈Pg(H)

 ∑
u∈Mg(γ−,γ+;H,J)

µ(u)=1

ν(u)Tω(u)

 γ−. (3.11)

Note that, by the no-bubbling assumption, for fixed γ−, γ+, there is only a finite number of Floer

trajectories u ∈Mg(γ
−, γ+;H,J) with µ(u) = 1 and ω(u) ≤ C, so∑

u∈Mg(γ−,γ+;H,J)
µ(u)=1

ν(u)Tω(u)

is really an element of Λ.

We expect that when no-bubbling occurs the definition of the Floer complex indeed gives a complex,

that is, ∂2 = 0, and here we sketch a (incomplete) proof of this fact. First, proving this is equivalent to

proving that for any fixed γ−, γ+ ∈ Pg(H) we have∑
(u1,u2)

ν(u1)ν(u2)Tω(u1)+ω(u2) = 0 (3.12)

where (u1, u2) runs through the broken trajectories between γ− and γ+. To be precise, a broken trajectory

is a pair (u1, u2) ∈ Mg(γ
−, γ1) ×Mg(γ

1, γ+) for some γ1 ∈ Pg(H) such that µ(u1) = µ(u2) = 1. Now

we expect that a gluing property (as in [dS18, Chapter 10] or [AD14, Chapter 9]) can be used to show

that by adding the broken trajectories to

{u ∈Mg(γ
−, γ+) : µ(u) = 2}

we get a 1-dimensional manifold M with boundary, and the boundary is precisely the space of broken

trajectories. Moreover, this manifold should be oriented and the orientation induced on the boundary
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should coincide with the orientations given by the assignment of the numbers ν(uj); this is ensured by a

choice of coherent orientations of the moduli spaces (see [FH93] for this discussion in the the case g = 1).

Also, the no-bubbling hypothesis 3.3.3 shows that if we consider only trajectories u ∈M with bounded

energy (that is, we impose that E(u) ≤ C for some fixed C ∈ R) we get a compact subset of M. Now

each connected component ofM has constant energy; indeed by remark 3.1.3 the energy only depends on∫
[0,1]×R u

∗ω, and this quantity only depends on the homotopy class of u relative to the boundary (because

ω is closed), and in each connected component ofM this homotopy class relative to the boundary is the

same. So it follows that M is a countable union of copies of S1 and [0, 1]. Thus each broken trajectory

(u1, u2) corresponds to a point in the border of one of the segments [0, 1], so we can pair the broken

trajectories. If (u1, u2) and (v1, v2) are the two boundary points of some segment, then by the coherence

of the orientations we have

ν(u1)ν(u2) = −ν(v1)ν(v2).

Moreover, since u1#u2 and v1#v2 are homotopic relative to the boundary (by the argument above) then

ω(u1) + ω(u2) = ω(v1) + ω(v2). Hence each of these pairs of broken trajectories cancel out in the sum of

equation (3.12) and the sum is indeed 0.

There are details in this proof to fill out. Namely the gluing construction should be adapted to the

g-periodic case and we have to deal with coherent orientation. We won’t take care of these details here,

but we expect that they are a straightforward adaptation of the existing literature. So from now one we

will assume that this holds.

Assumption 3.3.6. We assume that whenever we are in the conditions of definition 3.3.5, including the

no-bubbling condition, we have ∂2 = 0.

Once again, we stress that this is stated as an assumption only because we did not fill the details,

but we really expect it to be true and proven by filling the details of the argument we just sketched. For

instance in [DS94] this is also implicitly assumed to be true (at least for monotone symplectic manifolds,

where no-bubbling is assured, see 3.3.9) but without a proof. So in ideal circumstances we can define

Floer homology.

Definition 3.3.7. Suppose we are in the conditions of definition 3.3.5 and assume 3.3.6. Then we define

the Floer homology HF (X, g,H, J ; Λ) with coefficients in Λ = Λuniv(R) to be the homology of the Floer

complex (CF (X, g,H; Λ), ∂H,J), that is,

HF (X, g,H, J ; Λ) =
ker ∂

im ∂
.

3.3.1 Monotone manifolds

A situation in which we’re guaranteed to have no-bubbling is that of monotone symplectic manifolds.

Definition 3.3.8. We say that a symplectic manifold (X,ω) is monotone if

〈[ω], π2(X)〉 = λ〈c1(TX), π2(X)〉

for some λ ∈ R≥0, where 〈 , 〉 denotes the pairing between cohomology and π2(X) given by integrating over

spheres.

We’ll show that for monotone manifolds the no-bubbling is automatic.
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Proposition 3.3.9. Let (X,ω) be a monotone manifold. Then any regular pair (H,J) has no-bubbling.

Proof. By Gromov-Floer compactness there is a subsequence converging modulo bubbling to u1, . . . , um

with bubbles v1, . . . , v`. Moreover we have the relations in (3.10). Since (X,ω) is monotone

λ〈c1(TX), vj〉 = 〈[ω], vj〉 = E(vj) > 0

where the equality 〈[ω], vj〉 = E(vj) holds because vj is J-holomorphic. Thus if there is bubbling (i.e.

` > 0) we get

µ =

m∑
j=1

µ(uj) + 2
∑̀
k=1

〈c1(TX), vk〉 ≥
m∑
j=1

µ(uj) + 2

so
∑m
j=1 µ(uj) ≤ 0. But since (H,J) is regular we must have µ(uj) ≥ 1, otherwise the local dimension of

Mg(γ
−, γ+) is µ(uj)− 1 < 0 by 3.2.5, a contradiction. So there are no bubbles and µ(uj) ≥ 1, and since

µ ≤ 2 we either have m = 1 and µ(u1) = 1, 2 or m = 2 and µ(u1) = µ(u2) = 1.

So for monotone manifolds we can define the Floer complex. In some conditions we can even do better

and bound the energy of solutions of Floer equation with fixed limits.

Proposition 3.3.10. Suppose that (X,ω) is aspherical, that is, it’s monotone with constant λ = 0, and

suppose that π1(X) = 0. Under these conditions, if u, v ∈ M̂g(γ
−, γ+) then we have E(u) = E(v).

Proof. Let w = u#(−v) : [0, 1]× S1 → X be the map obtained by gluing the maps u, v : [0, 1]× R→ X

where S1 is regarded as the union of two copies of R with their extremes ±∞ identified. By remark 3.1.3

E(u)− E(v) =

∫
[0,1]×S1

w∗ω.

Since π1(X) = 0 we have a capping disk σ0 : D2 → X with (σ0)|∂D2 = w|{0}×S1 . Define a second capping

disk σ1 : D2 → X by σ1 = g ◦ σ0; since w(1, s) = gw(0, s) we have (σ1)|∂D2 = w|{1}×S1 . By assembling

all these together we get a map from the sphere f = σ0#w#σ1 : S2 → X, where the sphere is regarded

as the union along the boundaries of the cylinder (domain of w) with two copies of the disk (domains of

σ0 and σ1). Since g preserves ω we have ∫
D2

σ∗0ω =

∫
D2

σ∗1ω

and thus by asphericity

E(u)− E(v) =

∫
[0,1]×S1

w∗ω =

∫
S2

f∗ω = 0.

When we can bound the energy we can define the complex with any coefficients R (not necessarily a

Novikov ring). The chain complex is the R-module generated by Pg(H) and the differential is defined as

∂γ+ =
∑

γ−∈Pg(H)

 ∑
u∈Mg(γ−,γ+;H,J)

µ(u)=1

ν(u)

 γ−.

The coefficient of γ− is now given by a finite sum; this is because every u ∈ Mg(γ
−, γ+;H,J) has the

same energy and thus Gromov-Floer compactness (with the no-bubbling we proved) says that there is a

finite number of such u with µ(u) = 1.
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3.3.2 Manifolds with trivial first Chern class

In this section we suppose that X is Calabi-Yau, that is, the first Chern class of X vanishes: c1(TX) = 0.

In this case, the arguments we used in the monotone case fail. For instance it was fundamental in the

proof of no-bubbling 3.3.9 that 〈c1(TX), v〉 > 0 for holomorphic spheres v. Indeed, in general it’s not

true that any regular pair has no-bubbling.

However, in [HS95] Hofer and Salamon proved that if X is Calabi-Yau then a generic pair (H,J)

is regular and has no-bubbling, in the case g = idX . The key point of the argument is a dimensional

analysis that shows that, in generic conditions, J-holomorphic spheres don’t intersect Floer trajectories

with µ(u) ≤ 2. Let us give the high level idea behind Hofer-Salamon proof. Once again we won’t give

rigorous details, but we hope that this is enough to convince the reader that the no-bubbling assumption

is reasonable, in the sense that it should include important examples.

We denote

M0(J) = {x ∈ X : x ∈ im v for some J-holomorphic sphere v}

and

M2(H,J) = {x ∈ X : x ∈ u([0, 1]× R) for some u ∈Mg(H,J) such that µ(u) ≤ 2}.

If M0(J) ∩M2(H,J) = ∅ then we have no-bubbling; indeed if there are bubbles in 3.3.2 we would

get a contradiction with the fact that the bubbles and the Floer trajectories form a connected set. And

indeed this happens in generic conditions, as M0(J) is expected to have codimension 4 and M2(H,J) to

have dimension 3.

For a generic J , the space M̂(A, J) of J-holomorphic spheres in homology class A ∈ H2(X;Z) is a

manifold of dimension

dimM̂(A, J) = 2n+ c1(A) = 2n

(see [MS12, Theorem 3.1.15]). Now M0(J) is the image of the evaluation map⋃
A∈H2(X)

M̂(A, J)×G S2 → X

where G = PSL(2,C) is the group of conformal automorphisms of S2. Since G has dimension 6 this

image is a set of dimension 2n+ 2− 6 = 2n− 4, in the sense that it’s the image of a (second countable)

manifold of dimension 2n− 4 through a smooth map.

On the other hand if (H,J) is regular then M2(H,J) is the image of the evaluation map{
u ∈ M̂g(H,J) : µ(u) ≤ 2

}
×R ([0, 1]× R)

and the set {u ∈ M̂g(H,J) : µ(u) ≤ 2} is the union of manifolds of dimension at most 2. Thus M2(H,J)

is a set dimension 3 = 2 + 2− 1.

Since (2n − 4) + 3 < 2n it’s expected that for a generic Hamiltonian H not only the pair (H,J) is

generic but we also have M0(J)∩M2(H,J) = ∅. This is made precise, for g = 1, in [HS95, Theorem 3.2],

and adapting the proof to a general g is straightforward.

3.4 Relation to Lagrangian Floer homology

We now discuss how we can interpret the construction of Floer homology with g-periodic boundary

conditions via Lagrangian Floer homology. We won’t really use the results of this section, but it should
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be noted that in principle the general theory of Lagrangian Floer homology developed in [FOOO09a,

FOOO09b] can be used to deal with general symplectic manifolds where we can’t avoid bubbling and

have to work with virtual fundamental cycles and abstract perturbation theory.

We begin by showing that our construction of Floer homology with g-periodic boundary conditions

can be reduced to the case H = 0 by changing g. In this case our Floer trajectories are holomorphic strips.

This is actually a very good reason to consider Floer homology with g-periodic boundary conditions (and

not only g = idX), since it shows that if we perform this reduction starting with the usual Hamilto-

nian Floer homology (that is, with g = idX) we naturally arrive at Floer homology of a Hamiltonian

symplectomorphism g.

Proposition 3.4.1. Suppose we are in the conditions of 3.3.5 to define the Floer chain complex. Let

as usual ϕt be the flow of Xt. Then, if we choose compatible orientations on the relevant moduli spaces,

there is a canonical isomorphism of chain complexes

(CF (X, g,H; Λ), ∂H,Jt)
∼= (CF (X,ϕ−1

1 ◦ g,H = 0; Λ), ∂H=0,ϕ∗t Jt
).

Proof. First, there is a bijection between the sets of generators of the chain complexes Pg(H) and

Pϕ−1
1 ◦g

(0); indeed the former is the set of orbits γ(t) = ϕt(x0) for some fixed point x0 of ϕ−1
1 ◦ g

and the latter is the set of constant orbits cx0(t) = x0 for x0 fixed point of ϕ−1
1 ◦ g.

To prove the claimed isomorphism it’s enough to show that we can identify canonically the moduli

spaces

M̂g

(
γ−, γ+;H,J

)
and M̂ϕ−1

1 ◦g

(
cx
−
0 , cx

−
0 ;H = 0, ϕ∗tJ

)
where x±0 = γ±(0). Indeed given u ∈ M̂g(γ

−, γ+;H,J) we let v(t, s) = ϕ−1
t (u(t, s)). It’s straightforward

to see that v satisfies the required boundary conditions, so we’re left with showing that v obeys Floer

equation (3.2) with Hamiltonian H = 0 and almost complex structure ϕ∗tJt. Indeed

∂sv(t, s) = (dϕt)
−1∂su(t, s)

and

∂tv(t, s) = (dϕt)
−1∂tu(t, s)− (dϕt)

−1Xt(u(t, s)).

Thus, since u obeys equation 3.2, then

∂sv + (ϕ∗tJt)(v)∂tv = (dϕt)
−1 (∂su+ Jt(u)(∂tu−Xt(u))) = 0

so v ∈ M̂ϕ−1
1 ◦g

(
cx
−
0 , cx

−
0 ;H = 0, ϕ∗tJ

)
. Conversely if v ∈ M̂ϕ−1

1 ◦g

(
cx
−
0 , cx

−
0 ;H = 0, ϕ∗tJ

)
then letting

u(t, s) = ϕt(v(t, s)) we have u ∈ M̂g (γ−, γ+;H,J).

We now explain the way to formulate Floer homology with g-periodic boundary conditions in terms

of Lagrangian Floer homology. A quick and not so extensive reference for it is [Ped18], and a much more

complete one is [FOOO09a,FOOO09b].

Proposition 3.4.2. Suppose we are in the conditions of 3.3.5 to define the Floer chain complex and

H = 0. Consider the symplectic manifold (X ×X, (−ω)⊕ ω) and its Lagrangian submanifolds

L1 = {(x, x) : x ∈ X} and Lg = {(x, g(x)) : x ∈ X}.
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Moreover let J̃t be the almost complex structure

J̃t =
(
−J 1−t

2

)
⊕ J 1+t

2

on X × X, which is compatible with (−ω) ⊕ ω. Then, after choosing compatible orientations on the

relevant moduli spaces, there is a canonical isomorphism of chain complexes

(CF (X, g,H = 0; Λ), ∂H=0,Jt)
∼= (CLF (X ×X,L1, Lg; Λ), ∂J̃t)

where the latter is the Lagrangian Floer complex.

Proof. Once again the generators of CF (X, g,H = 0; Λ) are in bijection with fixed points x0 of g.

Similarly CLF (X ×X,L1, Lg; Λ) is generated by points in the intersection L1 ∩Lg, which have the form

(x0, x0) = (x0, g(x0)) for x0 a fixed point of g. To prove the result it’s enough to exhibit a correspondence

between the moduli spaces

M̂g

(
cx
−
0 , cx

+
0 ;H = 0, J

)
and M̂lag

(
(x−0 , x

−
0 ), (x+

0 , x
+
0 );L1, Lg, J̃

)
.

Indeed suppose that u ∈ M̂g

(
cx−0

, cx+
0

;H = 0, J
)

; this is a J-holomorphic strip u : [0, 1] × R with

boundary conditions u(t,±∞) = x±0 and u(1, s) = g(u(0, s)). Now we define v : [0, 1]× R→ X ×X by

v(t, s) =

(
u

(
1− t

2
,
s

2

)
, u

(
1 + t

2
,
s

2

))
.

It’s straightforward to check that v is J̃-holomorphic, that v(0, s) ∈ L1, v(1, s) ∈ Lg and v(t,±∞) =

(x±0 , x
±
0 ) so v ∈ M̂lag

(
(x−0 , x

−
0 ), (x+

0 , x
+
0 );L1, Lg, J̃

)
. Conversely, given

v = (v1, v2) ∈ M̂lag
(

(x−0 , x
−
0 ), (x+

0 , x
+
0 );L1, Lg, J̃

)
we can recover u by defining

u(t, s) =

v1(1− 2t, 2s) if t ∈ [0, 1/2]

v2(−1 + 2t, 2s) if t ∈ [1/2, 1].

The boundary condition v(0, s) ∈ L1 makes sure that this gluing is C1, and hence smooth by elliptic regu-

larity. It’s straightforward to show that u is J-holomorphic and obeys the required boundary conditions,

so u ∈ M̂g

(
cx
−
0 , cx

+
0 ;H = 0, J

)
.

Remark 3.4.3. In Lagrangian Floer homology the possibility of orienting in a coherent way the relevant

moduli spaces, and hence defining Lagrangian Floer homology in characteristic not 2, is non-trivial and

discussed in [FOOO09b] (in particular see Theorem 8.1.14). The condition to be able to do so is that the

Lagrangian submanifolds L1, L2 ⊆ Y are relatively spin, that is, they are both orientable and there is a

class st ∈ H2(Y ;Z/2) such that st|Lj = w2(TLj). In the case we’re interested in, of proposition 3.4.2,

this is automatic; L1, Lg are both diffeomorphic to X, which is orientable since it’s symplectic, and we

can take st = π∗1w2(TX) where π1 : X ×X → X is the projection onto the first component.

Remark 3.4.4. The sub-manifold Lg is the fixed point set of the anti-symmetric involution

X ×X 3 (x, y) 7→ (g−1y, gx) ∈ X ×X.

By [Oh93, Example (i)] if X is monotone then Lg is a monotone Lagrangian in X × X. If moreover

we assume that π1(X) is torsion the results of [Oh93] apply and the Lagrangian Floer homology is well

defined without Novikov rings (compare with 3.3.10).
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Chapter 4

Floer homology of global quotient

orbifolds

4.1 Introduction

In this section we will define, under suitable conditions, the Floer homology of global quotient orbifolds.

To define the Floer complex of such an orbifold we will use our previous construction of Floer homology

for g-periodic Hamiltonian orbits. We let (X,ω) be a compact symplectic manifold of dimension 2n and

let G be a group acting on (X,ω) by symplectomorphisms. Then the quotient orbifold X = [X/G] is a

symplectic orbifold (X , ω).

We denote by JG(X,ω) the set of G-invariant time dependent almost complex structures on X; more

precisely

JG(X,ω) =
⋂
g∈G
Jg(X,ω)

where we defined Jg(X,ω) in section 3. Alternatively, (Jt)t∈R ∈ JG(X,ω) if Jt+1 = Jt and g∗Jt = Jt

for every g ∈ G. Such a family of almost complex structure corresponds to a 1-periodic family of almost

complex structures on X . As in the non-equivariant case this set is always contractible and non-empty.

Proposition 4.1.1. Let G be a finite group acting on (X,ω) by symplectomorphisms. Then the set

JG(X,ω) is contractible and non-empty.

Proof. Given a (time dependent, 1-periodic) almost complex structure (Jt)t∈R ∈ J (X,ω) not necessarily

G-invariant we can assign a (time dependent, 1-periodic) Riemannian metric 〈 , 〉t determined by

ω(u, v) = 〈Jtu, v〉t

and hence we get a map

j : J (X,ω)→ Maps(S1, Riem(X)).

The map j has a homotopy inverse r (see [MS17, Proposition 2.50 ii)]). Since both j and r are

G-equivariant it follows that

JG(X,ω) ' MapsG(S1, Riem(X))

where the right hand side are G-invariant (time dependent) Riemannian metrics. The space of such

Riemannian metrics admits an obvious convex structure, and thus is contractible.
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To prove existence just take a constant family 〈 , 〉t of equivariant Riemannian metrics, which exists

by a simple averaging argument, and apply r.

Similarly we denote by CG(R×X) the set of 1-periodic time dependent G-invariant Hamiltonians

CG(R×X) =
⋂
g∈G

Cg(R×X).

Equivalently, a Hamiltonian H ∈ CG(R ×X) is a smooth map H : S1 ×X → R such that Ht(x) =

Ht(g(x)) where as usual we denote Ht(x) = H(t, x) for (t, x) ∈ S1 × X. Here S1 is R/Z and we will

consider t to be interchangeably in S1 or R. Such a Hamiltonian induces a 1-periodic Hamiltonian in the

quotient X = [X/G].

We would now like to define a Floer homology HF (X , ω,H, J ; Λ) with coefficients in a (Novikov) ring

Λ. First, we recall from proposition 2.2.5 that the loop space of X is given by

{(γ, g) ∈ C∞([0, 1], X)×G : γ(1) = gγ(0)}/G

where G acts on a pair (γ, g) by h · (γ, g) = (hγ, hgh−1). We write (γ, g) ∼ (γ′, g′) if (γ, g) and (γ′, g′)

are in the same orbit with respect to the action of G. Instead of (γ, g) we will write γg, or only γ if g is

clear (or has been made clear); the class of γg is denoted by [γg]. Now a loop [γg] in X is a Hamiltonian

orbit if and only if its lift γ : [0, 1]→ X is a Hamiltonian orbit of H. We define

P̃G(H) = {(γ, g)|γ : [0, 1]→ X is a Hamiltonian orbit and γ(1) = gγ(0)} =
⊔
g∈G
Pg(H)

and moreover we write PG(H) = P̃G(H)/G. Morally, the set PG(H) is the set of Hamiltonian 1-

periodic orbits in the orbifold X . Indeed an element [γg] ∈ PG(H) has a topological realization as a map

S1 → |X | = X/G induced by the composition [0, 1]
γ−→ X −→ X/G = |X |. Once again we remark that

different elements of PG(H) might have the same topological realization; this happens for instance if the

constant map cx0 : [0, 1]→ X equal to x0 ∈ X is a Hamiltonian orbit – that is, x0 is a critical point of Ht

for every t – and 1 6= g ∈ Gx0
fixes x0; then [cx0

g ] 6= [cx0
1 ] but they have the same topological realization.

This fact will be crucial in chapter 6, where it will lead to the appearance of twisted sectors.

4.1.1 Floer complex in characteristic 2 and the orientability problem

We shall now explain how are we going to construct our Floer complex and see how in characteristic not

2 the naive approach to define the complex fails because of a problem with orientations. Because of this,

some of the notation in this section is provisional and will be corrected in 4.4.

The naive approach to define the Floer complex over a ring Λ (for instance a Novikov ring) is to

consider the free Λ-module with generators PG(H), that is,

CF (X , H; Λ) =
⊕

[γg]∈PG(H)

Λ · [γg].

An alternative description is the following: if we let

C̃F (X , H; Λ) =
⊕
g∈G

CF (X, g,H; Λ) =
⊕

γg∈P̃G(H)

Λ · γg (4.1)
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then the G-action on P̃G(H) extends Λ-linearly to a G-action on C̃F (X , H; Λ) and we can regard

CF (X , H; Λ) as the G-invariant part of C̃F (X , H; Λ), which we denote by C̃F (X , H; Λ)G. Indeed it’s

easy to check that we have an isomorphism given by

CF (X , H; Λ) 3 [γg] 7→
∑

γ′
g′∼γg

γ′g′ ∈ C̃F (X , H; Λ)G.

So from now on when we talk about CF (X , H; Λ) we actually mean theG-invariant part of C̃F (X , H; Λ).

We now turn to the definition of a differential on CF (X , H; Λ). As expected, for this one has to assume

a regularity and no-bubbling condition for all the elements g ∈ G.

Definition 4.1.2. From this section on (unless otherwise specified), we say that a pair (H,J) ∈ CG(R×
X)× JG(X,ω) is regular if it’s regular as defined in 3.2.8 for every g ∈ G.

We say that (H,J) has no-bubbling if it has no-bubbling as defined in 3.3.3 for every g ∈ G.

Assume now that Λ = Λuniv(R) is a Novikov ring. For each g we have a differential

∂ : CF (X, g,H; Λ)→ CF (X, g,H; Λ)

defined in 3.3.5. By assembling such differentials we get a differential

∂ = ∂H,J : C̃F (X , H; Λ) =
⊕
g∈G

CF (X, g,H; Λ)→
⊕
g∈G

CF (X, g,H; Λ) = C̃F (X , H; Λ).

We need the differential to preserve the G-invariant part. Unfortunately that is not true and this is the

problem of our naive approach. Before we see how this fails in general, let’s prove that in characteristic

2 it’s true.

Lemma 4.1.3. Suppose that (H,J) is regular and has no-bubbling. Let Λ = Λuniv(R) be a Novikov ring

over a ring R of characteristic 2. Then the differential ∂ : C̃F (X , H; Λ) → C̃F (X , H; Λ) is equivariant

with respect to the G-action on C̃F (X , H; Λ). In particular ∂ restricts to a differential on the G-invariant

part

∂ : CF (X , H; Λ)→ CF (X , H; Λ).

Proof. We want to prove that h∂ = ∂h. For γ+ ∈ Pg(H) we have

(h∂)γ+ =
∑

γ−∈Pg(H)

 ∑
u∈Mg(γ−,γ+;H,J)

µ(u)=1

ν(u)Tω(u)

hγ−

and

(∂h)γ+ =
∑

γ̂−∈Phgh−1 (H)

 ∑
v∈Mhgh−1 (γ̂−,hγ+;H,J)

µ(v)=1

ν(v)Tω(v)

 γ̂−.

But it’s easy to see that there is a bijection

Pg(H) 3 γ− 7→ γ̂− = hγ− ∈ Phgh−1(H)

and also a bijection

Mg(γ
−, γ+) 3 u 7→ v = hu ∈Mhgh−1(hγ−, hγ+).

We have ν(u) = ν(v) = 1 in Λ because R has characteristic 2 and ω(u) = ω(hu) = ω(v) because h is a

symplectomorphism. Thus (∂h)γ+ = (h∂)γ+ for every generator γ+ and we are done.
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Hence we can define right now the Floer complex (and thus Floer homology) over Novikov rings of

characteristic 2.

Definition 4.1.4. Let (X,ω) be a symplectic manifold, G a finite group acting on (X,ω) by symplecto-

morphisms.

Suppose that (H,J) ∈ CG(R ×X) × JG(X,ω) is a regular pair and has no-bubbling (in the sense of

4.1.2). Let Λ = Λuniv(R) be a Novikov ring over a ring R of characteristic 2.

Let CF (X , H; Λ) be the G-invariant part of C̃F (X , H; Λ) defined in (4.1). By lemma 4.1.3 we have

a restricted differential ∂ = ∂H,J : CF (X , H; Λ)→ CF (X , H; Λ). Then (CF (X , H; Λ), ∂H,J) is called the

Floer complex of X .

Assuming 3.3.6 we define the Floer homology of the orbifold X to be the Λ-module

HF (X , H, J ; Λ) =
ker ∂

im ∂
.

The role of characteristic 2 is quite clear from the proof of lemma 4.1.3: for ∂ to be G-equivariant we

need that, in our assignment of coherent orientations, we have ν(hu) = ν(u) for every Floer trajectory u

with µ(u) = 1 and h ∈ G. In general it is not possible to ensure this. For instance we may have a Floer

trajectory u between γ−, γ+ ∈ Pg(H) and h ∈ G fixing γ−, γ+ such that ν(u) = −ν(hu); when this is

the case there is no hope in getting equivariance of ∂, even if we change our coherent orientations.

This phenomenon is already well known in the context of orbifold Morse homology, as explained

in [CH14] and in section 2.4. In Morse homology, each critical point is assigned an orientation space

(which is the determinant bundle of the unstable manifold at x) and one has to exclude the critical points

x for which there is some g ∈ Gx reversing the orientation. Indeed attaching cells corresponding to these

critical points that reverse the orientation doesn’t change the topology.

Essentially the problem with the naive approach is that the G-action we defined on C̃F (X , H; Λ) is not

considering the action of G in certain orientation spaces corresponding to the orbits. Roughly speaking,

there is some sign we should introduce when the action reverses these orientations. To understand this

issue we’ll have to discuss orientations and the signs ν(u) better, which we will do in 4.3. To avoid having

to consider a cover of P̃G(H) we will only do so when X is Calabi-Yau; in this case each orbit has a

canonical trivialization and this makes it possible to define coherent orientations by picking orientations

on certain determinant line bundles δγ corresponding to each γ ∈ P̃G(H). This is also the case in which

we can define a natural grading on the Floer complex, and this is done in the next section. We come

back to the definition of the Floer complex of an orbifold in section 4.4.

4.2 Absolute index using trivialization of Λn
CTX

In section 3.2 we showed how to assign a relative index µ(u) = indDu to any Floer trajectory u ∈
M̂g(γ

−, γ+). To define a grading on the Floer homology we would like to be able to write this relative

index in terms on an absolute index assigned to Hamiltonian orbits γg ∈ P̃G(H).

Even in the smooth case G = {1} this is not possible in general. If u, v ∈ M̂(γ−, γ+) then

indDu = indDv + 2〈c1(X), u#(−v)〉

where c1(X) = c1(TX).

So the index doesn’t depend only on the endpoints γ± but also on the homology class of u relative to

the boundary. There are several ways to avoid this problem.
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1. The first is simply to only consider the case c1(X) = 0 or some slightly weaker condition such

as 〈c1(X), T 2〉 = 0 for any torus T 2 → X (or 〈c1(X), S2〉 = 0 for spheres S2 → X if we restrict

ourselves to contractible orbits)

2. When this doesn’t happen, we can still give a mod 2N grading to our Floer complex where N ∈ Z+

is the (homological) minimal Chern number defined by

〈c1(X), H2(X;Z)〉 = NZ.

3. To get a Z-graded index in general conditions we can use a graded Novikov ring; this approach

is followed in [BO09]. A conceptual way to say what this means is the following: instead of

considering Morse homology of the action functional defined on the loop space of X, we define it

in an appropriate covering of the loop space with fibers H2(X;Z).

Here we explain how we can use a trivialization of the determinant line bundle to assign a canonical

absolute index to Hamiltonian orbits when X is Calabi-Yau.

Definition 4.2.1. We say that a global quotient orbifold X = [X/G] is Calabi-Yau if the equivariant

first Chern class (see definition B.1.2) cG1 (X) = cG1 (TX) vanishes.

The orbifold X is Calabi-Yau if and only if the G-equivariant line bundle (see appendix B.1) ΛnCTX →
X has trivial (equivariant) first Chern class

cG1 (ΛnCTX) = cG1 (TX) = 0,

and by theorem B.1.3 this happens if and only if ΛnCTX is a trivial G-bundle.

Remark 4.2.2. Saying that ΛnCTX is trivial as a G-equivariant bundle is the same as saying that the

orbibundle ΛnCTX → X is trivial. In particular ΛnCTX is an honest bundle, so any Calabi-Yau orbifold is

Gorenstein.

Conversely, if X is Gorenstein, c1(X) = 0, H1(X;Z) = 0 and for every g ∈ G the fixed point set Xg

is non-empty then by proposition B.1.6, applied to E = ΛnCTX, X is Calabi-Yau.

We now fix a G-equivariant non-vanishing section s : X → ΛnCTX. Such a section determines a

trivialization

X × C 3 (x, z) 7→ (x, zs(x)) ∈ ΛnCTX.

Remark 4.2.3. Suppose we have a G-equivariant trivial line bundle over X, meaning that it is isomorphic

to X ×C→ X. A choice of a G-equivariant non-vanishing section in this bundle is the same as a choice

of a G-invariant map X → C×. So there is a bijection between homotopy classes of sections s and

[X/G,C∗] ∼= [X/G,S1] ∼= H1(X/G;Z)

since S1 = K(Z, 1).

Recall from 3.2 that the relative indices of Floer trajectories can be computed as a difference of

Conley-Zehnder indices of two paths of symplectic matrices obtained by choosing trivializations of the

limit orbits. The problem is that we must choose the trivializations of the two limit orbits in a compatible

way: they must extend to a trivialization of the whole Floer trajectory. What happens when ΛnCTX is a

trivial bundle and we fix s is that we now have a way to choose for each Hamiltonian orbit a canonical

trivialization, and with this choice we get trivializations that always extend to Floer trajectories.
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Let now γg ∈ P̃G(H) or, equivalently, γ ∈ Pg(H). Similarly to what we did in 3.2 consider the

S1-bundle γ∗TX/∼ → S1 where ∼ identifies Tγ(0)X and Tγ(1)X via (dg)γ(0). The point is that choosing

a trivialization for this bundle is the same as choosing a trivialization for its highest exterior power.

Lemma 4.2.4. Let E → B be a symplectic or unitary bundle of rank n over B and suppose that B is

homotopically equivalent to S1. Then E is trivial as a symplectic/unitary bundle. Moreover there are

natural bijections between homotopy classes of trivializations of E, homotopy classes of trivializations of

ΛnCE and Z.

Proof. First, since every matrix in Sp(2n;R) admits a polar decomposition as a product of a matrix

in U(n) ↪→ Sp(2n;R) and a symplectic positive definite matrix (the space of such matrices forms a

contractible set) the inclusion U(n) ↪→ Sp(2n;R) is a homotopy equivalence (see also [dS18, Section 2.7]),

so there is no difference between symplectic and unitary bundles.

By the classification of bundles B.0.2 the set of isomorphism classes of U(n) bundles is in bijection

with

[B,BU(n)] ∼= [S1, BU(n)] ∼= 0

since U(n) is connected. Hence every unitary bundle over B is trivial.

Now if E = B × Cn → B is a trivial bundle, then a trivialization (as an unitary bundle) of E is the

same as a continuous map B → U(n), so the set of homotopy classes of trivializations of E is

[B,U(n)] ∼= [S1, U(n)] ∼= π1(U(n))

where the last isomorphism follows from U(n) being a connected Lie group. If a map B → U(n) gives a

trivialization of E = B ×Cn, it is clear that B → U(n)
det−→ U(1) gives a trivialization on ΛnCE

∼= B ×C.

But it’s well known that the determinant det : U(n)→ U(1) induces an isomorphism on π1, so

π1(U(n)) ∼= π1(U(1)) ∼= Z

and we get the claimed natural bijections.

Now our fixed G-equivariant section s : X → ΛnCTX determines a trivialization of ΛnC (γ∗TX/∼)→ S1

as follows: we first get a trivialization

[0, 1]× C 3 (t, z) 7→ zs(γ(t)) ∈ γ∗ΛnCTX = ΛnC (γ∗TX) .

Since s is equivariant s(γ(1))z = s(gγ(0))z = g∗s(γ(0))z, so we get an induced trivialization

S1 × Cn → ΛnC (γ∗TX/∼) .

Now by lemma 4.2.4 there is a unique up to homotopy trivialization Ψ of γ∗TX/∼ that induces the

above one. We write the trivialization as Ψ(t) : R2n → Tγ(t)X with the condition that

Ψ(1) = (dg)γ(0) ◦Ψ(0).

We say that such a trivialization is compatible with s.

Remark 4.2.5. In [McL16, Lemma 4.3] it’s shown that if H1(X/G;Q) = 0 then the trivialization Ψ

does not depend on the section s up to homotopy. This is quite expected as this means that the set

H1(X/G;Z) parametrizing the choices of s (see remark 4.2.3) is torsion.

Moreover in [McL16] it’s explained how to relax the condition cG1 (X) = 0 to cG1 (X) being torsion in

H2
G(X;Z); in this case the bundle (ΛnCTX)

⊗N → X is trivial as a G-equivariant bundle for some N ∈ Z+.
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Definition 4.2.6. Let γ ∈ Pg(H) ⊆ P̃G(H) be a non-degenerate (see 3.1.2) Hamiltonian orbit and

consider a trivialization Ψ as discussed before. Let Φ : [0, 1]→ Sp(2n;R) be defined by

Φ(t) = Φγ(t) = Ψ(t)−1(dϕt)γ(0)Ψ(0) for t ∈ [0, 1].

Then we define a grading on the set P̃G(H) by

|γ| = µCZ(Φγ).

Since Ψ is uniquely determined up to homotopy, by the homotopy invariance of the Conley-Zehnder

index, the index |γ| is well defined.

Now we finally get our desired result that the relative index of a Floer trajectory is the difference of

the absolute indices.

Proposition 4.2.7. Let γ−, γ+ ∈ Pg(H) be non-degenerate orbits and let u ∈ M̂g(γ
−, γ+). Then

µ(u) = indDu = |γ+| − |γ−|.

Proof. Take a trivialization Ψ as in proposition 3.2.1 that is compatible with s in the same sense as

before: the trivialization it induces on the highest exterior power of u∗TX/∼ is given by the trivialization

of ΛnCTX as a G-bundle determined by s. Then clearly Ψ−, Ψ+ are also compatible with s, so theorem

3.2.4 gives

µ(u) = µCZ(Φ+)− µCZ(Φ−) = |γ+| − |γ−|.

4.3 Coherent orientations and orientable orbits

We will now explain how to assign coherent orientations by orienting certain determinant line bundles

δγ for each Hamiltonian orbit γ ∈ P̃G(H) in the Calabi-Yau case. By doing this, we will define (non-

)orientable Hamiltonian orbits in a way that mimics the definition of (non-)orientable critical points given

in definition 2.4.1. As we explained earlier, to construct the Floer complex of X we will need to exclude

non-orientable orbits from the generators. We think that the Calabi-Yau assumption can be avoided and

we sketch how in remark 4.3.7, but since this is the case we’re mainly interested in and it makes the

exposition cleaner we’ll stick to it. We will follow the approach in [Abo15].

Suppose that X is Calabi-Yau and fix a G-equivariant section s as in 4.2. We saw that in this case

there is a trivialization Ψ(t) : R2n → Tγ(t)X compatible with s which is canonical up to homotopy. Given

such trivialization we have a path of symplectic matrices Φ = Φγ : [0, 1] → Sp(2n;R) defined in 4.2.6.

Similarly to what we did in 3.2.3, we let S : S1 →M2n×2n(R) be the path of symmetric matrices defined

by

Φ̇(t) = J0S(t)Φ(t).

The idea is that we will associate to the path Φ a Fredholm operator DΦ defined over C (instead of the

cylinder [0, 1]×R) that near the cylindrical end of C looks like ∂s+J0∂t+S. Such operators can be glued

with the operators Du defined on the cylinder, and using that we can orient det(Du) (and in particular

attribute the numbers ν(u)) by orienting the determinant line bundles δγ = det(DΦ). We now make this

precise.

First, we give C \ {0} cylindrical coordinates (s, t) ∈ R× [0, 1] by (s, t) 7→ e−2π(s+it). We also let x, y

be the standard C coordinates, so e−2π(s+it) = x + iy. We consider an area form µ that is cylindrical
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in the cylindrical end, i.e., µ = dsdt for s � 0, and is the usual area form near 0 ∈ C, i.e., µ = dx dy

for s � 0. We also assume that the area form µ is radial, in the sense that µ = γ(s)dxdy for some

γ : R→ R+.

Before we proceed, let’s compute ∂s + J0∂t in the Cartesian x, y coordinates.

Proposition 4.3.1. Consider the cylindrical coordinates (s, t) such that e−2π(s+it) = x + iy. Then we

have

∂s + J0∂t = 2π(−x+ J0y)(∂x + J0∂y).

Proof. This is a straightforward application of the chain rule. Since x = e−2πs cos(2πt) and y =

−e−2πs sin(2πt) we have [
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

]
= 2π

[
−x −y
y −x

]
.

Hence

∂s + J0∂t = 2π (−x∂x − y∂y + J0y∂x − J0x∂y) = 2π(−x+ J0y)(∂x + J0∂y).

We want our operator DΦ to interpolate between ∂s+J0∂t+S in the cylindrical end and a (perturbed)

Cauchy-Riemann operator in the usual x, y coordinates near 0. We let B : C→M2n×2n(R) be a matrix

valued continuous function defined on C that is constant and equal to S on the cylindrical end of C, that

is, we ask that

B
(
e−2π(s+it)

)
= S(t) for s� 0.

Moreover we pick α : C→ R⊕ J0R ∼= C such that

α(x, y) = α(x+ iy) =

1 if s� 0

2π(−x+ J0y) if s� 0

and α never vanishes. Finally we take the operator DΦ : W 1,p
µ (C,R2n)→ Lpµ(C,R2n) defined by

DΦZ = α (∂xZ + J0∂yZ) +BZ. (4.2)

This operator is an admissible ∂̄-operator defined on C with a negative cylindrical end (negative

because of the minus sign in the cylindrical coordinates (s, t) 7→ e−2π(s+it)) in the sense of [Sch96,

Definition 3.1.6]. In particular we have:

Theorem 4.3.2. Assume that the symplectic path Φ is admissible (see A.0.1). Then the operator DΦ :

W 1,p
µ (C,R2n) → Lpµ(C,R2n) defined in (4.2) is a Fredholm operator of Fredholm index n − µCZ(Φ) for

every p ≥ 2. Moreover, its kernel does not depend on p ≥ 2.

Proof. This is contained in [Sch96, Theorems 3.1.9 and 3.3.8].

With this in mind, we can now define the determinant line bundle associated to γ.

Definition 4.3.3. Given a non-degenerate orbit γ ∈ P̃G(H) let Φ = Φγ and DΦ be an operator as before.

We let δγ be the determinant line bundle of DΦ, that is,

δγ = det(DΦ) =
(
Λtop ker(DΦ)

)
⊗
(
Λtopcoker(DΦ)

)∨
.
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It should be noted that the definition of DΦ depends on some extra data, namely the extension B of

S and the interpolating function α. This extra data forms a contractible set (the possible operators form

a convex set), so given any two such operators DΦ and D′Φ there are isomorphisms between det(DΦ)

and det(D′Φ) which are canonical up to multiplication by a positive constant. Moreover, it’s shown

in [Abo15, Proposition 1.4.10] that if Φ1 and Φ2 are given by two different trivializations both compatible

with s (hence homotopic) then there are isomorphisms det(DΦ1) ∼= det(DΦ2) which are canonical up

multiplication by a positive constant. Note that this last part doesn’t follow from a simple topological

argument as before, since the space of possible trivializations is

Maps(C∗, U(n))◦ ' Maps∗(S
1, U(n))◦ × U(n)

(see the proof of lemma 4.2.4), which has fundamental group Z. Here ◦ means the connected component

including the constant maps and Maps∗ means based maps.

There is a more conceptual way to understand δγ (which we won’t use). The determinant line bundle

gives an actual line bundle over the set of possible operators. The canonical isomorphisms we discussed

between the fibers give a trivialization of the bundle. For instance, in this sense an orientation of δγ

means an orientation of this bundle.

Remark 4.3.4. In [Abo15] the author considers an operator globally defined as

DΦ = ∂s + J0∂t +B = 2π(−x+ J0y)(∂x + J0∂y) +B.

This operator in not a ∂̄-operator because of the vanishing of −x + J0y at the origin. It seems that,

because of the failure of the uniform ellipticity condition (again because of the vanishing of −x + J0y)

such operators might not be Fredholm, and this is why we introduce the interpolating function α. I thank

Miguel Santos for very helpful discussions in this regard.

The next theorem is a result from the gluing theory of operators explained in [FH93], [Abo15] or

[Sch96]. This is what enables us to define an orientation on det(Du) given orientations on δγ for each γ.

Theorem 4.3.5. Let γ−, γ+ ∈ Pg(H) ⊆ P̃G(H) for some g ∈ G be non-degenerate Hamiltonian orbits

and u ∈ M̂g(γ
−, γ+) be a connecting orbit. Assume that X is Calabi-Yau. Then we have an isomorphism

δγ− ∼= det(Du)⊗ δγ+ (4.3)

which is canonical up to multiplication by a positive constant.

Proof. This is essentially [Abo15, Theorem 1.5.1]. If we take Ψ to be a trivialization of u∗TX/∼ compat-

ible with s then it restricts along the ends to trivializations of (γ±)∗TX/∼ compatible with s, so the same

proof applies: we can apply [Abo15, Lemma 1.4.5] (or [FH93, Proposition 9]) and [Abo15, Proposition

1.4.6] to get the result.

Now in order to get coherent orientations on the moduli spaces we fix for each γ ∈ P̃G(H) an

orientation of δγ . Equation (4.3) then induces an orientation in the determinant line bundle det(Du).

Suppose now that (H,J) is regular, and thus Du is surjective. Then

det(Du) = Λtop ker(Du) = Λtop
(
TuM̂g(γ

−, γ+)
)
.

So we get an orientation on the manifold M̂g(γ
−, γ+). Recall thatMg(γ

−, γ+) is defined as the quotient

M̂g(γ
−, γ+)/R where R acts on M̂g(γ

−, γ+) by (σ · u)(t, s) = u(t, s+ σ) for σ ∈ R. In particular we get

signs for the rigid Floer trajectories.
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Definition 4.3.6. Assume that X is Calabi-Yau and that (H,J) is a regular pair. Let γ−, γ+ ∈ Pg(H) be

non-degenerate orbits and let u ∈ M̂g(γ
−, γ+) be a rigid Floer trajectory, that is, µ(u) = |γ+|− |γ−| = 1.

Then kerDu is one dimensional and generated by the translation in the s-variable which we denote

by ∂s ∈ kerDu = det(Du). If the orientation of kerDu induced by equation (4.3) makes ∂s positive we

assign the number ν(u) = 1 and otherwise we assign ν(u) = −1.

It can be shown that the orientations assigned in this way are coherent in the sense discussed in

section 3.3 by considering the natural isomorphism we get from gluing theory

det(Du#v) ∼= det(Du)⊗ det(Dv).

Remark 4.3.7. It should be possible to adapt this point of view for coherent orientations even if we drop

the Calabi-Yau condition. To do this we can consider the covering of Hamiltonian orbits whose elements

are pairs (γ,Ψ) where Ψ is a trivialization up to homotopy (or some other appropriate covering) and

define determinant line bundles δ(γ,Ψ). Then we get an isomorphism

δ(γ−,Ψ−)
∼= det(Du)⊗ δ(γ+,Ψ+)

as in 4.3.5 as long as the trivializations Ψ± extend to a trivialization over the cylinder u.

4.3.1 Maps induced by G on determinant line bundles

Recall that we have a G-action on the set P̃G(H) of Hamiltonian orbits. Indeed given γ ∈ Pg(H) and

h ∈ G we have hγ ∈ Phgh−1(H). Similarly if u ∈ M̂g(γ
−, γ+) then hu ∈ M̂hgh−1(hγ−, hγ+). We’ll see

in this section that we have induced maps

h∗ : δγ → δhγ and h∗ : det(Du)→ det(Dhu).

Given a trivialization Ψ(t) : R2n → Tγ(t)X of γ∗TX/∼ compatible with s, let the trivialization h∗Ψ

be given by the composition

h∗Ψ(t) = R2n Ψ(t)−→ Tγ(t)X
(dh)γ(t)−→ Thγ(t)X.

This is a trivialization of the bundle (hγ)∗TX/∼; indeed note that

h∗Ψ(0) = (dh)γ(0)(dg)γ(0)Ψ(1) = d(hgh−1)hγ(0)h∗Ψ(1).

Moreover since since s is G-equivariant and h ∈ G it’s clear that if Ψ is compatible with s then h∗Ψ is

also compatible with s. It follows that the path of symplectic matrices Φhγ associated to hγ using the

trivialization h∗Ψ is

Φhγ(t) = Ψ(t)−1(dh)−1
γ(t)(dϕt)hγ(0)(dh)γ(0)Ψ(0).

Since H is h-invariant it’s easy to see that h∗X
H
t = XH

t , and thus the differentials (ϕt)∗ and h∗ commute.

Hence

Φhγ(t) = Ψ(t)−1(dϕt)γ(0)Ψ(0) = Φγ(t).

Thus we get a canonical isomorphism (up to multiplication by a positive constant)

δγ ∼= det(DΦγ ) = det(DΦhγ ) ∼= δhγ .
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We denote by h∗ : δγ → δhγ this isomorphism. Similarly, we get an isomorphism h∗ : det(Du) →
det(Dhu). This last isomorphism can be also understood as follows: assume that (H,J) is regular. Then

composition with h is a diffeomorphism

M̂g(γ
−, γ+)→ M̂hgh−1(hγ−, hγ+)

given by u 7→ hu. The differential at u then gives an isomorphism

h∗ : ker(Du) = TuM̂g(γ
−, γ+)→ ThuM̂hgh−1(hγ−, hγ+) = ker(Dhu).

Finally, since Du is surjective, we have det(Du) = Λtop kerDu, so we get the induced map h∗ : det(Du)→
det(Dhu). It should be noted that h∗ : det(Du) → det(Dhu) sends the translation in the s-variable

∂s ∈ ker(Du) to ∂s ∈ ker(Dhu).

With this in mind we can now say what we mean with an orientable Hamiltonian orbit. This is the

Floer analogue of orientable critical points in [CH14].

Definition 4.3.8. Let γ ∈ Pg(H) ⊆ P̃G(H) and assume that X is Calabi-Yau. We say that γ is an

orientable Hamiltonian orbit if for every h ∈ C(g) such that hγ = γ the isomorphism h∗ : δγ → δγ is

orientation preserving. Otherwise we say that γ is non-orientable. We denote by P̃G(H)+ the set of

orientable Hamiltonian orbits.

Note that h ∈ C(g) and hγ = γ means that h is in the isotropy group of γg with respect to the action

of G on P̃G(H).

4.4 Orbifold Floer complex

We are now ready to give a correct definition of orbifold Floer homology in characteristic not 2. Once

again, in this section we will always assume that cG1 (X) = 0. We will begin by giving the construction

from a more abstract point of view using orientation lines instead of fixing coherent orientations, as

in [Abo15]; in this approach the problems we described earlier are solved naturally. After that we fix

orientations to give a more concrete description of the complex; in doing so we have to exclude non-

orientable Hamiltonian orbits.

4.4.1 Abstract orbifold Floer complex

For each γ ∈ P̃G(H) we have the determinant line bundle δγ . Letting Λ be a Novikov ring, we have an

orientation line Λγ which is defined as the Λ-module

Λγ = Λ〈o1, o2〉/(o1 + o2 = 0)

where o1, o2 are the two orientations of the determinant line bundle δγ . Note that picking an orientation

o1 or o2 determines an isomorphism Λγ ∼= Λ · γ (here Λ · γ is simply the Λ-module generated by Λ,

which is isomorphic to Λ as a module over itself). Moreover, any map on determinant line bundles

which is canonical up to multiplication by a positive factor induces a canonical map on orientation lines.

For instance h∗ : δγ → δhγ induces a map also denoted by h∗ : Λγ → Λhγ ; if we fix orientations and

identify Λγ ∼= Λ ∼= Λhγ such a map is either the identity or multiplication by −1, depending on whether

h∗ : δγ → δhγ respects the given orientations or not.
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We let

C̃F k(X , H; Λ) =
⊕

γ∈P̃G(H)
|γ|=k

Λγ and C̃F (X , H; Λ) =
⊕
k∈Z

C̃F k(X , H; Λ) (4.4)

where |γ| is the grading defined in 4.2.6. If we pick orientations for each δγ we get an identification

between this description and the one in (4.1).

Assume that (H,J) is regular. To describe the differential in this terms, recall the isomorphism in

lemma 4.3.5. If u ∈ M̂g(γ
−, γ+) is rigid, that is, µ(u) = 1 then det(Du) = ker(Du) = R · ∂s where ∂s

corresponds to translation in the s-variable. By picking the orientation on det(Du) corresponding to the

generator ∂s the isomorphism in 4.3.5 induces a map on the orientation lines ∂u : Λγ+ → Λγ− . More

precisely, ∂u is the map induced on the orientation lines by

δγ+
∂s⊗·−→ detDu ⊗ δγ+

4.3−→ δγ− .

Finally we define ∂ : C̃F k(X , H; Λ) → C̃F k−1(X , H; Λ) as follows: for γ+ ∈ Pg(H) ⊆ P̃G(H) with

|γ+| = k the differential restricted to Λγ+ is given by

∂|Λγ+ =
∑

γ−∈Pg(H)

|γ−|=k−1

∑
u∈Mg(γ−,γ+)

Tω(u)∂u. (4.5)

Indeed this differential is nothing else than the differential we already defined in 3.3.5. First, by propo-

sition 4.2.7, the sum runs through the rigid trajectories u ∈ Mg(γ
−, γ+), since µ(u) = |γ+| − |γ−| = 1.

Moreover, when we fix orientations on every δγ the maps δu are just multiplication by ν(u) ∈ {+1,−1},
that is, the following square commutes:

Λγ+ Λγ−

Λ · γ+ Λ · γ−

∂u

×ν(u)

The vertical arrows are just the identifications given by fixing orientations. This square commuting is

just a restatement of the definition of ν(u) in 4.3.6. In particular if (H,J) has no-bubbling and we assume

3.3.6 then ∂2 = 0.

The group G acts on the complex C̃F k(X , H; Λ) via the maps h∗ : Λγ → Λhγ for each h ∈ G. It’s very

important that if we fix orientations this action does not correspond to the G action in the beginning of

this chapter: it differs by some signs that are introduced when h∗ : δγ → δhγ doesn’t respect the given

orientations. Indeed, this action now makes the differential G-equivariant.

Lemma 4.4.1. Suppose that (H,J) is regular and has no-bubbling. Let Λ = Λuniv(R) be a Novikov.

Then the differential ∂ : C̃F (X , H; Λ) → C̃F (X , H; Λ) is equivariant with respect to the G-action on

C̃F (X , H; Λ). In particular ∂ restricts to a differential on the G-invariant part

∂ : CF (X , H; Λ)→ CF (X , H; Λ)

where CF (X , H; Λ) = C̃F (X , H; Λ)G is the G-invariant part.

Proof. Let u ∈ M̂g(γ
−, γ+). First note that the following diagram commutes:

48



δγ+ det(Du)⊗ δγ+ δγ−

δhγ+ det(Dhu)⊗ δhγ+ δhγ−

∂s⊗

h∗ h∗ h∗

∂s⊗

The first square commutes since the map h∗ : det(Du)→ det(Dhu) sends ∂s ∈ det(Du) to ∂s ∈ det(Dhu).

The second square commuting is straightforward from the definitions of the maps involved.

Thus it follows that h∗∂u = ∂huh∗. After this observation, the proof follows a formal argument as in

the proof of 4.1.3.

With this in mind, we can now give a definition of Floer homology for the global quotient orbifold X .

Definition 4.4.2. Let (X,ω) be a symplectic manifold and G a finite group acting on (X,ω) by sym-

plectomorphisms such that X = [X/G] is Calabi-Yau (equivalently, cG1 (X) = 0). Suppose that (H,J) ∈
CG(R ×X) × JG(X,ω) is a regular pair and has no-bubbling (in the sense of 4.1.2). Let Λ = Λuniv(R)

be a Novikov ring.

Let CFk(X , H; Λ) be the G-invariant part of C̃F k(X , H; Λ) defined in (4.4). By lemma 4.4.1 we

have a restricted differential ∂ = ∂H,J : CF k(X , H; Λ) → CF k−1(X , H; Λ). Then (CF∗(X , H; Λ), ∂H,J)

is called the Floer complex of X .

Assuming 3.3.6 we define the k-th Floer homology group of the orbifold X to be the Λ-module

HFk(X , H, J ; Λ) =
ker (∂ : CFk → CFk−1)

im (∂ : CFk+1 → CFk)
.

4.4.2 Orbifold Floer complex with fixed orientations

We will now explain how does the Floer complex that we defined in the previous section look like when

we fix orientations.

The first observation is that if γ ∈ Pg(H) ⊆ P̃G(H) is non-orientable (see 4.3.8) then there is h ∈ C(g)

such that hγ = γ and h∗ : δγ → δγ is orientation-reversing. Hence h∗ : Λγ → Λγ is multiplication by

−1. But then an element of C̃F (X , H; Λ) =
⊕

γ∈P̃G(H) Λγ which is G-invariant must have 0 in each

component Λγ relative to a non-orientable orbit γ, so C̃F (X , H; Λ)G is contained in the sub-complex

generated by orientable orbits

C̃F (X , H; Λ)+ =
⊕

γ∈P̃G(H)+

Λγ .

We can choose orientations of δγ for γ ∈ P̃G(H)+ so that h∗ : δγ → δhγ preserves these orientations

for every γ ∈ P̃G(H)+. We can do this as follows: pick representatives γ1, . . . , γ` ∈ P̃G(H)+ for each

equivalence class in PG(H)+ = P̃G(H)+/G and fix an orientation of δγj for j = 1, . . . , `. For each

γ ∈ P̃G(H)+ there are j and h ∈ G such that γ = hγj . Then we define the orientation on δγ so that the

isomorphism h∗ : δγj → δγ is orientation preserving; this is well defined because, if h, h′ ∈ G are such

that γ = hγj = h′γj , then we have a commutative diagram

δγj δγ

δγj

h′∗

(h−1h′)∗ h∗
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and the vertical arrow is orientation preserving since γj is an orientable orbit. With such a choice of

orientations we get identifications Λγ ∼= Λ · γ for γ ∈ P̃G(H)+ such that for h ∈ G the map h∗ : Λ · γ =

Λγ → Λhγ = Λ ·(hγ) sends the generator γ to the generator hγ. Thus the Floer complex can be described

as

CF (X , H; Λ) = C̃F (X , H; Λ)G =
(
C̃F (X , H; Λ)+

)G
∼=

 ⊕
γ∈P̃G(H)+

Λ · γ

G

and the G-action on
⊕

γ∈P̃G(H)+ Λ · γ is just the Λ-linear extension of the action of G on P̃G(H)+.

Equivalently, this is isomorphic to the Λ-module generated by PG(H)+.

In this description, CF (X , H; Λ) is a sub-complex of the naive version C̃F (X , H; Λ) ∼=
⊕

γ∈P̃G(H) Λ·γ,

which we discussed in 4.1.1, and inherits its differential. The point is that to define the orbifold Floer

complex we can’t just take the G-invariant part as we tried in 4.1.1 but first we must exclude non-

orientable orbits.

Remark 4.4.3. It seems that the need to exclude non-orientable critical points (Hamiltonian orbits) from

the Morse (Floer) homology is related to the need to exclude bad Reeb orbits in contact homology.

In [HHM17] a discrete approach to (local) contact homology is considered; this approach uses a Z/k-

equivariant Morse homology. In lemma 2.22 it’s shown that good Reeb orbits correspond precisely to an

orientation preserving condition.
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Chapter 5

Equivariant transversality

In this chapter we will discuss the problem of transversality in our construction of Floer homology

for global quotient orbifolds. Recall that in order to define the Floer differential ∂ we need that, for

certain equivariant Hamiltonian function H and equivariant almost complex structure J , the moduli

spaces M̂g(γ
−, γ+;H,J) are manifolds of the correct dimension. In theorem 3.2.5 we saw that this is

a consequence of the regular value theorem for Banach manifolds if the operator Du : W 1,p
g (u∗TX) →

Lpg(u
∗TX) is surjective for every u ∈ M̂g(H,J) and g ∈ G. Recall that we call a pair

(H,J) ∈ C∞G (R×X)× JG(X,ω)

regular if this happens (definition 4.1.2).

The approach usually taken is to perturb H or J so that the pair becomes regular. In our work we

chose to consider perturbations of J , as these are slightly easier to work out for technical reasons. Hence,

given some fixed H we would like to show that the set of J ∈ JG(X,ω) such that (H,J) is regular is

dense in JG(X,ω). Unfortunately the equivariant restriction poses a severe obstruction to transversality,

as we shall explain in the next section. However, we will prove a weaker result in theorem 5.2.7. This is

enough to get transversality in the usual sense for instance when the singularities of the orbifold [X/G]

are isolated.

5.1 Obstruction to equivariant transversality

We now briefly explain the simplest possible obstruction to equivariant transversality. Suppose that for

some pair (H,J) we have a Floer trajectory u ∈ M̂1(H,J) whose image is contained in Xg for some g ∈ G.

Then the spaces W 1,p(u∗TX), Lp(u∗TX) admit an obvious 〈g〉-action since (dg)u(s,t) maps Tu(s,t)X to

itself. Moreover if (H,J) are equivariant then clearly the operator Du is also equivariant with respect to

this action. Hence Du restricts to

Dg
u : W 1,p(u∗TX)g → Lp(u∗TX)g.

By W 1,p(u∗TX)g, Lp(u∗TX)g we mean the subspaces of W 1,p(u∗TX), Lp(u∗TX), respectively, fixed by

the 〈g〉-action described above. The operator Dg
u is the operator that would appear if we were trying to

define Floer homology in Xg associated to the Floer trajectory u : [0, 1] × R → Xg. So geometrically

it’s expected that, if transversality holds, then indDu ≥ indDg
u, as these are the dimensions of moduli
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spaces of Floer trajectories in X and Xg, respectively. Indeed if Du is surjective

indDu = dim kerDu ≥ dim kerDg
u ≥ indDg

u

since kerDg
u = kerDu ∩W 1,p(u∗TX)g.

Thus, if indDg
u > indDu then Du is not surjective. Moreover this situation is stable under (equiv-

ariant) perturbation of H or J : if (H ′, J ′) is close to (H,J) and still equivariant then there is a Floer

trajectory u′ ∈ M̂1(H ′, J ′) near u, and by stability of the Fredholm index we still have indDg
u′ > indDu′ ,

and hence Du′ is not surjective. So we conclude that there is a neighbourhood of (H,J) without regular

pairs, which is a very unpleasant situation.

A concrete example in which this situation happens in Lagrangian Floer homology may be found

in [SS10]. But an easy example can even be found in Morse homology. Consider the torus T2 with the

classical embedding in R3 and the height function H : T2 → R; H has 4 critical points of indices 0, 1, 1, 2

and there are two trajectories between the two points of indices 1. Take a Z/2 action given by reflection

in a plane containing the trajectories between the two points of indices 1. Then what we described

before happens for these trajectories: the Fredholm index relative to these trajectories in T2 is 0 but

the Fredholm index of these trajectories in (T2)Z/2 is 1. Geometrically it’s also clear that an equivariant

perturbation of H cannot destroy these trajectories between the points of index 1, which would not exist

if we had transversality.

5.2 Proof of transversality when imu 6⊆ Xg

We saw before an obstruction to obtain equivariant transversality when there are Floer trajectories fixed

by some g ∈ G \ {1}. We now will prove that when this does not happen then transversality can be

achieved by perturbing the (time dependent) almost complex structure. Our proof is an adaptation

of [KS02, Proposition 5.13] (which is in the context of Lagrangian Floer homology and G = Z/2). As in

the usual proof, ours will use the existence of “many” injective points, in an appropriate sense.

Definition 5.2.1. Given a Floer trajectory u ∈ M̂g(γ
−, γ+;H,J) we say that a point (t0, s0) ∈ [0, 1]×R

is G-injective if

∂su(t0, s0) 6= 0 and u(t0, s0) /∈ u(t0,R \ {s0}) ∪
⋃

g∈G\{1}

g u(t0,R).

We denote by R(u) the set of G-injective points of u.

Recall that we’re using the notation R = R∪{±∞} and u(t,±∞) = γ±(t). We now proceed to prove

an abundance of G-injective points for Floer trajectories that are not fixed by some non-trivial element

of G.

Lemma 5.2.2. Let u ∈ M̂g(γ
−, γ+;H,J) be a non-constant Floer trajectory (i.e., with ∂su 6= 0) and

assume that im(u) is not contained in Xg for any g ∈ G \ {1}. Then the set of G-injective points R(u)

is dense in [0, 1]× R.

Remark 5.2.3. Note that the condition that u does not lie in any fixed point set is necessary, otherwise

u(t0, s0) = gu(t0, s0) for every (t0, s0) and there are no injective points.

It’s expected, given the obstruction discussed before, that our proof fails to address solutions with

image in Xg.
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We proceed now to state a few facts (which are fairly standard) that will be useful in the proof of

lemma 5.2.2.

Claim 5.2.4. Let u : [0, 1] × R → X be a solution of Floer equation (3.2) such that ∂su 6= 0. Then the

set

{(t, s) ∈ [0, 1]× R : ∂su(t, s) 6= 0, u(t, s) /∈ u(t,R \ {s}}

is open and dense.

Proof. This is the usual abundance of injective points, see for instance [FHS95, Theorem 4.3].

Claim 5.2.5. Let u, v : [0, 1] × R → X be solutions of Floer equation (3.2), and assume that u is not

obtained from v by a translation in the s variable. Then the set

{(t, s) ∈ [0, 1]× R : u(t, s) /∈ v(t,R)}

is of Baire second category.

Proof. By 3.4.1 we can assume that H = 0 and u, v are holomorphic curves. But in this case this follows

from claim (J5) in the proof of [KS02, Lemma 5.12] as the set is the intersection⋂
n>0

{(t, s) ∈ [0, 1]× R : u(t, s) /∈ v(t× [−n, n])}

of open and dense sets.

Claim 5.2.6. Let u : [0, 1] × R → X be a solution of Floer equation (3.2) such that ∂su 6= 0 and

γ : [0, 1]→ X a Hamiltonian orbit. Then the set

{(t, s) ∈ [0, 1]× R : u(t, s) 6= γ(t)}

is of Baire second category.

Proof. Apply claim 5.2.5 to u and v(t, s) = γ(t), which is also a solution of Floer equation since γ is

Hamiltonian.

Proof of 5.2.2. Write

R(u) = A(u) ∪
⋃
g∈G

Bg(u) ∪ C+
g (u) ∪ C−g (u)

where

A(u) = {(t, s) ∈ [0, 1]× R : ∂su(t, s) 6= 0}

B1(u) = {(t, s) ∈ [0, 1]× R : u(t, s) /∈ u(t,R \ {s})}

Bg(u) = {(t, s) ∈ [0, 1]× R : u(t, s) /∈ gu(t,R)} for g ∈ G \ {1}

C±g (u) = {(t, s) ∈ [0, 1]× R : u(t, s) /∈ gu(t,±∞)} for g ∈ G

To prove denseness it’s enough to prove that each of these sets is of Baire second category. Note that

A(u) ∪B1(u) ∪ C+
1 (u) ∪ C−1 (u)
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is the set of injective points of u in the usual sense, so it’s open and dense by claim 5.2.4. By claim 5.2.6

the sets C±g (u) are of Baire second category. It remains to show that Bg(u) is also dense for g 6= 1. Let

v(t, s) = g(u(t, s)). We prove that v is not a translation of u in the s-variable. Assume otherwise that

u(t, s+ σ) = v(t, s) = gu(t, s)

and let m = |G|. Since gm = 1 it follows that

u(t, s+mσ) = gmu(t, s) = u(t, s)

so u is periodic in the s-variable. But this contradicts the fact that the limit lims→+∞ u(t, s) exists,

unless u(t, s) = u(t,+∞) and u is constant. Thus it follows that Bg(u) is of Baire second category by

5.2.5.

We’re left with proving that R(u) is open. Since A(u)∪B1(u)∪C+
1 (u)∪C−1 (u) is already open by claim

5.2.4, it’s enough to prove that Bg(u)∪C+
g (u)∪C−g (u) is open for g 6= 1. Assume it’s not. Then there is a

sequence (tk, sk)→ (t, s) such that (t, s) ∈ Bg(u)∩C+
g (u)∩C−g (u) and (tk, sk) /∈ Bg(u)∩C+

g (u)∩C−g (u);

pick a sequence s′k ∈ R such that u(tk, sk) = gu(tk, s
′
k). Since R is compact we may assume by taking a

subsequence that s′k → s′ ∈ R. But then taking limits we have u(t, s) = gu(t, s′), contradiction.

Theorem 5.2.7 (Weak equivariant transversality). Let (X,ω) be a symplectic manifold, G a finite group

acting on (X,ω) and H : X → R a non-degenerate Hamiltonian. For ` ≥ 1 there is a C` dense subset

J regG (X,ω) of JG(X,ω) such that if J ∈ J regG (X,ω) then, for every Floer trajectory u ∈ M̂g(H,J) whose

image is not contained in Xh for any h ∈ G \ {1}, Du is surjective.

Proof. As in the proof of 3.2.5 we consider the space B1,p
g (γ−, γ+) of “W 1,p-maps” (with p > 2) u :

[0, 1]× R→ X such that

u(1, s) = gu(0, s)

and

u(t, s)
C∞−→ γ±(t) when s→ ±∞,

defined in (3.9). We also introduce the notation

B1,p
g (γ−, γ+)∗ = {u ∈ B1,p

g (γ−, γ+) : im(u) 6⊆ Xh ∀h ∈ G \ {1}}.

The space B1,p
g (γ−, γ+) is a Banach manifold locally modelled by W 1,p

g (u∗TX) and B1,p
g (γ−, γ+)∗ is an

open subset, hence also a Banach manifold. Denote by J `G the completion of JG(X,ω) with respect to

the C` topology, which is also a Banach manifold. We let E be the bundle over B1,p
g (γ−, γ+) whose fiber

over u ∈ B1,p
g (γ−, γ+) is Lpg(u

∗TX). Then the parametrized Floer operator is the map

F : B1,p
g (γ−, γ+)× J `G → E

defined by

F(u, J) = ∂su+ Jt(u)
(
∂tu−Xt

H(u)
)
∈ Eu.

We now consider the universal moduli space

M̂univ = M̂univ, g(γ
−, γ+;H) = {(u, J) ∈ B1,p

g (γ−, γ+)∗ × J `G : F(u, J) = 0}.
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In order to apply the Sard-Smale theorem (see [Sma65, Theorem 1965] or [dS18, Theorem 2.10.6]) to get

our result we’ll need to show that M̂univ is a Banach manifold, which is the difficult part of transversality.

Since M̂univ is the pre-image of the zero section of E by F , we want to show that the differential

Du,J : W 1,p
g (u∗TX)× TJJ `G

(dF)(u,J)−→ T(u,0)E
π2−→ Lpg(u

∗TX)

is surjective whenever F(u, J) = 0 – compare with the proof of theorem 3.2.5 for a similar argument.

The tangent space TJJ `G consists of paths of sections Yt of End(TX) such that

JtYt + YtJt = 0, ω(Ytv, w) + ω(v, Ytw) = 0 and g∗Yt+1 = Yt ∀g ∈ G.

The tangent space TJJ ` of not-necessarily equivariant (time dependent) almost complex structures is

given by the first two conditions, and consists of sections of End(TX, Jt, ω).

We have

Du,J(ξ, Y ) = Duξ + Yt(u)
(
∂tu−XH

t (u)
)

= Duξ − Yt(u)∂su.

Since Du is Fredholm by 3.2.4 and imDu,J ⊇ imDu we have that imDu,J is closed, so it’s enough to

prove that it’s dense. Suppose not; then there is η ∈ Lqg(u∗TX) \ {0} such that 〈η,Du,J(ξ, Y )〉 = 0 for

every (ξ, Y ) ∈ W 1,p
g (u∗TX) × TJJ `, where 1/p + 1/q = 1 (making Lqg(u

∗TX) the dual of Lpg(u
∗TX).

Then we have ∫
[0,1]×R

〈η,Duξ〉 = 0 and

∫
[0,1]×R

〈η, Yt∂su〉 = 0 (5.1)

for every (ξ, Y ). From the first equation η is a weak solution of D∗uη = 0, and by elliptic regularity it

follows that η is C`. We now use the second equation to arrive at a contradiction. Assume η(t0, s0) 6= 0

and (t0, s0) /∈ R(u). Since ∂su(t0, s0) 6= 0 we can construct Y0 ∈ End(Tu(t0,s0)X, Jt0 , ω) such that

(see [SZ92, Section 8])

〈η(t0, s0), Y0∂su(t0, s0)〉 > 0.

We extend Y0 arbitrarily to a section of Ŷ ∈ TJJ ` (not necessarilyG-equivariant) such that Ŷt0(u(t0, s0)) =

Y0. Multiplying Ŷ by a cut-off function as in [FHS95, Remark 4.4] we get a new section Ỹ ∈ TJJ `

such that we still have Ỹt0(u(t0, s0)) = Y0 and Ỹt(x) is supported in a small neighbourhood of (t, x) =

(t0, u(t0, s0)). To be precise, by taking the support of the cut-off function to be arbitrarily small we can

assume that:

1. There is a neighbourhood U of u(s0, t0) and ε > 0 such that Yt(x) = 0 if t /∈]t0− ε, t0 + ε[ or x /∈ U .

2. We have 〈η(t, s), Ỹt(u(t, s))∂su(t, s)〉 ≥ 0 for every (t, s) ∈ [0, 1]× R.

3. Since u(t0, s0) /∈ gu(t0,R) by shrinking U and ε we assume that

U ∩ gu(]t0 − ε, t0 − ε[,R) = ∅.

Now we average to get an equivariant section

Yt =
∑
g∈G

g∗Ỹt ∈ TJJ `G.

Finally we see that this Y contradicts (5.1). Indeed we have∫
[0,1]×R

〈η, Yt∂su〉 =
∑
g∈G

∫
[0,1]×R

〈η, (g∗Ỹt)∂su〉
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=
∑
g∈G

∫
[0,1]×R

〈η(t, s), g−1
∗ Ỹt(g(u(t, s)))g∗∂su(s, t)〉dtds. (5.2)

By 1. and 3. above we have Ỹt(g(u(t, s))) = 0 for g 6= 1 and (t, s) ∈ [0, 1] × R, so the respective integral

for each g 6= 1 is 0. For g = 1 the integral is positive by 2., thus we get a contradiction with (5.1). Hence

η(t0, s0) = 0 for every (t0, s0) ∈ R(u), and since R(u) is dense by lemma 5.2.2 it follows that η = 0. Thus

we conclude that Du,J is surjective and M̂univ is a Banach manifold.

We now prove that the projection π : M̂univ → J `G is Fredholm. Its differential is the projection

(dπ)(u,J) : T(u,J)M̂univ → TJJ `G

where

T(u,J)M̂univ = {(ξ, Y ) ∈W 1,p
g (u∗TX)× TJJ `G : Duξ − Yt(u)∂su = 0}.

So ker(dπ)(u,J) = kerDu is finite dimensional since Du is Fredholm by 3.2.4. For the cokernel, we denote

by ρ : TJJ `G → Lp(u∗TX) the map ρ(Y ) = Yt(u)∂su. It’s then clear that Y ∈ im (dπ)(u,J) if and only

if ρ(Y ) ∈ imDu, and thus it follows that ρ induces an injection coker (dπ)(u,J) → cokerDu, and again

by the fact that Du is Fredholm we get that coker (dπ)(u,J) is finite dimensional and hence (dπ)(u,J) is

Fredholm.

Finally by Sard-Smale theorem (see [Sma65, Theorem 1965] or [dS18, Theorem 2.10.6]) there is a

second Baire category subset J reg, g, γ
−, γ+

G (X,ω) ⊆ JG(X,ω) of regular points of the projection π. We

claim that for J ∈ J reg, g, γ
−, γ+

G (X,ω) and every u ∈ M̂g(γ
−, γ+;H,J) ∩ B1,p

g (γ−, γ+)∗ the operator

Du is surjective. Indeed, since J is a regular point of π the operator (dπ)(u,J) is surjective for u ∈
M̂g(γ

−, γ+;H,J); by our previous observation it follows that ρ(Y ) ∈ imDu for every Y ∈ TJJ `G. But

then

Lp(u∗TX) = imDu,J = imDu + im ρ = imDu

so Du is also surjective.

Now by letting J regG be the intersection of J reg, g, γ
−, γ+

G running through g ∈ G and γ−, γ+ ∈ Pg(H)

we get the desired second Baire category (in particular dense) set.

Translating this to the orbifold language, we’re saying that we only have transversality problems for

Floer trajectories contained in the singularity set. Note that we showed that there is no problem even

if a Floer trajectory intersects the singularity set as long as it’s not contained in it; because of this, we

would not be able to prove theorem 5.2 by simply looking for transversality in the non-singular set.

As we discussed before, full transversality can’t be achieved in general. But by requiring some con-

dition on the orbifold [X/G] this is possible. The simplest such condition is that its singularities are

isolated.

Corollary 5.2.8. Assume that Xg is a discrete set for g ∈ G \ {1}. Then there is a C` dense subset

J regG (X,ω) of JG(X,ω) such that if J ∈ J regG (X,ω) then (H,J) is regular.

Proof. Since Xg is discrete, the only Floer trajectories contained in some Xg are constant maps (in t and

s), and for those Du is automatically surjective. Hence this is a direct consequence of theorem 5.2.7.

We suspect that in general the moduli spaces M̂g(γ
−, γ+;H,J) have reasonable ramified singularities

at the trajectories u fixed by some g 6= 1. It would be interesting to understand this and to try to define

Floer homology from these singular moduli spaces.
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Remark 5.2.9. In [HHM17] it’s shown that when G = Z/k is cyclic and acts on a manifold X there is

always a G-invariant Morse-Smale pair (H, g), even though the set of such pairs is not dense! This gives

some hope that there is always some regular pair (H,J) ∈ CG(R×X)×JG(X,ω). Indeed by proposition

6.0.2 it’s enough to find a pair (H,J) such that H|Xg is Morse-Smale for every g.

5.3 Another approach to equivariant transversality

We would now like to describe a way to go around this inevitable equivariant transversality problem by

defining Floer homology in a different way. We’ll only give a rough idea of this approach and we won’t use

it again, but it really is a better way to define Floer homology of principal quotient orbifolds as it avoids

completely equivariant transversality and only needs the usual transversality theory for Floer homology.

This is an adaptation of the solution explained in the last section of [CH14] to the analogous problem in

Morse homology.

The Floer homology, as defined earlier, admits a decomposition indexed by conjugacy classes (g) of

G

HF (X , H, J ; Λ) =
⊕
(g)

HF (g)(X , H, J ; Λ)

where HF (g)(X , H, J ; Λ) is the homology of the complex

CF (g)(X , H; Λ) ∼=

 ⊕
γ∈Pg(H)+

Λ · γ

C(g)

.

This will be explained in the beginning of section 6.1. For simplicity of the discussion let’s pretend that

there are no non-orientable orbits, i.e. Pg(H)+ = Pg(H).

What we will do is redefining HF (g)(X , H, J ; Λ) by using not G-equivariant Hamiltonian and almost

complex structure, but only an Hamiltonian and an almost complex structure that satisfy the conditions

we asked for in chapter 3. For each conjugacy class (g) we choose a representative g and pick a pair

(H,J) ∈ Cg(R×X)× Jg(X,ω)

that is regular in the sense of definition 3.2.8. This condition is generic (both in H and J) by [FHS95,

Theorem 5.1]. So we can define the complex CF (X, g,H; Λ) as in 3.3.5; note that if X is Calabi-Yau

then c1(X) = 0, so we have no-bubbling – see section 3.3.2.

The tricky part is that if H is not G-invariant we don’t have an action of C(g) on CF (X, g,H; Λ).

Indeed, if γ is a Hamiltonian orbit then hγ is a Hamiltonian orbit of H ◦ h−1, and not H. So for each

h ∈ C(g) what we get is a chain complex isomorphism

h· : CF (X, g,H; Λ)→ CF (X, g,H ◦ h−1; Λ).

But the standard theory of invariance in Floer homology (see for instance [AD14, Part 11]) allows us to

construct a chain map

φh : CF (X, g,H ◦ h−1; Λ)→ CF (X, g,H; Λ)

which induces an isomorphism on homology. This is done by picking a regular homotopy of pairs between

(H ◦ h−1, (h−1)∗J) and (H,J) and counting solutions of a parametrized Floer equation. Then we get
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a weak action in the sense of [CH14, Definition 7.2] of C(g) on CF (X, g,H; Λ) by letting h ∈ C(g) act

through the composition

CF (X, g,H; Λ)
h·→ CF (X, g,H ◦ h−1; Λ)

φh→ CF (X, g,H; Λ).

A weak action induces an action on homology.

Remark 5.3.1. Suppose C is a chain complex over a field Λ of characteristic 0 and K is a finite group

acting on C. Then the K-invariant part of the homology of C is the homology of the K-invariant part

of C, that is, H∗(C
K) = H∗(C)K .

By the remark above, it’s now clear that if we’re working over a field of characteristic 0 we can define

HF (g)(X , H, J ; Λ) as the C(g)-invariant part of HF (X, g,H, J ; Λ).

Note that if (H,J) is already a regular pair and we then H ◦ h−1 = H and (h−1)∗J = J , so we can

choose a constant homotopy of pairs making φh = id. Then this alternative approach leads to the original

definition of HF (g)(X , H, J ; Λ).

Finally, we observe that from this perspective we should be able to prove invariance of Floer homology

of orbifolds as done in [CH14, Section 7.3] and using the standard techniques in Floer homology. Even

more, it should be true that the decomposition HF (g)(X , H, J ; Λ) is also invariant of the pair (H,J).
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Chapter 6

Floer homology for “small”

autonomous Hamiltonians

This chapter will consist essentially in a proof that for “small” and autonomous Hamiltonians H the Floer

homology of an orbifold with rational Novikov coefficients is isomorphic to the Chen-Ruan cohomology.

This generalizes the well known fact that the Floer homology of a smooth manifold is isomorphic to its

singular homology. We state the result here:

Theorem 6.0.1. Let X = [X/G] be a global quotient compact Calabi-Yau orbifold with symplectic form

ω. Let H ∈ CG(R ×X) and J ∈ JG(X,ω) be an autonomous Hamiltonian and an autonomous almost

complex structure, respectively, and denote Hτ = τH for τ > 0. Assume that for sufficiently small τ the

pair (Hτ , J) is regular in the sense of 4.1.2. Let Λ = Λuniv(Q) be the rational universal Novikov ring.

Then for sufficiently small τ > 0 we have

HF∗(X , Hτ , J ; Λ) ∼= Hn−∗
CR (X ; Λ).

A few comments about the hypothesis are in order. The first is that we don’t need to ask for the

no-bubbling condition to hold because it’s automatic for such a Hamiltonian. We’ll see in proposition

6.1.3 that every Floer trajectory is constant in the s variable, and hence has zero energy; thus if we

have bubbling from some holomorphic sphere such sphere must also have zero energy, and thus would

be constant. The condition that X is Calabi-Yau is needed so that we can define a grading – otherwise

the same isomorphism holds without gradings (or with grading modulo 2) but we would have to adapt

slightly our discussion of orientations. We think that the fact that the indices agree is actually great part

of the interest of this result as we can see the degree shifting numbers for the Chen-Ruan cohomology

arising naturally from the Conley-Zehnder index.

Asking for the Novikov ring to be defined over the rationals (or other field of characteristic 0) is crucial.

We will use the isomorphism between singular cohomology of an orbifold and its Morse homology given

by theorem 2.4.4, and this only holds with coefficients in Q. This is perhaps not too surprising as Chen-

Ruan cohomology is much “nicer” with rational coefficients: for instance we can only define a product

over Q and the crepant resolution conjecture fails with Z coefficients.

In the smooth case such an isomorphism is known to hold for every regular pair (H,J). Indeed

taking a pair of the form (Hτ , J) with H autonomous and τ > 0 small is needed only in order to

have an isomorphism at the complex level, and two more ingredients are needed to extend to a general
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Hamiltonian: first we need to prove that Floer homology doesn’t depend on the pair (H,J) and second

we need that we can actually find some regular pair (Hτ , J) with τ sufficiently small. For now we can’t

conclude this. We didn’t prove invariance of Floer homology and the regularity condition is not in general

guaranteed as we can’t achieve equivariant transversality if we have non-isolated singularities (see chapter

5).

The regularity condition, that (Hτ , J) is regular for every small τ , might seem a bit odd and stronger

than necessary. However the next proposition clarifies that this is actually automatic as soon as it’s true

just for some small τ .

Proposition 6.0.2. Let H ∈ CG(R × X) and J ∈ JG(X,ω) be an autonomous Hamiltonian and an

autonomous almost complex structure, respectively, and assume that H is C2-small. Then Du is surjective

for every Floer trajectory u which is t-independent if and only if (H|Xg , g) is a Morse-Smale pair for every

g ∈ G where g(u, v) = ω(u, Jv). In particular if (H|Xg , g) is Morse-Smale for every g ∈ G then (Hτ , J)

is regular for every sufficiently small τ .

Proof. If u ∈ M̂g(H,J) is t-independent then u(s) = u(t, s) is a Morse trajectory of H|Xg . Thus we can

proceed precisely as in the proofs of [AD14, Theorem 10.1.5, Corollary 10.1.8].

For the last statement, note that (with a fixed Riemannian metric) Hτ is Morse-Smale if and only if

H is Morse-Smale, as the stable and unstable manifolds are the same, and that for sufficiently small τ

every Floer trajectory u ∈ M̂g(Hτ , J) is t-independent by proposition 6.1.3.

Corollary 6.0.3. Let X = [X/G] be a global quotient compact Calabi-Yau orbifold with symplectic form

ω. Assume that X has isolated singularities. Then there is a regular pair (H,J) ∈ CG(R×X)×JG(X,ω)

such that

HF∗(X , Hτ , J ; Λ) ∼= Hn−∗
CR (X ; Λ)

where Λ = Λuniv(Q).

Proof. Take a C2-small autonomous G-equivariant Hamiltonian H. By perturbing H we may assume

that H|Xg is a Morse function in Xg for every g (see [Was69, Lemma 4.8]). Since every orbit of H is

constant (see proposition 6.1.1) the Morse condition translates to H being a non-degenerate Hamiltonian.

By corollary 5.2.8 we can find an almost complex structure J such that (H,J) is regular, but if we

apply it directly we get a non-autonomous J . However, it’s easy to modify the proof of theorem 5.2.7 to

show that if H is autonomous then we can find J also autonomous such that Du is surjective for every

trajectory u ∈ M̂g(H,J) that is t-independent.

But then theorem 6.0.1 and proposition 6.0.2 show that replacing H by Hτ for sufficiently small τ > 0

we get the result.

Note that this corollary (which is already very heavy on hypothesis) applies to the Kummer surface

(example 2.1.5) and many other high dimensional examples which we didn’t discuss.

6.1 Proof of theorem 6.0.1

We begin by introducing some notation. What follows is general for any regular pair (H,J), with H

not-necessarily small. We can decompose the set of Hamiltonian orbits according to the conjugacy class
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of the group element associated to them, that is,

P̃G(H) =
⊔
(g)

P̃(g)(H)

where, given a conjugacy class (g) of G, we write

P̃(g)(H) =
⊔

g′∈(g)

P̃g′(H).

Recall that the G-action on P̃G(H) is given by h · γg = (hγ)hgh−1 , so P̃(g)(H) are invariant subsets with

respect to this action. We also set

P(g)(H) = P̃(g)(H)/G, P̃(g)(H)+ = P̃G(H)+ ∩ P̃(g)(H) and P(g)(H)+ = PG(H)+ ∩ P(g)(H).

This decomposition of PG(H) also gives a decomposition of the Floer complex. If we let

CF
(g)
k (X , H; Λ) =

 ⊕
γ∈P̃(g)(H)+

|γ|=k

Λ · γ


G

(6.1)

then

CFk(X , H; Λ) =
⊕
(g)

CF
(g)
k (X , H; Λ).

Note that CF
(g)
k (X , H; Λ) are invariant with respect to the differential ∂, so we also have a decomposition

of the Floer homology indexed by conjugacy classes:

HFk(X , H, J ; Λ) =
⊕
(g)

HF
(g)
k (X , H, J ; Λ)

where HF
(g)
k (X , H, J ; Λ) is the homology of

(
CF

(g)
k (X , H; Λ), ∂H,J

)
. Finally, we have an isomorphism

CF
(g)
k (X , H; Λ) ∼=

 ⊕
γ∈Pg(H)+

Λ · γ

C(g)

.

As discussed before the left hand side can be seen as the Λ-module generated by P(g)(H)+ and the

right hand side as the Λ-module generated by Pg(H)+/C(g). But these are naturally identified: consider

the map P̃g(H)+ → P(g)(H)+ given by taking the equivalence class. This is a surjection and two elements

in P̃g(H)+ have the same image if and only if they are in the same orbit with respect to the C(g)-action.

6.1.1 Hamiltonian orbits and Floer trajectories are constant

The first step to identify the Floer complex with the Morse complex computing the Chen-Ruan cohomol-

ogy is to see that every Hamiltonian orbit of a Hamiltonian as in theorem 6.0.1 is constant. We do so by

reducing the proof to the 1-periodic case.

Proposition 6.1.1. Assume that H is a sufficiently C2-small autonomous Hamiltonian. Then every

Hamiltonian orbit γ ∈ P̃G(H) is constant.
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Proof. Let m = |G|. As γ is a Hamiltonian orbit and H is G-invariant it’s easy to see that the extension

γ̂ : [0,m]→ X given by

γ̂(t) = gkγ(t− k) for t ∈ [k, k + 1]

is also a solution of Hamilton’s equation; note that it’s continuous because γ(1) = gγ(0). Moreover

γ̂(m) = gmγ(0) = γ(0). Hence t 7→ γ̂(t/m) is a 1-periodic Hamiltonian orbit of mH. It follows from

[AD14, Proposition 6.1.5] that for sufficiently C2-small and autonomous H (and thus sufficiently small

mH) such orbits are constant.

As usual we denote by cx : [0, 1]→ X the constant map equal to x. Since every Hamiltonian orbit is

constant, it’s equal to cxg for some x ∈ X and g ∈ G. The constant cx is a Hamiltonian orbit if and only

if x is a critical point of H and gcx(0) = cx(1) if and only if g ∈ Gx. Hence

P̃G(H) = {cxg : (dH)x = 0 and gx = x}.

We can say a bit more about this set. It’s a consequence of the slice theorem (and the fact that 〈g〉 ⊆ G
is finite, and hence compact) that the fixed point set

Xg = {x ∈ X : gx = x}

is a manifold and its tangent space at x ∈ X is

TxX
g = (TxX)

g
= {v ∈ TxX : (dg)xv = v}.

Now if cxg ∈ P̃G(H) then x ∈ Xg and x is a critical point of the function H|Xg . Conversely, if x is a

critical point of H|Xg then cxg ∈ P̃G(H), thanks to the following elementary lemma:

Lemma 6.1.2. Let X be a manifold with an action of a finite group G and suppose that H : X → R is

G-invariant; let g ∈ G. Then x ∈ Xg is a critical point of H|Xg if and only if x is a critical point of H.

Proof. The if part is immediate. Suppose that
(
dH|Xg

)
x

= 0. This means that for every w ∈ TxXg we

have (dH)xw = 0. Let v ∈ TxX be any vector and define

w =
1

m

m−1∑
k=0

(dg)kxv ∈ TxX

where m is the order of g. Clearly w ∈ TxX
g and since H is G-invariant (dH)xv = (dH)xw = 0, so

(dH)x = 0.

This means that there is a bijection between P̃G(H) and⊔
g∈G

Crit
(
H|Xg

)
.

The next step in establishing the connection between Floer homology and Morse homology is to prove

that all the Floer trajectories are constant in the t-variable. This will identify the Floer trajectories with

gradient flow trajectories of H.

Proposition 6.1.3. Assume that H is an autonomous Hamiltonian and let Hτ = τH for τ > 0. Then

for sufficiently small τ > 0 every Floer trajectory u ∈ M̂g(γ
−, γ+;Hτ , J) does not depend on t, that is,

u(t, s) = u(s) is a Morse trajectory.
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Proof. We can use a similar reduction to the 1-periodic case as the one we did in the proof of 6.1.1. We

let

û(t, s) = gku(t− k, s) for t ∈ [k, k + 1].

Then (t, s) 7→ û(t/m, s) is a “1-periodic” Floer trajectory of (mHτ , J) = (Hmτ , J). Applying [SZ92,

Theorem 7.3] gives that û is independent of t for small enough τ , and hence so is u.

Remark 6.1.4. This proposition is the only place in which we really have to use a Hamiltonian of the

form Hτ with sufficiently small τ > 0 and not only a C2-small autonomous Hamiltonian. It seems to be

believed that actually it’s true that Floer trajectories of a C2-small autonomous Hamiltonian must be

independent of t, but the author could not find either a proof or a precise reference in the literature.

From now on we’ll assume that H = Hτ is C2-small and such that every Floer trajectory doesn’t

depend on t.

Suppose that x−, x+ are critical points of H|Xg and let u ∈ M̂g(c
x− , cx

+

;H,J). Since ∂tu = 0, and

using the relation between the gradient and the Hamiltonian vector field (3.1), Floer equation becomes

0 = ∂su− J(u)XH(u) = ∂su−∇H(u)

so Floer trajectories are in bijection with gradient flow lines of H contained in Xg, that is, gradient flow

lines of H|Xg .

6.1.2 Index computation

We now proceed to compute the index of the constant orbits cxg ∈ Pg(H) ⊆ P̃g(H) according to a

trivialization of ΛnCTX, as explained in 4.2. This is done by finding a trivialization

Ψ(t) : R2n → TxX

that obeys Ψ(1) = (dg)x ◦ Ψ(0) and is compatible with s. First we note that when g = 1 there is not

much to do: we can just pick a constant trivialization, meaning that Ψ(t) doesn’t depend on t. The trick

to get a trivialization with Ψ(1) = (dg)x ◦Ψ(0) when g 6= 1 is to correct a fixed trivialization with a path

of matrices in SU(n); asking the path to be in SU(n) ensures that the trivialization is compatible with

s. This idea, although in a different context, already appeared in [AMM18].

Let’s make this precise. First, we fix any isomorphism Ψ(0) : R2n → TxX respecting the symplectic

and almost complex structures. The canonical symplectic form on R2n is denoted by ω0 and the almost

structure by J0. We have an induced map on the determinant vector spaces

ΛnCΨ(0) : C→ ΛnCTX

(note that (R2n, J0) identifies with (Cn, i) so ΛnCR2n ∼= C naturally). By multiplying the section s by

some constant in C∗ we may assume that

s(x) = (ΛnCΨ(0)) (1) ∈ ΛnCTX. (6.2)

Multiplication by such a constant doesn’t change the homotopy class of s, since C∗ is connected, so

doesn’t change whether our constructed trivialization is compatible or not. Essentially this makes the

trivialization compatible with s at t = 0.
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Since ω and J are G-invariant, we have (dg)x ∈ U(TxX). Moreover, since X is Calabi-Yau then X
is Gorenstein (see remark 4.2.2) and, as gx = x, actually (dg)x ∈ SU(TxX) (see characterization 2. in

2.5.3). Hence the matrix G1 corresponding to (dg)x via the identification Ψ(0) : R2n → TxX, i.e., such

that

R2n R2n

TxX TxX

G1

Ψ(0) Ψ(0)

(dg)x

is in SU(n) ⊆ GL(2n;R). As SU(n) is connected, there is a path of matrices [0, 1] 3 t 7→ Gt ∈ SU(n)

starting from G0 = Id to G1. Now we set

Ψ(t) = Gt ◦Ψ(0) (6.3)

and we prove that such a trivialization has the required properties. First,

Ψ(1) = G1 ◦Ψ(0) = Ψ(0) ◦ (dg)x

as required. Moreover, to see that it’s compatible with s note that ΛnCΨ(t) is the composition

ΛnCR2n ΛnCR2n ΛnCTxX.
ΛnCGt ΛnC Ψ(0)

Since Gt ∈ SU(n) ⊆ SL(n,C) the map ΛnCGt is the identity. By equation (6.2) the map ΛnCΨ(0) is given

by z 7→ s(x)z, and this proves compatibility with s.

To perform the computation of the index we need appropriate local coordinates. These are given by

an equivariant Darboux theorem.

Theorem 6.1.5 (Equivariant Darboux theorem). Let (X,ω, J) be a symplectic manifold with compatible

almost complex structure J . Suppose that a finite group K acts on X preserving ω and J and let x ∈ X
be a fixed point of the action. Then there are open neighbourhoods U ⊆ X (invariant with respect to

the K-action) of x and V ⊆ R2n of 0 and a symplectomorphism f : V → U sending 0 to x, such that

f∗J = J0 and such that the induced action on V is linear.

Proof. First, we can identify the symplectic space (TxX,ωx) with (R2n, ω0) where ω0 is the canonical

symplectic form. Since K fixes x, we have an infinitesimal linear action of K on TxX ∼= R2n. We can

find an equivariant embedding ι : V ↪→ X, where V ⊆ TxX ∼= R2n is an open neighbourhood of 0, such

that the differential (dι)0 : T0V = TxX → TxX is the identity. Now the forms ω0 and ι∗ω are both

K-invariant forms on V agreeing on 0. By [DM93, Corollary 2] and possibly by restricting V there is

j : V → V such that j∗ι∗ω = ω0; hence f = ι ◦ j has the desired property.

Thanks to the equivariant Darboux theorem, in order to compute the index we may assume that

X = R2n, x = 0 and g = G1 is a linear transformation.

Proposition 6.1.6. Let H : R2n → R be an autonomous Hamiltonian with (dH)0 = 0, let ϕt be the

Hamiltonian flow of H and let S be the Hessian of −H at 0. Then

(dϕt)0 = exp(tJ0S).
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Proof. First we should make clear that (dϕt)0 means the Jacobian matrix of ϕt : R2n → R2n at x = 0,

which we can also write as (Dϕt)(0). Since XH = −J0∇H where ∇H =
(
∂H
∂x1

, . . . , ∂H∂x1

)
is the gradient

with respect to the usual Riemannian metric Hamilton’s equation is

d

dt
ϕt(x) = −J0∇H(ϕt(x)).

By taking the Jacobian on both sides we have

d

dt
(dϕt)x = −J0(d∇H)ϕt(x)(dϕt)x.

Plugging x = 0 in the above equation we get

d

dt
(dϕt)0 = J0S(dϕt)0.

since ϕt(0) = 0 because x is a critical point and (d∇H)0 is the Hessian of H (and thus −(d∇H)0 = S).

The result now clearly follows.

Consider now local coordinates around x given by the equivariant Darboux theorem 6.1.5 applied to

K = 〈g〉 (which fixes x if gx = x). Such coordinates induce an identification Ψ(0) : R2n ∼= T0R2n → TxX.

Then the path of symplectic matrices Φ = Φcxg , computed using the trivialization Ψ in (6.3), used to

calculate the index is

Φ(t) = Ψ(t)−1(dϕt)0Ψ(0) = G−1
t Ψ(0)−1(dϕt)0Ψ(0) = G−1

t exp(tJ0S)

where S is the Hessian matrix of −H at x calculated in the coordinates we’re using. Note that we used

proposition 6.1.6 in the last identity.

By doing a linear unitary change of variables in Rn we may assume that the matrix G1 is diagonal as

a complex matrix; this is possible by the spectral theorem. So

G1 =


e2πiλ1

. . .

e2πiλn

 ∈ SU(n) ⊆ GL(2n;R).

where e2πiλj are the complex eigenvalues of G1. We assume that λk+1 = λk+2 = . . . = λn = 0 and that

λj /∈ Z for j = 1 . . . , k; this means that the eigenspace of 1 has (complex) dimension d = n − k. Since

G1 ∈ SU(n) it follows that
k∑
j=1

λj =

n∑
j=1

λj ∈ Z

so by changing the value of (say) λ1 by an integer value we assume that
∑k
j=1 λj = 0. As a real matrix,

G1 is

G1 =



cos(2πiλ1) − sin(2πiλ1)

sin(2πiλ1) cos(2πiλ1)

. . .

cos(2πiλk) − sin(2πiλk)

sin(2πiλk) cos(2πiλk)

1

. . .

1


.
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We will denote by G̃1 the upper diagonal 2k × 2k block.

Note that by the equivariant Darboux theorem 6.1.5 the fixed point set Xg is a symplectic manifold.

Indeed Xg ∩ U is identified with (the intersection of V with) the eigenspace associated with 1 of (dg)x.

Via the identification Ψ(0) : R2n → TxX the tangent space TxX
g ⊆ TxX corresponds to the eigenspace

of G1 associated with 1, which consists of vectors where the first 2k coordinates vanish. Thus

dimXg = dimTxX
g = 2n− 2k = 2d.

Here, by dimension of Xg we mean the dimension of the connected component of Xg containing x. The

invariance of H with respect to g imposes a strong restriction on the Hessian matrix S: it has to be a

block diagonal matrix.

Claim 6.1.7. The Hessian S of −H is a block diagonal matrix

S =

[
S1

S2

]

where S1 is a 2k × 2k block and S2 is a 2d× 2d block. Moreover S2 is the Hessian of −H|Xg .

Proof. The geometric idea is that this follows from the fact that the flow of ϕt must preserve Xg. To be

precise, since H ◦ g = H we have g ◦ ϕt = ϕt ◦ g and taking the derivative at x we get (dg)x ◦ (dϕt)x =

(dϕt)x ◦ (dg)x. In local coordinates, by proposition 6.1.6, this means that exp(tJ0S)G1 = G1 exp(tJ0S).

Taking the derivative at t = 0 in both sides it follows that J0SG1 = G1J0S, so J0S commutes with G1.

Hence J0S preserves the eigenspaces of G1. Since the span of the first 2k coordinate vectors is the union

of the eigenspaces associated with eigenvalues different from 1 and the span of the last 2d coordinate

vectors is the eigenspace associated to 1 it follows that J0S is block diagonal, and thus so is S.

To compute the index, we finally fix our choice of the path Gt. Recall that this is any path in SU(n)

with G0 = Id and G1 the already fixed matrix. We use the obvious choice

Gt =



cos(2πiλ1t) − sin(2πiλ1t)

sin(2πiλ1t) cos(2πiλ1t)

. . .

cos(2πiλkt) − sin(2πiλkt)

sin(2πiλkt) cos(2πiλkt)

1

. . .

1


and denote by G̃t the upper 2k × 2k diagonal block. Note that Gt ∈ SU(n) because the sum of the λj ’s

is 0. We have the expression

Φ(t) =

[
G̃−1
t exp(tJ0S1)

exp(tJ0S2)

]
∈ Sp(2n).

For this path to be admissible one needs that the matrices exp(J0S2) and G̃−1
1 exp(J0S1) don’t have 1

as an eigenvalue. Since S2 is small, exp(J0S2) has 1 as eigenvalue if and only if S2 is singular. Moreover

for small S1 the eigenvalues of G̃−1
1 exp(J0S1) are close to the eigenvalues of G̃−1

1 , none of which is 1,

66



so G̃−1
t exp(tJ0S1) is automatically admissible. Given that H is C2-small we’ve shown that H is non-

degenerate as a Hamiltonian if and only if H|Xg is a Morse function for every g. We suppose that this

holds.

Finally we turn to the computation of the index |cxg | = µCZ(Φ). By the same argument as before, if

we consider the homotopy

Φs(t) =

[
G̃−1
t exp(stJ0S1)

exp(tJ0S2)

]
∈ Sp(2n)

then each Φs, for s ∈ [0, 1], is an admissible path of symplectic matrices. By the homotopy and the direct

sum properties of the Conley-Zehnder index, in appendix A we then have

|cxg | = µCZ(Φ1) = µCZ(Φ0) = µCZ(G̃−1
t ) + µCZ(exp(tJ0S2)).

We compute each of these.

µCZ(G̃−1
t ) =

k∑
j=1

(2b−λjc+ 1) =

k∑
j=1

(−2λj + 2{λj} − 1)

= 2
n−k∑
j=1

{λj} − k = 2ι(g) − k (6.4)

In the first equality we used the direct sum property of the Conley-Zehnder index and proposition A.0.4.

In the second equality we used the identity

b−λc = −λ+ {λ} − 1 for λ /∈ Z

and in the third we used that the sum of the λj ’s is 0. On the other hand, by the signature property of

the Conley-Zehnder index we have

µCZ(exp(tJ0S)) = d− ind(S) = d− indx(−H|Xg ) = indx(H|Xg )− d. (6.5)

Summing (6.4) and 6.5 and using that k + d = n we finally have

|cxg | = indx
(
H|Xg

)
+ 2ι(g) − n. (6.6)

6.1.3 Orientations

In this section we discuss the compatibility of orientations in the Floer setting and in the Morse setting;

this is important so that orientable critical points correspond to orientable Floer trajectories and so that

the signs ν(u) appearing in the definitions of the Morse and Floer complexes agree. The Floer complex

orientations are determined by orientations of the determinant line bundles δcxg = det(DΦ) (see 4.3) and

the orientations of the Morse complex of each twisted sector X (g) are determined by orientations of the

tangent space of the unstable manifolds TxW
u
H|Xg

(x) = (TxW
u
H(x))g. The latter notation means the

subspace of TxW
u
H(x) fixed by (dg)x.

First, recall that in the last section we saw that the path of symplectic matrices associated to cxg can

be taken to be Φ = Φ1 ⊕ Φ2 where Φ1(t) = G̃−1
1 exp(tJ0S1) and Φ2(t) = exp(tJ0S2). Therefore

δcxg = det(DΦ) ∼= det(DΦ1
)⊗ det(DΦ2

) ∼= det
(
DG̃−1

t

)
⊗ det (DΦ2

) . (6.7)
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The determinant line bundle det
(
DG̃−1

t

)
only depends on g, so we can fix an orientation for it that

won’t affect anything. We’re only interested in det (DΦ2
). Since Φ2(t) = exp(tJ0S2) we have

Φ̇2 = J0S2Φ2

so in this case the path of symplectic matrices S : S1 →M2n×2n(R) described in 4.3 can be taken to be

constant S(t) = S2. Now we consider an operator DΦ2
: W 1,p

µ (C,R2d)→ Lpµ(C,R2d) given by

DΦ2
= α(∂x + J0∂y) + βS2

where α : C→ R⊕ RJ0 and β : R→ [0, 1] are such that α never vanishes,

α(x, y) =

1 if s ≥ 2

−x+ J0y if s ≤ 1

and

β(s) =

0 if s ≥ 0

1 if s ≤ −1
.

We will now compute the kernel of this operator. By the last part of theorem 4.3.2 we may assume that

p = 2. Suppose that Y ∈ ker(DΦ2
). By proposition 4.3.1 we have

∂sY (t, s) + J0∂tY (t, s) + β(s)S2Y (t, s) = 0 for s ≤ 1. (6.8)

Moreover, for s ≥ 0 we have β(s) = 0 so

0 = DΦ2
Y = α(∂x + J0∂y)Y ⇒ (∂s + J0∂t)Y = 2π(−x+ J0y)

ᾱ

|α|2
α(∂x + J0∂y)Y = 0

since α never vanishes. So actually we have the equation

∂sY (t, s) + J0∂tY (t, s) + β(s)S2Y (t, s) = 0 for every s ∈ R.

Recalling that S2 is small, this equation implies that Y does not depend on t.

Lemma 6.1.8. Suppose that Y ∈W 1,2
µ (C,R2d) satisfies equation (6.8) and that S2 is sufficiently small.

Then Y does not depend on t.

Proof. This is almost the same as [dS18, Lemma 7.9.9], except that we don’t necessarily have Y ∈
W 1,2(S1×R,R2n) because near 0 the volume form µ is not cylindrical; in particular Y (t, s = +∞) = Y (0)

doesn’t have to vanish. However, the proof still holds.

Defining

Ȳ (t, s) = Ȳ (s) =

∫ 1

0

Y (τ, s)dτ for s ∈ R

Ȳ is also a solution of (6.8) which is independent of t. Replacing Y by Y −Ȳ we assume that
∫ 1

0
Y (t, s)dt =

0 for every s ∈ R and we want to prove that Y = 0.

By [dS18, Lemma 7.9.7] applied to t 7→ Y (t, s) we have∫ 1

0

‖Y (t, s)‖2dt ≤
∫ 1

0

‖∂tY (t, s)‖2dt for all s ≤ 1.

Integrating in the s variable from −∞ to 1 gives ‖∂tY ‖2 ≥ ‖Y ‖2.
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We have

‖∂sY + J0∂tY ‖22 = 〈∂sY + J0∂tY, ∂sY + J0∂tY 〉 = −〈Y, (∂s − J0∂t)(∂s + J0∂t)Y 〉

= −〈Y, ∂2
sY 〉 − 〈Y, ∂2

t Y 〉 = ‖∂sY ‖22 + ‖∂tY ‖22. (6.9)

Note that we used integration by parts in the second and last equalities. In neither case is there a

boundary term because ∂sY and ∂tY vanish on the cylindrical ends: they vanish at s = −∞ because

we’re assuming that Y ∈ W 1,2(C,R2n) and they vanish at s = +∞ by the computation in the proof of

4.3.1. Now we finish the proof:

‖Y ‖22 ≤ ‖∂tY ‖22 ≤ ‖∂sY ‖22 + ‖∂tY ‖22 = ‖∂sY + J0∂tY ‖22 ≤ ‖S2‖‖Y ‖22

and since S2 is small enough it follows that Y = 0.

Taking the lemma into account, equation (6.8) simplifies to

∂sY + β(s)S2Y = 0 (6.10)

This is a standard linear ordinary differential equation and has solution

Y (s) = exp

((
−
∫ s

0

β(σ) dσ

)
S2

)
Y0 (6.11)

for some Y0 = Y (0). In particular, since β(σ) = 0 for σ ≥ 0 it follows that Y (s) = Y0 is constant for

s ≥ 0. Moreover, for s ≤ −1, and since β(σ) = 1 we have

Y (s) = exp(−(s+ c0)S0)Y0 for s ≤ −1

where c0 = 1−
∫ 0

−1
β(σ) dσ is a constant.

From this we see that Y ∈ W 1,p
µ (C,R2d) if and only if Y0 is in the subspace of R2d in which the

Hessian S2 = Hess
(
−H|Xg

)
is negative definite. Indeed this is clear after we diagonalize S2 and consider

the 1-dimensional case:

Example 6.1.9. Suppose that S2 = [µ] is a 1× 1 matrix and we have

Y (s, t) = exp(−(s+ c0)µ)Y0 for s ≤ −1.

The Y ∈W 1,p
µ (C,R1) if and only if Y (s)→ 0 when s→ −∞. If µ > 0 this happens if and only if Y0 = 0,

and if µ < 0 this happens independently of Y0.

Now the subspace of R2d in which S2 = Hess
(
−H|Xg

)
is negative definite is the subspace of R2d in

which Hess
(
H|Xg

)
is positive definite, which is identified (via the identification Ψ(0) : R2d → TxX

g) with

TxW
u
H|Xg

(x). Thus we have an identification

ker (DΦ2) ∼= TxW
u
H|Xg

(x).

Moreover, now that we know explicitly the kernel, we can prove that coker(DΦ2
) = 0 by looking at

the Fredholm index. Indeed we know from theorem 4.3.2 and from equation (6.5) that

indDΦ2
= d− µCZ(Φ2) = 2d− indx

(
H|Xg

)
= dimTxW

u
H|Xg

(x) = dim kerDΦ2
.
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Thus dim cokerDΦ2
= 0. In particular we know that det(DΦ2

) ∼= ΛtopTxW
u
H|Xg

(x). Combining this with

(6.7) we get an identification

δcxg
∼= det

(
DG̃−1

t

)
⊗ ΛtopTxW

u
H|Xg

(x).

Now since we have a fixed orientation in det
(
DG̃−1

t

)
, by picking orientations of the unstable manifolds

Wu
H|Xg

(x) (needed to define Morse homology of the twisted sectors) we get orientations of the determinant

line bundles δcxg (needed to define Floer homology).

Now that we can define orientations in the Morse and Floer contexts in a compatible way, there are

two details we need to verify in order to establish theorem 6.0.1. The first is that orientable critical points

x ∈ Xg correspond to orientable orbits cxg . But this follows from the fact that the following diagram

commutes (up to multiplication by a positive constant) for any h ∈ C(g) such that hx = x:

δcxg δcxg

det
(
DG̃−1

t

)
⊗ ΛtopTxW

u
H|Xg

(x) det
(
DG̃−1

t

)
⊗ ΛtopTxW

u
H|Xg

(x)

h∗

∼= ∼=

id⊗(dh)x

The second detail is that by choosing orientations in this compatible way the numbers νFloer(u) and

νMorse(u) appearing in the definitions of the Morse and Floer complexes agree.

Lemma 6.1.10. Let H be a C2-small autonomous Hamiltonian and let u ∈ M̂g(c
x− , cx

+

;H,J) be a

Floer trajectory of index µ(u) = 1 that does not depend on t, that is, a Morse trajectory. Assume that

H|Xg is Morse-Smale. Then

νMorse(u) = νFloer(u).

Sketch. To keep a less heavy notation let’s consider only the case g = 1; the general one is essentially the

same. Write γ± = cx
±

.

We recall how νFloer(u) is defined. There is an isomorphism 4.3.5 of determinant line bundles δγ− ∼=
det(Du) ⊗ δγ+ . Since in this case the operators involved are all surjective, this isomorphism is induced

by the isomorphism coming from gluing theory

ker(DΦ−) ∼= ker(Du#DΦ+) ∼= ker(Du)⊕ ker(DΦ+).

By fixing the orientations of δγ± we have an induced orientation on ker(Du). If µ(u) = 1 we know that

ker(Du) is one dimensional and generated by ∂su; then we assign νFloer(u) = 1 if the orientation given

as explained makes ∂su positive and −1 otherwise.

On the other hand, a way to define νMorse(u) is the following. Letting p = u(0) ∈Wu
H(x−)∩W s

H(x+)

we have a map

Tx−W
u
H(x−) ∼= TpW

u
H(x−)→ TpX

TpW s
H(x+)

∼=
Tx+X

Tx+W s
H(x+)

∼= Tx+Wu
H(x+)

The first and second isomorphisms are obtained by choosing trivializations of u∗TWu
H(x−), u∗TW s

H(x+)

and u∗TX. Note that this map is canonical up to homotopy. By the Morse-Smale (see proposition 6.0.2)

condition at p we know that the map is surjective and has kernel identified with

TpW
u
H(x−) ∩ TpW s

H(x+) = Tp
(
Wu
H(x−) ∩W s

H(x+)
)
.
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If we orient TpW
u
H(x±) we then get an orientation of Tp (Wu

H(x−) ∩W s
H(x+)). Note that

Tp
(
Wu
H(x−) ∩W s

H(x+)
)

is one dimensional since H is Morse-Smale and u is also a rigid Morse trajectory (by the fact that the

relative Morse and Floer indices agree). If the orientation given makes ∂su(0) ∈ Tp(Wu
H(x−) ∩W s

H(x+))

positive then we assign νMorse(u) = 1, and otherwise we assign −1.

We already saw that we can identify ker(DΦ−) ∼= Tx−W
u
H(x−) and ker(DΦ+) ∼= Tx+Wu

H(x+) via

some “explicit” maps. But moreover we can identify ker(Du) with Tp (Wu
H(x−) ∩W s

H(x+)) by sending

ξ ∈ ker(Du) ⊆ C∞(u∗TX) to

ev0(ξ) = ξ(0) ∈ TpX.

Indeed this is a bijection onto Tp (Wu
H(x−) ∩W s

H(x+)) because ∂su ∈ ker(Du) is sent to ∂su(0) ∈
Tp (Wu

H(x−) ∩W s
H(x+)) which is a generator. All this fits in a (non-strictly commutative) diagram

0 ker(Du) ker(DΦ−) ker(DΦ+) 0

0 Tp (Wu
H(x−) ∩W s

H(x+)) Tx−W
u
H(x−) Tx+Wu

H(x+) 0

ev0 ∼= ∼= ∼=

and it’s enough to see that if we choose compatible orientations for Morse and Floer homologies, meaning

that the two last isomorphisms preserve said orientations, then ev0 also preserves the orientations induced

by the exact sequences.

Showing this needs more careful considerations about the gluing map, in which we won’t enter. We

refer to the proof of [Sch93, Theorem 13]. The idea is that by picking a trivialization that makes the

operators Du, DΦ± particularly simple (as in [Sch93, Lemma B.2]) we can identify explicitly all the

kernels, vertical maps and maps in the bottom row. Finally, considering a homotopy of operators Dτ
u,

Dτ
Φ+ , Dτ

Φ− = Dτ
u#Dτ

Φ+ , with τ ∈ [0, 1], as in [Sch93, B.18] we also understand explicitly the gluing map

– it reduces to pre-gluing – for τ = 1 and from that we can prove what we need.

6.1.4 Concluding the proof

We are now ready to finish the proof of theorem 6.0.1. For simplicity of the notation we assume that Xg

are connected and thus the twisted sectors of X are X (g) = Xg/C(g) (see proposition 2.2.7).

First, proposition 6.1.1 (together with lemma 6.1.2) shows that for each g ∈ G there is a correspon-

dence between Pg(H) and Crit
(
H|Xg

)
. This correspondence is given by sending x ∈ Crit

(
H|Xg

)
to

cxg ∈ Pg(H). By our discussion of orientations, a critical point x is orientable if and only if the corre-

sponding Hamiltonian orbit cxg is orientable, and thus the correspondence between Pg(H) and Crit
(
H|Xg

)
restricts to a correspondence between Pg(H)+ and Crit

(
H|Xg

)+
. Hence, comparing the construction of

the Morse complex (2.1) and the decomposition of Floer homology in conjugacy classes (6.1) we have

CF
(g)
k (X , H; Λ) ∼= CMk−2ι(g)+n

(
X (g), H|Xg ; Λ

)
(6.12)

where X (g) = [Xg/C(g)] is the twisted sector associated with the conjugacy class (g). The index part

follows from our computation of the index, see equation (6.6); indeed if cxg contributes in degree k to CF

then x contributes in degree indx
(
H|Xg

)
= k − 2ι(g) + n to CM .

It now remains to compare the differentials defined on each of these complexes, see (2.3) and (3.11).

First, proposition 6.1.3 (and the discussion after its proof) shows that there is an identification between the
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moduli space of Floer trajectories M̂Floer
g

(
cx
−
, cx

+
)

(see (3.3)) and the moduli space M̂Morse
(
x−, x+;H|Xg

)
of flow trajectories of the gradient ∇H|Xg (see (2.2)). The correspondence is the following: given

u ∈ M̂Morse
(
x−, x+;H|Xg

)
, which is a map u : R→ Xg ⊆ X, we get a Floer trajectory, also denoted by

u : [0, 1]× R→ X, given by u(t, s) = u(s).

To see that the differentials really agree, first note that

µ(u) = |cx
+

g | − |cx
−

g | = |x+| − |x−|,

so in both cases the relevant trajectories needed to define the differential are the ones between critical

points with index difference 1. Clearly ω(u) = 0 for any Floer trajectory that doesn’t depend on t. By

lemma 6.1.10 the signs ν(u) appearing in the definitions of the Morse and the Floer differentials agree,

and thus we have a complete identification of the two differentials. Hence by theorem 2.4.4, it follows

that

HF
(g)
k (X , H; Λ) ∼= Hk−2ι(g)+n(X (g); Λ).

Note that here we’re using that Λ = Λuniv(Q) is a field of characteristic 0 to apply theorem 2.4.4. By the

Poincaré duality for orbifold singular cohomology (see proposition 2.3.4) we have

Hk−2ι(g)+n(X (g); Λ) ∼= Hk−2ι(g)+n(X (g); Λ).

Hence we get an isomorphism

HFk(X , H; Λ) =
⊕
(g)

HF
(g)
k (X , H; Λ) ∼=

⊕
(g)

Hk−2ι(g)+n(X (g); Λ) = Hk+n
CR (X ; Λ).

Applying now Poincaré duality for orbifold Chen-Ruan cohomology (see 2.5.5) we get

HFk(X , H; Λ) ∼= Hn−k
CR (X ; Λ)

and this finishes the proof of theorem 6.0.1.
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Chapter 7

Final remarks and future work

There are a few directions in which we think the present work can be improved and extended. We discuss

them informally in the subsequent sections. This entire chapter is mostly speculative and non-rigorous.

7.1 Invariance

One of the important features of Floer homology is that it is independent of the admissible pair (H,J).

In this dissertation we didn’t prove such a result, and this certainly would be nice to have. The proof

of invariance usually goes by picking a homotopy of pairs and using the associated parametrized Floer

equation to define a quasi-isomorphism between Floer complexes relative to these two pairs. We believe

that the only real obstruction to reproduce this proof is that we need a transversality result to show

that we can choose a homotopy in a way that the relevant moduli spaces of the parametrized Floer

equation are smooth manifolds (see the discussion in chapter 5). When X has isolated singularities we

can adapt the proof of theorem 5.2 to show a transversality result for the parametrized Floer equation

and in principle it can be used to prove invariance in that case.

In section 5.3 we sketched a way to redefine Floer homology in a way that bypasses the problem of

equivariant transversality. As we mentioned already, this idea can probably also be used to bypass the

transversality problems in the proof of invariance, even with non-isolated singularities. It would also be

nice to have a proof of 6.0.1 using the redefinition of Floer homology of 5.3. Together, these would imply

the stronger result that Floer homology of orbifolds, when defined (either as in chapter 4 or section 5.3),

is always isomorphic to Chen-Ruan cohomology.

7.2 Arbitrary orbifolds

A clear limitation of the present work is that it only applies to global quotient orbifolds. For us it’s not

clear how to work out the general case. For general orbifolds we don’t have an easy description of the

orbifold loop space as 2.2.5. We suspect that the idea of configuration spaces in [LU04] might be used to

represent loops on orbifolds, but defining Floer homology using such representations looks very messy.

An interesting idea that might adapt to arbitrary orbifolds, perhaps in a way that we can even use

existing literature, is to interpret our construction in terms of immersed Lagrangian Floer homology

(see for instance [AJ10]). We discussed the relation between Floer homology with g-periodic boundary
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conditions on X and Lagrangian Floer homology on X ×X (with symplectic form (−ω)⊕ ω) in section

3.4, in particular in proposition 3.4.2. Thanks to this, the complex C̃F (X , H; Λ) might be interpreted as

the Lagrangian Floer complex relative to the pair of immersed Lagrangians

j : Lφ1
= {(x, φ1(x)) : x ∈ X} ↪→ X ×X

and

ι :
⊔
g∈G

Lg ↪→ X ×X.

Note that j is an embedding but ι is just an immersion as it’s not injective in the presence of isotropy.

Interestingly, if we have a general orbifold presented by a groupoid G with symplectic form ω ∈ Ω2(G0)

(see definition 2.3.7) we can recover this. We consider Lagrangian Floer homology on G0×G0 and replace

ι by the immersion

ι = (s, t) : G1 → G0 ×G0.

It’s straightforward to check that this is an immersed Lagrangian and it’s also clear that if G = G nX

then ι is precisely what we already described. In the global quotient case the G-action on C̃F (X , H; Λ)

comes from the G-action on the immersed Lagrangian. In general, we have a groupoid G-action on the

immersed Lagrangian.

7.3 Product structure

Floer homology of a smooth manifold admits a ring structure. The product structure is defined by

counting pairs-of-pants satisfying Floer equation with certain boundary conditions; details can be found

in [Sch96]. It turns out that Floer homology is isomorphic, as a ring, to quantum cohomology.

It looks very reasonable that we can still define a product on the Floer homology HF (X ) of an

orbifold. This product should come from the Donaldson product defined on g-periodic Hamiltonian Floer

homology

HF (X, g)⊗HF (X,h)→ HF (X,hg).

We refer to [MS12, Section 10.4]. In the perspective of Lagrangian Floer homology (see proposition 3.4.2)

this product is a map

HLF (L1, Lg)⊗HLF (L1, Lh) = HLF (L1, Lg)⊗HLF (Lg, Lhg)→ HLF (L1, Lhg).

Such map can be defined by counting holomorphic triangles in X ×X with certain boundary conditions

involving L1, Lg and Lgh. This product is part of a much larger structure called the Fukaya category of

X ×X. The Fukaya category plays a central role in the homological mirror symmetry conjecture.

On the other hand, Chen-Ruan cohomology also admits a product structure, as we already mentioned.

This product, as in the smooth case, is obtained as the classical limit of a quantum product on H∗CR(X ; Λ)

where Λ is an appropriate Novikov ring.

Conjecture 7.3.1. We can endow HF (X ; Λ) with a pair-of-pants product that makes HF (X ; Λ) iso-

morphic as a ring to the Chen-Ruan cohomology H∗CR(X ; Λ) with the (small) quantum product.
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7.4 Symplectic homology

As we mentioned in the introduction, our study of Floer homology of orbifolds was motivated by the

possibility of also defining symplectic homology in a non-compact setting and adapting existing tools

to the orbifold case. Here we mention a couple of applications we would get if we had such tools. We

begin by describing very briefly symplectic homology of smooth contact type boundary manifolds; further

details can be found in [Vit99,BO09,BO13,BO17].

Definition 7.4.1. A compact symplectic manifold (W,ω) with boundary ∂W = M is said to be of contact

type boundary if there is a vector field X defined in a neighbourhood of M , transverse to M and pointing

outwards along M , such that LXω = ω. In this case the 1-form λ = (ι(X)ω)|M is a contact form in M .

The contact type boundary hypothesis means that we can find a symplectic neighbourhood U of M

that is symplectomorphic to ]− δ, 0]×M with symplectic form d(erλ); the symplectomorphism is defined

using the flow of X. This means that we can glue W and (part of) the symplectization of M along the

boundary M . That is, we define the completion of W as

Ŵ = W ∪
M

[0,+∞[×M.

We endow Ŵ with a symplectic form ω̂ defined as ω in W and d(erλ) in [0,+∞[×M .

To define symplectic homology we consider Hamiltonians H : S1 × Ŵ → R which are “linear” at

infinity, that is, Hamiltonians for which there are constants α ∈ R+, β ∈ R and r0 ∈ [0,+∞[ large enough

such that

H(t, r, p) = αer + β for t ∈ S1, r ∈ [r0,+∞[, p ∈M.

The constant α is called the slope of H. If we assume that α is not a period of the Reeb flow Rλ then there

are no periodic orbits in the region [r0,+∞[×M . Moreover a maximum principle (see [Vit99, Lemma

1.8]) assures that Floer solutions stay in the compact set W ∪[0, r0]×M (assuming also some behaviour of

the almost complex form J at infinity). Thanks to this, we can define Floer homology HF
(
Ŵ ,H, J ; Λ

)
with coefficients in a Novikov ring. If we assume that c1(Ŵ ) = 0 we can also give a grading to the Floer

homology.

However, contrary to what happens when we consider Floer homology in a compact manifold, Floer

homology depends on H, more specifically on the slope of H. Indeed if H1, H2 are Hamiltonians of slopes

α1, α2 we can define continuation maps

HF
(
Ŵ ,H1, J1; Λ

)
→ HF

(
Ŵ ,H2, J2; Λ

)
only when α1 ≤ α2. Essentially this is because otherwise the maximum principle of Viterbo doesn’t apply

and there may be an infinite number of trajectories which should be counted to define the continuation

maps. Symplectic homology is defined to be the direct limit of Floer homology groups when the slope

tends to infinity, that is,

SH(W ; Λ) = colim
α→+∞

HF
(
Ŵ ,Hα, Jα; Λ

)
where Hα is a Hamiltonian of slope α and Jα is an almost complex structure making the pair (Hα, Jα)

regular.

Remark 7.4.2. The celebrated Viterbo theorem asserts that if Q is a spin manifold then the symplectic

homology of its cotangent space is isomorphic to the homology of its loop space:

SHk(T ∗Q) ∼= Hk(ΛQ).
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There are a few important versions of symplectic homology. First, there are positive and negative

versions SH+(W ) and SH−(W ). The negative version can be defined to be FH
(
Ŵ ,Hε, J ; Λ

)
where

Hε is a Hamiltonian of slope ε > 0 sufficiently small. We can compare this Floer homology with Morse

homology to prove that

SH−∗ (W ; Λ) ∼= H∗+n(W,M ; Λ) ∼= Hn−∗(W ; Λ) (7.1)

The positive and negative parts are related by a long exact sequence

. . .→ SH+
∗+1(W )→ SH−∗ (W )→ SH∗(W )→ SH+

∗ (W )→ . . . (7.2)

Informally speaking, SH+
∗ (W ) retains information about the dynamics of the Reeb flow of M so in a

way it’s related to contact homology. However, while contact homology is intrinsically S1-equivariant (it

considers Reeb orbits up to reparametrization) SH+(W ) is not. However, we can define S1-equivariant

versions of symplectic homology, namely SHS1

∗ (W ), SH−,S
1

∗ (W ) and SH+,S1

∗ (W ). The positive S1-

equivariant symplectic homology SH+,S1

∗ (W ) is isomorphic to the (linearized) contact homology HC∗(M)

of M = ∂W ; in particular it should be true that SH+,S1

∗ (W ) doesn’t depend on the choice of the filling

W but only on M .

A S1-equivariant version of the long exact sequence (7.2) also exists. Moreover Oancea-Bourgeois

proved a Gysin-type long exact sequence, relating S1-equivariant and non-equivariant symplectic homol-

ogy:

. . .→ SH†∗(W )→ SH†,S
1

∗ (W )→ SH†,S
1

∗−2 (W )→ SH†∗−1(W )→ . . . (7.3)

for † = ∅,−,+.

7.4.1 Applications of symplectic homology for orbifolds

Suppose now that we could define symplectic homology for a contact type boundary orbifold W with

smooth boundary M = ∂W . It’s reasonable to expect that in this situation the isomorphism (7.1) would

be replaced by

SH−∗ (W ; Λ) ∼= Hn−∗
CR (W ; Λ) (7.4)

and would have the same proof as theorem 6.0.1. There are several situations in which we are lead to

consider an orbifold filling of a smooth contact manifold.

Example 7.4.3. Let G ⊆ SL(n;C) be a finite group whose non-trivial elements don’t have 1 as an

eigenvalue. The group G acts on Cn and on S2n−1 ⊆ Cn and S2n−1/G is a smooth contact manifold.

This manifold admits an obvious crepant (meaning c1 = 0) orbifold symplectic filling, namely Cn/G. In

some cases, for instance RP 7 = S7/(Z/2) there are no known crepant smooth fillings.

Example 7.4.4. An interesting family of examples studied in [AMM] are toric Gorenstein contact man-

ifolds. These are classified by the so called toric diagrams which are integral polytopes in Rn−1 where

2n − 1 is the dimension of the contact manifold. Crepant orbifold fillings of such contact manifolds can

be obtained in a very combinatorial way from triangulations of the toric diagram. Very rarely (only when

the triangulation is unimodal) these fillings are actually smooth.

The first example is very much related to the McKay correspondence. Indeed if W → Cn/G is a

crepant resolution then W is a crepant filling of S2n−1/G. This idea was used in [MR18] to interpret the

McKay correspondence using symplectic homology, but avoiding the symplectic homology of Cn/G.
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Regarding the second example, we proved in [AMM] an isomorphism of the form

HC∗(M) ∼=
⊕
j≥0

Hn−∗+2j+1
CR (W ) (7.5)

for these toric crepant fillings W which are determined from a triangulation of the toric diagram (note

that we’re using a different grading convention). Our proof was essentially combinatorial, but if we had

the tools of symplectic homology for orbifolds we could give a nice alternative proof as we now proceed

to sketch.

First, one has to prove that SH∗(W ) vanishes. For this we have to choose Hamiltonians Hα of

arbitrarily large slope α for which the Floer complex is concentrated in arbitrarily high degree. By the

long exact sequence (7.2) we then get that

SH+
∗ (W ) ∼= SH−∗−1(W ) ∼= Hn−∗+1

CR (W ).

Now we would need to shown that the Gysin sequence (7.3) with † = + splits in short exact sequences

0→ SH+
∗ (W )→ SH+,S1

∗ (W )→ SH+,S1

∗−2 (W )→ 0.

This is true by naturality of the Gysin sequence with respect to the long exact sequence (7.2) and because

the negative version of the Gysin sequence splits. From that and the isomorphismHC∗(M) ∼= SH+,S1

∗ (W )

the isomorphism (7.5) follows.

These arguments can be made rigorous when W is smooth, but to make them work when W is an

orbifold requires a development of symplectic homology for orbifolds.
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Appendix A

The Conley-Zehnder index for paths

of symplectic matrices

In this appendix we explain the main properties of the Conley-Zehnder index, introduced in [CZ84], for

admissible paths of symplectic matrices. The Conley-Zehnder index is essential to Floer homology as the

its grading is based on it (see 4.2.6). For a detailed account of the Conley-Zehnder index, including its

construction and proof of the properties we’ll state, see [Gut12].

Definition A.0.1. We say that a path Φ : [0, 1] → Sp(2n) is admissible if Φ(0) = Id and Φ(1) doesn’t

have 1 as an eigenvalue. We denote by SP (n) the set of admissible paths.

Note that admissible paths are associated to non-degenerate orbits. Indeed a Hamiltonian orbit γ is

non-degenerate (see 3.1.2) if and only if the path Φγ (in 4.2.6) is admissible.

Before we introduce the Conley-Zehnder index we recall the Maslov index for loops of symplectic

matrices. Since the inclusion U(n)→ Sp(2n) induces a homotopy equivalence, we have an isomorphism

[S1, Sp(2n)] ∼= π1(Sp(2n))
∼=→ π1(U(n))

∼=→ Z.

The last isomorphism is induced by the determinant map U(n)→ U(1) and the isomorphism π1(U(1)) ∼=
Z that sends the class [t 7→ e2πit] ∈ π1(U(1)) to 1 ∈ Z. Now the Maslov index µ(α) of a loop α : S1 →
Sp(2n) is the image of its class [α] in Z through this isomorphism.

Theorem A.0.2. There is a unique map µCZ : SP (n)→ Z with the following properties:

1. (Homotopy) µCZ is locally constant, that is, if {Φs}s∈[0,1] ∈ SP (n) is a homotopy of admissible

paths then µCZ(Φ0) = µCZ(Φ1).

2. (Loop) If α : [0, 1]→ Sp(2n) is a loop with α(0) = α(1) = Id then

µCZ(αΦ) = µCZ(Φ) + 2µ(α).

3. (Signature) Let S ∈M2n×2n(R) be a symmetric non-singular matrix with ‖S‖ < 2π and let Φ(t) =

exp(tJ0S) for t ∈ [0, 1], where J0 is the standard complex structure on R2n. Then

µCZ(Φ) = n− ind(S)

where ind(S) is the number of negative eigenvalues of S.
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Proof. See [Gut12, Theorems 35, 37].

We call µCZ(Φ) the Conley-Zehnder index of an admissible path Φ. The Conley-Zehnder index obeys

certain other properties that we now proceed to state.

Proposition A.0.3. Let Φ ∈ SP (n). The Conley-Zehnder index satisfies the following properties:

4. (Naturality) If ψ ∈ Sp(2n) then

µCZ(Φ) = µCZ(ψΦψ−1).

5. (Zero) If Φ(t) has no eigenvalue on the unit circle for every t > 0 then µCZ(Φ) = 0.

6. (Direct sum) If Φ1 ∈ SP (n1) and Φ2 ∈ SP (n2) then Φ1 ⊕ Φ2 ∈ SP (n) where n = n1 + n2 and

µCZ(Φ1 ⊕ Φ2) = µCZ(Φ1) + µCZ(Φ2).

7. (Parity)

sign det(Id− Φ(1)) = (−1)n−µCZ(Φ).

8. (Inverse) Denoting by Φ−1(t) = Φ(t)−1 the inverse path we have

µCZ(Φ−1) = −µCZ(Φ).

Proof. See [Gut12, Theorem 35].

We will need the computation of the Conley-Zehnder index of certain paths of symplectic matrices.

Proposition A.0.4. Let λ ∈ R \ Z and let Φ ∈ SP (1) be defined by

Φ(t) = [e2πiλt] =

[
cos(2πλt) − sin(2πλt)

sin(2πλt) cos(2πλt)

]
∈ U(n) ⊆ Sp(2n).

Then

µCZ(Φ) = 2bλc+ 1.

Proof. Write λ = N + ` where N = bλc and ` = {λ} ∈ ]0, 1[. We can write Φ(t) = α(t)Ψ(t) where

α(t) = e2πiNt and

Ψ(t) = e2πi`t = exp(tJ0S)

where

S =

[
2π` 0

0 2π`

]
.

Note that ‖S‖ < 2π and S has index 0 (because ` > 0). By the loop and the signature properties we

have

µCZ(Φ) = µCZ(Ψ) + 2µ(α) = 1− ind(S) + 2N = 2bλc+ 1.

Remark A.0.5. The Conley-Zehnder index admits an extension to the set of symplectic paths Φ with

Φ(0) = Id. This is sometimes called the Robbin-Salamon index of a path, and it takes values in 1
2Z. This

generalization was introduced in [RS93].
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Appendix B

Equivariant cohomology and

equivariant bundles

In this appendix we fix a compact Lie group G acting on a space X. The equivariant cohomology of the

G-space X is constructed using the universal G-principal bundle.

Theorem B.0.1. Let G be a compact Lie group. Then there exists a (unique up to weak homotopy

equivalence) contractible space EG with a free G-action. If we denote BG = EG/G then the projection

EG→ BG is called the universal principal G-bundle.

Proof. See [Coh02, Theorem 2.21].

The reason for this to be called “universal” is the following theorem:

Theorem B.0.2. Let X be a manifold (or a CW -complex). If P → X is a principal G-bundle, then there

exists continuous map f : X → BG uniquely defined up to homotopy such that P = f∗EG. Hence there

is a bijective correspondence between equivalence classes of principal G-bundles over X and [X,BG].

Proof. See [Coh02, Theorem 2.8].

The point of the Borel construction and of equivariant cohomology is the following: when the action

of G on X is not free, the quotient X/G is not very well behaved. For example there is no information

about G if X is just a point, and H∗(X/G) is not homotopy invariant. The way to correct this problem

is to substitute the G-space X by a homotopy equivalent space in which G acts freely.

Definition B.0.3. Let G be a compact Lie group acting on a topological space X. Its Borel construction

is the space

X ×G EG = (X × EG)/G

where G acts diagonally on X × EG.

We define the equivariant cohomology of the G-space X to be

H∗G(X) = H∗ (X ×G EG) .

Associated to the Borel construction, and since G acts freely on EG, the projection in the second

component gives a fibration
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X X ×G EG

BG.

On the other hand, if G also acts freely on X we get a fibration

EG X ×G EG

X/G

and since the fiber EG is contractible it follows that when G acts freely on X then X×GEG ' X/G, and

in particular H∗G(X) ∼= H∗(X/G). This property and invariance of H∗G up to G-equivariant homotopy

equivalences are enough to characterize the functor HG. In the general situation of a non-free action it’s

not true that H∗G(X) ∼= H∗(X/G). However, when the action is almost free, this is still true with rational

coefficients.

Proposition B.0.4. Let X be a manifold and G a compact Lie group acting on X. Suppose that the

action is almost free, that is, the isotropy groups Gx are finite for every x ∈ X. Then the projection

X ×G EG→ X/G induces an isomorphism on rational cohomology

H∗G(X;Q)
∼=−→ H∗(X/G;Q).

Proof. This is a particular case of 2.3.3 with G = GnX.

In particular when G is a finite group proposition B.0.4 implies that H∗(BG;Q) = 0.

Example B.0.5. When G = S1 we can take EG = S∞ = colim
N→+∞

S2N+1 and BG = CP∞; note that S1

acts on S2N+1 ⊆ CN+1 with the diagonal action. In particular it follows that

H∗S1(pt) = H∗(CP∞) ∼= Z[u]

where u is a generator in degree 1.

Similarly, if G = Z/p then EG = S∞ and BG = L∞p is the infinite dimensional Lens space. Then

H∗Z/p(pt) = H∗(L∞p ) =


Z if ∗ = 0

Z/p if ∗ = 2j, j > 0

0 otherwise.

Example B.0.6. When G is finite, EG→ BG is the universal cover of BG with automorphism group G.

Since EG is contractible it follows that BG = K(G, 1).

B.1 Equivariant vector bundles

Definition B.1.1. A G-equivariant vector bundle over a G-space X is a vector bundle π : E → X

together with an action of G on E by fiberwise linear transformations which lifts the action on X. That

is, for each x ∈ X, g ∈ G we have a linear transformation

ρx(g) : Ex → Egx.

An (iso)morphism of G-equivariant bundles is an (iso)morphism of bundles which is G-equivariant with

respect to the actions on the total spaces.
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Given a G-equivariant vector bundle E → X we have an associated vector bundle over the Borel

construction X ×G EG
E ×G EG→ X ×G EG.

that pulls-back to π × idEG : E × EG→ X × EG via the projection map X × EG→ X ×G EG. Using

this construction we can define characteristic classes of an equivariant bundle (Chern classes, Pontrjagin

classes, Stiefel-Whitney classes, etc.) as the characteristic classes of this new bundle over the Borel

construction. We are mainly interested in Chern classes, and even more specifically in the first Chern

class.

Definition B.1.2. Let E → X be a G-equivariant complex vector bundle. We define its equivariant

Chern classes cGk (E) ∈ H2k
G (X) to be

cGk (E) = ck(E ×G EG) ∈ H2k(X ×G EG) = H2k
G (X).

A remarkable fact is that equivariant line bundles are still classified by the (equivariant) Chern class.

Theorem B.1.3. Let G be a compact Lie group acting on a connected manifold X. Then the first

equivariant Chern class cG1 gives a rise to a one-to-one correspondence between G-equivariant line bundles

over X and elements of H2
G(X;Z).

Proof. The proof can be found in [GGK02, Theorem C.47]. We’d just like to remark that the proof goes

by showing that the above construction gives a one-to-one correspondence between (equivalence classes

of) G-equivariant line bundles over X and (equivalence classes of) line bundles over EG×GX, and then

the result follows from its well known non-equivariant version.

We shall now discuss a little bit conditions for a G-equivariant bundle to be trivial; by the previous

theorem, if E is a line bundle this is equivalent to cG1 (E) = 0. Clearly if E is trivial as a G-equivariant

bundle then it’s also trivial as a vector bundle, so c1(E) = 0. Another restriction that we have in a trivial

G-equivariant bundle is that it must be an honest bundle.

Definition B.1.4. We say that a G-equivariant vector bundle E → X is honest if for every x ∈ X the

representation of the isotropy group Gx on Ex is trivial.

Equivalently, this means that for every g ∈ G, x ∈ X such that gx = x the map ρx(g) : Ex → Ex is

the identity.

We can think of this definition as follows: the fiber of the induced map E/G → X/G at a point

[x] ∈ X/G is identified with Cr/Gx where Gx acts on Cr ∼= Ex as explained above. So an honest bundle

is such that after we quotient by G we can still identify the fibers with Cr and not with a quotient of Cr.
Note that this condition is vacuous when the action is free.

Example B.1.5. Consider the S1-equivariant vector bundle S2n+1×C→ S2n+1 where S1 acts diagonally

on S2n+1×C. This is trivial as a vector bundle and is a honest bundle since the action is free. However,

it’s not trivial as a S1-equivariant vector bundle. Indeed after quotienting by S1 we get the tautological

bundle O(−1) over CPn = S2n+1/S1, which is non-trivial.

However, in certain circumstances (in which the action is far from being free) a honest trivial vector

bundle is automatically trivial as a G-equivariant vector bundle.
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Proposition B.1.6. Let G be a compact Lie group acting on a connected manifold X. Assume that

H1(X;Z) = 0 (or, more generally, that H1(BG;H1(X)) = 0) and that every g ∈ G fixes some point,

that is, Xg 6= ∅. Let E be a G-equivariant line bundle over X. Then cG1 (E) = 0 if and only if c1(E) = 0

and E is a honest G-equivariant bundle.

Proof. The “only if” direction is clear without any of the conditions asked, as discussed before. For the

non-trivial direction, we consider the Leray-Serre spectral sequence for the fibration

X
π−→ X ×G EG

σ−→ BG

which has 2-page

Ep,q2 = Hp(BG;Hq(X))⇒ Hp+q
G (X).

We are assuming that

E1,1
2 = H1(BG;H1(X)) = 0

and in this case the sequence

E2,0
2 = H2(BG)

σ∗−→ H2
G(X)

π∗−→ H2(X)

is exact. Indeed by the convergence of the spectral sequence

0 −→ E2,0
∞ −→ H2

G(X) −→ E0,2
∞ −→ 0

is short exact and E2,0
2 → E2,0

∞ and E0,2
∞ → E0,2

2 = H2(X)G ↪→ H2(X) are surjective and injective,

respectively.

Thus if we assume that c1(E) = π∗cG1 (E) = 0 it follows that cG1 (E) = σ∗β for some β ∈ H2(BG).

By theorem B.1.3 there is a G-equivariant line bundle over a point ∗ with first Chern class β ∈ H2
G(∗) =

H2(BG); note that giving such a line bundle is the same as giving a G-action on the only fiber C or,

equivalently, a homomorphism G → C× (called a character). By naturality of the Chern classes, and

again theorem B.1.3, it follows that E → X is the pullback of C→ ∗ by the constant map X → ∗:

E C

X ∗.

G G

For any g ∈ G pick x ∈ Xg; since g acts trivially on Ex (because the bundle is honest), g must also

act trivially on C. Hence the G-equivariant bundle C→ ∗ is trivial as a G-equivariant bundle, so β = 0

and cG1 (E) = 0.
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