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ON LIE’S THIRD THEOREM

MIGUEL M. R. MOREIRA

1. INTRODUCTION

Lie’s third theorem is one of the fundamental theorems on Lie theory that shows
the deep connection between Lie groups and Lie algebras — it says that every finite
dimensional Lie algebra g is the Lie algebra of some Lie group G; in this case
we say that G integrates g. Note that by taking the universal cover of G Lie’s
third theorem is equivalent to saying that there is a simply connected Lie group
integrating g. In connection with Lie’s second theorem it shows that the categories
of finite dimensional Lie algebras and simply connected Lie groups are equivalent.
The original Lie’s third theorem, proven by Sophus Lie, was only local (in the
sense it said that a Lie algebra integrated to a local Lie group); only later Cartan
proved the modern version.

There are several proofs of Lie’s third theorem. The more common one uses
Ado’s theorem, that states that every finite dimensional Lie algebra is a Lie subal-
gebra of gl(V') for some finite dimensional vector space V', and hence it integrates
to some subgroup of GL(V'). However, Ado’s theorem is hard and requires a lot
of the structure theory of Lie algebras.

In this paper we will show a different, more geometric, and not so well known
proof of Lie’s third theorem. The proof will be based on the one in [3]. This proof
is much more constructive than others, which frequently use some sort of induction
and classification results on Lie algebras — it describes the Lie group integrating
g as a quotient of the path space of g by a certain subgroup. Because of this, the
proof we will present gives a better understanding of the integrability problem.
Indeed, a similar approach can be used to understand the integrability problem
for more general objects, for instance for Banach Lie algebras (see [4]) and Lie
algebroids (see [I] and [2]), in which integrability is not always possible but the
obstructions to it can be understood.

The paper is organized as follows: In section 2 we explain the construction of
the Lie group integrating g as a quotient of the path space of g; at the end we will
also take the opportunity to give a different proof of Lie’s second theorem. Since
the path space of g is a Banach Lie group, in section 3 we discuss a bit about the
general theory of such infinite dimensional Lie groups and state the results which
will be useful. In section 4 we prove that the construction in 2 gives actually a
Lie group with Lie algebra g, proving Lie’s third theorem. In section 5 we show

an example of a Banach Lie algebra which doesn’t integrate to a Lie group and
1
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discuss briefly the integration problem for Banach Lie algebras. At last, in 6 we
mention a few other possible proofs and related results.

2. CONSTRUCTION OF LIE GROUP INTEGRATING g

Given a connected Lie group GG, we can describe its universal cover as paths in
G starting at 1 modulo homotopies that fix the end points. More precisely we let

P(G)={y€CY([0,1],G) : v(0) =1 € G}

and define an equivalence relation in P(G) by 7y ~ 71 if and only if there is a C*
homotopy 7. such that 7.(1) and ~.(0) are fixed (in particular this implies that if
Yo ~ 71 then v5(1) = ~1(1)). Note that P(G) can be given the C! topology and can
be endowed with a product defined pointwise, that is, the product of v,v" € P(G)
is defined by (v7/)(t) = ~(t)7/(t) — this makes P(G) a topological group. Note
also that ~ is well behaved with respect to the product in P(G), since if 7., 7. are
homotopies between vy ~ 1 and 7 ~ 71, respectively, then .7, is a homotopy
between vy, and y17;. Then the universal cover Gof G is (as a topological group)

G = P(G)/ ~= P(G)/P(G),

where P(G)o = {7y € P(G) : v ~ 1} where 1 is the constant path. Note that this is
precisely the usual construction of the universal cover, except that we’re requiring
paths and homotopies to be C! instead of just continuous, which is fine since we
can approximate continuous paths and homotopies by smooth ones.

The main idea of the construction is that this description of the universal cover of
G can actually (as is expected, knowing Lie’s third theorem) be written completely
in terms of the Lie algebra g of G. To do this, let

P(g) = C"([0.1], 9)
and define D : P(G) — P(g) by

(D) (1) = (@R )30) = = (307 .,

The map D, which should be seen as differentiation of paths, relates paths in G
with paths in g. Indeed, D is a homeomorphism.

Lemma 1. Let G be a connected Lie group with Lie algebra g. Then the map D
is a homeomorphism P(G) — P(g).

Proof. By the definitions of the C! and C° topology it’s clear that D is continuous.
Given 6 € P(g) denote by Fy: G x [0,1] — T'G the map

Fs(g,t) = (dRg)o ().

Since Fs(g,t) € T,G we can regard Fj as a time dependent vector field on G. Note
that 6 = D~ if and only if

Y(t) = Fs(y(t),1)
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and v(0) = 1. This already makes clear that D is injective, by uniqueness of
solutions to ODEs. To show that D is surjective we need to see that the maximal
interval of definition of the solution of the above ODE is [0,1]. For fixed 4, let
®*(z) be the flow of Fs which is z at time s; then v(t) = ®%!(15) is a solution of
D~ =6.

Let I denote the set of pairs (s,t) in [0, 1] for which ®%'(1) is defined; certainly
(s,s) € I for any s € [0,1] and by the existence theorem for ODEs I is open
for each s. An easy computation shows that ®%(x) = ®*!(1)z, hence ®%(x)
is defined for every (s,t) € I. Moreover since &% o ®»f = O we get that if
(s,u), (u,t) € I then (s,t) € I. With this, it’s easy to see that I = [0, 1] x [0, 1]:
by compacity of [0,1] there are 0 = s; < 51 < ... < s = 1 such that I, cover
[0,1] and s;41 € I, so given any (s,t) € [0,1] x [0,1] wlog such that s < t we
can find 4, j such that (s, s;), (S;, Si+1), - - -, (s;,t), and thus (s,t) € I. In particular
(0,t) € I for every t € [0, 1], thus D is surjective.

The fact that D~! is continuous follows from the fact that the map § — Fj
from P(g) to the space of time dependent vector fields is continuous and from the
continuous dependence of the solution of an ODE on the vector field. U

To understand the construction in terms of the Lie algebra g we must see to
what do the product and the equivalence relation ~ in P(G) correspond after
applying the map D. To describe this, the following definition is useful.

Definition 1. Given 6 € P(g), let A = As :[0,1] — GL(g) be the solution of the
differential equation

4 (t) = ad 5(t) o A(t)
A(0) = 1.

Alternatively, As = D™ (ad §) where D : P(Adg) — P(adg).

Lemma 2. Let G be a connected Lie group with Lie algebra g. Then
(1) For any v,y € P(G) we have

D(yy)(t) = Dy(t) + Ad(y(1))(DY)(t)

)
and moreover Ad(y(t)) = Ap,(t).
(2) A smooth homotopy € — ~. € P(G) has fizred end point (that is, v.(1) is
constant) if and only if

/ s () a%f) dt = 0. (1)

where 6. = D~.. In particular P(g)o = D(P(G)o) is the set of 6 € P(g)
such that there is a map € — . obeying equation such that 9 = 6 and
51 - 0
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Proof. (1) We compute the following

2 (107 (1)) = (dRy))(t) + (dLyn) 7' (2)
(dR () © ARy ) (D(1)) + (dLywy © dRyra)) (DY) ()
= (dRy 0y (1)) (DV(t) + d(Ryg1y-1 © Ly ) DY (1))
= (de () (D(t) + Ad(v (1) Dy'(2)) -
Hence the formula for D(vyv’) follows. To show that Ad(y(t)) = Ap(t) we
can compute the derivative
d

AG)ms = (A0 ) o Ad6(0)

~ad (%ﬂsw)l) o Ad(1(1)

= ad(Dy(t)) o Ad(7(t))-
Since moreover Ad(y(0)) = Ad(1) = I the result follows.
(2) To prove this we fix € and ¢ and consider the function F': [0,1] X [0,1] = G
defined by
F(s,u) = 7e(s) ™ yu(8)7u(t) ().
Note that F'(t,u) = 1 = F(s,¢) for any u, s € [0,1]. Hence (¢, €) is a critical
point of F', and therefore its Hessian is well defined and symmetric. We
compute its cross derivatives at (¢, ¢€):

55t = 3 (5 GO 0 900) L+ 35 () b))
- (3 Gl 0) )
(L) (R ) ( (). )

_106(1)
- 1
= Ad(re(n) e
On the other hand

O*F 0 (0 1 0 1
9 = 7 (g (09 ) e g G700,

0 _107¢(s)
=3 ((dL%(s)) “oc )

Using %(t, €) = %(t ¢) and integrating from ¢ = 0 to 1 gives

[ 200 B0 = () 5

Oe
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Since Ad(7.(t)) = As,(t) as we showed in (1) the result follows. O

According to this, given an abstact Lie algebra g we can perform this exact
construction:

Definition 2. Given a Lie algebra g we can give the Banach space P(g) a product
structure by defining

(66")(£) = 0(t) + As(t)d" (1).
We also define P(g)o to be the set of 6 € P(g) such that there is a differentiable
map € — . obeying equation | such that 6y = 0 and §; = 0.

Lemma 3. The product defined above gives a group structure on P(g). Moreover,
d — As is a group homomorphism P(g) — Adg.

Proof. We prove first that AsAs = Ass. Indeed, by the Leibniz rule

@ A5A5)(t) = As(D)ad(8(1)) Ag () + ad(5(1)) As(t) Ay (1)

dt
= ad(d(t) + As(t)0'(t)) As(t) As r)
— ad((05') (1) As(t) s,

Hence As;As = Ass. Note that we used that ad(AX) = Aad(X)A™! where
A = As(t) is a Lie homomorphism and ¢'(¢) € g. Associativity is a matter of
computations using the above, showing that

(01(020(3))(t) = 61(t) + As, (t)02(t) + As, (t) As, (£)03(2)
= ((0102)05(t).
The identity is the constant path equal to 0, and it’s easy to check that
0H(t) = —As(t) 1o (t)
defines an inverse of . OJ
With all the results proven, the following is now clear:
Proposition 4. If g is the Lie algebra of G, then P(g)/P(g)o = G.
Proof. The homeomorphism D! induces an isomorphism
P(g)/P(g)o = P(G)/P(G)y = G. O

At this point, we take the opportunity to give a proof of Lie’s second theorem
with the interpretation of the simply connected group G with Lie algebra g which
we’'ve been describing. Indeed, with this setup the proof is very natural: given a
homomorphism of Lie algebras, the pushforward will give a homomorphism on the
path spaces, which will induce a homomorphism from G.
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Theorem 5 (Lie II). Let G be a simply-connected Lie group and H a connected
Lie group, with Lie algebras g and by, respectively. If ¢ : g — b is a Lie algebra
morphism then there is a unique Lie group homomorphism f : G — H such that

¢ = (df)e-

Proof. We may assume that H is simply-connected as well, otherwise we just have
to compose with the projection from the universal cover H — H. But then we
can define f = ¢, : P(g) — P(h) by f(6) = ¢ od. Since ¢ is a Lie algebra
morphism we have that ad f(d) o ¢ = ¢ o add, and therefore Ap;y 0 ¢ = ¢ o As.
With this we show, from lemma[2] that f is a Lie group homomorphism and that if
dp ~ 91 then f(do) ~ f(01), and therefore f induces a map f: G = P(g)/P(g)o —
P(h)/P(h)o = H which is a homomorphism.

To see that f lifts ¢, we compute the exponential g — P(g)/P(g)o. This can be
written as the composition

g G — PG)/P(G)y B P(g)/P(g)o

where the map G — P(G)/P(G), sends g € G to the class of any path from 1 to
g. Given X € g, take the path v(¢) = exp(tX) and an easy computation shows
that (D7v)(t) = X. Thus, the expoential when seen as a map g — P(g)/P(g)o
takes X € g to the class of the constant path ¢ — X. Therefore

exp((df)eX) = f(exp(X)) = [constant path = $(X)] = exp(¢(X)).

Since the exponential is a local isomorphism ¢ = (df).. O

3. BANACH LIE GROUPS AND LIE ALGEBRAS

A Banach manifold is a topological space modelled by a Banach space. In a
Banach space we have a notion of (Fréchet) derivative generalizing the derivative
in R", enabling us to define a (differentiable) Banach manifold by asking that the
transition maps are differentiable. This also gives a definition of smooth maps
between Banach manifolds.

In a Banach manifold the implicit function theorem, existence-unicity theorems
for ordinary differential equations and Frobenius theorem on integrable distribu-
tions still hold, so a lot of the theory for finite dimensional manifolds works as well
in the Banach case. The book [5] develops the theory of manifolds in the Banach
setup and is a reference for the results mentioned above.

A Banach Lie group is a Banach manifolds endowed with a group structure
for which the product and the inverse are smooth. A Banach Lie group has an
associated Lie algebra, defined precisely as in the finite dimensional case, which is
now a Banach space with a Lie bracket. In Banach Lie groups we can define an
exponential, by existence of solutions to ODEs; this is not true for more general
classes of infinite dimensional Lie groups. Moreover, the exponential is a local
diffeomorphism onto an open set; again, this is not true for other classes of Lie
groups (even when we can define an exponential), for instance it fails for Diff(S*).
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A reference for infinite dimensional Lie groups (and in particular for Banach ones)
is [8]. We now define subgroups of Banach Lie groups in a similar way to [4],
although with different names:

Definition 3. Let G be a Banach Lie group. A Lie subgroup of G is a Banach Lie
subgroup H admitting an injective inclusion map H — G such that the induced
map on the Lie algebras is an embedding.

If the inclusion H — G is an embedding we say that H is an embedded Lie
subgroup.

Recall that we want to show that we can give a smooth structure to P(g)/P(g)o.
The following result shows that to prove this it’s enough to see that P(g) is an
embedded Lie subgroup, which will be the last part of the proof.

Theorem 6. If G is a Banach Lie group and N is a normal embedded Lie group
of G then G/N can be given a Banach Lie group structure compatible with the
quotient topology. Moreover m: G — G /N is a submersion and a fiber bundle, and
the Lie algebra of G/N is identified with g/n where g and n are the Lie algebras
of G and N.

Proof. Everything except the fiber bundle part is proven in [4] (theorem I1.2); we
will prove the remaining.

Take z € P(g). By the normal form of a submersion for Banach manifolds (see
[5]) there are open sets U,V such that z € U C G, w(z) € V = n(U) C G/N
and a splitting map ¢ : V' — U which is an embedding of V into U, z € im ¢ and
7o ¢ = idy. But then the map N x V — 7= }(V) defined by (y,2) — y¢(2) is a
diffeomorphism, hence V' is a local trivialization. 0J

The closed subgroup theorem, which states that a closed Lie subgroup is an
embedded Lie subgroup is not true for Banach Lie groups. However, the following
result gives an easy way to show that a subgroup is embedded, and will be how
we shall prove that P(g)o is embedded.

Lemma 7. If f : G — H is a smooth homomorphism of Banach Lie groups and
T C H is an embedded Lie subgroup of H, then f~1(T) C G is an embedded Lie
subgroup of G.

Proof. See [4], lemma II.1. O

It will also be useful the fact that the second Lie theorem also holds for Banach
Lie groups. Indeed, the proof we gave for the finite dimensional case works just as
well for the Banach case.

Theorem 8 (Lie II for Banach Lie groups). Let G be a simply-connected Banach
Lie group and H a connected Banach Lie group, with Lie algebras g and by, respec-
tively. If ¢ : g — b is a Lie algebra morphism then there is a unique Lie group
homomorphism f : G — H such that ¢ = (df)..
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4. PrROOF orF LiE III

Note that P(g) is naturally a vector space, and indeed it’s a Banach vector when
given the norm sup norm || - [|». The topology induced by this norm is the same
as the C? topology we defined P(g) with (which is the compact-open topology of
maps [0, 1] — g). This makes P(g) a Banach Lie group with the product defined
earlier.

Proposition 9. The Lie algebra P(g)% of P(g) can be identified with P(g) with
a Lie bracket given by

X,Y](t) = % MX(S) ds,/OtY(s) ds} |

Moreover, P(g)o is a connected normal Banach Lie subgroup of P(g) with corre-
sponding Lie algebra

P(g) — {X € P(g)™ - /01 X(s)ds = o} |

Proof. Since P(g) is a vector space, we can identify its Lie algebra with P(g) itself.
We denote by X (t),Y (t) elements of P3(g), which are paths [0,1] — g. To prove
the formula for the Lie bracket [X,Y] we differentiate §6’6~! with ¢, ¢ in the
directions of X, Y, respectively. We have

(60" 1) (t) = 0(t) + As(t) — As(t) Asi (1) As(t) 1 5(¢).

Note that

g (%A€y<t>)€_o = lim (A (1) 0 ad (Y (1)) = ad (¥ (1)

Integrating this in t gives

0

t
&Aey(t)ezo_/o ad Y (s) ds.

Differentiating 58’6~ with respect to ¢’ in the direction of Y and using the above
gives

As()Y (t) — As(t) </Ot adY (s) ds> As(t)715(t).
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Now differentiating with respect to ¢ in the direction of X gives

X, Y](t) = (/Ot ad X (s) ds) Y(t) - (/Ot ad Y (s) ds> X(1)
_ [ /0 "X (s) ds,Y(t)] + [X(t), /0 Ys) ds}
:%l/OtX(s)ds,/otY(s)ds}

Let av : P(g)*® — g be defined by

:/OlX(t)dt

It’s clear that av is a Lie algebra homomorphism, hence

A =ker av = {X c P(g)™e : /OIX(S) ds = o}

is a Lie ideal (and in particular a sub-algebra) of P(g). Consider the left invariant
distribution on P(g) given by Ds = (dLs)A. This distribution is involutive (be-
cause A is a Lie sub-algebra) and the maximal integral submanifold through 0 is
a Lie subgroup of P(g), which we want to show that is P(g)o.

Note that (dLs) X (t) = As(t) X (t). Hence, the definition of P(g), says that 6 €
P(g)o if and only if there is a path &, in P(g) from § to 0 such that (dLs,) ' %< € A,
that is, such that %= € D for every € (i.e. € — & is tangent to D). This shows that
P(g)o is the maximal integral submanifold tangent to D, hence it’s the connected
Lie subgroup of P(g) with lie algebra P(g)3® = A. Moreover P(g), is normal since
its Lie algebra A is a Lie ideal. ([

By theorem [6] we now want to show that P(g)o is actually an embedded Lie
subgroup of P(g). From this it will follow that P(g)/P(g)o is a Banach Lie group
with Lie algebra P(g)*2/P(g)¥®. Note that av is surjective (since it sends the
constant path X(t) = X € g to X), hence av induces an isomorphism of Lie
algebras P(g)*2/P(g)4® = g, showing that P(g)/P(g)o is a Lie group integrating
g, and by proposition [ it follows that it’s the unique simply connected group
integrating g.

Our strategy will be to identify P(g)o as the kernel of a certain homomorphism
¢, and by lemma [7| we’ll have that P(g)o is an embedded Lie subgroup. Since the
Lie algebra P(g)g® is the kernel of av, if we could integrate av we would be able to
find such a homomorphlsm Although we can’t apply this reasoning (for obvious
reasons), we can consider the short exact sequence

0—=3—>9g—>adg—0
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and use this idea with ad g, which we know to be integrable to Adg. With the
construction we used in our proof of Lie II, we expect that ad : g — ad g integrates
to a homomorphism P(g)/P(g)o — Adg given by [§] — As(1).

Considering all the motivation above, we define

P(g)1 ={6 € P(g): As(1) = I} = kerm

where 7 : P(g) — Ad(g) is the map § — As(1); note that 7 is a Lie group homo-
morphism (recall that in lemma [3 we showed that § — As was a homomorphism).
Then P(g); is an embedded Lie subgroup by lemma . We can compute its Lie
algebra:

Proposition 10. The Lie algebra of P(g); is
P(g)™ = {X € P(g)" : avX € 3}.

Proof. The Lie algebra of P(g); consists of the vectors X such that A.x(1) = [
for every e. As we saw in the proof of proposition [0 we have

1
diAeX(]-)EO = / ad X (s) ds = ad(av X)
€ 0

and this is 0 if and only if av(X) € 3. O

Note that in particular we get that P(g)i® C P(g)%®, and since P(g), is con-
nected it follows that P(g)g € P(g); € P(g)1 (where we denote by H° the con-
nected component of the identity of a Lie group H).

The map 7 : P(g) — Adg given by § — As(1) is surjective. Indeed, given
A € Adg take a path a : [0,1] — Adg from [ to A. Then D(a) is a path in
adg, so we can find 6 € P(g) such that D(a)(t) = ad(d(¢)) and then clearly
A = As(1) = 7(0). Hence we have a fibration

P(g)1 —— P(g)

lﬂ
Adg.

This fibration gives an isomorphism Ad g = P(g)/P(g)1, so by theorem[6] 7 is a
fiber bundle. Since P(g) is contractible (it’s a vector space, so it admits a linear
deformation retract to 0) the long exact sequence on homotopy groups gives an
isomorphism

m1(P(9)1,0) = ma(Adg, I).
But 73 of a (finite dimensional) Lie group is trivial (this follows from theorem 21.7
in [7]), so m(P(g)1,0) = 0 and thus P(g); is simply connected. Now note that av
restricts to a map P(g)™'® — 3, hence by the second Lie theorem (for Banach Lie
groups) we can integrate av to a Lie group homomorphism ¢ : P(g); — Z where
Z = (R",+), with n = dim 3, is the Lie group integrating 3 . But then

(ker ¢)™'8 = ker (d¢), = ker av = P(g>glg
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and therefore P(g)o = (ker ¢)°. By lemma [7] we know that ker ¢ is an embedded
Lie subgroup, and then so is P(g)o, finishing the proof of Lie III.

5. COUNTER EXAMPLE FOR INFINITE DIMENSIONAL LIE GROUPS

The first example of a non-integrable Banach Lie algebra was given by van Est
in 1964. We will show an example, given by Serre in [10], of a Banach Lie algebra
which doesn’t integrate to a Lie group. Let G = GL(H) x GL(H) where H is a
complex Hilbert space. The center of G is Z(G) = C* x C*; let

N = {(e",e*") : t € R} C Z(G)

and let n be its corresponding Lie algebra. Since NN is normal, n is an ideal so we
can define the Lie algebra g/n, which we claim to be non-integrable.

Suppose that g/n integrates to a simply connected Lie group K. By Lie’s second
theorem the projection g — g/n integrates to some map ¢ : GL(H)xGL(H) — K,
and we can easily check that this implies that N is (ker ¢)°, hence N would be
closed, which is not true when « ¢ Q.

We also remark that this example, and in general the failure of Lie’s third
theorem for infinite dimensional Lie algebras (or for Lie algebroids, as studied in
[1] and [2]), is related to the fact that (@) (or H*(G;R)) may not be trivial in
such cases. An example of this fact is given as above when o € Q; in this case
K = G/N is a Lie group. By Kuiper’s theorem G is weakly contractible, so the
long exact sequence on homotopy groups gives an isomorphism

’/T2<K) = 7T1(N) = 7T1(Sl) =7.
A similar argument also shows that
mo(Ad(g/n)) = m(Adg) = m(G/Z(G)) = m(Z(G)) = Z© L.

Indeed, this connection between integrability and m, is made clear by the fol-
lowing theorem, which gives a classification of the integrable Banach Lie algebras
in terms of the period group II(g), which is the image of a certain homomorphism

0:m(Adg) — 3.

Theorem 11. There is a Banach Lie group G with Lie algebra g if and only if
[I(g) C 3 is discrete.

In the example above the period homomorphism is given by (m,n) — —am-+n,
so its image is not discrete. In [4] there’s a proof of this last theorem using
essentially the same ideas we used in our proof. Moreover, we remark that in [I]
a similar criterion is given for the integrability of a Lie algebroid to a Lie grupoid,
and again that the construction of the Lie grupoid is a generalization of the one
we described in this paper.



12 MIGUEL M. R. MOREIRA

6. DIFFERENT PROOFS

6.1. Inductive proof with Levi decomposition. With some of the structure
theory for Lie algebras, in particular the Levi decomposition of a Lie algebra,
we get get a very short proof of Lie’s third theorem that doesn’t require the full
strength of Ado’s theorem. This proof is presented in [10]. First, we note that if g
is either abelian or semi-simple then g is integrable. If g is abelian then (g, +) is a
Lie group integrating g. If g is semi-simple then its center is trivial, so the adjoint
representation is injective and therefore g = ad g is the Lie algebra of Ad g.

We claim that if g is not semi-simple neither the 1-dimensional abelian Lie
algebra then we can decompose g = go X g1 as the semidirect product of two
smaller dimension Lie algebras. If g is not solvable, then the Levi decomposition

0 — Rad(g) — g — g/Rad(g) — 0

is such a decomposition since g # Rad(g) because g is not solvable and g #
g/Rad(g) because g is not semi-simple. On the other hand, if g is solvable then
[g,0] € g and we can chose a linear subspace g; of codimension 1 in g such that
[g,0] C g1 C g. Then automatically g; is an ideal since [g, g1] C [g, 9] C g1 and we
have the following exact sequence:

0O—=g1—9g—g/e1 =R —0.

This sequence clearly splits via the map R — g defined by 1 — x where z € g\ g;.

Now we proceed by induction on the dimension of g. If g in not semi-simple
neither the 1-dimensional abelian Lie algebra we can write g = go X g1 where go
acts on g1 by A : go — Der(gy). By the induction hypothesis g; and g, integrate to
simply connected groups G; and G, respectively. Since Der(g;) is the Lie algebra
of Aut(g;) = Aut(Gy), by Lie’s second theorem there is group homomorphism
p: Go — Aut(Gy) such that A = (dp).. But then the Lie group G = G, x, Gy has
Lie algebra go X g1 = g by exercise 11 in Homework 4.

6.2. Integrating to local Lie group. The Baker-Campbell-Hausdorff formula
tells us there is a formal expression p : g X g — g written only in terms of the Lie

bracket such that

eXe¥ = etXY),

Explicitly, p is given by the following formula:

(—1)™ [(XTYystXr2ys2  X'nYse] X
X,)Y)=Y —
X, Y) + nZZO n+1 r¢§>0 (L4232 ) [T (rilsi!)

where the expression [X1Y*1 X"2Y*2  X"™Y*"] is defined as
(ad X)*(adY)* (ad X)™?(ad V)2 ... (ad X)™(ad V)"

This formal formula converges for X, Y in a small neighborhood U of X. One can
also write the Baker-Campbell-Hausdorff formula as follows: let F'(z) denote the
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formal analytic expansion of ZZIOTgIZ around z = 1. Then

WX,Y) =X + / 1 F(AA(X)Ad(Y)) dt.

On the other hand, given a Lie algebra g the formula p defines a local product
iU x U — g and therefore a local Lie group. Indeed, the series in p converges
and it can be shown that it really defined a Lie group structure — in particular it
is locally associative, that is, u(X, u(Y, 2)) = p(u(X,Y), Z) for sufficiently small
X,Y,Z € g, as was shown in [?]. This already shows Lie’s first theorem, which
was actually its original form: any Lie algebra is the Lie algebra of a local Lie
group.

However, the problem of extending a local Lie group to a global one is a hard
one, and in general it’s not possible. A theorem of Mal'cev (in [0]) says that it
is possible to extend a local Lie group X to a global one if and only if X obeys
n-associativity for every n, that is, if for any two expressions with parentheses that
multiply n elements of X give the same result whenever they are both defined.
For instance 4-multiplicity implies that

((zy)2)w = (zy)(zw)
whenever both expressions are defined. The proof (of the non-trivial implication)

constructs the Lie group extending X as W(X)/ ~ where W is the set of words
on X and ~ is the equivalence relation generated by

($0,...,$i,$i+1,-..,l’n)’\4 ('an"'axil‘i—}—la"-axn)

when the product z;x;,; is defined.

By Lie’s third theorem, it is true that the local Lie group defined by the Baker-
Campbell-Hausdorft formula respects n-associativity for every n. Indeed, a direct
proof of this fact would lead to a proof of Lie’s third theorem. However, this seems
highly non-trivial, as the proof of 3-associativity itself is already quite hard.

On the other hand, in [9] it’s proven that, although we may be unable to extend
a local Lie group to a global one, we can extend some (local) cover of the local Lie
group. Doing this with the local Lie group given by the Baker-Campbell-Hausdorff
formula constructs a Lie group integrating g.

6.3. Integration of the adjoint extension. We will now sketch the idea of
another proof, based on the ideas of van Est on how to integrate an abelia extension
applied to the adjoint extension of a Lie algebra. The full details for such a proof
can be found in [L1].

Consider the adjoint extension of the Lie algebra g:

0—3—>g—adg—0.

—~——

Both 3 and h = ad g are integrable to Z = (3,+) and H = Ad(g), respectively.
Hence, we would like to find integrate g to a simply-connected Lie group G which
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is an extension of H by Z, i.e. that fits in a short exact sequence
0—-2—G—H—DO.

Recall that the extensions of h by 3 are classified by an action h — Aut(3) and an
element of the Lie algebra cohomology HZ g(h, 3). On the other hand, extensions
of H by Z are classified by an action H — Aut(Z) and by an element of the
cohomology Hj,,(H , Z) where er is a certain cohomology theory for Lie groups
— note that in [I1] what we're calling H, g2r is H 57«,337 while there Hg2r denotes the
“discrete group cohomology”. By Lie’s second theorem one can easily integrate
the Lie algebra action h — Aut(3) to a Lie group action H — Aut(Z). Hence, it
would be enough to understand how to integrate the element of the Lie algebra
cohomology Hglg(f), 3) to an element of HQQT(H , Z), and this is possible (and this is
possible as long as H is simply-connected).

Indeed there is a map A : HZ.(H,Z) — H},(b,3), which we can regard as
differentiation of cochains, such that if [¢] € H}.(H,Z) represents an extension
m: G — H then Alp] € HZ, (h,3) represents the extension (dm). : g — b. It
was proven by van Est in [12] that A is an isomorphism if H is simply connected
— indeed he proved that, more generally, the differentiation map H ST(H VL) —

P

Hﬁlg(h,g) is an isomorphism if H is ¢-connected. This is the case for H = Ad(g),
showing that we can find an extension G — H corresponding via the isomorphism
A to the extension g — b; the Lie group G found in this way integrates the Lie
algebra g.
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