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Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses
the moduli of stable maps and its virtual fundamental class

[Mg(X. B)I"" € Avirdim(Mg (X, 8))-

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual
dimension of is 0 for all g > 0, 8 € Ha(X;Z) so we get numbers

Gw)giﬁ:/ 1eQ.

[Mg (X, 8)]¥"

Compute all numbers GW;(,,B- Equivalently, understand the
partition function

Zx = exp Z GWgﬁuzg_2zﬁ
g
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Stable pairs

Stable pairs provide an alternative approach to curve counting on
CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object {Ox = F} € D®(X) in the derived
category where F is a coherent sheaf and s a section satisfying the
following two stability conditions:

@ F is pure of dimension 1: every non-trivial coherent sub-sheaf
of F has dimension 1.

@ The cokernel of s has dimension 0.

We associate two discrete invariants:
B = [supp(F)] € H2(X;Z) and n = x(X, F).

The space P,(X,3) parametrizing stable pairs with fixed discrete
invariants is a projective fine moduli space.
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Pandharipande-Thomas invariants

The moduli of stable pairs P,(X, ) also has a virtual fundamental
class, and when X is a CY3 its virtual dimension is 0, producing

again numbers
PTY,; = / leZ
[Pn(X,B)]V

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande- Thomas invariants
determine each other:

exp Z ngﬁuzg_2zﬁ = ZPTffﬂ(—q)”zB
g:ﬁ n/j’

after the change of variables q = e™.
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Rationality and symmetry

To even make sense of the change of variables g = e an
important structural result is required:

Theorem (Bridgeland '16)

For each (8 the generating function

>_PTos(=q)"

nez

is the expansion of a rational function fg satisfying the symmetry

f3(1/q) = f5(q).

Typical example (contribution of isolated rational curve):

q

flq) = m
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Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category ¢ € Aut(D?(X))

|

Constraints on curve counting on X.
The proof of rationality uses the derived dual
¢ =D = RHom(—, Ox)[2].
Basic idea: use wall-crossing in the derived category to relate

Pa(X, B) «~ ¢(Pa(X,8)) C DE(X).
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Geometric setting

Let Y be a Calabi-Yau 3-fold
containing a smooth divisor
E C Y isomorphic to a
Hirzebruch surface (so E is a
P! bundle E — C = PY).

Let B = [P!] € Ha(Y;Z) be
the curve class of the fibers of
E— C.

(Key examples: Y = Kg, Y
elliptic fibration over E,

Y = STU)
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K3 monodromy

A key source of examples are elliptic fibrations (with section) over
Hirzebruch surface E. Let 7 : Y — E be the fibration and F the
fiber class. Each fiber 771(B) is a K3 surface. The monodromy of
K3 implies the symmetry

Y _ \4
GWg hryip = GWg,hF-i—(h—i)B‘
For more general 3, our work is about some symmetry relating
\4 Y
GWes~ GWep

where 5/ = 3+ (E - 8)B (note that 8 — [’ is an involution since
E-B=-2)
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Weyl symmetry for PT invariants

Let

PT5(q, Q) = D Pngj (—q)"Q .
njeZ

The generating series PTy of multiples of B is computed (for
example via the topological vertex) as

PTo(q.Q) = [[(1 - ¢'@) ¥

jz1
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Weyl symmetry for PT invariants

Theorem (Buelles-M. "21)

Let Y be a Calabi-Yau 3-fold containing a smooth divisor E
isomorphic to a Hirzebruch surface and satisfying a few
assumptions (to explain later). Then

PTps(q, Q)
PTO(q7 Q)

is the expansion of a rational function f3(q, Q)which satisfies the
functional equations

€ Q(q, Q)

f3(a7", Q) = f3(q, Q) and f3(q, Q") = Q FFf3(q, Q).
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Weyl symmetry for GW invariants

Corollary

For all (g, 3) # (0, mB) , (1, mB) the series

> GWe i @

JEZ

is the expansion of a rational function f3(Q) with functional
equation

f(Q71) = QF7f(Q).

Predicted by physics, at least in the local case Kg
(Katz-Klemm-Vafa '97).

If f3 were a Laurent polynomial (as in the case of K3 classes), the
functional equation means symmetry holds on the nose

Y __ Y
ng76 = GWg,,B"
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Assumptions on Y

Our proofs at the moment assume the following:

The curve B generates an extremal ray in the cone of curves
of Y. l.e. there is a nef divisor A such that

ker (Al(Y) A Q) —Q-B.

Holds for any elliptic fibration.
—Kg is nef, i.e. E =T, with r =0,1,2 (probably not really
necessary).

For the Gromov-Witten corollary we assume the GW/PT
correspondence holds.
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Examples

Let Y = Kpi,p1 and let C be the other P! in the product. A
computation with the topological vertex shows:
PTc(q,Q) 2q
PTo(q,Q)  (1-q)*(1-Q)?
PTc(q,Q) 2q*
PTo(q,Q)  (1—9)*(1—¢?)*(1 - qQ)*(1 - Q)
+ 2"
(1-9)*(1-¢%)*(q— Q)*(1 - Q)?
4F 24°
(1-q)*(1—qQ)*(qa - Q)*
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Spherical twists

The main ingredient of our symmetry is the existence of a certain
anti-equivalence p € Aut(D?(Y')) promoting the involution

B =B+ (E-P)B

on Hy(Y;Z) to the derived category.lts construction uses spherical
twists.

Definition

An object G € D®(Y) is a spherical object if

C ifi=0,3
0 otherwise

Ext'(G, G) = {

Given a spherical object G, Seidel-Thomas define a spherical twist
ST € Aut(D?(Y)) by the exact triangle

P Ext(F, G)® G[—i] = F — STg(F).

1
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Anti-equivalence p

Denote by C C E C Y the class of one of the sections of the
projection E — C. For every k € Z,

Oe(—C + kB) € Db(Y)

is a spherical object.

Definition
Let

p =D oSTo.—ciks) © STop(—c(k+1)B) € Aut(D*(Y)).

(the definition doesn't depend on k)



Anti-equivalence p
[e]e] Yelo)

Properties of p

@ pis an involution, i.e. pop =id.

@ 1(0y) = Oy[2].

@ If F is supported away from E then p(F) = D(F).

0 H(05(~2)) = Op(~2)[1] and p(O(~1)) = Op(~1)[1].

@ If F is a sheaf of dimension 1 and chy(F) = 3, x(F) = n then

cha(p(F)) = 8+ (E - B)B
x(p(F)) = —n.
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Orbifold inspiration

When Y arises as a crepant resolution Y — X" of an orbifold with
7./2-singularities along a P! so that E is the exceptional divisor
(and the fibers B are contracted to points), the main result is a
consequence of the DT crepant resolution conjecture proven by
Beentjes-Calabrese-Rennemo ('18).

\ / X
N /
N [/
N / -
N\ I/ e
L/ c
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Orbifold inspiration

Their proof uses D to prove the symmetry of PT invariants in X'.

Proposition

Under the McKay correspondence
®: DP(Y) S DP(X)

the derived dual D corresponds to p, i.e.

p=0"toDVoo.

Important examples (e.g. the STU) don't arise as such crepant
resolution.
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Perverse stable pairs

Stable pairs are equivalently described as follows:

Proposition

Let | € (Oy[1],Coh<1)ex. Then I is a stable pair if and only if
rk(/) = —1 and

Hom(Coho(Y), /) = 0 = Hom(/, Coh1(Y)).

Bridgeland’s proof of rationality with the derived dual uses
D(Cohi(Y)) = Coh1(Y) and D(Cohp(Y)) = Coho(Y)[-1].

Gives description of the image of D(P,(X, 3)) and helps finding
wall-crossing back to P,(X, 3).
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Perverse sheaves

The derived equivalence p doesn't respect Coh(Y') and the
dimension filtration so well.

If x € E is a point in the divisor lying in a fiber B then

p(Ox) = {0p(-1)[-1] — Op(-2)}-

We use instead a tilting of Coh(Y).

T ={T € Coh(Y): RIP*T|E =0}
F = {F € Coh(Y) : Hom(T, F) = 0}
A= (F[1], Tex.

A is a heart of D2(Y).
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Dimension filtration

Together with A comes a modified dimension defined by:

dim(F) = max{dim(supp(Fjy\g)), dim(p(supp(F|£)))}

The modified dimension is used to define Ag, A1 which are
analogous to Cohg(Y'), Coh1(Y):

p(A1) = A1 and p(Ao) = Ao[-1].

© Cohg C Ay;

Q@ 0Op(-1),08(—2)[1] € Ao;

O If F € Coh1(Y) and Fg is 0-dimensional then F € Aj;;
Q OE(—C),OE(—2C)[].] e A.
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Perverse stable pairs

Definition
A perverse stable pair is an object / € (Oy[1], A<1)ex such that
rk(/) = —1 and

Hom(Ag, /) = 0 = Hom(/, A;).

We define the virtual counts of perverse stable pairs: for
v = (BUE]) € Ho(Y) D Z - [E]

we have
PPT,~ € Z,

pPT,Y(q, Q) = Z pPTn,'H»jB(_q)an-

n,jeZ
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Rationality for PPT

The series PPT.(q, Q) is the expansion of a rational function
f, € Q(q, Q) satisfying the symmetry

f(a7h, @) = @ FF £ (g, Q).

Rationality of PTs(q) Rationality of PPT,(q, Q)

°
Anti-equivalence D @ Anti-equivalence p
Torsion pair (Cohg, Coh;) e Torsion pair (Ap, A1)
°
°

Usual slope stability Nironi slope stability

Vanishing of Poisson brackets No vanishing, extra
{Coh<;,Coh<1} =0 combinatorial difficulty
(dealt with in [BCR]).
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Wall-crossing

We proved rationality of perverse PT invariants, but now need to
relate them to classical stable pairs.

Proposition

For any 3 € Ha(Y;Z) we have the following identity of rational

functions:
PTp(q, Q)

"PTs(9: Q) = $Ty(q, Q)

The wall-crossing establishing the equality has two steps and uses
the counting of a third type of objects: Bryan-Steinberg invariants.
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Wall-crossing PT/BS

When Y arises as a crepant resolution Y — X, Bryan-Steinberg
introduced ('12) invariants BS,, 3. Roughly speaking, they count
sheafs+sections {Ox = F} but allowing the cokernel to have
support on fibers of B.

They provide a natural interpretation for the quotient PT3/PTq
via a DT/PT type wall-crossing.

Proposition

_ PTs(q, Q)

BSp(q, Q) = Y BSnsiia(—a)"@ = PTo(q, Q)"

n,jeEZ

Unlike PPT, BS are defined using the heart Coh(Y), no need to
tilt.
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Wall-crossing PPT/BS

Final step is comparing PPT and BS.

Proposition
We have the following identity of rational functions:

BSs(q, Q) = PPT(q, Q).

The identity above is strictly of rational functions, the coefficients
are not the same on the nose. When we cross a wall in the path of
stability conditions we change the direction in which we expand the
same rational function.
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Crossing a wall — re-expansion

The rational function q_LQ can be expanded in two different ways:

1 i ,—1—i
0 1—oq—1 =7 @

i>0

1 II
-Q 1—Q1 ZQI

i>0
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Thank you!

quotient re—expansion

PT BS PPT
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