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1. Introduction

This paper is concerned with the Flux homomorphism as a tool to understand
the group of Hamiltonian symplectomorphisms in a symplectic manifold (M,ω).
We will follow very closely the exposition in the book Introduction of Symplectic
Topology by McDuff and Salamon ([7]).

In the second section we talk in general terms about the groups of symplecto-
morphisms and Hamiltonian symplectomorphisms, and try to frame these in the
theory of (infinite dimensional) Lie groups, in particular thinking of their Lie alge-
bras; note that rigorously it’s true that the Hamiltonian symplectomorphisms are
a Lie group, but this is a very non-trivial fact that we will discuss only briefly in
section 4.

Section 3 is the main part of the text; we define the flux homomorphism and
prove its main properties. This homomorphism is a priori defined in the universal
cover of the group of symplectomorphisms and its relevance is the fact that the
Hamiltonian symplectomorphisms form the kernel of Flux.

In section 4 we talk briefly about the Flux conjecture, a very important problem
which was solved in 2006 by K. Ono; he proved that the group of Hamiltonian
symplectomorphisms is C1-closed in the group of symplectomorphisms. We show
what is the relation with the flux homomorphism. It’s still an open problem wheter
the Hamiltonian symplectomorphisms are actually C0-closed.

At last, in section 5 we mention (whithout much detail) some other results
concerning the group of Hamiltonian symplectomorphism, regardind its simplicity
in the compact case and the Calabi homomorphism in the non-compact case.

2. The groups of Symplectomorphisms and Hamiltonian
symplectomorphisms

Recall that given a closed manifold M its group of diffeomorphisms Diff(M)
with the C1 topology is a (Fréchet, infinite dimensional) Lie group (see [9]). It
has Lie algebra χ(M), the space of vector fields on M with Lie bracket given by
−[·, ·]1 where [·, ·] is the usual Lie bracket of vector fields. Indeed if {ψt} is a path

in Diff(M) such that ψ0 = idM the vector field x 7→ dϕt(x)
dt |t=0

is tangent to {ψt}

1In this paper we are using the usual definition of Lie Bracket [X,Y ] = LXY , which is different
from the one used in [?].
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at t = 0. Given such a path (that is, an isotopy of diffeomorphisms), we call its
infinitesimal generator the time dependent vector field Xt which is defined by

dψt
dt

= Xt ◦ ψt.

The exponential of X ∈ χ(M) is the time-1 map of the flow of X, that is,
exp(X) = ϕX1 .

Given a symplectic manifold (M,ω) we are interested in studying the subgroup
of symplectomorphisms Symp(M,ω) ⊆ Diff(M). This is a closed Lie subgroup2

and has corresponding Lie sub-algebra the algebra of symplectic vector fields

χsymp(M,ω) = {X ∈ χ(M) : ι(X)ω is closed} ⊆ χ(M).

To give a local model to Symp(M,ω) we use Weinstein’s Lagrangian theorem to
identify sufficiently C1-small symplectomorphisms with closed forms, giving then a
coordinate chart for a neighborhood of id. This is done as follows: we consider the
symplectic manifold (M ×M,ω ⊕ (−ω)). Its diagonal ∆ = {(x, x) : x ∈M} ∼= M
is a Lagrangian submanifold, so by Weinstein’s theorem there is a symplectomor-
phism Φ : N (∆) → N (M0) from a neighborhood of ∆ to a neighborhood of the
zero section M0 ⊆ T ∗M . For a sufficiently small C1 neighborhood U of the identity
in Symp(M,ω) for every ψ ∈ U we have that graph(ψ) ⊆ N (∆) and there is a
closed form σ ∈ Ω1(M) such that graph(σ) = Φ(graph(ψ)) (here we think of σ as
a section M → T ∗M). Thus we define a coordinate chart

C : U → V ⊆ {closed 1-forms on M}.
This shows that Symp(M,ω) is a Lie group locally modeled by {closed 1-forms} ⊆
Ω1(M). In particular it is locally path connected.

An important subgroup of the symplectomorphism group is the group of Hamil-
tonian symplectomorphisms.

Definition 1. A vector field is said to be Hamiltonian if ι(X)ω is exact, that is,
ι(X)ω = dH for some H ∈ C∞(M,R). We denote the set of Hamiltonian vector
fields by χham(M,ω).

We say that an isotopy {ψt} is a Hamiltonian isotopy if its infinitesimal gener-
ator Xt is Hamiltonian for every t. A symplectomorphism ψ is said to be Hamil-
tonian if there is a Hamiltonian isotopy {ψt} such that ψ0 = id and ψ1 = ψ. We
denote by Ham(M,ω) the group of Hamiltonian symplectomorphisms.

Note that ψ being a Hamiltonian symplectomorphism means that it’s the time-
1 map of the flow generated by a time dependent Hamiltonian Ht. This shows
that Arnold’s conjecture is essentially a question about Hamiltonian symplecto-
morphisms: it bounds from below the number of fixed points of a Hamiltonian
symplectomorphism.

2The fact that it’s closed in the C1 topology comes straightorwardly from the definition.
Eliashberg-Gromov rigidity theorem tells the non-trivial fact that it’s also C0-closed.
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Note that χham(M,ω) is the kernel of the map f : χsymp(M,ω) → H1(M ;R)
defined by

X 7→ [ι(X)ω] ∈ H1(M ;R).

Proposition 1. The map f above defined is a Lie algebra homomorphism (where
H1(M ;R) ∼= Rβ1 has the trivial Lie bracket).

In particular χham is a Lie ideal of χsymp.

Proof. Let X, Y ∈ χsymp(M,ω). Recall that we have the identity ι([X, Y ]) =
[LX , ι(Y )]. Hence, we compute as follows:

ι([X, Y ])ω = LXι(Y )ω − ι(Y )LXω = d (ι(X)ι(Y )ω) + ι(X)d(ι(Y )ω)

= d (ι(X)ι(Y )ω)

We used that LXω = dι(Y )ω = 0 (because X and Y are symplectic) and Cartan’s
magic formula. Hence ι([X, Y ])ω is exact and so f([X, Y ]) = 0 for any X, Y ∈
χsymp(M,ω). �

The fact that χham(M,ω) is a Lie sub-algebra suggests that Ham(M,ω) is the
Lie subgroup corresponding to it (and actually, since it’s a Lie ideal, we would
expect Ham(M,ω) to be a normal subgroup). However in infinite dimensional Lie
groups the correspondence between Lie sub-algebras and Lie subgroups does not
work in general, so it’s not even obvious by now that Ham(M,ω) is a subgroup.
The following proposition shows this is true.

Proposition 2. The set Ham(M,ω) ⊆ Symp(M,ω) is a normal and path-connected
subgroup.

Proof. We can check that if {ψt}, {φt} are Hamiltonian isotopies generated by Ht

and Gt, respectively, then {ψt ◦ ψt} is generated by Ht + Gt ◦ ψ−1
t and {ψ−1

t } is
geneated by −Ht ◦ψt; moreover if ϕ is any symplectomorphism then {ϕ−1 ◦ψt ◦ϕ}
is generated by Ht ◦ ϕ. The fact that Ham(M,ω) is path-connected follows from
the definition. �

Remark 1. If we have a non-compact symplectic manifold (M,ω) we can recover
most of what was said if we replace the groups of diffeomorphisms, symplectomor-
phisms, etc. by their compactly supported variations. For instance

Diffc(M) = {ψ ∈ Diff(M) : ψ has compact support}.
The support of a diffeomorphism is the closure of {x : ψ(x) 6= x}. In this case the
infinitesimal generators all have compact support as well and hence the map f is
defined not onto H1(M ;R) but onto H1

c (M ;R), the compactly supported cohomol-
ogy·

The idea to study the group of Hamiltonian symplectomorphisms is the follow-
ing: we know that χham(M,ω) is the kernel of a Lie algebra homomorphism f which
we described before, and “morally” χham(M,ω) is the Lie algebra of Ham(M,ω).



4 MIGUEL MIRANDA RIBEIRO MOREIRA

Hence we’d like to integrate f to a homomorphism of Lie groups. By Lie’s sec-

ond theorem (see [8]) we can integrate f to a homomorphism S̃ymp0(M,ω) →
H1(M ;R) where S̃ymp0(M,ω) is the universal cover of the connected component
of the identity of Symp(M,ω).

This universal cover can be described as equivalence classes of symplectic iso-
topies up to homotopies with fixed end points. More precisely

S̃ymp0(M,ω) = {ψ ∈ C∞([0, 1], Symp(M,ω)) : ψ0 = id}/ ∼

where {ψ0
t } ∼ {ψ1

t } if there is a (C∞) homotopy s 7→ {ψst} with fixed endpoints,
i.e. such that ψs0 = id and ψs1 = ψ for any s ∈ [0, 1].

The projection S̃ymp0 → Symp is given by {ψt} 7→ ψ1. We can give a group

structure to S̃ymp0 in two (equivalent) ways, either by defining the product of
isotopies with pointwise composition or with concatenation. That is

[ψt] · [ϕt] = [ηt] = [θt]

where ηt = ψt ◦ ϕt and

θt =

{
ψ2t if 0 ≤ t ≤ 1/2

ψ1 ◦ ϕ2t−1 if 1/2 ≤ t ≤ 1.

3. The Flux Homomorphism

With the ideas before in mind, we define now the Flux homomorphism.

Definition 2. Given a symplectic isotopy {ψt} we define its flux as

Flux ({ψt}) =

∫ 1

0

[ι(Xt)ω] dt ∈ H1(M ;R)

where Xt is the (symplectic) vector defined by

dψt
dt

= Xt ◦ ψt.

We’ll see shortly that Flux is invariant with respect to homotopies with fixed end

points, and hence descends to a map S̃ymp0(M,ω) → H1(M ;R), and moreover
that this map is a homomorphism, called the flux homomorphism. Moreover this
homomorphism integrates f ; indeed this is something general about integrating
Lie algebra morphisms f : g→ Rn

Another way to write the flux homomorphism is by regarding H1(M ;R) as
Hom(π1(M),R) via identifying [α] ∈ H1(M ;R) with the homomorphism

π1(M) 3 [γ] 7→
∫
γ

α =

∫
S1

γ∗α ∈ R.
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Under this identification, the flux homomorphism sends a path {ψt} to the homo-
morphism

[γ] 7→
∫ 1

0

∫ 1

0

ω(Xt(γ(s)), γ̇(s)) ds.

Given a symplectic isotopy {ψt} and a loop γ consider the map β : S1× [0, 1]→M
defined by β(s, t) = ψ−1

t (γ(s)). Geometrically β is a cylinder in M which is
obtained by starting at the boundary circle γ and flowing along the isotopy {ψ−1

t }.
Differentiating the identity γ(s) = ψt(β(s, t)) in the s and t variables we get,
respectively,

γ̇(s) = (dψt)
∂β

∂s
and 0 = (dψt)

∂β

∂t
+Xt(ψt(β(t, s))).

The second identity simplifies to Xt(γ(s)) = −(dψt)
∂β
∂t

. Since ψ∗tω = ω we now
have:

Flux({ψt})γ =

∫ 1

0

∫ 1

0

ω

(
(dψt)

∂β

∂s
, (dψt)

∂β

∂t

)
ds

=

∫ 1

0

∫ 1

0

ω

(
∂β

∂s
,
∂β

∂t

)
ds

=

∫
S1×[0,1]

β∗ω.

Proposition 3. The flux of an isotopy {ψt} doesn’t depend on the class of {ψt} up

to homotopies with fixed end points. Moreover the induced map Flux : S̃ymp0 →
H1(M ;R) is a homomorphism.

Proof. Let u 7→ {ψut } be a homotopy with fixed end-points id and ψ = ψu1 . Let
βu : S1× [0, 1]→M be given by βu(s, t) = (ψut )−1(β(s)) (this is the cylinder above
considered). Let Su be the chain (in the singular complex of M) defined by βu.
Then, since ψ has fixed end-points, we have that ∂Su is the same for every u and is
given by the difference between the chains defined by ψ−1 ◦ γ and γ. Thus Su−S0

is closed for every 0. But S1 − S0 is homologous to S0 − S0, which is trivial, via
u 7→ Su − S0. Hence

Flux({ψ1
t })γ − Flux({ψ1

t })γ =

∫
S1×[0,1]

(β1)∗ω −
∫
S1×[0,1]

(β0)∗ω

= 〈[ω], S1 − S0〉 = 0.

This shows invariance under homotopies with fixed endpoints. For the homo-
morphism part, suppose that {ψt}, {ϕt} are Hamiltonian isotopies and let {θt} be
(a smooth reparametrization of) the concatenation of {ψt} and {ϕt}. Then the
cylinder (s, t) 7→ θ−1

t (γ(s)) is the union of the cylinders (s, t) 7→ ψ−1
t (γ(s)) and

(s, t) 7→ ϕ−1
t (ψ−1

1 (γ(s))). Thus

Flux({θt})γ = Flux({ψt})γ + Flux({ϕt})(ψ−1
1 ◦ γ) = Flux({ψt})γ + Flux({ϕt})γ.
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The last equality follows from the fact that γ and ψ1 ◦ γ are the same in the
fundamental group since they are homotopic via t 7→ ψt ◦ γ. �

Note that if X ∈ χsymp(M,ω) and ψt is the flow of X then Flux({ψt}) = [ι(X)ω].
Since ω is non-degenerate for any [α] ∈ H1(M ;R) there is X such that ι(X)ω = α
(and since α is closed X is symplectic). This shows that the flux homomorphism
is surjective.

We now want to understand the kernel of Flux. Recall that Flux is supposed
to integrate the map X 7→ [ι(X)ω], which has kernel χham(M,ω). Thus we expect
the following result:

Theorem 4. A symplectic isotopy {ψt} has flux 0 if and only if it’s homotopic
with fixed end points to a Hamiltonian isotopy.

In particular ψ is a Hamiltonian symplectomorphism if and only if there is
symplectic isotopy {ψt} such that ψ0 = id, ψ1 = ψ and Flux({ψt}) = 0.

Proof. The only if part is obvious since the flux is invariant with respect to ho-
motopies with fixed end points and a Hamiltonian isotopy has flux 0 because
[ι(Xt)ω] = 0 for the infinitesimal generator Xt of a Hamiltonian isotopy.

For the if part, suppose that
∫ 1

0
ι(Xt)ω dt = dF . We divide the proof in two

steps:

Step 1: We may assume that F = 0.
Indeed let ϕt be the Hamiltonian flow of −F . Since the path t 7→ ϕt ◦ ψ is

Hamiltonian (where ψ = ψ1) it’s enough to prove the result for the isotopy

t 7→

{
ψ2t if t ≤ 1/2

ψ ◦ ϕ2t−1 if t > 1/2
.

Indeed if we find a Hamiltonian isotopy homotopic to the above concatenation then
we can concatenate it with {ϕ1−t◦ψ} to get a Hamiltonian isotopy homotopic with
fixed end points to the original one.

Moreover if X̃t is the infinitesimal generator of the concatenation then∫ 1

0

ι
(
X̃t

)
ω dt =

∫ 1/2

0

ι(2X2t)ω dt+

∫ 1

1/2

(−2dF ) dt = 0.

This shows we may assume F = 0 and hence by the non-degeneracy of ω it follows
that

∫ 1

0
Xt dt = 0.

Step 2: The claim is true if F = 0, and hence
∫ 1

0
Xt dt = 0.

Take Yt = −
∫ t

0
Xτ dτ . For each t let s 7→ θst be the flow of the (constant) vector

field Yt. Since Y0 = Y1 = 0 we have θs0 = θs1 = id for any s and trivially θ0
t = id.

Define now φt = θ1
t ◦ψt and we claim that this is the desired Hamiltonian isotopy.
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Indeed it’s homotopic with fixed end points to {ψt} via s 7→ θst ◦ψt. Now we have
for any T ∈ [0, 1]

Flux({φt}0≤t≤T ) = Flux({θ1
t }0≤t≤T ) + Flux({ψt}0≤t≤T )

= Flux({θsT}0≤s≤1) + Flux({ψt}0≤t≤T )

= [ι(Yt)ω] +

∫ T

0

[ι(Xt)ω] dt = 0.

The first equality comes from the fact that Flux is a homomorphism and the second
from the invariance with respect to homotopies with fixed end points by noticing
that {θ1

t }0≤t≤T and {θsT}0≤s≤1 are homotopic. From the equality follows that φt is

Hamiltonian: if Zt is its infinitesimal generator then
∫ T

0
[ι(Zt)ω] dt = 0 for every

T ∈ [0, 1], and thus [ι(Zt)ω] = 0. �

Remark 2. Since the construction is canonical, it defines a map

H : {symplectic isotopies with Flux = 0 from 1 to ψ} →
{hamiltonian isotopies from 1 to ψ}

such that H({ψt}) is homotopic with fixed end points to {ψt}. Moreover it can
be seen from the construction that if {ψt} is already Hamiltonian then the homo-
topy is via isotopies consisting of Hamiltonian symplectomorphisms (indeed θst is
Hamiltonian for every s, t ∈ [0, 1]); we will see later in theorem 9 that these iso-
topies must then be Hamiltonian isotopies. This remark will later be useful in the
proof of proposition 10.

Note that this result can be used to show the following slightly more general
fact (which is called deformation lemma in [11]).

Corollary 5. Any symplectic isotopy {ψt} is homotopic with fixed end points to

{ψ̃t} such that [ι
(
X̃s

)
ω] = Flux({ψt}) doesn’t depend on s.

We now turn to understanding how the flux behaves near the identity, in par-
ticular in the neighborhood U ⊆ Symp(M,ω) of idM we defined earlier in which
we can identify symplectomorphisms with closed forms. In order to do this we
compute the flux in a exact symplectic manifold (as is the case of T ∗Q).

Lemma 6. If ω = −dλ (i.e. M is exact) and {ψt} is a compactly supported
symplectic isotopy then

Flux({ψt})) = [λ− ψ∗1λ].
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Proof. We use Cartan magical formula to compute as follows

[ι(Xt)ω] = −[ι(Xt)dλ] = −[LXtλ] = −
[
d

ds |s=t

(
ψs ◦ ψ−1

t

)∗
λ

]
= −

[(
ψ−1
t

)∗ d
ds |s=t

ψ∗sλ

]
= −

[
d

ds |s=t
ψ∗sλ

]
.

Note that in the third equality we used that Xt is the vector field tangent to
s 7→ ψs ◦ ψ−1

t at s = t and in the fourth we used that ψ−1
t ' id. Now integrating

from t = 0 to t = 1 gives the desired result. �

Proposition 7. Suppose that {ψt} is a symplectic isotopy such that ψt ∈ U for
every t ∈ [0, 1]. Then Flux({ψt}) = −[σ1] where σt = C(ψt).

In particular {ψt} is a Hamiltonian isotopy if and only if the forms σt are exact.

Proof. Let ι : M → T ∗M be the inclusion of M as the zero section and let
ι∆ : M →M×M be the inclusion as the diagonal, that is, ι(x) = (x, x). Recall that
we have the map Φ : N (∆)→ T ∗M defined earlier, which is a symplectomorphism
onto its image, and that ι = Φ ◦ ι∆. Define in a neighborhood of M0 ⊆ T ∗M the
local isotopy Ψt = Φ ◦ (id× ψt) ◦ Φ−1.

Note that by definition of C we have Φ(graph(ψt)) = graph(σt), thus there is
diffeomorphism ft : M → M such that Ψt ◦ ι = σt ◦ ft. The diffeomorphism ft is
given by ft(x) = π(Φ(x, ψt(x))) where π : T ∗M → M is the canonical projection.
We compute now the flux using lemma 6. Recall that T ∗M is a symplectic manifold
with symplectic form −dλcan.

Flux({ψt}) = ι∗∆Flux({id× ψt}) = ι∗∆Φ∗Flux({Ψt}) = ι∗Flux({Ψt})
= ι∗[λcan −Ψ∗1λcan] = −[ι∗Ψ∗1λcan] = −[f ∗1σ

∗
1λcan]

= −[σ∗1λcan] = −[σ1].

Besides lemma 6 we used here that ι∗λcan = 0 (since M0 is a Lagrangian submani-
fold of T ∗M), that f1 ' f0 = id and that σ∗λcan = σ for any 1-form σ on M . This
shows the result we wanted. �

In order to study the obstruction to a symplectomorphism (in the connected
component of the identity) being Hamiltonian we would like to descend the flux
homomorphism to Symp0. Hence, we consider the group Γω defined by

Γω = Flux(π1(Symp0(M,ω))) ⊆ H1(M ;R).

Here π1(Symp0(M,ω)) ⊆ S̃ymp0(M,ω) denotes the pre-image of the identity with

respect to the projection Symp0 → S̃ymp0. Now the flux homomorphism descends
to

Flux : Symp0(M,ω)→ H1(M ;R)/Γω.
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Remark 3. Suppose that {ψt} ∈ π1(Symp(M,ω)) is a loop, that is ψ1 = ψ0 = id.
Then the map β we defined earlier by β(s, t) = ψ−1

t (γ(s)) is actually a map from
the torus since β(1, s) = β(0, s) = γ(s), and thus

Flux({ψt})γ =

∫
S1×S1

β∗ω ∈ Pω

where Pω = 〈[ω], H2(M ;Z)〉 is the set of possible symplectic areas of closed surfaces
embedded in M .

Hence Flux({ψt}) ∈ H1(M ;Pω) for any loop {ψt}, that is, Γω ⊆ H1(M ;Pω). In
particular Γω is countable because Pω is a countable subset of R.

Note now that proposition 7 says that if ψ is the endpoint of a small Hamil-
tonian isotopy (more precisely a Hamiltonian isotopy {ψt} such that ψt ∈ U for
every t) then [σ] = [C(ψ)] = −Flux({ψt}) = 0. However, we can have a small
Hamiltonian symplectomorphism ψ for which there are no small Hamiltonian iso-
topies connecting it to the identity. In that case σ doesn’t have to be exact, but
the following proposition says it must belong to Γω.

Proposition 8. If ψ ∈ U ⊆ Symp0(M,ω) (that is, ψ is C1-close to the identity)
and σ = C(ψ) ∈ Ω1(M) then

ψ ∈ Ham(M,ω) if and only if [σ] ∈ Γω.

Proof. The main point here is the following: an isotopy with small end-point can
be concatenated with a small isotopy to give a loop. To prove the only if part
suppose that ψ = ψ1 is the end point of a Hamiltonian isotopy {ψt}. Let ϕt ∈ U
be such that C(ϕt) = tσ, so in particular ϕ1 = ψ1 and thus ϕ−1

t ◦ ψt is a loop.
Hence, because {ψt} is Hamiltonian and by proposition 7 we have

Γω 3 Flux({ϕ−1
t ◦ ψt}) = −Flux({ϕt}) + Flux({ψt}) = [σ].

For the if part, suppose that [σ] ∈ Γω and let {θt} be a loop such that Flux({θt}) =
[σ] and again let {ϕt} be such that C(ϕt) = tσ. Then Flux({ϕt ◦ θt}) = 0 and
ϕ1 ◦ θ1 = ϕ1 = ψ. By theorem 4 there is a Hamiltonian isotopy homotopic to
{ϕt ◦ θt} with fixed endpoints, hence ψ is Hamiltonian. �

This result enables us to prove the following fundamental result about Hamil-
tonian symplectomorphisms: an isotopy by Hamiltonian symplectomorphisms is
Hamiltonian.

Theorem 9. Every isotopy {ψt} by Hamiltonian symplectomorphisms (i.e. such
that ψt ∈ Ham(M,ω) for every t) is a Hamiltonian isotopy.

Proof. To show that Xt0 is Hamiltonian we may consider instead the isotopy
{ψt+t0 ◦ ψ−1

t0 } to prove this only in the case t0 = 0 and ψ0 = id. Then, for
small t < ε we have ψt ∈ U and since ψt ∈ Ham(M,ω) by proposition 8 we
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have [C(ψt)] ∈ Γω. But Γω is countable, hence [C(ψt)] is constant for t < ε. By
proposition 7 we now have for 0 ≤ t < ε∫ t

0

[ι(Xs)ω] ds = Flux({ψt}0≤s≤t) = −[C(ψt)] = 0.

Taking the derivative at t = 0 gives [ι(X0)ω] = 0, thus X0 is Hamiltonian as
desired. �

Recall that Ham(M,ω) is “morally” the maximal leaf through id tangent to the
left-invariant distribution given by the Lie sub-algebra χham(M,ω). This last result
says that Ham(M,ω) is actually tangent to this distribution (at least, for now, only
in some sense, because we don’t know yet that Ham(M,ω) is a manifold).

Proposition 10. The 3 rows of the following diagram are exact sequences:

0 0 0

0 π1(Ham(M,ω)) π1(Symp(M,ω)) Γω 0

0 H̃am(M,ω) S̃ymp0(M,ω) H1(M ;R) 0

0 Ham(M,ω) Symp(M,ω) H1(M ;R)/Γω 0

0 0 0

Flux

Flux

Flux

Proof. We begin by proving that H̃am(M,ω) includes in S̃ymp0(M,ω) (we remark
that this part was not shown if [7], although it doesn’t appear to be straightfor-
ward). This is saying the following: given any isotopies {ψ0

t }, {ψ1
t } ⊆ Ham(M,ω)

(by the last theorem this is equivalent to {ψ0
t }, {ψ1

t } being Hamiltonian isotopies)
which are homotopic with fixed end points via symplectic isotopies are actually
homotopic via Hamiltonian isotopies. Indeed, if s 7→ {ψst} is such a homotopy via
symplectic isotopies then consider s 7→ H({ψst}) where H is the map defined in
remark 2; note that Flux({ψst}) = Flux({ψ0

t }) = 0 because {ψ0
t } is Hamiltonian,

making H({ψst}) well defined. The homotopy s 7→ H({ψst}) is via Hamiltonian iso-
topies and is between H({ψ0

t }) and H({ψ1
t }). Since {ψ0

t }, {ψ1
t } are Hamiltonian,

from the construction of H we get homotopies with fixed end points via Hamilton-
ian isotopies from H({ψ0

t }) to {ψ0
t } and from H({ψ1

t }) to {ψ1
t }. This shows the

desired.
The fact that the image of H̃am in S̃ymp0 is the kernel of Flux is the content

of theorem 4 together with theorem 9; the later says that H̃am(M,ω) consists in
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the classes of Hamiltonian isotopies. The surjectivity of Flux was already shown
earlier as well, and this gives the exactness of the second row.

The fact that the first row is exact follows from the exactness of the second one
in a straightforward way, and the surjectivity part is just the definition of Γω. At
last, the exactness of the third follows from the Nine Lemma considering that the
whole diagram commutes and that the vertical sequences are trivially exact. �

Remark 4. Since Γω is countable πk(Γω) is trivial for k > 0. By the long exact
sequence of homotopy groups induced by

0 Γω H1(M ;R) H1(M ;R)/Γω 0

it follows that πk(H
1(M ;R)/Γω) is trivial for k > 1. Now by the sequence

0 Ham(M,ω) Symp0(M,ω) H1(M ;R)/Γω 0

we get that the inclusion Ham(M,ω) ↪→ Symp(M,ω) induces isomorphisms on πk
for every k ≥ 2.

4. The Flux Conjecture

A very important question regarding the group of Hamiltonian diffeomorphisms
is whether it’s actually a Lie subgroup of Symp(M,ω). Note that for finite di-
mensional Lie groups (or, more generally, Banach ones) this would be automatic.
Indeed if the Frobenius theorem was applicable then the left-invariant distribution
induced by the Lie sub-algebra χham(M,ω) would be integrable and Ham(M,ω)
(it’s involutive because χham(M,ω) is a Lie algebra) would be a leaf of this distri-
bution. However, Frobenius theorem doesn’t apply for Fréchet manifolds so the
problem in this setup is much more subtle.

Remark 5. The correspondence between Lie sub-algebras and Lie subgroups can
be partially recovered when the group is locally exponential, that is, it admits an
exponential and the exponential is a local diffeomorphism. Unfortunately, this is
not the case of Symp(M,ω) as the following argument by Leonardo Macarini shows.

Take X ∈ χham(M,ω) a Hamiltonian autonomous vector field with a 1-periodic
orbit ϕXt (p) passing through p ∈ M and let f = ϕX1/k with k ∈ Z large enough.

Then f has a k-periodic point and for large enough k it’s C1-close to id. Now
perturb f to a symplectomorphism g such that p is still a k-periodic point but is
now non-degenerate, i.e. (dgk)x − I is invertible.

Then g (which is arbitrarily C1-small) can’t be the time 1 map of an autonomous
vector field, and hence isn’t in the image of exp : χsymp(M,ω) → Symp(M,ω),
showing that exp is not locally surjective. Indeed if g = ϕY1 then p is a fixed point
of gk = ϕYk ; but it’s clear that Yp is in the kernel of (dϕYk )p − I, hence p is not
non-degenerate, getting us a contradiction.

The following proposition shows that the group of Hamiltonian diffeomorphisms
being a Lie subgroup is equivalent to Γω being discrete.
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Proposition 11. The following three statements are equivalent:

(1) Ham(M,ω) is a submanifold of Symp(M,ω);
(2) Ham(M,ω) is C1-closed in Symp(M,ω);
(3) Γω is discrete in H1(M ;R).

Proof. Consider again the local model C : U → V ⊆ Ω1(M) for the group of sym-
plectomorphisms. If Γω is discrete we may restrict U and V so that the following
holds: if σ ∈ V and [σ] ∈ Γω then [σ] = 0. Then we have C(U ∩ Ham(M,ω)) =
V ∩ {σ : [σ] = 0}. This immediately shows that Ham(M,ω) is a submanifold
(by homogeneity a local chart around id gives local charts everywhere) mod-
eled on the exact 1-forms. Moreover it shows that U ∩ Ham(M,ω) is closed in
U , and from this follows that Ham(M,ω) is closed in Symp0(M,ω). Indeed if
Ham 3 ψn → ψ ∈ Symp0 for large enough N we have ψ ◦ ψ−1

N ∈ U and this is the
limit of ψn ◦ψ−1

N ∈ Ham(M,ω)∩U (again for large n), so ψ ◦ψ−1
N ∈ Ham and thus

ψ ∈ Ham. This shows that (3) implies (1) and (2).
Suppose now that (3) does not hold. Then Γω is a non-discrete subgroup of

H1(M ;R) ∼= Rβ1 , hence Γω is not closed and, moreover, there are arbitrarily small
elements in cl Γω \ Γω. This shows that

C(U ∩ Ham(M,ω)) = V ∩ {σ : [σ] ∈ Γω}

is the union of an infinite number of accumulating affine subspaces intersected non-
trivially with V , thus it’s not a submanifold of V and this shows that Ham(M,ω)
can’t be a submanifold as well. Hence (1) implies (3).

It remains to show that (2) implies (3). Again suppose that (3) doesn’t hold.
Then we can find a sequence σn ∈ U such that [σn] ∈ Γω and σn → σ with [σ] /∈ Γω.
Then let ψn = C−1(σn), ψ = C−1(σ) and we get ψn → ψ, ψn ∈ Ham(M,ω) and
ψ /∈ Ham(M,ω). This shows that Ham(M,ω) isn’t closed and thus that (2) implies
(3). �

The fact that any of this statements was true for any closed symplectic manifold
(M,ω) was known as the flux conjecture and is now proven by Ono in [10].

Theorem 12 (K. Ono, 2006). The flux conjecture is true. That is, for any closed
symplectic manifold (M,ω) the three assertions in 11 are true.

The proof uses hard methods of modern symplectic topology, namely Floer-
Novikov cohomology of paths of symplectomorphisms (non-necessarily Hamito-
nian). However, the following stronger conjecture is still an open problem:

Conjecture 1. The subgroup Ham(M,ω) is C0-closed in Symp0(M,ω).

For some partial results in this direction see [6] and [3].
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5. Other results concerning Ham

Here we mention a couple of interesting results results about the group of Hamil-
tonian symplectomorphisms withouth much detail. A very nice result is the fol-
lowing:

Theorem 13 (Banyaga). If (M,ω) is a closed symplectic manifold then Ham(M,ω)
is simple.

This theorem was proven in [1] and follows from two results. The first is a general
argument due to Epstein (see [4]) that shows that, for certain general groups G
of homeomorphisms, [G,G] is simple. This general argument applies for instance
to G = Diff0(M) and G = Symp0(M,ω). In the case of diffeomorphisms, it’s
proven (for instance in [5], using a deep result of Herman) that if M is closed then
[Diff0(M),Diff0(M)] = Diff0(M). However, in the case of symplectomorphisms it’s
not true that Symp0(M,ω) is perfect (i.e. equal to its own commutator). Indeed
we saw that

Symp0(M,ω)/Ham(M,ω) ∼= H1(M ;R)/Γω

which is abelian, hence

[Symp0(M,ω), Symp0(M,ω)] ⊆ Ham(M,ω).

But indeed we have equality, as was proven by Banyaga:

Theorem 14 (Banyaga). If (M,ω) is a closed symplectic manifold then

[Symp0(M,ω), Symp0(M,ω)] = Ham(M,ω).

This fact, combined with the general argument of Epstein, gives theorem 13.
In the non-compact case a different situation arises. First we have to restrict

ourselves to compactly supported diffeomorphisms/symplectomorphisms as for in-
stance Diffc0(M,ω) is a normal subgroup of Diff0(M,ω). But in this case it’s no
longer true that Hamc(M,ω) is simple. Indeed we can find another homomorphism
from Hamc(M,ω) with non-trivial kernel, known as the Calabi homomorphism (or
second Calabi homomorphism, being the Flux the first one).

To construct the Calabi homomorphism, we think again in Hamc(M,ω) is terms
of its Lie algebra. This consists of the compactly supported Hamiltonian vector
fields X. For such vector field there is H ∈ C∞(M) such that ι(X)ω = dH; this
H is unique as long as we ask that H has compact support. Thus we identify the
Lie algebra of Hamc(M,ω) with C∞c (M) with the Poisson bracket defined by

{f, g} = ω(Xf , Xg).

Then the following map is a Lie algebra homomorphism:

H 7→
∫
M

Hωn ∈ R.
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Indeed the n-form {f, g}ωn can be seen to be exact and given by d(nfdg∧ωn−1),
so
∫
M
{f, g}ωn = 0. Thus we can integrate this homomorphism to the universal

cover H̃amc(M,ω):

Definition 3. Let {ψt} be a compactly supported Hamiltonian isotopy generated
by the compactly supported (time dependent) Hamiltonian Ht. Then we define

CAL({ψt}) =

∫ 1

0

∫
M

Htω
n dt.

It can be shown that this is invariant with respect to homotopies with fixed

end points, so it gives a map H̃amc(M,ω) → R. Moreover this map is easily
seen to be a surjective homomorphism. In analogy to what we did for the Flux
homomorphism we can define Λω to be the image of π1(Hamc(M,ω)) under the
Calabi homomorphism, and then we can descend it to a homomorphism

CAL : Hamc(M,ω)→ R/Λω.

But now the kernel of the Calabi homomorphism is a normal subgroup of Hamc(M,ω)
and it certainly contains its commutator (as R/Λω is abelian). But actually it re-
ally is the commutator and is simple, as Banyaga also shows in [1]:

Theorem 15. If (M,ω) is a non-compact symplectic manifold then

ker(CAL) = [Hamc(M,ω),Hamc(M,ω)]

is a simple group.
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