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ABSTRACT. In enumerative geometry, Virasoro constraints were first conjectured
in Gromov-Witten theory with many new recent developments in the sheaf theo-
retic context. In this paper, we rephrase the sheaf-theoretic Virasoro constraints
in terms of primary states coming from a natural conformal vector in Joyce’s
vertex algebra. This shows that Virasoro constraints are preserved under wall-
crossing. As an application, we prove the conjectural Virasoro constraints for
moduli spaces of torsion-free sheaves on any curve and on surfaces with only
(p,p) cohomology classes.
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1. INTRODUCTION

This paper concerns the Virasoro constraints on sheaf counting theories. Given a
moduli space of sheaves M with a virtual fundamental class [M]""" we may produce
numerical invariants by integrating natural cohomology classes — called descendents
— against the virtual fundamental class. The Virasoro conjecture predicts that these
numerical invariants are constrained by some explicit and universal relations. The

main result of this paper is a proof of those constraints in the following cases:

Theorem A. The Virasoro constraints (Conjecture 1.4) hold for the following
moduli spaces:
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(1) The moduli spaces of stable bundles M¢(r,d) on any smooth projective
curve C.

(2) The moduli spaces of stable torsion-free sheaves M (r, ¢, c2) on any smooth
projective surface S with h'9(S) = h?0(S) = 0.

(3) Assuming the technical condition 5.7, the moduli spaces of stable one dimen-
sional sheaves M (3,n) on any smooth projective surface S with h'0(S) =
h*%(S) = 0.

The case (2) of the theorem solves the conjecture of D. van Bree in [vB]. The
formulation of the other two cases is new; indeed, we provide a very general conjec-
ture that includes many other interesting cases. Our work relies in a fundamental
way on the vertex algebra that D. Joyce recently introduced [Joyl, GJT, Joy6] to
study wall-crossing of sheaf moduli spaces. Indeed, we explain how the constraints
can be naturally formulated in this language.

Theorem B (=Theorem 4.12 and Corollary 1.8). Let X be a curve or a surface
with p; = 0. There is a natural conformal element w in the vertex algebra V}* for
which the corresponding Virasoro operators L, are dual to the Virasoro operators
Lpa: DXPa — DXPa for n > —1 on the (pair) descendent algebra. A moduli space
of sheaves (or pairs) satisfies the Virasoro constraints if and only if its class in ‘v/,pa
(or VP?) is a primary state.

As a consequence of this description, the Joyce’s wall-crossing machinery can be
used to prove a compatibility between wall-crossing and the Virasoro constraints.

Theorem C (=Propositions 3.11 and 3.13). The Virasoro constraints are compat-
ible with wall-crossing.

This is the fundamental tool that we use in the proof of Theorem A.

1.1. History.

Virasoro constraints The study of Virasoro constraints on curve counts traces
back to the origins of Gromov-Witten (GW) theory and intersection theory on
the moduli space of stable curves, in Witten’s foundational paper [Wit]. Witten
conjectured that integrals of products of descendents — certain natural classes in
H* (ﬂg,n) — obeyed some explicit relations. The relations he proposed were equiv-
alent to certain differential operators, which satisfy the Virasoro bracket relation,
annihilating the partition function which encodes all the integrals of descendents
on M,,. Witten’s conjecture was proven by Kontsevich [Kon] and new proofs were

obtained by Okounkov-Pandharipance [OP2] and [Mir].

In [EHX], the authors extended the Virasoro conjecture to the GW invariants
of a variety X. Since then, a lot of effort has been put into proving the result for
some target varieties X; most notably, the conjecture is now known when X is a
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toric variety (or, more generally, when X has semisimple quantum cohomology)
by work of Givental and Teleman [Giv, Tel] and when X is a curve by work of
Okounkov-Pandharipande [OP1]. The general case, however, is still out of reach.

In [MNOP1, MNOP2|, Maulik-Nekrasov-Okounkov-Pandharipande propose a deep
connection between Gromov-Witten invariants and Donaldson-Thomas (DT) invari-
ants of 3-folds. Such correspondence suggested that the DT descendent invariants
should as well be constrained by some sort of Virasoro operators. Almost 15 years
ago, not long after the proposal of the MNOP conjecture, Oblomkov, Okounkov and
Pandharipande were able to predict the precise form for the DT Virasoro operators
(at least for X = P3, see [Pan, Conjecture 8]) from experimental data with X toric.
The understanding of the MNOP correspondence at the time, however, was not
sufficiently explicit to be used effectively to relate the conjectures on the GW and
on the DT sides. Recently, the GW/PT descendent correspondence has been made
more effective and this allowed a proof of the DT Virasoro conjecture when X is a
toric 3-fold in the stationary regime [MOOP].!

Taking a surface S and X = S x P! it is possible to deduce some Virasoro con-
straints for the Hilbert scheme of points on S from the PT Virasoro constraints on
X. The third author used a universality argument in [Mor| to prove such constraints
for every surface with H'(S) = 0 by starting with the toric results in [MOOP]. Sub-
sequently, van Bree proposed a generalization of the Hilbert scheme constraints to
the moduli spaces of torsion-free stable sheaves on a surface S and made several
non-trivial checks for toric S using localization [vB].

While the Virasoro constraints on sheaf-counting theories come historically from
Gromov-Witten theory, they form a rich theory themselves as indicated by the
examples where they can be studied — DT, PT, Hilbert scheme, stable torsion-free
sheaves on surfaces. We show that they have an independent meaning and origin
by connecting them to the geometric construction of the vertex algebras of Joyce
[Joy1] which were developed to study wall-crossing.

Wall-crossing and vertex algebras When Donaldson [Don] introduced his in-
variants counting anti-self-dual instantons, they were intrinsically dependent on the
choice of a metric g of the underlying four-manifold. Varying ¢ leads to discontin-
uous jumps of the invariants along codimension one walls, a phenomenon called
“wall-crossing”. The precise description of the wall-crossing contributions has been
given in [KM] and many further studies have been conducted.

With the goal of treating wall-crossing phenomena uniformly, Joyce [Joy2, Joy3,
Joy4, Joy5] developed a theory which could be applied in large generality to abelian
categories. Here the metric was replaced by stability conditions and instantons by
semistable objects. Using a Lie algebra structure, he was able to define motivic

IThe results in [MOOP] are formulated entirely in the theory of stable pairs, also known as

Pandharipande-Thomas (PT) invariants, and not DT invariants. In the stationary regime for toric
3-folds, however, the two formulations of Virasoro are known to be equivalent.
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invariants counting semistable objects and described how they change when varying
the stability conditions. Further refinements to include DT theory of 3-folds were
considered by Joyce-Song [JS] and Kontsevich-Soibelman [KS].

The (virtual) fundamental classes of sheaves are however not local invariants
outside of the realm of Calabi—Yau threefolds, so their theories were not sufficient for
studying other geometries. In a more recent development, Joyce [Joyl] introduced
a sheaf-theoretic construction of vertex algebras (see [Bor, Kac, LL| for a gentle
introduction to this topic). Vertex algebras are representation theoretic objects
introduced by Borcherds [Bor] and they give an axiomatization of conformal field
theories in two dimensions. The Lie bracket operation induced from the sheaf-
theoretic vertex algebras was used to describe wall-crossing of virtual fundamental
classes counting semistable objects, as conjectured in [GJT] and proven in many
cases by Joyce [Joy6]. For surfaces, these wall-crossing formulas are related to the
work of Mochizuki [Moc] where the formulas are presented without vertex algebras.

Wall-crossing has been used in [Bojl, Boj2] to give explicit formulae for all de-
scendent invariants of punctual Quot schemes on surfaces and Calabi—Yau fourfolds,
and by Bu [Bu] to study moduli spaces of vector bundles on curves. However, fur-
ther structures coming from the vertex algebra remained a mystery. We fill this
gap by giving a geometric interpretation of a natural conformal element in terms of
Virasoro constraints. The conformal element induces a representation of the Vira-
soro algebra on Joyce’s vertex algebra [Joyl]. The Virasoro operators {L, },cz act
on the homology of the stack where wall-crossing takes place, defining a smaller
Lie algebra of primary/physical states. We show that the Virasoro constraints are
precisely the statement that (virtual) fundamental classes of moduli of semistable
sheaves are physical states, and thus are preserved by wall-crossing. We use this
new technique, together with a rank reduction argument, to prove existing and new
conjectures about Virasoro constraints.

1.2. Moduli of sheaves and pairs. Let X be a projective smooth variety over
the complex numbers. Typically, we will restrict ourselves to small dimension X
(up to dimension 3) so that the moduli spaces of sheaves that we consider have a
virtual fundamental class in the sense of Behrend-Fantechi [BF].?

The main objects in this paper are moduli spaces M which parameterize (semistable)
sheaves on X and their cohomology. Throughout the introduction, we will make
some simplifying assumptions about M:

(1) M is a projective scheme of finite type.
(2) There are no C-points of M corresponding to strictly semistable sheaves.

2Virasoro constraints are also expected for moduli spaces of sheaves on Calabi-Yau 4-folds,
admitting a virtual fundamental class in the sense of Oh-Thomas [OT]. However, we will not
consider this case here and it will be the subject of future work.
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(3) There exists a universal sheaf G in M x X; the sheaf G is, in principle, not
unique.?

(4) Deformation theory at [G] € M is given by
Tan = Ext'(G, G)
Obs = Ext*(G, Q)

0 = Ext™(G, Q).

In such conditions, M admits a virtual fundamental class [M]"" € H,(M) by [BF].
Assumption (2) will be removed by replacing the virtual fundamental class, which
does not exist when M has strictly semistable sheaves, by Joyce’s invariant class

[M]™ e Ho(M5E),
which is defined by a wall-crossing formula as we will overview in Section 5.3.
Assumption (3) can also be removed, as we explain in Section 2.4, but for the sake

of concreteness we assume it for now. There are many examples of moduli of sheaves
on curves, surfaces and Fano 3-folds where all the assumptions are satisfied.

Apart from the moduli of sheaves, we also study those of pairs. We fix a sheaf
V on X and we let P be a moduli space parametrizing a sheaf F' together with a
map V — F' (with some stability condition). We make the following assumptions:

(1) P is a projective scheme of finite type.

(2) There are no C-points of P corresponding to strictly semistable pairs.

(3) There is a unique universal pair ¢*V — F in P x X where q: P x X — X
is the projection.

(4) Deformation theory at [V — F| € P is given by

Tan = Ext’([V — F], F)
Obs = Ext'([V — F], F)
0=Ext™'([V — F|,F).

In such conditions, P admits a virtual fundamental class [P]'" € H,(P). Various
moduli of pairs on curves and surfaces satisfy these assumptions; Quot schemes
with at most one dimensional quotients and moduli of uf-semistable pairs.

There are two important differences between moduli of sheaves and pairs.

(1) The first is the difference in obstruction theory. It is apparent from com-
paring Example 2.6 and the definition of the Virasoro operators in 2.3 that
obstruction theory dictates their form.

(2) The second is the uniqueness or non-uniqueness of the universal object. This
difference will play a crucial role in our treatment of the Virasoro constraints
for moduli of sheaves and for moduli of pairs.

3Universal sheaf is non-unique for the following reason: given a universal sheaf G and a line

bundle L on M, the sheaf G®p* L is also a universal sheaf (where p: M x X — M is the projection)
parametrizing the same objects.
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Remark 1.1. When we refer to moduli of sheaves we are mostly thinking about
moduli of sheaves without fixed determinant. This is implicit in the obstruction
theory above since when the determinant is fixed the deformation theory should
instead use traceless Ext groups:

Ext'(G,G)y = ker (Ext'(G,G) — H'(Ox)) .

We explain how to obtain a fixed determinant version of the Virasoro constraints in
Section 2.8 when A% # 0 but h?° = 0 for p > 1. Although a conjecture for Hilbert
schemes of points on surfaces with possibly p, = h*® > 0 (which have traceless
deformation theory) appears in [Mor|, our approach in this paper is currently not
suitable to understand it. We hope to pursue this direction in the future.

Remark 1.2. Virasoro constraints that we study for moduli of sheaves naturally
generalize to moduli of objects in a derived category D?(X). Indeed, moduli
spaces of stable pairs on a 3-fold X (with H(Ox) = 0 for ¢ > 0) in the sense
of Pandharipande-Thomas [PT] are instances of such. We emphasize here that sta-
ble pairs on X are subject to Virasoro constraints of sheaf type rather than pair
type, despite their name. This is because virtual classes are constructed using the
obstruction theory governed by Ext’(I*, I*) where I* = [Ox — F] e D*(X).

1.3. Universal sheaves and descendents. Descendents on M are defined using
a slant product construction with a universal sheaf G and the maps

M x X

M/ XX.

Definition 1.3. We let D¥ be the supercommutative algebra generated by symbols
chi'(y) for i = 0, v € H*(X) (see Definition 2.3). The geometric realization with
respect to a universal sheaf G in M x X is the algebra homomorphism

fg: DY — H* (M)
defined on generators ch}'(v) with v € H™*(X) by
el (Ch?(V)) = D« (Chi-i-dim(X)—r(G) C]*V) .

The shift in the index of the Chern character using the Hodge degree of v is
non-standard, but useful for a cleaner formulation of the Virasoro operators. With
this convention, we may think of £g(ch (7)) as being in H*~"*+5(M) (of course M
might be singular, so a Hodge decomposition may not exist). See also Remark 2.4.

The main objects of study in this paper are descendent integrals, i.e., the enumer-
ative invariants obtained by integrating descendents against the virtual fundamental
classes

J (D), J &r(D), for D e D¥.
[M]vir [p]vir
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Note that the descendent invariants of M depend in principle on the choice of
universal sheaf G. For some D in the descendent algebra, however, they do not
depend on this choice; these D form what we call the weight 0 descendent algebra
DX

X, (cf. Section 2.4). For D e Dy, we will omit the geometric realization morphism

| b= e
[M]Vir [M]vir

for any universal sheaf G since it does not depend on such choice.

and write

The Virasoro constraints say that these numbers satisfy some explicit universal
relations. These relations are stated using certain operators

Lyt : DY — DX Ly :D¥ - DY, k>-1

wto ?

that we will introduce in Section 2.

Conjecture 1.4 (Virasoro for sheaves). Let M be a moduli of sheaves as before.
Then

f Lwio(D) =0 for any D e D¥.
[M]Vir

Conjecture 1.5 (Virasoro for pairs). Let P be a moduli of pairs as before. Then

J & (Ly (D)) =0 for any k >0, D € DX,
[Pl

Remark 1.6. The previous Virasoro conjectures for sheaves in [MOOP, Mor, vB]|
require a specific choice of a universal sheaf and S; operators.* Conjecture 1.4
improves the formulation by avoiding both of these, even though we prove that two
formulations are equivalent (see Proposition 2.16). Conjecture 1.5 for pairs is new
and we provide convincing evidences by proving it for various geometries in this

paper.

1.4. Joyce’s vertex algebra. D. Joyce recently introduced a vertex algebra and
a closely related Lie algebra associated to the derived category D°(X) [Joyl, GJT,
Joy6]. Joyce proposes to use his Lie algebra to study wall-crossing formulas for
moduli of sheaves (or, more generally, moduli of semistable objects in a C-linear
abelian or triangulated category).

The vertex algebra is constructed using the homology of the (higher) moduli stack
M x parametrizing objects in the triangulated category D°(X). He defines a vertex
algebra structure on

Vo = }/\[ . (MX ) )
where H, is meant to denote an appropriate shift in the grading of the homology.
The two most important ingredients for a vertex algebra are a translation operator
T and a state-field correspondence Y (—, z); we will recall the definition of a vertex

4The S;, operators in [MOOP, Mor, vB] do not satisfy Virasoro bracket relations, obscuring the
meaning of Virasoro constraints.
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algebras in Section 3.1. In our setting, the translation operator is obtained from the
BG,, action on M x; the state-field correspondence Y (—, 2) is defined in terms of the
map % : Mx xMx — Mx induced by taking directs sums and a perfect complex ©
on M x x M x whose restriction to the diagonal is related to the obstruction theory
of Mx. These arise as a consequence of the master space localization technique that
is commonly used for the proof of wall-crossing formulas (for instance in Mochizuki’s
work [Moc]); the complex © is closely related to the virtual normal bundle appearing
in the localization formula and thus obstruction theory of M. Remark 4.13 uses
this observation to explain the relation of Virasoro constraints to the obstruction
theory which we eluded to earlier on.

Associated to the vertex algebra V, is the Lie algebra obtained as the quotient
by the translation operator:

Vi = Viso/TV..

The Lie bracket on V, is a shadow of the vertex algebra structure on V, and is
obtained by a well-known construction due to Borcherds [Bor|. Alternatively, it can
be constructed as the homology H,(M?"$) of the rigidification /\/l_r)i(g = Mx | BG,;
the two definitions agree when restricted to complexes with non-trivial numerical
class, see Lemma 4.10. The Lie algebra V. is a natural place where we can compare
virtual fundamental classes of moduli spaces of sheaves; given a moduli space M
of stable sheaves (or more generally of objects in D?(X)) containing no strictly
semistable sheaves, there is an open embedding M — M;i(g. If M admits a virtual
fundamental class, we may push it forward along this embedding to obtain a class

[M]" e HL (M) = T

If we fix a choice of a universal sheaf G in M x X, by the universal property of
Mx we get a map fg: M — My lifting M — M4E, and thus a natural lift of the
virtual fundamental class to the vertex algebra

(M = (fe)a[M]™ € V..
Crucially, Joyce defines more general classes
[ M]inv e ‘7.

even when strictly semistable sheaves exist; when [M]¥'" is defined, both classes
agree.

The classes [M]"" € V, or [M]@" € V, contain essentially the information of
the (invariant) descendent integrals on M. This is made precise by J. Gross’ [Gro]
explicit description of V,, which we recall in Section 4.2. The cohomologies H*(M x)
and H*(M?4E) are closely related to the algebras of descendents DX and D, , (see

Section 2.4 for the definition of DY, ), respectively; see Lemmas 4.8 and 4.10 for the
precise statements. The pairing between cohomology and homology then recovers
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the descendent integrals

H*(Mx)® H (Mx) - C
.M~ [ alD),
[
and
H* (ME) @ H (M) - C
D, M vir N D,
o |

where the second integral is independent of the choice of G.

1.5. Conformal element and Virasoro constraints. A vertex operator algebra
is a vertex algebra V, equipped with a conformal element w € V. The main property
of a conformal element (see Section 3.1 for a precise definition) is that the operators
{L,}nez on V, induced from w via the state-field correspondence satisfy the Virasoro

bracket

n3—n

12
for some constant C' € C called the central charge of (Vi,w). It is thus natural

[Lru Lm] = (Tl - m)Lm+n + 5n+m,0 -C

to expect that the Virasoro operators in the descendent algebra previously studied
might be explained by the existence of a conformal element w on Joyce’s vertex
algebra (or some slight variation, namely the pair vertex algebra). Due to the
mysterious role that the Hodge degrees play in the Virasoro operators in [Mor],
we do not know how to do so in complete generality, but only under the following
assumption:

Assumption 1.7. We assume that the Hodge cohomology groups H??(X) vanish
whenever |p —¢| > 1.

This assumption is satisfied for curves, surfaces with p, = 0 and Fano 3-folds,
hence covering the majority of the target varieties in Donaldson-Thomas theory.

The result of J. Gross [Gro] shows that, under certain assumption (satisfied for
curves, surfaces and rational 3-folds), Joyce’s vertex algebra V, is naturally isomor-
phic to a lattice vertex algebra from (K*(X), K% (X), xsym); here

K'(X)=KX)® K'(X) =~ H*(X)
is the topological K-theory of X with C-coefficient, K2

sst

(X) is the semi-topological
K-theory® with Z-coefficient and sy is the symmetric pairing

Xsym (v, w) = f

. ch(v”)ch(w)td(X) + J ch(w")ch(v)td(X).

X

5The zeroth semi-topological K-theory K2, (X) is defined as a Grothendieck’s group of vector
bundles modulo algebraic equivalence. By definition, we have K2, (X) ~ mo(Mx).
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The construction of a vertex algebra from such data is recalled and summarized in
Theorem 3.5 and follows Kac [Kac]; it uses Kac’s bosonic vertex algebra construction
in the even part K°(X) and the anti-fermionic vertex algebra construction in the
odd part K'(X).

Kac’s construction produces a conformal element when the pairing Xsym is non-
degenerate; unfortunately, due to the symmetrization this is not often the case. It
turns out that this issue can be overcome by using the larger vertex algebra VP?. The
vector space underlying VP? is the homology of the stack of pairs Py ~ Mx x Mx:

VP = H(Px).

The construction of the conformal element requires a choice of an isotropic decom-
position of the fermionic part; this construction is reminiscent of the bosonization
procedure in physics. This decomposition is where the Hodge degrees and Assump-
tion 1.7 come into play, because K'(X) splits into the isotropic subspaces

Kl(X) = K0,0+1 (_B K°+l,'
which via the chern character isomorphism correspond to

K > @ HPPN(X) and KT =~ (P H'TP(X).

p=0 p=0
It is for the construction of such conformal element that we use the vertex algebra
over the complex numbers while the result of J. Gross [Gro] works over any field
containing rational numbers, as it relies on Kiinneth decomposition. We prove that
the Virasoro operators induced by this conformal element w are dual to the pair
Virasoro operators defined in the algebra of descendents, see Theorem B and Section
4.3.

One remarkable aspect of Theorem B is that, while the operators LP* on the
descendent algebra were previously only defined for n > —1, a conformal element
provides fields LP* for every n € Z and thus a complete representation of the Virasoro
algebra. In particular, this representation now has a non-trivial central charge
2x(X) which the positive branch {L,},>_1 does not detect. We note that the
factor of 2 appears due to working with the pair vertex algebra VP?; if the pairing
Xsym Wwere non-degenerate we would get a conformal element in V, with central
charge x(X). Remarkably, the Virasoro operators on the Gromov-Witten theory
of X (at least if dim(X) is even) are also known to admit an extension to a full
representation of the Virasoro algebra; the central charge in the Gromov-Witten
case is x(X) [Get, Section 2.10].

This description of the Virasoro operators provides a beautiful formulation of the
Virasoro constraints for sheaves and for pairs in terms of well-known notions in the
theory of vertex operator algebras, namely primary states (also known as physical
states):

Pyc V., PMcvk
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Corollary 1.8. Assume X is in class D (see Remark 4.2) and satisfies Assumption
1.7. Then

(1) Conjecture 1.4 is equivalent to the class
[M]Vir e ‘7'. c ‘Zpa

being a primary state in Ja (cf. Definition 3.9).
(2) Conjecture 1.5 is equivalent to the class

[P ]\(/(;EkV,F) eV

vir

being a primary state in £y (cf. Definition 3.9). Here, the class [P]{jyp
denotes the lift of [P]*I" e VP2 to VP* induced by the universal pair ¢*V — F.

We prove in Proposition 3.11, 3.13 that the space of physical states interact
nicely with Lie bracket operations: 150 < V., is a Lie subalgebra and P}* < VP* is
a Lie submodule over ]50. Since wall-crossing formulas in [Joy6] are always written
using the Lie bracket, these Lie algebraic statements prove a compatibility between
wall-crossing and the Virasoro constraints.

1.6. Proof of Theorem A and other results. The main result of the paper
is Theorem A, i.e. a proof of Conjecture 1.4 for stable sheaves on curves and
on surfaces with A% = h%% = 0. Part (2) of the Theorem solves the conjecture
proposed by van Bree [vB, Conjecture 1.4] (see Remark 2.17 for a comparison with
van Bree’s formulation). The main ingredient in the proof is an inductive rank
reduction argument via wall-crossing. This is the content of Section 5. In each of
the 3 cases, we consider the moduli spaces of Bradlow pairs P/ which depend on
a stability parameter ¢ > 0. Assuming that M, contains no strictly semi-stable
sheaves, when 0 < ¢t « 1 is small there is a map P)" = P! — M, which is a
(virtual) projective bundle; that is equivalent to wall-crossing at the Joyce-Song
wall

[P£+]vir _ I:[Ma]vir’ 6(1’0)] )

On the other hand, for large ¢ » 1 the moduli spaces P* := P! are easier to
understand (and sometimes empty). We prove not only that M, satisfy the sheaf
Virasoro constraints (i.e. Theorem A) but also that the moduli spaces of Bradlow
pairs P! satisfy the pair analogue of the constraints:

Theorem 1.9. The moduli spaces of Bradlow pairs P! (see Definition 5.2) satisfy
the pair Virasoro constraints (Conjecture 2.18) for every ¢ > 0 in the 3 settings of
Theorem A, ie. (m,d) = (2,2),(1,1) and (m,d) = (2,1) provided Assumption 5.7
holds.

To prove Theorems A and 1.9 we need the following steps:



12 ARKADIJ BOJKO, WOONAM LIM, AND MIGUEL MOREIRA

(1) Prove that P satisfies Conjecture 1.5. In case (1), we only need to prove
the statement for symmetric powers of curves which we do by a direct com-
putation in Proposition 6.1. Cases (2) and (3) can be reduced to the Hilbert
scheme of points, which was obtained in [Mor].

(2) Use the wall-crossing formula between P* and P" to show that P%" sat-
isfies Virasoro constraints for pairs as well. We use induction on a to have
the Virasoro constraints on the wall-crossing terms together with the com-
patibility between wall-crossing and Virasoro (Propositions 3.11 and 3.13).

(3) Finally, we use a projective bundle compatibility for PO* — M, to show that
the pair Virasoro constraints on P™ imply the sheaf Virasoro constraints
on M,.

A crucial point in the argument is that we must include moduli spaces M, admitting
strictly semistable sheaves in the induction since they unavoidably appear as wall-
crossing terms. That is, we must prove that [M]™ is in the Lie algebra of primary
states. Because of that, in step (3) we don’t exactly have a projective bundle.
However, by the very definition of the invariant classes [M|™, what we have to
prove is essentially the same as in the projective bundle case. We do this in Theorem

5.11.

We also use the wall-crossing compatibility together with the results of the first
author in [Boj1] to prove that the pair Virasoro constraints hold for punctual Quot
schemes.

Theorem 1.10. Let X be a curve or a surface and let V be a torsion-free sheaf
on X. Then the punctual Quot scheme Quoty(V,n) satisfies the pair Virasoro
constraints (Conjecture 2.18).

(X)
which we consider over Z-coefficient, all cohomology and K-theory groups are as-

1.7. Notation and conventions. Except the semi-topological K-group K2,

sumed to have coefficients in C unless stated otherwise. We write
K*(X)=K(X)® K'(X)
for the topological K-theory and we denote by
ch: K*(X) - H*(X)

the isomorphism between topological K-theory and cohomology. The total coho-
mology of a topological space is always understood to be the direct product of the
cohomology groups in each degree, while homology is the direct sum. We will use
the cap product with the cohomology acting on the left. This is the convention
followed in [Dol]; it differs from the more usual convention with cohomology on the
right by a sign, i.e., v nu = (—=1)"My Ay for ye H*(X), ue H,(X).
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a, 3 Semi-topological K-theory classes in K2, (X).

v,0 Cohomology class on X.

v, W Elements of K*(X).

deg(—) Degree for any graded vector space.

| — | Super-grading taking value in {0, 1}.

ch? () The holomorphic descendent in degree 2¢ —p+ q depend-
ing on the Hodge degree of v € HP?(X).

ch; () The topological descendent in degree 2i — |7|.

L,, T, R,, Virasoro operators on homology and vertex algebra.

L., Tn, Ry, Dual operator notation on cohomology and descendent
algebra.

Lwto weight 0 Virasoro operator on descendent algebra.

1.8. Future directions. There are several open directions regarding the Virasoro
constraints for sheaves. The first obvious direction is to try to improve Theorem A
by removing the assumptions h%! = h%? = 0. The arguments in this paper show
that we can get the constraints for h%! > 0 as long as we can prove them for the
moduli of rank 1 sheaves (isomorphic to the Hilbert scheme of points times the
Jacobian). Finding an argument that works in general for the Hilbert scheme of
points and does not go through Gromov-Witten theory would be highly desirable.
Removing the assumption 2%? = 0 requires a better understanding of the constraints
in the setting of reduced virtual fundamental classes for fixed determinant theory
(see Remark 2.23).

The authors are working on understanding and proving the constraints for moduli
spaces of quiver representations (possibly with relations) and Quot-schemes with
1-dimensional quotients. Many other moduli spaces might be approachable in the
near future, such as more general nested Hilbert schemes and Fano 3-folds.

1.9. Acknowledgement. The authors would like to thank Y. Bae, D. van Bree,
J. Gross, A. Henriques, D. Joyce, M. Kool, H. Liu, A. Mellit, G. Oberdieck, A.
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straints on moduli spaces of sheaves.
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The second author is supported by the grant SNF-200020-182181. The project
received funding from the European Research Council (ERC) under the European
Union Horizon 2020 research and innovation programme (grant agreement 786580).

2. VIRASORO CONSTRAINTS

2.1. Supercommutative algebras. Before we move onto geometry, we note down
some useful observations about freely generated supercommutative algebras and
derivations on them. Let D, be a supercommutative Z-graded unital algebra over C
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with degree deg(v) = i for any v € D;. Supercommutativity means that multiplica-
tion satisfies
veow = (=1l
where
lv| € {0,1}, such that |v]=deg(v) mod 2.
The unit of D, is always going to be denoted by 1 and in general, we will omit
specifying it in the notation.
A superderivation of degree r on D, is a Z-graded linear map
R:D,— D,,,
satisfying the graded Leibnitz rule
R(v-w) = R(v)-w+ (—=1)""lv- R(w).
Definition 2.1. Let C, be a Z-graded C-vector space. We denote by
D, = SSym|[C,]

the freely generated unital supercommutative algebra generated by C,. Denote by
C* the graded dual of C,. We define the dual of D, as a completion of SSym[C*|
with respect to the degree. More precisely, the dual is
D* :=SSym[C*] = | [ SSym[C"]’
=0
where SSym[C*]* denotes the degree i part of SSym[C*®] with the degree induced
by the one on C*.°

Given a linear map f: Cy — B,,, of degree r, there is a unique way to extend f
to an algebra homomorphism and to a derivation of degree 7.

The pairing between C, and C*® can be promoted to a cap product between D,

and D°.

Definition 2.2. Fix C, and C* dual vector spaces and let (—,—): C* x C, — C
be the pairing. Let D, and D*® be as in Definition 2.1. We define a cap product
n:C*x D, — D,
by letting v n (—) for v € C* act as a superderivation of degree —deg(v) on D,
restricting to (v, —) : Cy — C. The cap product extends uniquely to
[ D. X .D. — -D. 9

by requiring that (uv) nu = pn (v nw). Notice that this makes D, into a left
D*-module.

By composing with the projection D, — C, we recover a non-degenerate pairings
(=, =>:D*x D, — C.

6We follow here the convention that the total homology is the direct sum of the homology
groups in each degree, while cohomology is the product.
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An explicit description of the cap product can be obtained after fixing a basis
B < C, and observing that

v (=)= Z<y,v>a—av

vEB

where % is the super-derivation of degree —deg(v) acting on the elements of the

basis B by £(v) = 1 and £ (w) = 0 for w € B\{v}.

2.2. Descendent algebra. Let X be a smooth projective variety over C.

Definition 2.3. Let CH* denote the infinite dimensional vector space over C gen-
erated by symbols called holomorphic descendents of the form

chi'(y) for i=0,ve H(X)
subject to the linearity relations
chi' (M + A2v2) = ey (1) + Aachy'(72)
for A1, Ao € C. We define the cohomological Z-grading on CHX by
(1) degchi'(y) =2i —p+q for ~e HP(X).
Finally, we let DX be the Z-graded algebra of holomorphic descendents
DX = SSym[CH*],

which is the completion of the supercommutative algebra generated by chiH(fy). We
will write chl!(v) for the element

chi(y) = > chi'(y) e D¥.
=0

Remark 2.4. This algebra of descendents is very similar to the one introduced
in [MOOP] with two small differences. Firstly, we now take a completion with
respect to degree; this makes little difference in practice, but it is important in
the comparison between DX and H*(Mx) (cf. Lemma 4.8) since we follow the
standard convention that the total cohomology is a product of the groups in each
degree. The second difference is in the grading; in our notation, given v € HP?(X),
the symbol ch}'(7) should be thought of as having Hodge degree (i,i—p+ q) (recall
this from Definition 1.3) so that the geometric realization is degree preserving.
The superscript H stands for holomorphic part of the Hodge degree and is used
to indicate this degree convention. The original convention appearing in loc. cit.
defined the descendents ch®'d(v) as

Ch(i)ld (’7) = Chgpfdim(X) (7)

for v € HP?(X). The reason for introducing holomorphic descendents is to give a
natural looking expression for the operator Ty in §2.3.
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It will sometimes be useful to also consider the shift
chy(7) = chiy pma) (1) = 0] aesn gy 1 (V)
so that degch;(y) = 2i — |y]; we recall that |y| € {0,1} is the parity of v as in
Section 2.1.
Definition 2.5. Let oo € K?°

sst

(X) be a topological type. We define CHY to be the
graded vector space generated by symbols
chi(y) for i€Z-y,ve H*(X).
We let DX be SSym[CHX]. The algebra DX comes equipped with an algebra
homomorphism p,: D¥ — DX sending
. chy_je—a)(v) if degehy'(y) >

chi’(7) = § §x v -ch(a) if degchi'(y) =

0 otherwise.

0
0

Note that abstractly the algebras DX are independent of «, but the morphisms
Po depend on « by their behavior on the descendents of degree 0. If M, is a moduli
space parametrizing sheaves of topological type o with a universal sheaf G, then
the geometric realization factors through p,:

DY . DX

2
(2) &;i /
H*(Ma)
where we still denote by &g the factoring map, which is defined as

(3) Ec(chi(y)) = pa (Chif[de%Hdimx(G)q*’Y) e H*M(0,).

The map factors since {g(ch;' (7)) = {, v - ch(a) € H°(M,) when deg(ch; (7)) = 0
and the degree of {g(ch; (v)) is identical to (1). Given D,D’ € DX we say that
“D = D' in DXV if po(D) = pa(D').

Example 2.6. One may lift the Chern classes of the virtual tangent bundle of M
to DX or DX. Recall that the virtual tangent bundle is defined as the K-theory
class

T"M = —Rp,RHom(G,G) + Oy, .
Using >, 7/ ®7{ to denote the Kiinneth decomposition of A,td(X), where A: X —

X x X is the diagonal, and applying Grothendieck-Riemann-Roch, one computes
that

ch(TMY™) = —¢&¢ (Z Z(_1)i—ptL+dim(X)Ch?I(rytL)Ch;.{(")/tR)) +1,
1,720 ¢

where v € H Prar (X). The reason for the existence of this lift will become appar-
ent from Lemma 4.8. The similarity with Virasoro constraints bellow is a general
phenomenon which can be used to guess their correct formulation.



VIRASORO CONSTRAINTS ON MODULI OF SHEAVES AND VERTEX ALGEBRAS 17

2.3. Virasoro operators. In this section we define the Virasoro operators
Ly: DX - DY | fork>—1,

which produce the Virasoro constraints. These operators have two terms, a deriva-
tion term R; and a linear term T, which is quadratic in chZH. The full Virasoro
operators are Ly = R, + T, where

(1) Ry: DX — DY is an even (of degree 2k) derivation extended from Ry : CH* —
CHY, where it is defined by

k

Richi'(7) = (]_[(Z +J’)> chify(7) -

=0
We take the following conventions: the above product is 1 if £ = —1 and
chil (v) =0ifi+k <O0.

(2) Tg: DX — D¥ is the operator of multiplication by the element of D¥ given
by

Te= Y (=) ¥ iljlchfch (td(X)).
i+j=k

In the formula above, (—1)4mX ’chh?ch?(td(X )) is defined as follows: let
A: X — X x X be the diagonal map and let

Z%L@)%R = Autd(X)
t

be a Kunneth decomposition of A,td(X) such that v~ € H? 4 (X) for some
py+ 4t Then
(=1)®™ X el (td (X)) = D (=1 X P chf (3 )bl (7).
t
Remark 2.7. The operator L_; = R_; plays a special role and has a particularly

nice geometric interpretation in terms of G,,-gerbes over M, which we describe in
Lemma 4.9.

The operators {Lj}r>_1 satisfy the Virasoro bracket relations
[Li: Le] = (€ = k)Lyre-

This was noted in [MOOP]; for a detailed proof see [vB, Proposition 2.10]. The
unusual constant factor (¢ — k), instead of (k — ¢), suggests that there might be
another set of more natural Virasoro operators to which {Lj}x>_; are dual. This
observation is made into a precise statement in Theorem 4.12.

2.4. Weight zero descendents. One of the issues that arise when dealing with
descendent invariants is that a priori they depend on a choice of universal sheaf G
on M x X. Given a universal sheaf G, the possible universal sheaves are of the form
G' = G® p*L where L is a line bundle on M.
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Lemma 2.8. Let E: D¥ — DX[(] be the algebra homomorphism defined by

E = SR

7
then given two universal sheaves G and G’ = G ® p*L, the geometric realizations

concerning the two are related by

§or = €c 0 Ele=er1) -

Proof. We may write

E(chi'(7)) = >, yehil, () = [e*ch/()];
which after comparing to

e (chl (7)) = pu (h(G ® p*L)g*y) = e P ég(chll (7). O

yields the result.

In particular, it follows that if D is such that R_;(D) = 0 then {g(D) = &/ (D).
This leads to the definition of the algebra of weight 0 descendents. Its geometric
interpretation is summarized in Lemma 4.10 and is related to taking rigidification
of moduli stacks. Roughly speaking, these classify families of sheaves on S x X
up to twisting by line bundles on L — S and the above discussion formulates the
precise interaction between the twisting and the descendents.

Definition 2.9. For a topological type a € K2, (X), we will also denote by

sst
Roi: DY — Dy
the derivation defined on generators by R_jch;(y) = ch;_1(7), where chy(y) is in-
terpreted as {, 7 - ch(a). We then define
DY, ={DeD¥: R4(D)
DY . ={DeDX:R (D)=

wto,o

0},
0}.

For any weight 0 descendent D e ]D%to, by Lemma 2.8, the geometric realization

(D) does not depend on the choice of G. Thus, when D € Dy, we will often omit
specifying the realization map and write

| b=
[M]Vir [M]vir

for any choice of universal sheaf G. The morphism Dy, — H*(M) is defined even

without assuming the existence of any universal sheaf G. This fact can be proven
using Lemma 4.10; if M = M, is a moduli space of topological type «, then it
admits an open embedding ¢: M < M€ and thus we get a map

DY, —2 DX

wto wto,o

= HY (M) " H*(M).
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Example 2.10. Given 71,7, € H*(X) we have
chy' (m)chg (72) — chg' (71)chy! (72) € Dy,
One can also check that the lift of ch(7TV*M) to D* is in DY, using the expression

in Example 2.6. A geometric reason for this is going to be given in Example 4.11.

2.5. Virasoro constraints for sheaves. To formulate the Virasoro constraints for
moduli of sheaves, without a canonical choice of universal sheaf, we must produce
relations among weight 0 descendents. This is achieved by combining the Virasoro
operators previously introduced in the way which we now describe:

Definition 2.11. The weight 0 Virasoro operator Ly, : DX — DX is defined by

—1) .
LWto = Z ( ) L'RJ+1.

S G

The operator Ly, maps DX to DY, . Indeed, using that [R_y,L;] = ( + 1)L
we find

R_jolwt, = Z (;:Ll RJ+2 Z

j=—1

j + 1)L Rjjl =

In particular, for any D € D¥ the integral {, &c(Lywi, (D)) does not depend on the
universal sheaf G so we omit the realization homomorphism &g from the notation.

Conjecture 2.12. Let M be a moduli of sheaves as in Section 1.2. Then

f Lwio(D) =0 for any D e D¥.
[M]Vir

This formulation is different from the ones which appear in previous works,
namely [MOOP, Mor, vB]. There, Virasoro constraints are formulated using a
choice of universal sheaf that is natural in each of the moduli spaces considered.

Definition 2.13. Let M = M, be a moduli space of sheaves of topological type «
and let 6 € H*(X,Z) be an algebraic class such that {, ¢ - ch(a) # 0. We say that
a universal sheaf G is d-normalized if

(4) éo(cl!(9)) = 0.

Given ¢ as in the definition, we define the operators
Ly =Re+Te+Sy, k=-1,

where

_ (k+1)!
§5 0 -ch(a)

S? R_; ochil, (6).
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Remark 2.14. If § is such that {, 0-ch(a) # 0 then a §-normalized universal sheaf
always exists (and is unique) as an element of the rational K-theory of M x X. If
G is any universal sheaf then

Gy = G ® eSs(chi (9)/fx F-eh(a)

is a well-defined class in the rational K-theory of M x X that can be thought of
as the unique d-normalized universal sheaf; here we use e¢ to denote a rational line
bundle with first Chern class equal to ¢ for some algebraic class c € H*(X, Q).

The geometric realization with respect to Gs is given by &g, = &g o n where

n: DX — DX is

wto
06\
n= Z (_C1—U> R, .
= §5 0 ch(a)
Thus, we can talk about the geometric realization with respect to a d-normalized

sheaf even if such a sheaf does not exist in the usual sense. Conjecture 2.15 still
makes sense in this setting and the proof of Proposition 2.16 goes through as well.

Conjecture 2.15. Let M = M, be a moduli of sheaves as in Section 1.2 and let
G be a d-normalized universal sheaf. Then

J &(Ly(D)) =0 forany k > —1, D e DX,
[M]vir
Proposition 2.16. Conjectures 2.12 and 2.15 are equivalent.

Proof. We begin by observing that we have the identity

(5) Luto = C gy

G

that follows from

(_1)j j+1
2 (j + 1)15?R‘1

j=-1

e S R R =0

)=
By (5), Conjecture 2.15 clearly implies 2.12.

For the reverse implication we use (backward) induction on k. For every k >
virdim(M) the statement of Conjecture 2.15 is clear by degree reasons. Assume
now that the result holds for every k' > k, and let F' = ch'(§) € D¥ satisfying
&e(F) = 0 by (4). The weight 0 Virasoro operator applied to F¥™1 D gives

(6) 0= J[M]m & (Luto (FF1D)) = Z %J[M]Vir &G (LjRjjll(FkHD)).
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Since R_; is a derivation and R_;(F) = chy'(6) = §, 0 - ch(a) in DX, we have

J+l
, 1 ,
RN FHID) = ) (J z )Ri [(FMHRTS(D)
s=0
min(k+1,5+1) ,.
j+1\ (k+1)! bl —s it
7 = -~ 7 SF SR] D
(M) ;) ( s )(k+1—s)!r o (D)
in DY, where we denote = {, §-ch(a). Note also that the operators L? satisfy the
property that LY(FD) = FL3(D) in DY for every D. Since by (4) the geometric
realization of F with respect to G is zero, the only terms of (7) contributing to (6)
are the ones with s = k£ + 1, thus (6) becomes

0= B e (SR0)

By the induction hypothesis, all the terms with j > k vanish and thus the term
with j = k also vanishes, showing that

0= | clio),
[M]Vir
which concludes the induction step. Il

Remark 2.17. For surfaces or 3-folds X with H*(Ox) = 0 for i > 0, the Hilbert
scheme of points and the moduli of stable pairs, respectively, are moduli of sheaves in
the sense of Section 1.2. The canonical universal sheaves in each cases are precisely
the pt-normalized universal sheaves and the formulations in [MOOP, Mor| coincide
with Conjecture 2.15. In [vB], the author uses a geometric realization with respect
to the sheaf G ® det(G) ™" that is not a universal sheaf for M; however,

G @det(G) ™" @ AV

recovers the pt-normalized universal sheaf of Remark 2.14. The equivalence between
van Bree’s formulation of Virasoro for the moduli of stable sheaves of positive rank
and Conjecture 2.15 is explained by Lemma 2.19.

2.6. Virasoro constraints for pairs. Since for moduli spaces of pairs we have a
uniquely defined universal object ¢*V — [, there is no need to use the weight 0
Virasoro operator for pairs. We need, however, to slightly modify the operators to
account for the different obstruction theory.

Let V be a fixed sheaf on X and let P as in Section 1.2 be a moduli space of
pairs parametrizing sheaves F' together with a map V' — F'. The moduli P comes
equipped with a (unique) universal sheaf F on P x X and a universal map ¢*V — F.
We conjecture that descendent invariants obtained by integration on moduli of pairs
are constrained by Virasoro operators which are similar to the ones introduced in
Section 2.3. Define the operators

Ly : D* - DX
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by LY = Ry + T} where
T} = Ti — klchy (ch(V)Vtd(X)).

The operator L} can be described in an alternative way that should make its defi-
nition more natural and that will be closer to the vertex algebra language that we
will introduce later. Let

]D)X,pa _ DX ® ]D)X
be the algebra of pair descendents. We denote the generators of the first copy of D
by ch!Y(5) and the generators of the second copy by chi"” (). Given the universal
pair ¢*V — F on P x X, we have a geometric realization map

f(q*\/ﬂ*) . ]D)X’pa — H* (P)
that is defined by

ey (e () = Gov () = {
anve) (7)) = & ().

This geometric realization map factors through

§ov-ch(V) ifi=0

0 otherwise

DX ,pa

§Vl \E(qiv o

ID)X &F Ho )
where &y is defined to send
()0 5 [ - ch(V) and chl™ () o ehl(o).
X

We define the pair Virasoro operators L}*: D*P* — D¥P2 for k > —1, as the sum
R + TP* where

(1) RY* is a derivation defined on generators in the same way as Ry; in other
words,
R = Ry ® id + id ®Rg.
(2) TR* is the operator of multiplication by the element
TP = > (=)™ X i1eh PV eh M (1d (X)) e DYP
i+j=k

where
HF— H H
ch!™ ™ = ch!"” — ch!"Y.

The definition of TE* suggests an intimate relation between the linear part of the
Virasoro operators and the obstruction theory of the moduli spaces we consider;
recall that the deformation-obstruction theory of the pair moduli space P at V' — F
is governed by

RHom ([V — F|, F)
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and use Example 2.6.

The operators L} are obtained from L}* by the following commutative diagram:

pa

DX.pa L_’“> DXpa

—

DY DX,

This holds due to the identity

vt ([ o)) ol = 5 ([ oF ) aiof)

s X t

= ch (ch(V)¥td(X)).

It can be shown that the operators {L} };>_1 and {L}"};>_; satisfy the Virasoro
bracket relations.

Conjecture 2.18. Let P be a moduli of pairs as in Section 1.2 with universal pair
¢V — Fon P x X. Then

J & (LY (D)) =0 forany k>0, De D",
[P]vir

Equivalently, the pair Virasoro constraints can be formulated as

J Egrvm (Li(D)) =0 for any k = 0, D e DYP2,
[

2.7. Invariance under twist. Suppose that M = M, is the moduli space of slope
semistable sheaves with respect to a polarization H with topological type a. Then,
the moduli space M’ = M,y is isomorphic to M by sending a sheaf [F] € M to
[F'] = [F®H]. As expected, the Virasoro constraints on M and M’ are equivalent
as we now proceed to verify.

Suppose that G is a universal sheaf on M x X. The universal sheaf on M’ x X
is identified with G’ = G ® ¢* H via the isomorphism M’ x X ~ M x X. Define an
algebra isomorphism F: D¥ — DX by

F(chi'(7)) = by (e ™).

Then the following diagram commutes:
DY S (M)
oo
DY %, [ *(M)
Lemma 2.19. The isomorphism F commutes with the Virasoro operators, i.e.
LioF=Folgfor k> —1 and Ly, oF =FoLy.
Thus, Conjecture 2.12 holds for M if and only if it holds for M.
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Proof. 1t is enough to show that L and F commute. Commutativity with Ly, fol-
lows immediately from its definition; the equivalence of Virasoro constraints follows
from the commutativity and the diagram before the Lemma.

The commutativity with the derivation part, i.e. RyoF = FoRy, is straightforward.
To show commutativity with the operator Ty we need F(Ty) = Ty (recall that Ty
denotes both an element in DX and the operator which is multiplication by that

element).
F(Te) = D) D(=D) X Priljlehf! (e My )ehf! (e D))
itj=k t
im X —pL -y - 1 a
= 2, 20 2 (LIl ehd (e (H) )b (ea ()" )
itj=k t apb>0 e
; 1
- N 2(—1)dlmX‘pL‘“z’!j!'—b‘ch?ch?(cl(H)‘”btd(X))
i+j—k a,b>0 a-0-
= > ()X iljlch ] ch! (td(X)) = T
i+j=k
The last line uses the fact that for fixed ¢ > 0 the sum )] % vanishes. g
a+b=c

2.8. Variants for the fixed determinant theory. As we pointed out in Remark
1.1, this paper is mostly concerned with moduli spaces of sheaves without fixed
determinant; in other words, our obstruction theories use full Ext groups instead of
traceless Ext groups. This contrasts with the situation for Pandharipande-Thomas
stable pairs or Hilbert schemes of points studied in [Mor|. There, we see a new term
appearing in the Virasoro operators which we now recall.

Definition 2.20. Given a class v € H*(X) denote by R_;[v] the superderivation
(of degree deg(y) — 2) acting on generators by

Roi[y]ehi' (7) = chily(47).
For k > —1 we define the operator S;: D¥ — DX by
Sk =(k+ 1! > Ry lehyly, (1)
py=0

where the sum runs over the terms 7 ® 72 in the Kiinneth decomposition of A,1
such that pl = 0.

Remark 2.21. The part of S, corresponding to the Kiinneth component 1 & pt
is equal to —rSP" where r = chy(a) = rk(a). When h%4(X) = 0 for ¢ > 0 the
appearance of the operator S;, is already explained in Remark 2.17 as being related
to the pt-normalized universal sheaf.

We now proceed to explain the appearance of the operator S, in the more general
case in which A% # 0 but h%? = 0 for ¢ > 1. Let a be such that r = rk(a) > 0
and M = M, be a moduli space parametrizing semistable sheaves with topological
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type a. Let A € Pic(X) be a fixed line bundle such that ¢;(A) = ¢(a). We
let Man < M be the moduli space of sheaves on F' € M with fixed determiant
det(F) = A;i.e., Ma is the pullback

My ——— M

(8) l ldet
{A} —— Pic"¥(X).
The moduli space Ma has a 2-term obstruction theory given by
Tan = Ext'(G, G)o
Obs = Ext*(G, Q) = Ext*(G, G)
0 = Ext™*(G, G).
Given such a moduli space, there is a unique universal sheaf (possibly rational, in
the same sense of Remark 2.14) Ga on Ma x X such that det(Ga) = ¢*A. We
suppose also that the Jacobian Pic’(X) acts on M in the natural way; that is,
[Fle M = [F®L]le M
for L € Pic’(X). The two main examples to keep in mind are
(1) M = M¢(r,d) a moduli of stable bundles on a curve C' and A a line bundle
of degree d;
(2) M = M¥(r,c1,c) a moduli of stable sheaves on a surface S with p,(S) =0

and A a line bundle with ¢;(A) = ¢;. Note that if we take r = 1,¢; = 0 and
A = Og we recover the Hilbert scheme of points on S

MH(1,05,n) = S,

Proposition 2.22. Suppose that X is such that h%? = 0 for ¢ > 1 and M, M are
as described before. Suppose also that the Virasoro constraints (Conjecture 2.12)
hold for M. Then, we have

J &a(Lx(D)) =0  for any k> —1, D e D*
[Ma]¥iT

where )
Lrp =L, — =S..”
r

Proof. Let
m: M = Ma x Pic®(X) > M
be the étale map sending (F,L) to F'® L. Let P be the Poincaré bundle on

Pic’(X) x X (i.e., the pt-normalized universal bundle of Pic’(X)) and let G be the
pt-normalized universal sheaf on M x X. Since G = G [X] P is also pt-normalized

"The — sign in the Sy operator does not appear in [Mor] due to the fact that in [Mor] the
geometric realization is taken with respect to —Ga instead of Ga.
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it follows that (7 x id)*G = G (in rational K-theory) and thus 7 o {g = s Using
that
W*[M]vir _ [M]vir — [MA]vir « [PicO(X)]
and Proposition 2.16 we get
®) [ etrspym) =0
[
by the push-pull formula and the fact that 7,1 = deg(r), where S} = —%R,lchkﬂ (pt).

Let g = h%Y(X) = h'O(X) and let {ey,...,e,} < HOY(X) and {f1,...,f,} S
H™(X) be basis; let {é1,...,¢,} € H™YX), {fi,..., f;} € H™™(X) be their

dual basis, i.e. such that
J €;éj = 0ij = f fifj
X b's

7y = Ep(hll(&)) € HO(PI(X)) and  p; = &p(chll(f,) € HO (Pic(X)

Let

so that
g g
Cl(P) = ZTj@ej + ij®fj € H2(P1CO(X) X X)
j=1 j=1
The Jacobian is topologically a real torus of dimension 2g and its cohomology is
the exterior algebra generated by the classes {7}, p; }?:1. Let

w= Y pim € H*(Pic®(X)).

j=1
By rescaling the elements of the basis, we may assume that Spico( X) H?:l piTj = ﬁ
so that w9 € H?(Pic’(X)) is the class Poincaré dual to a point in Pic’(X).

Since cho(Ga) = 7 and chy (Ga) = ¢*c1(A), we have
Ex(ehil(e;)) = rm; and & (chg(fy)) = rp;
in H* (]\7) = H*(Ma x Pic’(X)) where we omit the obvious pullback. Let

g
W = Z chy (f;)chi'(é;) e DY so that & (W) = riw.
j=1
We will apply equation (9) to descendents of the form W9D for some D € DX and
use that to deduce the Proposition. We have
10) 0= | (L SEYVID))
[

M]vir

= 7‘29 va A w%@((Lk + Szt)(D)) + JN A f@(Rk(Wg)D))
[M]vir [M]vir

w9l (Re(W) D).

M]vir

= | (e SEID) o
[Ma]vr [
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We now rewrite the second integral in terms of an integral in M,. We have

& (Re(W)) = (k +1)! Z (e (f;)ehiy1 (&) = r(k + 1)) pi€a(chiy ().

j=1
Claim 1. Let h: M — M be the projection and let D € D¥. Then we have
he (9w’ 0;€5(D)) = €oa (Raes]D).

Proof of claim. Let J < H’( ) be the annihilator ideal of w9!p;; in particular,
H>%(Pic’(X)) < J. By definition,

E5(chd (7)) = pe(ch(Ga)ch(P)g*y) = pa(ch(Ga) (1 + (p*7)(¢*e;) + .- )q*™)
= & (e (7)) + g4 (chil(e7)) +

where the terms in ... are all in the ideal J and where we omit all the pullbacks
via the projections M — Ma and M — Pic’(X). Thus,

(D) = &6, (D) + 1, (Roles] D) + ...

Since
f wI ™ pTy = (g —1)! Hpm
Pic?(X) X 27

the claim is proven. U

Given the claim, (10) becomes

0 =1 f §oa ((Li+ SPYD)) + 127 (k + 1)1 Z&GA el (é,)D))
Ma

Since h% = 0 for ¢ > 1, we have

g
Sk = —TSZt - Z R—l[ej]ChEH(éj)

j=1

so the Proposition follows. Il

Remark 2.23. When S is a surface with p, > 0 we do not know a rigorous in-
terpretation for the terms of the S with v e H%2(S). Heuristically, these should
be related to a diagram like (8) where the Picard group is interpreted as a derived
stack, see [STV].

Example 2.24. Let M = Ms(2,A) be the moduli space of stable bundles on a
curve C' of genus ¢ with rank 2 and fixed determinant A € Pic(C') of odd degree; this
is a smooth moduli space of dimension 3g — 3. This moduli space has been studied
a lot in the past and in particular its ring structure and descendent integrals are
completely understood. We use this example to illustrate what kind of information
the Virasoro constraints provide on descendent integrals. Let {ey,...,e,} € H*Y(C)
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and {f1,...,f,} < H"(C) be dual basis. Newstead proved in [New, Theorem 1]
that the cohomology H*(M) is generated by the classes

n=—26(chi'(1)), 0=4¢(chy(pt)), & = —E(chyi'(ey)), 5 =&(chy(f))°

The geometric realization ¢ is taken with respect to the sheaf G®det(G) ™ (see
Remark 2.17). Every descendent can be written explicitly in terms of the classes
n,6,&;,1;. By [Tha, (24) Proposition], one can then write every descendent integral
in terms of integrals of products of the classes n, 6 and

(=2 Z V;&;-
j=1

These integrals are fully determined in [Tha, (30)]: for m, k, p such that m + 2k +
3p = 3g — 3 we have

mlg!

29—2-p(oq __
q'(g — p)!2 (2 =25,

(1) | ot = capre
M

where ¢ = m + p — g + 1 and B, is a Bernoulli number. A careful combinatorial

analysis shows that the Virasoro constraints given by Proposition 2.22 for M are

equivalent to the relations

<g o p)f nmekcp _ _2mf nmflekflngrl
M M

which of course follows from (11); it would be interesting to have a direct and
simpler proof of this identity. Note that the Virasoro constraints do not capture
the most interesting part of (11) which is the Bernoulli number. In some sense
this is to be expected: since the Virasoro constraints hold in great generality (in
particular are invariant under wall-crossing), it should not be expected that they
can capture special information about particular moduli spaces.

3. VERTEX OPERATOR ALGEBRA

To prove the conjectures from the previous sections, we will apply the wall-
crossing machinery introduced by Joyce which relies on his geometric construction
of vertex algebras. The resulting vertex algebras have been described in many cases
as lattice vertex algebras and as such admit a natural family of conformal elements.
This section focuses on developing the necessary vertex operator algebra language,
including the definition of lattice vertex operator algebras in the generality that
we need, Borcherds Lie algebra associated to a vertex algebra and the notion of
primary states.

8In [Tha, New] the classes 17, 0,&,1;,¢ are called, respectively, «, 8,44, ¥;, 7.
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3.1. Vertex operator algebra. There are many equivalent formulations of vertex
algebras. We will follow the definitions and notation in [Kac|. In particular, vertex
algebra for us means Z-graded vertex superalgebra over C.

Definition 3.1. A wvertex algebra is a Z-graded vector space V, over C together
with

(1) a vacuum vector |0) € Vg,

(2) a linear operator T": V, — V.5 called the translation operator,

(3) and a state-field correspondence which is a degree 0 linear map
Y: Vi — End(VJ)[z,27'],

denoted by
Y(a,z) = 2 amz ",

neZ

where a(n) : Vo — Viideg(a)—2n—2 and deg(z) = —2.

They are required to satisfy conditions which can be formulated in many different
ways. We choose our favorite version:

(1) (vacuum) T'|0) =0, Y(]0),2) =id, Y(a,2)|0) = a + zV.[z],
(2) (translation covariance) [T,Y (a,z)] = LY (a, z) for any a € Vi,
(3) (locality) for any a,b € V4, there is an N » 0 such that
(z = w)"[Y(a, 2),Y (bw)] = 0,
where the supercommutator is defined on End(V,) by

[A,B] = Ao B — (-1)4IBIBc A

For later purposes it is useful to note that these axioms imply the two following
identities which were used by Borcherds [Bor, §4] to originally define vertex algebras:

a(n)b — Z(_1)|a“b|+z+n+lﬁb(n+i)(a) 7

i=0
if ™M allb|[+m
(12)  (a@mb) )¢ = Z(_l) (z) [a(mfi) (bnire) — (=)D ) (a(i)C)] :
i=0
They are a refinement of skew-symmetry and the Jacobi identity to the setting of
vertex algebras. Additionally, we will also use

(13) (Ta)(n) = —"n"- a(n,l)

which follows from the more general reconstruction result. To understand it, one
needs to make sense of a product of two fields Y (v, z) and Y (w, z) which naively
could contain infinite sums for each coefficient. For this one uses the following trick.

Definition 3.2 ([Kac, (2.3.5)]). A normal ordering : — : is defined by

{(—1)”ww(l)v(k) if E<0,0>0,

LU W() =
S V(k)W(1) otherwise .
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In general, this can be extended to any monomial in vy by iterating the above
operation on the neighboring terms until all terms with non-positive index k are on
the right.

Theorem 3.3 (Kac [Kac, Cor. 4.5]). Let a',--- ,a™ € V, be a finite collection of
elements and k1, ..., k, € Z=q, then a general field can be described as

Y (a v 0),2) = ! -dklyl dknyn-
(a(—k‘1—1)”'a(—kn—1)| >’Z)_ k.1|k,2[k,n| : (dz)’fl (avz)m (a 72)' :

To get (13) simply use T'a = a(_2) |0) and compare the coefficients on both sides.

We now recall the definition of an additional structure on vertex algebras called a
conformal element or conformal vector. They generate Virasoro vertex subalgebras
and in this paper give rise to a compact way to summarize all the information
contained in geometric Virasoro constraints.

Definition 3.4. A conformal element w on a vertex algebra V, is an element of V}
such that its associated fields L, = w(,41), defined by
Y(w,2) = 2 Lz "2,
nez

satisfy

(1) the Virasoro bracket

n3—n

12
where C' € C is a constant called the central charge of w,
(2) L,=T,
(3) and Ly is diagonalizable.

[Ln; Lm] = (n - m>Lm+n + 6n+m,0 ’ C,

A vertex algebra V, together with a conformal element w is called a conformal
vertex algebra or vertex operator algebra. We denote by V& the conformal grading
on the underlying vector space, where V* is the i € C eigenspace of Ly. We denote
the conformal degree by

deg (a)=1i if aeV?,

to distinguish it from the original degree on V.

3.2. Lattice vertex (operator) algebras. We next describe a particular con-
struction of a vertex operator algebra which we will be working with, called lattice
vertex algebras, while following closely the sections [Kac, §3.5, 3.6 and 5.5]. The
next theorem gives the outline of the main statements that we need while we expand
on them in the rest of the section.

Theorem 3.5 (Kac). Assume that we have the following data:

(1) A Zsy-graded C-vector space A = Ag @ Ag with a symmetric bilinear pairing
Q: A x A — C which is a direct sum of its restrictions Q; : A; x A; — C.
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(2) The pairing @ is obtained as the symmetrization of a not necessarily sym-
metric pairing ¢: A x A > Z, i.e.,

Q(Uv U)) = Q(Ua w) + Q(w7 U)'
(3) An abelian group of a finite rank Ay that admits an inclusion
Asst ®z C — Aa

such that the restriction of ¢ to Ay is integer valued. This makes (A, @)
an even generalized integer lattice in the sense of [Gro, Section 3].

Then there is a uniquely defined vertex algebra V, whose underlying vector space
is
Ve = C[Axt] @ Dy,
where
Dy = SSym[CHA] and CHj, = (—DA R
k>0

The state-to-field correspondence is determined by equations (19), (16) and (17)
and the translation operator is defined by equation (14).

Suppose moreover that we have

(4) The pairing () is non-degenerate.
(5) A decomposition of A as a sum of two maximal isotropic subspaces, i.e.,

A=I®I
Then V, admits a conformal element w defined as (22) whose central charge is

sdim A = dim Ay — dim Ay.

We will use the notation v_j, = v-t7% € Dy and e* € C[Ay] for the elements
associated to v € A and o € Ay, respectively. The Z-grading of V, is defined by
the degree assignment

n

deg <e°‘ Qul,, - -Uﬁkn> = Z:(QkZ — |vi]) + Qo @) .

-1
A vacuum vector is defined as |0) := e ® 1 € V4.

For v € A and k& > 0, the creation operator v_y) on V, is defined as a left
multiplication by the element v_; € D,. This gives V, the structure of a free Dy-
module with basis {*}aen.,. Thus, specifying an operator A: V, — V, is equivalent

to describing its commutators with creation operators [A,v(_j)| and its action on

sst *

the basis A(e®). The operators that appear are often derivations of the D-module
V., and we will often define them by describing their action on the generators v_y
of D, and on the basis e®.
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The translation operator T' is a C-linear even derivation of the D -module V,
determined by

(14) T(v_g) = kv_p_1, T(eY) =e"®a_;.

For k > 0, the annihilation operator vy is defined as a derivation of the ID,-
module V, as we explain below, following Kac [Kac, §3.6 and §5.4]. The field
corresponding to v_; is then obtained as a sum of creation and annihilation opera-
tors:

(15) Y(v_y,2) = Z vz !
keZ
We separate the construction of the fields into two cases. If our lattice A is
concentrated in even degree (i.e. Ay = {0}) we use Kac’s bosonic construction and
if it is concentrated in odd degree (i.e. Ay = {0}) we use a fermionic construction.
In the general case, we take the tensor product of the two.

Definition 3.6. Suppose that

(1) A; = {0}, then the resulting vertex algebra V5, = C[Ay] ® Dy is called a
bosonic lattice vertex algebra. In this case, the action of the annihilation
operators {vg)}r=o0 for v € Ag is an even derivation on the Dy -module V5,
determined by

vy (w-1) = k Q(v,w) dg—i0, vy (e®) = Quv,a) dpoe®, k=0,1>0.

Kac [Kac, § 5.5]° endows Vg, with a vertex algebra structure such that

Y(v_oq,2) = Z v(k)z’k’l ,

keZ

and

(16) Y(e* z) = (—1)q<a’5)zQ(a’me“ exp [ — Z %z’k] exp [ — Z %z’k]
k<0 k k>0 k

on e’ @D, in the formula, e* stands for the operator sending e? ® w to
e**# @ w. Note that the signs .5 = (—1)%4*9 satisfy Equations 5.4.14 in
[Kac|. The general state-field correspondence is set to be

(17) Y(ea ® U£k1—1 AT 3)

1 dh dt

= . « _— 1 - — n .
Rl A g e g e )

9The construction in [Kac, Section 5.4] is only for the case in which A is a lattice (i.e. it
is a free abelian group) and Ag ®z C = Ag, but everything works just fine in this slightly more
general setting. This modification was already considered by Gross in [Gro, Definition 3.5]. Note
also that the case Ay = {0} corresponds to what Kac calls the vertex algebra of free bosons, see
[Kac, Section 3.5].
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(2) Ag = {0}, then the resulting vertex algebra Vi, = D,_ is called a fermionic
lattice vertex algebra, see [Kac, Section 3.6.]. It is determined uniquely by
setting the annihilation operators {v() }r=0, for v € A1, to be odd derivations
on the supercommutative algebra D_ such that

U(k)<w—l) = Q(U,w)5k—z+1,o-

The remaining fields are obtained again by the reconstruction Theorem [Kac,
Thm. 4.5], which states the analog of (17) without e®.

In general, V, is defined as the tensor product of the two lattice vertex algebras,
Ve=V5.0®V1,
which are associated to Ay ®z C — Ag and Ay, respectively. The resulting fields
are determine uniquely by
Y(ag®ay, z) = Y(ag, 2) ®Y (ag, 2)

whenever a; € V5 ,.

We can summarize the above description by formulating the commutation rela-
tions of the operators v) as

(18) [vek), wiey] = KD Q (v, w) Sy 141010 »

which holds for all k, ¢ € Z. If we want to obtain a closed formula for (15), we may
rewrite the annihilation operators in terms of derivatives to get

(19)
Y(v_y,2) = Z Vg2 + Z Z KD Q (v, w)

k=0 k>1—|v| weB

on e? @Dy < V., where B A is a basis.

0

OW_j—o|

24 Qv B2,

We will later identify Joyce’s vertex algebra with a lattice vertex algebra. For
that, the following proposition, which is a simple corollary of [Kac, Proposition 5.4],
will be useful.

Proposition 3.7. Let V, be a vertex algebra with the underlying vector space
C[Asst] ® Dy such that:

(1) The vacuum vector is €’ ® 1;
(2) The fields Y (e’ ® v_y, 2) are given by (19);
(3) We have
(20) [2Q@ANY (2, 2)ef = (—1)2@Peath

Then V, is isomorphic to the lattice vertex algebra of Theorem 3.5.

Proof. By [Kac, Proposition 5.4], conditions (1) and (2) imply that V, is uniquely
determined by a choice of operators c,: Vo — V, for each o € Ay satisfying

co=1id, ¢a]0)=10), [v@),ca] =0forveA kelZ.
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For such a choice of operators, the field Y (e®, z) is given by

a a,B) o k) —k Qk) g
% _ ,Q@p) [7 ok ] [f Xk ] N
(e%2) =z e exp Z i Z i
k<0 k>0
To show that V, is the lattice vertex algebra we need to show that ¢, acts as

(—1)2@) on e? ® D,. Since ¢, commute with creation operators, it is enough to
show that co(e?) = (—1)%@Peb for all B € Ay;. We have

- a | a
Y(e®, 2)e? = 2000 exp | — Y] =Wk exp [ -2 (—k)z_"”]ca(eﬁ)
i k i k
k<0 k>0
_ o 9 o
= Qapf) exp - Z %Z_k_ Co EXP [ — Z %Z_k]eﬁ
k<0 k>0
_ Q@B g [ N X k], B
z e” exp i Z I z ‘Cae
k<0

Extracting the coefficient of 29(®#) from both sides and using (3) the result follows.
O

3.3. Kac’s conformal element. Let V, = C[Ay]®D, be a lattice vertex algebra
associated to a non-degenerate symmetric pairing

Q:AxA\N—7Z.

Recall that V, is expressed as a tensor product V, = V5, ® V7 ,. This allows us to
address the construction of the conformal element as

w=uwst+wy, wi€Vi,.

Let us first fix a basis By of Ay and its dual f?@ with respect to (); we denote by
0 € By the dual of v € By, so that

Q(v, W) = 4 for v,w e By.

Then the bosonic part has a natural choice of a conformal element given by
1 .
wy =€ ® 3 2 U_qv_1 € Vgy.
’UGBG
See [Kac, Proposition 5.5]. The central charge of wy is dim(Ag).
We now consider the fermionic part. Recall that we have in the assumptions of

Theorem 3.5 a splitting
(21) Af=I01.
into maximal isotropic subspaces. Given such a splitting, Kac [Kac, 3.6.14] con-
structs a family of conformal elements w% parameterized by A € C. To give its
explicit description, pick a basis By < I; then its dual basis is denoted by B; < I
with elements w satisfying Q(v,w) = J,,, . One then sets

(.UT)\ = (1 — )\) Z V_9U_1+ A Z V_oU_1.

’UEB[ UEB[
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Notice that the expression is independent of a choice of bases By, B} and swapping
I and I only interchanges A and (1 — \). We set A = 0 and denote'”

Wy = Z @_gv_l .

UEB[

The central charge of wy is
2sdim(/) = sdim(Ay) = —dim(Ay),

by [Kac, 3.6.16] after plugging A = 0. Therefore, the central charge of the full
conformal element w = wy + wy is given by

dim(Ag) — dim(A7) = sdim(A) .

Remark 3.8. The choice of the conformal element w is equivalent to the choice of
a splitting (21), so we will often denote the latter piece of data also by w.

The corresponding conformal grading on e* ® D, < V,, depending on the choice
of the splitting w, is determined by the operator

Lo = [2?}{Y (w, 2)}

1 0
= [2_2]{5 Z (Y (0-1,2)Y(v_y,2) t + Z : gY(@_l,z)Y(v_l,z) : }
ve By veEBT
1 . .
= 5 Z SOk V) Tt Z k: U(—k—1)U(k) *
keZ keZ
veE By veBy
0 0 0 1
= /{JU(_k) + [(/{3 — 1) @(—k)A_ + kv(_k)—] + —Q(Oé, Oé) .
k>20 ﬁv_k k>20 ﬁv_k 8v_k 2
veEBy vEBT

The last equality is obtained by separating the sum into £ > 0 or k < 0 terms and
using (19) in the form

0 . 0
V(k—1) = a{)_k y  Vk—1) = m, for v e B], k>0.

Specifically, the induced conformal grading is

k if ve Ag,
deg, (v_g) =<k ifvelc A7,
k—1 ifvelcAg,
for each k > 0, while the Z-grading on V, that we started with is given by

2k ifUGAﬁ,
deg(v_y) =<2k —1 ifvelc Ay,
2k —1 ifvelc Ar.

OWe suppress the dependence of wy on the choice of I and I for simplicity of the notation.
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The conformal grading V¥ is useful when it comes to studying Virasoro operators
as we explain now. Starting from the notation for the decomposition

v=uvr+v;eNy, where viel,vjel,

we label the conformal shift

oY = V_1 if’UGAﬁ,
-t (U[) 1+ (UI) ifUEAT.

We also define a new pairing Q“ (v, w) as
Q(v,w) if v,w e Ag,
Q”(v,w) == { Qvr,w;) — Q(vj,wy) if v,w e Ay,
0 otherwise.

This pairing is non-degenerate and supersymmetric because () is non-degenerate
and symmetric. Using the shift notation v“, and a new pairing ()*, we can rewrite
the conformal element as

(22) w:—ZU1U1+ZU2U1

veE By ’UEB[
DI EEEED ILETREE ) SRRt
veE By veBI VeB;
1
_ - ~wo W
veB

In the last equality, we use the basis B = By u By u B; of A and {0} denotes the
dual basis to B = {v} with respect to @“, such that Q“(v, @) = 6,,. If we also
shift the notation for the creation and annihilation operators by the formula

Y (v, 2) = Z V(i) z

keZ

the Virasoro operators can be written as

(23) =3 Z nez.

z+] n
veB

We also note that shifted creation and annihilation operators are subject to the
bracket relations that are similar to bosonic fields

(24) [vfn), wz’m)] =nQ”(v,W)0n1mo -
This can be shown by dividing into three cases;
) v,we Ay, i)vel, wel, iii)ve_f, wel,

and using the translation formula (13).
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3.4. Lie algebra of physical states. Borcherds [Bor| associates to any vertex
algebra V, a graded Lie algebra

(25) Vo=Veis/T(VL),  [a@,0] = agpb.

In this section, we study the Lie subalgebra of primary states (also known as phys-
ical states) that is closely related to Virasoro constraints. Algebraic statements in
this section will translate into a compatibility between wall-crossing and Virasoro
constraints for sheaves and pairs in the geometric setting.

Definition 3.9 (Borcherds [Bor], Kac [Kac, Cor. 4.10]). Let (Vi,w) be a conformal
vertex algebra. The space of primary states of conformal weight ¢ € Z is defined as

Pizz{ae‘/;“’

Ly(a) =0for alln >1}.

The following assumption is used to construct Lie subalgebra of primary states.

Assumption 3.10. There is no nonzero element a € V;* with i < 0 and T'(a) = 0.

This assumption is satisfied for the lattice vertex algebras with Kac’s conformal
element because we have

ker(T) = spanc{e® ® 1| torsion '} .
Primary states yield a smaller Lie subalgebra by the proposition below.

Proposition 3.11 (Borcherds [Bor]). Let (Vi,w) be a conformal vertex algebra
satisfying Assumption 3.10. Then ﬁo = P/T(F,) defines a natural Lie subalgebra
of Vi 1= Vi2/T(VE)

Proof. We record the proof to be self-contained. For any a € V, and n € Z, we have

(26) L,(Ta) = [Ln,T]a + T (Ly(a))

=(n+1)Ly1(a) +T(Ly(a)).
This implies that if a € Fy then Ta € P;, hence making sense of the quotient
Py = P/T(B). Furthermore, if a € V§* with T'a € P, then (26) implies a € Py by
the induction argument and Assumption 3.10. This shows that P, < V}* induces a
subspace Py < V°. Finally, this defines a Lie subalgebra because if a,b € P; then

Ln(a(o)b) = [Ln, a(o)]b + U(O)(Ln(b)) =0, nx=1
hence ab € P;. Here we used the fact that if @ € P, then the operator a

commutes with any Virasoro operators L,, [Bor, Section 5]. U

We give an alternative way to define a Lie subalgebra of primary states that is
related to the weight 0 Virasoro operator. For this new definition, we need a partial
lift of the Borcherds’ Lie bracket.
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Lemma 3.12. There is a well-defined linear map !
(27) [=. =1 Vix V; = Viey, (@,b) = a@pb,

which makes V, a representation of a graded Lie algebra V.

Proof. Tt suffices to check the factoring property of a(b in the first coordinate. This
follows from (13) because (T'a) ) = 0. O

Proposition 3.13. Let (V., w) be a conformal vertex algebra satisfying Assumption
3.10. Then the linear map in Lemma 3.12 restricts to
[ ) By x Pi— P,

which makes P; a subrepresentation of V* with respect to the Lie algebra ]50.

Proof. The proof is similar to that of Proposition 3.11 relying on the fact that if
a € Py then the operator a() commutes with any Virasoro operators L. U

Definition 3.14. Let (V.,w) be a conformal vertex algebra. We define a Lie
subalgebra

Ky = {ae %‘”‘[d,w] =0} < (XV/O“’, [—,—]) .

In the definition above, the operator [—,w] is a linear map defined in Lemma 3.12.
The fact that [?0 defines a Lie subalgebra follows from the representation property
in Lemma 3.12. Connection of }V(o to the weight 0 Virasoro operator introduced in
Definition 2.11 is explained below.

Lemma 3.15. Let (V.,w) be a conformal vertex algebra. Then we have

-1 +1 7w w
[—,w] = Z ﬁT” oL, V¥ > V3.

Proof. By (12), we have

(@, w] = a@pw = Z %T”H oLy(a).O

From Lemma 3.15, it is clear that ]50 c fv(o. The next lemma states the converse
when working with lattice vertex algebras.

Proposition 3.16. Let (V,,w) be a lattice vertex operator algebra as in Theorem
3.5 with V, = C[Axt] ® Dy. Then we have Po = KU on the components e* ® Dy
such that « is not torsion.

Proof. Let @ be an element admitting a lift a € e* ® D, for some non torsion «.
Suppose that @ € IV(O, ie. apw = 0. We show that @ € 150 by constructing another
lift of @, not necessarily the same as a, that lies in P;. Since the pairing () is non-
degenerate, there exists some b € Ag such that Q(a,b) = 1. In the proof of this

‘7

g<
<<

HWe abuse the Lie bracket notation that was originally used for [—,—]:
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lemma, we denote e® ® b_; < V¥ simply by b; note that the creation/annihilation
operators associated to b € Ag and the fields induced by b = * ® b_; € V, are
the same by definition, so the symbol by, is unambiguous. We claim that such b
provides a desired lift of @ defined as

T]b(a) = —a(g)b € Vlw .

Since (25) defines a Lie bracket, we know that
nb(a) € b(o)a + T(V;) .

Recall that the operator by acts on e ® D, as multiplication by Q(a,b) = 1.
Therefore n,(a@) is indeed another lift of a.

To show that n,(a) € V¥ is a primary state in P;, we must show
Win+1)(a@yb) =0 for all n > 1.
This follows from the assumption a(w = 0 and the identity (12)

Wit (@@b) = @) (Winind) = (a©@W)mib,
together with a basic fact that b = e ® b_; € P, [Kac, page 81]. U

4. VOA FROM SHEAF THEORY

The general treatment of vertex algebras in the previous section is now paralleled
by their geometric construction formulated by Joyce [Joyl]. Beginning from the
application to the moduli stack of pairs of perfect complexes, we compare the re-
sulting vertex algebras to lattice vertex algebras following the work of Gross [Gro].
The later parts of the section are focused on describing the duals of the operators
L, as Virasoro operators for a natural conformal element.

4.1. Joyce’s vertex algebra construction. We begin by describing the assump-
tions needed for the geometric construction of the vertex algebra for perfect com-
plexes following Joyce’s [Joyl]. We then follow it up with how to extend it to pairs
of complexes which is the most natural setting to work in for conformal elements
and the rank reduction arguments later on.

Ty HZZ—)HZ]

el jedJ
for projections to components whenever J < [ are finite sets, and denote for a
K-theory class K on [ [,.; M; the pullback by K; = 7%(K).

We use the notation

jed

Definition 4.1. (1) We work with a (higher) moduli stack M x of perfect com-
plexes on X constructed by Toén—Vaquié [TV] which admits a universal
perfect complex G on M x x X. The two structures we are interested in are
the direct sum map ¥: My x Mx — Mx , such that

(X xidx)*G = G13® Ga33,
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and an action p: BG,, x Mx — Mx determined by
(p xidx)*(G) = Q1 ®Gas

for the universal line bundle Q@ on BG,,.
(2) The second major ingredient in constructing vertex algebras is a class

(28) Bxt = (m1.)e (613 ® Gas)

on Mx x Mx. Denoting by 0: Mx x Mx — Mx x Mx the map swapping
the factors we construct its symmetrization

O = Ext¥ @ oc*Ext

which satisfies 00 =~ ©V.
(3) For any topological type a € K2

sst

(X) ~ mo(Mx), we denote the correspond-
ing connected component by M, € Mx. Any restriction of an object living
on Mx to M, will be labeled by adjoining the subscript (—),. This allows
us to express

Xsym (@, B) = 1k(Oq,5) = x(a, B) + x(8, )
(X) x K% (X) — Z the usual Euler form.

sst

for y: K2

sst

By the construction of Blanc [Bla, §3.4], there exists a topological space S* defined
up to homotopy which is assigned to each (higher) stack §. The homology and
cohomology of S are then defined by

H(S) = HJ(SY),  H*(S) = H*(S").

Each perfect complex £ on S corresponds to a map S LR Perfc which induces
St €5 BU x Z and the K-theory class

[€] = (£ (U) € K°(S").
The Chern classes of € are defined to be the Chern classes of [£].

Remark 4.2. We will only work with geometries where the natural map

K',(X,7) — K'(X,7)

sst

for the semi-topological K-theory Kt (X,Z) of Blanc [Bla, §4.1] is an isomorphism
for all i > 0 and an injection when i = 0. Gross [Gro] calls the class of such varieties
class D; it includes curves, surfaces, rational 3-folds and rational 4-folds. From [Bla,
Thm. 4.21] it follows that for such varieties

K'(X,Z) fori>0
K2 (X) fori=0.

sst

mi(My) = K (X, Z) = {

The vertex algebra on the shifted homology
(29) Vo= @ H.(M.,)

aeK9, (X)

sst
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for the shift
Ho(Ma) = He_sy(a,0)(Ma,C)

was constructed by [Joyl] as follows:

Theorem 4.3 ([Joyl, Thm. 3.12]). There is a vertex algebra structure on V, from
(29) defined by

(1) letting 0: » — M, be the inclusion of the zero object and setting
10) = 04(x) € Ho(Mo) .
(2) taking ¢ € Hy(BG,,) to be the dual of ¢;(Q) € H*(BG,,) and setting
T(u) = ps(t K u) .
(3) constructing the state-field correspondence by the formula
(30) Y (v, 2)u = (—1)X@8) pxevm(@B) g [eZT id(c,-1(0) N (u v))]
for any u € H,(Mg) and v € H,(Myg).

While moduli spaces of sheaves (recall Section 1.2) naturally define an element
in the vertex algebra V, (or the associated Lie algebra \V/.), this vertex algebra is
not suitable to study wall-crossing in moduli spaces of pairs. Essentially this is due
to the fact that the complex Ext in Definition 4.1 captures the deformation theory
of sheaves but not of pairs.

Thus, when working with pairs we will work with a larger vertex algebra V>* that
is constructed from the homology of a stack parametrizing a pair of complexes and
replaces the class Ext by ExtP®, more related to the deformation theory of pairs.
It also turns out that the vertex algebra V??* is the adequate place to construct a
conformal element that produces the Virasoro operators.

Definition 4.4. (1) Let Px := MxxMx and denote by V = Gy 3 and F = Gy 3
the pullbacks of G via the two possible projections Mx x Mx x X —
M x x X. This stack has a natural direct sum map >P* and a BG,,-action pP*

ype = (EXE)OO’QQ,IP)(XPX—)PX’
PP = (p x p) o (Agg,, x idpy ) : BG,, x Px —> Px.

where 09 3 swaps the second and third copy of My in Px x Px = M;{L.
(2) One extends Ext to a perfect complex

(31) ExtP® = (m12)« ((«7:1,3 —Vi3)" ®f273>
in Px x Px. We introduce its symmetrization
ort = (ExtP*)Y @ (oP*)*ExtP?* |

where oP?* : Px x Px — Px x Px swaps the two factors.
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e now work with two copies of the K-theory wi e connected compo-
(3) W k with t pies of the K-theory with th ted p

(X)®? and continue
to denote by the subscript (—)q.pa the restriction of some object to each

nents labeled by P,ea whenever aP* = (ay,ay) € K2,

connected component. We define the pairing
xP? (ozpa, ﬂpa) = x(ay — g, Bs) = rk(Extgia’Bpa) )
and its symmetrization
Xoym (%, BP) = x(aP®, BP*) + X (B, aP*) = 1k(Of5. 50 ) -
The pair vertex algebra has the underlying graded vector space

VP = H (Px) = @ Ho(Por) ,
ab2a
where ﬁ[. (Papa) = Ho_o\pa(apa,qra) (Papa). The structure of a vertex algebra is con-
structed exactly as in Theorem 4.3. In particular, the state-to-field correspondence
is given by

(32)  Y(v,z)u = (1)} (@5 v (@67 5ypa [eZT ®id(c,~1(0*) nu v)]

for u € H, (Papa), ve H, (Pﬁpa). Note that the inclusion of My < Px sending
F — (0, F) realizes V, as a vertex subalgebra of V?.

Remark 4.5. In Joyce’s theory [Joy6, Section 8|, wall-crossing for pairs plays an
important role in the definition of the invariant classes [M]™. However, the vertex
algebra that he uses to formulate such wall-crossing formulas is not V??*. For our
purposes, it will be enough to consider the stack Mx parametrizing a vector space
U and a sheaf F' together with a morphism U ® Ox — F' (cf. [Joy6, Definition 8.2]
with L = Ox or [Boj2, Definition 2.12] with n = 0). The stack Ny maps to Py by
sending

U®0x - F)— (UR0Ox,F).

This map induces H,(Nx) — H.(Px) on homology; Joyce defines a vertex algebra
structure on Ny that makes this map a vertex algebra homomorphism. Hence, the

wall-crossing formulas for moduli of pairs proven with Joyce’s theory in H, (Nx)
will also hold in VP2,

4.2. Joyce’s vertex algebra as a lattice vertex algebra. We will now give
an explicit description of V, and VP?* as lattice vertex algebras (see Theorem 3.5)
following Gross’ work [Gro].

Let A be the Zs-graded vector space
A=A;DA =K X)DK'(X)=K*(X).
Let also Ay = K°

sst

(X). Next we need to describe the bilinear forms @), q on A

extending the natural Euler pairing on Ay, = K2, (X). Recall that we have a natural

sst
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Chern character isomorphism K*(X) =~ H*(X). Define the dual (—)V: K*(X) —
K*(X) by identifying with H*(X) and setting

deg ch(v)

ch(v”) = (=)= en(w),
where degch(v) is the cohomological degree. This leads to
(33) (v-w)" = (=1)Plyv v
We define the extension of the Euler pairing to K*(X) as
X(v,w) = L(ch(vv) - ch(w) - td(X), v,we K*(X).
We will denote its symmetrization by Xsym:
Xsym (v, w) = x(v,w) + x(w,v) .

For the pair version, we let

APR = AS2 AP \BZ AP AP AP \®2

sst = ‘flsst-
Given v € A we will denote by v¥ = (v,0), v/ = (0,v) € AP* the corresponding
elements in the first and second copies of A, respectively. Given two elements

VP = (v, v9) = 0V g, wP = (w,wy) = wY +wy

their pairing is defined as

(34) X (0P, wP) = x(vg — vr,ws)

and as usual its symmetrization is

(35) Xoom (Upa, wpa) = P (vpa, wpa) + P (wpa, vpa) )

Note that the forms xP* and xP2 extend the ones in Definition 4.4.(3).

sym

Lemma 4.6. The form xP? is non-degenerate.

sym

Proof. Using the decomposition AP* = A @ A the symmetric form x?* can be

sym

represented by the block matrix

0 —x
pa  __ )
Xsym |:_ X X sym:|

Since clearly x is non-degenerate it follows that x%,, is non-degenerate as well. [

The following is a necessary modification of [Gro, Thm. 5.7] which we write out
in full detail to avoid imprecisions and to include the analog statement for the pair
vertex algebra. We point out that while all the ideas already appear in loc. cit.
the computation of the odd degree fields is not present there and their description
has a degree shift to the correct one. Furthermore, unlike the Definition of the
generalized lattice vertex algebra in [Gro], we do not rely on the construction of

Abe [Abe].
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Theorem 4.7. Let X be a variety in class D (cf. Remark 4.2). Then we have
isomorphisms of vertex algebras

(36) ‘/o = C[Asst:l ®DA7
(37) VPt ~ C[Ag’sﬂ ® Dpva ,

where: the left hand sides are the vertex algebras from Joyce’s geometrical con-
struction with the data of Definitions 4.1 and 4.4, respectively; the right hand sides
are the lattice vertex algebras from Theorem 3.5 and the symmetric bilinear forms

qg=X,Q = Xsym and ¢ = xP*,Q = XEyms respectively.

We begin the proof of the Theorem by explaining how to identify both sides as
graded vector spaces. Using the universal sheaf G, on X x M, we have for each

ae K?

wt(X) a geometric realization morphism (3)

.0 DX — H*(M,).

Lemma 4.8 (Theorem 4.15 in [Gro]). Let X be a variety in class D. Then the map
&g, 1s an isomorphism,
H*(M,) = DX.

Similarly,
H*(Pope) = D32 = DX @DX.

Proof. Gross shows that H*(M,) is freely generated by the Kunneth components
of chy(G,) € H* (M, x X). But these are precisely the geometric realization of
descendents, see (44). The result for pairs follows from the sheaf version. O

We know from the previous lemma that
H*(M,) =D} = SSym[CH]],
and we define the pairing (—, —): CHX x CH, — C given by
Ok,
(38) (atn)v-g) = [ eyt

The reader can recall the definition of CH and CH, in Definition 2.5 and Theorem
3.5, respectively. The pairing above is a perfect pairing, so it identifies the dual of

the graded vector space CHY with CH,. Recalling the discussion from Section 2.1,
we then get an identification between

Ho(M,) = H*(M,)" = (D))" = SSym[CHX]" = SSym[CH,] = Dy .
Moreover, by Definition 2.2 the pairing between DX and D, can be promoted to a
cap product

M ]D)gf X ]D)A — DA
such that for a basis B of K*(X), we have
1
(39) (1) 0 () = =gy 3 | 3+l

weB

0

5w_k ’
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The isomorphisms Dy =~ H,(M,) and DX =~ H*(M,) identify this abstract cap
product with the topological cap product, i.e.

DX xDy — 25 D,

(40) lsga xEf léga
H*(M,y) x Hy(My) —"—= Hy(M.,)

commutes.

By assembling all the isomorphisms of graded vector spaces H,(M,) = D, we
get

(41) H(Mx)= @ H(M.,) = @ Dy=C[Ax] @Dy

OéEKbst(X) o€Asst

and similarly
(42) H.(Px) =~ C[AL;] ® Dppa.

To prove Theorem 4.7 it remains to show that the vertex algebra that Joyce defined
on the left hand side and the lattice vertex algebra on the right hand side are
compatible under this isomorphism. We will do this using Proposition 3.7.

Before we analyze the fields required to show that the two vertex algebra struc-
tures are compatible, it will be useful to identify the translation operators on both
sides. Recall Definition 2.9 of the operator R_; : DX — DX,

Lemma 4.9. Under the identification of DX with H*(M,) =~ H,(M,)T, the trans-
lation operator T': Ho(M,) — Hei2(M,) (defined in Theorem 4.3) is dual to R_;.
Moreover, the isomorphisms (41), (42) preserve the respective translation operators
on both sides.

Proof. We recall the operator
E =Rt

from Lemma 2.8. We claim that the following diagram commutes:

DX —t DX[(]

§OMGa Eg
lfga

M,) —>H' (BG,, x M )—>H'( o) [<]

The triangle on the left commutes because p*(G) = QX G. The parallelogram
on the right commutes by Lemma 2.8. It follows that, under the identification
DX ~ H*(M,), E = p* and thus R_; = (t\—) o p* where the (#\—) stands for the
slant product with the generator t € Hy(BG,,) dual to ¢ = ¢,(Q) € H*(BG,,). This
is clearly the dual to Joyce’s translation operator defined by T' = p, o (t[x] —).
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To show that Joyce’s translation operator agrees with the one constructed in the
lattice vertex algebra it is enough to check equations (14). This is straightforward
with the identification of 7" with the dual of R_;. O

Before we reproduce the proof of Theorem 4.7, we introduce some notation. From
now on we will omit the isomorphism &g and simply write ch;(v) € H*(M,). We
also set chy(7) to be {7 - ch(a) € H(M,). We will use the notation chy(y) =
ch;(7) ® 1 and chi (7) = 1 ® ch;(y) for the generators of D2 = DX ®@ DY, as we
did in Section 2.6. We also use the same notation for the images in H*(Pyra). Given
v e H*(X) we let v = (v,0),7" = (0,7) € H*(X)®% Given v** € H*(X)®? we
introduce the symbol ch;(7*) € DP* so that chy(7Y) = chY(v), chy(v7) = ch (7).
Given 7** € H*(X)®? and wP* € K*(X)®? we define the pairing

P W) = JX 71 - ch(wy) + L{ Yo - ch(wy).

If {wP*} is a basis of K*(X)®* we then have the analogue of (39) for pairs:

(4 Bul1™) 1 (2) = G SO

Proof of Theorem 4.7. We will only give the proof of the statement for pairs, since
the sheaf version is easier and a direct consequence. Since we have already identified
the underlying vector spaces, by Proposition 3.7 it is enough to check conditions (1)-
(3) for the vertex algebra defined by Joyce. The vacuum condition (1) is immediate.
Before we compute the fields necessary in (2), (3) we will obtain a formula for the
Chern classes of ©P*. Fix a basis {y} € H*(X) and let {7} < H*(X) be the dual
basis, such that SX M - Y2 = 04, ,4,- Then the class of the diagonal in X x X is

A1) =>F®7ye H(X x X),

~

where the sum is over the basis we fixed. We then have

(44) ch(F) = (m12)x ((idpy xA)u(ch(F)) = Y chf (7) By

=0

and an analogous formula for V. The term ch? (7) ® v contributes to chy(F) for

.
o 2 |’V!+deg’y:i+{deg2(’y)J.

Thus,

ch(FY) =) Z(—1)i+lde§”Jchf@) @~ .
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Using Grothendieck-Riemann-Roch as in [Gro, Proposition 5.2] and being careful
with signs obtained from commuting odd variables we find that

ch(Ext™) = 37 Y1 (=1)"x(v,8)ch! V() ® ch] (3)

7,6 1,57=0
(45) = D1 D (=0T (yPr 5P ehy (77) K chy (57) € H(Px x Px).
~Ppa, opa ¢,5=0
In the first line, we sum over =, in our prescribed basis. In the second line, we
sum over the basis

" = oy e HY(X)®
and use the definition of x*. The pairings x, x* coincide with the ones for K-theory
previously described under the Chern character isomorphism, i.e.

(1.8) = j}((—l)l

de

2y 5 td(X).

Note that all the non-zero terms in (45) have |y| = |§| = |7] = [0], so we replace the
occurrence of any of those parities by |y|. From (45) (and being again careful with
the signs introduced by taking the dual and by (oP*)*) we get the Chern character
of the symmetrization

(46) @pa Z Z Xsym pa’ 5pa)Chi (Vpa) Ch] (Spa) .
P2 §p2 4 >0
By Newton’s identities we have

(47) 1 (0P = exp [Z (—1)kk;!chk+1(@pa)z_k_1]

k=0

ceo[ TN N

YP35PA 4= |yPa |+ 1
X (97,3l (77°) B ey (57°) .
It suffices to consider the expansion of this exponential up to the linear terms in
Y (0P, 2) = B2 R 1(c1(0™) n (v R )],

because quadratic terms and beyond annihilate (v X] —) for degree reasons. The

constant term of the exponential (47), namely 1, determines creation part of the
field Y (v, 2) as
(48) Epa[ 2T pa Z Upak 1)
k=0
This uses the fact that
Tk
X —ul =0, Ega(vﬁk_l _) - Uf—k—l)

for k = 0, see [Gro, Lemmas 5.3, 5.5] (the first one also follows from Lemma 4.9).
On the other hand, it suffices to consider the linear terms of (47) with ¢ = 1 and



48 ARKADIJ BOJKO, WOONAM LIM, AND MIGUEL MOREIRA

J — |7P* = k = 0 for degree reasons. They determine the annihilation part of the
field Y (v, 2) as

z‘ia[ 2, Z(—l)'”"a'k:!z’“lxé’;m(vpa,épa)chl(ﬁp%chk+|vpa|(5pa)ﬂ(vp?—)]

yPa §Pa k>0

= D0 D TRIETETIRR (P 6P TP 0P chygypn (8 )

P2 5pa >0

(49) = 3SR )R (0P, 67%) e ey (57 1

6P2 =0
The sign disappears in the second line due to the interaction between the cap
product and the tensor product [Dol, 12.17] and reappears in the last line by using

1) S PR (P 07) = Y TPER (07 57) = X (07, 6%).
b2 b2
We can further simplify this expression by replacing descendent actions with deriva-
tives. Let {wP*} = K*(X)®? = AP® be the basis obtained by applying the inverse of
the Chern character isomorphism to {§**}. By (43),
(1) 2

h(07)n—=~—~——— forj>=1.
C]( )ﬁ (]_1> aﬂ]pa? or j

The constant descendent action by chg (Spa) is treated separately as a multiplication
by (8", ) on H,(Pawa). Therefore, we have

0
_ § E pa pa pa\ 7.1—|vP?| —k—1 pa/,.pa . pa).—1
(49)_ Xsymv , W )k awpa z +X (U y & )Z
k>1—|vpa| wp? —k—|vp2|

on He(Pars). Combining with the creation part (48), this matches exactly with
(19), so we are done with (2).

For (3) we are left with computing Y (e®”, 2)e®™":

Y(eapa, Z)eﬁpa — (_1)xpa(o<paﬁpa)ngyam(apaﬂpa)z* [ezT id(c,-1(0P*) <€apa eﬂpa))]
= (1)) X (PP 3 T T (007 R 7]

where we used the fact that ch;(7°*) n — and ch;(6" ) N — annihilate e®*, e** for
pa (apa’ﬂpa)

any ¢,7 > 0. The zXsym coefficient is simply

(_1)Xpa(apa’ﬁpa)6apa+ﬁpa ,

as required in (3), thus finishing the proof. O

Recall from Section 3.4 that associated to a vertex algebra V, we have a Lie
algebra V, = V,,.5/TV,. This quotient of V, also has a geometric interpretation
observed by [Joyl] and related to Dg;, , from Definition 2.9. We begin by recalling

that the BG,, action p on My leads to a rigidification (see [AOV, §5]) which
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quotients out G,, - id from the stabilizer of each object in the moduli stack. We
denote it by

Mis = M, [ BG,,

Lemma 4.10 ([Joyl]). Let X be a variety in class D. Let ch(a) # 0 and 7%¢ :
M, — M8 be the projection, then (7%8)* : H*(M%8) — H*(M,) is injective and

the isomorphism of Lemma 4.8 induces

D, = (w5)° (H* (M) = H* (M),

wto,o0 —

Equivalently, we have the isomorphism

ﬁ.+2(MSg) : H —2x(a,) +2(Mrlg) = Va .

Proof. A big part of this proof is already due to Joyce [Joyl, Proposition 3.24],
[Joy6, Theorem 4.8, Remark 4.10]. He proves that

H.(./\/lgg) = H-(Ma)/T(Ho—Q(Ma)) )

when ch(a) # 0. This is the last statement of the lemma. Dually, we have injectivity
of the pull-back and

(mh€)*(H*(M28)) = {D e H*(M,): p*D = 1X D in H*(BG,, x M,)}.

The isomorphism with Dy, o finally follows from the the fact that p* = e‘R-1 under
the identification H*(M,) =~ DX as we showed in the proof of Lemma 4.9. O

Example 4.11. We continue with the Example 2.10 proving it differently for the
full stack. We define the virtual tangent bundle TV* M, := —RHomy,_ (G, G) satis-
fying in K-theory

T Mo = (m8)" (T MGE) = O,
where T Vir./\/lrig is the virtual tangent bundle of ./\/lraig. We see from Lemma 4.10
that ch(T"") e ]D)jv(to o~ This clearly holds for any K-theory class pulled back from
M,
4.3. Virasoro operators from Kac’s conformal element. Construction of con-
formal element depends on Assumption 1.7 which we assume throughout this sec-
tion. Recall that we need to make a choice of a maximal isotropic decomposi-
tion of K'(X)®? with respect to a symmetric non-degenerate pairing x%, (recall
Lemma 4.6) to define Kac’s conformal element. Hodge decomposition is a source
of the decomposition that we use. Define the subspaces K**™!(X) and K*™1*(X)
of K'(X) such that via the chern character isomorphism we have

K.,o+1(X) -~ @Hp’p+l(X), Ko+1,o(X) I C_BHerl,p(X
p

We consider a decomposition of K1(X)®2 = I @ I given by
(50) [:= K" (X)® [:= K"t (X)®,
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that is maximally isotropic due to Hodge degree consideration. This defines a
b ]®Dapa hence the vertex Virasoro operators
LP* for all n € Z. On the other hand, we defined in Section 2.6 descendent Virasoro

operators LP® for n > —1 acting on the formal pair descendent algebra D*P2,

conformal element w inside VP* = C[AL}

In this section, we prove duality between the two Virasoro operators LP* and LP*
for n = —1. To set up the stage where we state the duality, let oP* € AL} and

consider the realization homomorphism
X,
Parn : DOPY — DR

as in Definition 2.5. By Assumption 1.7, this realization homomorphism can be
checked to be surjective. Furthermore, descendent Virasoro operators LP* factor
through this quotient and define the operators on D:P* for which we use same

notation.

Theorem 4.12. For any o®® € AY{ and n > —1, Virasoro operators LP* and LP®

are dual to each other with respect to a perfect pairing

Dgé{pa ® ]:[)APa g C .

Proof. On K*(X)®? we are given a symmetric non-degenerate pairing
Xg);m (Upa’ wpa) _ Xpa(vpa’ wpa) + Xpa(wpa’ ,Upa)
= x(vy — v1,wq) + X (wy — w1, vs) .

The maximal isotropic decomposition (50) determines the conformal element w €

VP2 and a new supersymmetric non-degenerate pairing (see Section 3.3) Q“ = Xiﬁi.
We use the superscript H instead of w to indicate the relevance to the holomorphic

degree in the Hodge decomposition. This new pairing can be written as
Xi,pa (Upa’ wpa) _ XH,pa(Upa7 wpa) + (71)‘Upa|\wpa|XH,pa(wpa’ Upa)

ym
= x"(v2 — vy, w2) + (—1)

vPa||lwP?|  H
[oP?|| |X (w2_w17v2)7

where y is a pairing on K*(X) defined as
(v, w) = (—1)P fch(v)ch(w)td(X) if ch(v) € H”*(X).

The supersymmetric pairing ngﬁi allows a simple formulation of the conformally
shifted field:

(51) Y (0P 2) = Z vi’za_l)zk + Z Z Rl Ry lbpa (g Py chy (577) A

k=0 k>0 5P2
This formula is proven by the non-shifted version for Y (v, ) as in (48), together
with a case division analysis as in the proof of (24).

Recall that the vertex Virasoro operator are written as

1 _Hpa H
Lr* = — E s PRy P e,
n 9 (@) "@)
i+j=n
yPAEBPA
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When n > —1, we write LP* = RP* 4+ TP* where
Rpa o 1 2 . EH,anH,pa . Tpa o 1 Z 3 HanH pa .
n T ) B I A Vo) Yy ¢
i+j=n i+j=n
1<0 or 5<0 i,j=0
vP2e BP2 veBpa

From the computation (51), we have

pa __ Hpa §pa_ppa pa/.pa ,.pa H P2 H/—pa
Tn - 5 Z Z'J‘ Z Z Xssym y U )Xssym(’y U )Chz (5 )Ch] (,7 ) n—=
’L+] n vPae BPa §pa ~pa
1,j=0

z+] n dpa ~pa
1,j=0
= Yl Y X, 6P chf (87 )ehy () A —
i+j=n gpa ypa
4,7=0
= DTty K (y,6) b (@) en TV (F) A —
i+j=n
4,720
= > z'J'Z ) im(0=p@) <J5 -v-td(X)) chi™ Y ()b (5) n -
1+j=n
1,j=0
= > 2'3'2 OO TV (LY () A —
i+j=n
1,520

where in the last equality the summation takes over
= > @9
t
This is exactly dual to the multiplication operator TP*.

Now we prove that operators RP® and RP?® are dual to each other. Let RP&T: DX,, —
DX.. be the dual to RP*. For n > —1, both RE®T and RP* annihilate 1 so it is enough
to show that their commutators with right multiplication by descendents agree, i.e.

(R, chig (77)] = [RR®, - chy (47)] = (ﬁ(k + J')) chyyn (77%) -

J=0

Dually, this is equivalent to

[chy (47*)n, RR*] = (H(’f +j)> chiyn (77 N

J=0

H,pa

We finish the proof by showing the required commutator relation. Since xhy, is

a perfect pairing, there is a unique w?®* € K(X)P* such that

D Xasm (672, wP?) 67 = P

opa

S X (e ) () ) G (77
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From (51), this implies that wé’)pa = klch)!(7**)~ . On the other hand, we have

1 H H 1 pa| H H H
RPa — pipa, H.pa - -1 |v \ pay pa _ v ,pa ,pa
n =5 @ Y6 T3 D G VA 2 )
i+j=n i+j=n i+j=n
i<0 j<0 i<0
yPae BPa vP2c BPa yPac Bpa

since the dual vP? is defined by supersymmetric pairing Xss’prfl Therefore, we obtain

1
H a a H,pa ~H,pa H,pa
(b7, B2 = o ) |wpd oo
T
veBP?

_ H,pa ~H,pa H,pa ~H,pa H,pa H,pa
=7 2 [U’(k) Vi) ] Ve T UG [U’(k) » UG5) ]

i+j=n
<0
ve BP*

,pa pa ~pa),6 H,pa
Z k- Xssym w U )U(k+n)

— (H(k +j)> chi,, (PN,

where we used the bracket formula (24) with & > 0. O

Remark 4.13. To summarize the ideas leading up to this final statement, we
explain where the obvious similarity between T, and the virtual tangent bundle
(see Example 2.6) comes from in general. It is best represented by the diagram

H,pa
Xssym? Xssym

ExtP?, Qpa
vir ?
R e e R > Lp?

Meaning of the arrows are explained below.

(i) represents pullback along the diagonal which restricts Ext® to the virtual
tangent bundle of any pair moduli space mapping to Px. This is the content
of assumption [Joy6, Ass. 4.4] and is satisfied in larger generality than our
Definition 4.4.

(ii) corresponds to taking ranks of the symmetrization OP* of Ext™ and then
fixing a choice of an isotropic splitting A>* = I @ of the odd part of AP* as
we did in (21). Out of it, we constructed a supersymmetric pairing which
in the case

I = K.’.+1(X>@2, j _ Ko—i—l,o (X)®2,
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led to Xifg. This can be generalized to any setting where the induced
pairing is non-degenerate so that isotropic splitting can be chosen.

(iii) is assigning the conformal element for a given choice of an isotropic splitting
in the procedure described in Section 3.3 (more explicitly see (22)) and
works as long as Joyce’s construction in Section 4.1 leads to a lattice vertex
algebra.

(iv) is filled in by Theorem 4.12 that fundamentally depends on the comparison
between DXP* and H*(Px) contained in the description of the lattice vertex
algebra structure on i «(Px) proved in Theorem 4.7. This would again work
in a setting where a similar comparison can be made.

A direct geometric relation represented by the “?” between Virasoro constraints
and the virtual tangent bundle is however unclear.

4.4. Virasoro constraints and primary states. Let M = M,, for ch(a) # 0, be
a moduli space of sheaves as in Section 1.2 with a universal sheaf G. By the universal
property of the stack M x there is a map fg: M — Mx such that (fg xidx)*G = G
where G is the universal sheaf in My x X. Even without a universal sheaf G, we
always have an open embedding into the rigidified stack ¢: M — ./\/lﬂi(g. When a
universal sheaf exists this embedding is the composition

v M, Mx — M?{g.
We define classes in My, Mgi(g by
[M]™ = o, [M]™ € Ho(MY),
[M]E" = (fo)u[M]™ € Hi(Mx) = V4.

By Lemma 4.10 we may regard the class [M]'" as being in Borcherds Lie algebra
V. = Viyo/TV.. Given any G the class [M]E" is a lift of [M]"" € Vi,o/TV. to the
vertex algebra V, — quotienting by T removes the ambiguity in the choice of G. The
integrals of geometric realizations of descendents D € DX can be expressed in terms
of these classes by

J[M]Vir se(D) = J[M]Vir(f@v)*(fg(D)) = f (D).

[

By Theorem 4.8, if X is a variety in class D then &g is an isomorphism between
DX and H*(M,), so knowing the class [M]&" is precisely the same as knowing all
the descendent integrals. Similarly, by Lemma 4.10 the class [M]"" € V, contains

precisely the information of integrals of weight 0 descendents D e ]D)gi who"

An analogous situation happens for moduli spaces of pairs and the stack Px.
Given a moduli of pairs as in Section 1.2 with universal sheaf ¢*V — F, by the
universal property of the stack Px we have a map

f(q*v,F)i P — Px,
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such that
(figrvmy x 1dx)*V = ¢*V', (figrvp) x 1dx)*F = F.
The classes
[Pligevey = (farvim)«[PT™ € VI

contain exactly the information of the descendent integrals
f Srvp(D)  for De D2Xpa
[P

A class [M]"" coming from a moduli of sheaves can also be considered in VPe via
the embedding M x — Px sending G — (0, G).

We now use Theorem 4.12, which states the duality between the Virasoro oper-
ators on the descendent algebra and and on the vertex algebra, to prove Corollary
1.8 saying that the Virasoro constraints holding for some moduli space of sheaves
M or pairs P are equivalent to their respective classes on the Lie/vertex algebra
being primary states.

Proof of Corollary 1.8. We start with part (2) which refers to pairs. Under As-
sumption 1.7 the morphism paes: D¥P* — DP?* is surjective, so Conjecture 2.18
holds if and only if

| wvmitzmn =0
[P]wr

for every D € D2x2* and n > 0. By Theorem 4.12 and the previous observations

| twmron =] tmron-| D).
[P [P] W([PY;

vir vir )
(g*V,F) q*V,F)

Since &y, ) defines an isomorphism between ]Df;;};a and the cohomology H*®(Ppa)

the last integral vanishes for all D if and only if Ln([P]‘(éivm) =0, i.e.

[Pl € P

The claim (1) for sheaves follows in a similar way by noting that the operator
Lwt, is dual to [—,w] by Theorem 4.12 and Lemma 3.15 and using the equivalente
characterization of primary states in P provided by Proposition 3.16. U

Joyce defines more generally (under certain conditions) classes [M]™ € V, even
when M contains strictly semistable sheaves; when it does not contain strictly
semistables, this class coincides with [M]"". We say that M satisfies the Virasoro
constraints if [M]™ is a primary state.
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5. RANK REDUCTION VIA WALL-CROSSING

In this section we will explain the main step in the proof of Theorem A, which
consists in a rank reduction argument via wall-crossing as described in [Joy6, §8.6]
for positive rank and generalized here to include case (3). We will treat the 3
cases (1), (2), (3) in a uniform way by fitting them into the general framework of
Joyce [Joy6]. His theory relies on the existence of a continuous family of stability
conditions interpolating between two moduli spaces. Then their virtual fundamental
classes viewed as elements of H.(./\/lgi(g) are related in terms of the Lie bracket on

~

Ve.

Let X be a smooth projective variety of dimension m = 1 or m = 2. Let H
be a fixed polarization of X. Given 1 < d < m, we consider the moduli spaces of
d-dimensional slope'? semistable sheaves F' (cf. [HL, Theorem 4.3.3])

Mo, = M3 (1)

with respect to the slope stability u, where a € K2 (X) is the topological type of

sst

the sheaves we consider. Recall that p is defined by

_ deg(F)
r(F)

p(F) € Qu {+x}
where deg(F),r(F) are (normalized) coefficients of the Hilbert polynomial Pg(z),
that is:

deg(F) = (d — 1)![2*']Pp(2) and r(F) = d![2%]Pr(2).

When d = m, the number r(F) is (up to a multiplication by a constant) the rank of
F. In general, we regard the number r(F’) as a generalized rank; it is a non-negative
integer for every sheaf of dimension at most d. The cases (1), (2), (3) in Theorem A
correspond, respectively, to (m,d) = (1,1),(2,2),(2,1).

Recall that twisting by Ox(H) induces isomorphisms
Ma = Ma( H)-

It is a standard fact that, given a fixed «, for large n all the u-semistable sheaves
with topological type a(nH) are globally generated and have vanishing higher co-
homology (e.g. [HL, Corollary 1.7.7]). Replacing o by a(nH) we shall often assume
this to be the case.

Assumption 5.1. All the u-semistable sheaves F of topological type a are globally
generated and have vanishing higher cohomology H>°(F) = 0.

2The entire argument could be written in terms of Gieseker stability. Alternatively, the Vira-
soro constraints for moduli spaces of Gieseker semistable sheaves follows from their slope counter-
part and the wall-crossing formula between slope and Gieseker stabilities.
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5.1. Bradlow pairs. We now describe the notion of Bradlow stability, depending
on a parameter t € R.g, on pairs (F, s) where s: Oy — F'is a section.

Definition 5.2. Let ¢t > 0. A pair s: Ox — F is p'-(semi)stable if it is non-zero
and:

(1) For every subsheaf G — F we have

t
r(F)

(G (<)u(F) +
(2) For every proper subsheaf G < F through which the section s factors
S OX -G — F,

we have
t t

T<G)(<)M(F) =

p(G) +
The symbol (<) stands for < in the semistable case and < in the stable case.

The coarse moduli space parametrizing such pairs (up to S-equivalence) is a
projective scheme and can be constructed via GIT as in [Tha, Section 1], [Lin]. We
denote by P! the moduli space of u‘-semistable pairs Oy — F with topological
type [F] = a. These are often called moduli spaces of Bradlow pairs. If ¢ is such
that t ¢ -7 then the moduli spaces P! have no strictly semistable objects. When

r(a)!
this is the case, P! is a fine moduli space with a universal pair

OP&XX - ]F7
admitting a virtual class [PL]"" by the standard argument as recorded below.

Lemma 5.3. Assume that there are no strictly p’-semistable pairs in P.. Then

the moduli space P! has a natural 2-term perfect obstruction theory given by
RHom([Ox — F], F) when (m,d) = (1,1),(2,2),(2,1).

Proof. Using the long exact sequence
Ext'(F, F) — H'(F) — Ext'([Ox — F|,F) — Ext""}(F, F) — H"(F).

Mochizuki [Moc, Lemma 6.1.14] (see also Joyce [Joy6, Section 8.3.2]) showed the
vanishing of Ext’ for (m,d) = (1,1),(2,2) and i # 0,1 . When (m, d) is such that
d < 1, then the terms vanish immediately for i # —1,0,1 because H*(F) = 0. The
vanishing for ¢ = —1 would follow from the injectivity of

Ext’(F, F) —% H(F).

Suppose for the contradiction that there exists a non-zero morphism ¢ € Ext"(F, F)
such that ¢ o s = 0. Consider the induced short exact sequence

O—>F1—>F—>F2—>O,
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where I} = ker(¢) and Fy = coker(¢) & F. By pl-stability of Ox > F, we have

t t t
)+ — < u(F) + ——, ) < u(F) + .
Using the usual arithmetic of ratios, this gives the contradiction. U

These moduli spaces fit in the framework of Section 8 of [Joy6]. There, Joyce
considers the abelian category A of pairs U ® Ox — F where U is a C-vector space
and F' € Coh(X), and introduces the stability function on such pairs given by

deg(F) + tdim(V)
r(F) '

HU®0x — F) =

The p'-(semi)stable pairs with V' = C are precisely the p'-(semi)stable pairs in
Definition 5.2. Conditions (1) and (2) in Definition 5.2 correspond to looking for
destabilizing subpairs of the form 0 — G and Ox — G, respectively.

The stack parametrizing objects in the category A is the stack Ny from Re-
mark 4.5. Hence the moduli spaces P! admit a map
Py = N3* — Py,

and thus define a class [P!]"" in the Lie algebras H,(N%%) or H,(P4¥) by pushing
forward [P!|V" € H,(P!) along this map. Moreover, since we have a universal pair
O — F there is actually a lift of this map to the non-rigidified stacks

f(O,]F): Pctt—h/\/’x —>PX~
This defines a lift of the class [PL]¥"

[Pa)or) = (for):[Pa]™

to the vertex algebras H,(Nx) and H,(Px) = VFP* when P!, does not contain strictly
semistable pairs. This class is in the connected component P(o].q); to alleviate
notation, we will write

Pa,a) = Poxla) -

5.2. Limits t — 0 and ¢t — oo. Our rank reduction argument will be based on
using the wall-crossing formula to compare the p! Bradlow pairs with ¢ small and ¢
large. We now identify the moduli spaces P! in these two limits.

Proposition 5.4 ([Joy6, Thm. 8.13, Ex. 5.6]). Let 0 < ¢ < 1/r(a)! and F be a
sheaf of topological type a. Then s: Ox — F is p!-semistable if and only if it is
pi-stable if and only if the following three conditions hold:

(1) F is semistable with respect to y;
(2) s #0;
(3) there is no 0 # G < F with u(G) = u(F) such that im(s) < G.
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Since the stable objects do not change for such small ¢ we denote by Po* = Pt
the moduli of u'-stable pairs for 0 < ¢ « 1 and by u®" the limit stability p! with
t — 0. The limit stability can be explicitly defined by

W (U ® Ox — F) = (u(F), dim(U) & (—o0, o] x Zsg

where (—00, 0] x Zs is given the lexicographic order.

Note in particular that if M, has no strictly semistable sheaves then condition
(3) is vacuous, so P%* parametrizes stable sheaves [F] € M, together with a non-
vanishing section s € H°(F) (up to scaling of the section). Assuming 5.1,

Po(z]+ = PM& (p*G>

is a projective bundle over M, with fiber P(H(F)) = PX(")~! over [F] € M,.

When M, has strictly semistable sheaves, P plays a crucial role in Joyce’s
definition of the classes [M,]™ € H.(Mx) in Section 9.1, as we will recall next.

This idea is also present in Mochizuki’s work [Moc].

Proposition 5.5 ([PT, Lemma 1.3]). Let ¢t » 0 be large enough. Then s: Ox — F
is p'-semistable if and only if it is p'-stable if and only if F' is pure of dimension d
and coker(s) is supported in dimension at most d — 1.

We denote by P the moduli of such pairs and by p* the limit stability. We
proceed now to identify this moduli space in the three cases of interest to us,
(m,d) =(1,1),(2,2),(2,1).

(1) Suppose that (m,d) = (1,1) and rk(a) > 1. Then PY = J since
rk(coker(s)) = rk(F') —rk(Ox) > 0

for any s: Ox — F with rank(F') > 1. Suppose now that rk(a) = 1; then
the elements of P are non-zero pairs s: Ox — F such that F'is a torsion-
free rank 1 sheaf. A torsion-free rank 1 sheaf on a curve C' is necessarily a
divisor. When ch(a) = 1+ n - pt for n > 0 this implies that

PY ={Ox — Ox(F) such that |E| = n} = clnl

is the n-th symmetric power of C.

(2) Suppose that (m,d) = (2,2). As before, P = ¢ whenever rk(a) > 1.
Given a torsion-free rank 1 sheaf F' on a surface S, we get an embedding
into its double dual F' < FvV, which must be a line bundle Og(FE) [HL,
Example 1.1.16]. Twisting by —F gives

Os(~E) 2

so F(—FE) = I is the ideal sheaf of a 0-dimensional subscheme Z < F.

Thus, the moduli space P is isomorphic to the nested Hilbert scheme S E)’n]

F(—E) — OS
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in [GSY] parametrizing a pair (F,Z) of a divisor E in class 5 € Hy(X,Z)
and a zero dimensional subscheme Z < FE of length n, where

62
ch(oc)zl—kﬁ—i—?—n-pt.

The isomorphism is given by sending

(E,Z) — (05 — I1(E)) .
The obstruction theory, and hence virtual fundamental class, of P is easily
seen to match the ones defined for Sg)’"] in [GSY]. Indeed, the obstruc-

tion theory of the latter at (E,Z) (see Proposition 2.2 and the proof of
Proposition 3.1 in loc. cit.) is given by

Cone(RHom((’)g(—E), I7) - RHom(/, IZ))
= RHom(Og — I7(F),I7(F)).

(3) If (m,d) = (2,1) then P is shown in [GSY, Proposition 3.1.5] to also be
isomorphic to the nested Hilbert scheme S [[30,71] with ch(a) = 5 — %2 +n - pt.
The isomorphism sends

(E,Z)— (05 — Og(Z)).

The virtual fundamental classes of P and S go,n] are also shown to agree.

5.3. Invariant classes [M]™. When there are strictly semistable sheaves in M,
we cannot obtain a class in V, by simply pushing forward a virtual fundamental
class from H,.(M,). However, Joyce constructs classes [M,|™ for every a such that
[M,]™ = [M,]""" when there are no strictly semistable sheaves. The classes [M,]™
appear when one writes down wall-crossing formulas. We will now summarize —
and slightly reformulate — the construction of these classes in [Joy6, Theorem 5.7,
Section 9].

First, we observe that it is enough to define the classes [M,]™ when « satisfies
Assumption 5.1. The definition extends to all a by requiring that [Mqm]™ is
obtained from [M,]™ via the map H,(M"8) — H, (MZ%H)) induced by tensoring
with Ox(H). The argument that this definition is consistent is the core argument
in Joyce’s theory proved in [Joy6, Prop. 9.12].

Let II: Px — M?{g be the composition of the projection Px — My onto the
second component with the rigidification map My — Mgi(g. We define the K-
theory class T*! in Px by

Trel = Rp*f - OPX )

where p: Px x X — Px is the projection. Then, one defines the class

(52) Yo = I, (@)1 (T™) A [PO ] 5) € H*(MIE) < V..

«a

Alternatively, note that if we define II,, as the composition

f(O,]F)\

. pO+ o, rig
Ha‘Pa PX IMX
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then the relative tangent bundle Ty, is a vector bundle of rank y(«) — 1 such that
T, = flopT.

Equation (52) can be rewritten as

(53) Yo = (a)s (ciop(Tha) 0 [PI]™) € Vi,

which is the form in [Joy6, (5.29)].

Before we begin discussing wall-crossing, we set some notation. We will use

a = (o, -+, ay,) for the vector of K-theory classes and denote by a  « the fact
that it is a partition of o, i.e. a; + -+ + oy = «a, where [ always denotes the
length of a. When we write > we mean a sum over all ay,..., o such that

ag+ ... +to = .

The classes [M,]™ € V* are now defined by

(54) Ta = Z H)Zw[[ o [[Mal]im,; [A]\foa]inv]7 N .]’ [Mal]inv] .

aka
wlas)=p(a)

Equation (54) provides an inductive definition of the classes [M,]™ by comparing
To = x(a)[M]™ + ...

where . . . is expressed in terms of classes [ M, ]"™ such that r(a;) < r(a). Note that

7

Assumption 5.1 implies y(a) > 0.

Remark 5.6. When M:* = M there are no decompositions oo = a3 + ... + o with
I >1, ploy) = p(a) and M, # . Hence the right hand side of (54) has only one
non-zero term, so

Yo = x(a)[Ma]™.

Recall that without strictly semistable sheaves f: PO* — M, is a projective bundle
with fibers P(H°(F)) = PX(®)=1 over [F] € M, by Proposition 5.4 and the discussion
following; moreover, [M,|™ = [M,]"" is actually the (pushforward to H,(M4E) of
the) virtual fundamental class. Indeed, we have

fi (Crop(Ty) 0 [PI]T) = x(@)[Ma]™

by the virtual pullback formula [Man, Theorem 4.7]. The following heuristic is
useful to keep in mind: the class T, is constructed so that the intersection theories
against [PT]V" and T, are related in a way similar to a projective bundle; the
wall-crossing type formula (54) defines [M,]™ by “correcting” Y.

5.4. Wall-crossing formula for Bradlow stability. When working with pair
wall-crossing formulae, we will include o into the partition @ + « by a =
(oo, a1, ,aq) and ag+ g + - - - + oy = a. Joyce’s wall-crossing formula (Theorem
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5.9 in [Joy6]) between the (limit) stability conditions u°* and p® then takes the
form

(55)  [PYTTT= ) U@[[Ma™, [Man]™, - [[Ma )™, [P ]

aba
where
U(Q) = U(<07 al)? R (07 al)a (]-7 Oéo); ,LL0+, ,uoo) € Q

are combinatorial coefficients defined in [Joy6, Section 3.2]. Equation (55) is proven
as an equality in the Lie algebra H,(N) under some technical assumptions (As-
sumptions 5.1-5.3 in loc. cit.) on the category A and on a set of permissible classes
Cpe(./zl). The necessary assumptions are all verified in Section 8 of loc. cit. for the
cases (m,d) = (1,1),(2,2). The case (m,d) = (2,1) is not treated, but the first
author plans to address this in a separate work focusing on proving them for all
pair theories relevant to Joyce’s wall-crossing.

Assumption 5.7. Let A be the abelian category of pairs U ® Ox — F, where F
is a sheaf with dim(F) < 1 and U a vector space'®. Then the assumptions in [Joy6,
Ass. 5.1-5.3] hold for this category and a surface S such that h%?(S) = 0 with

Coe(A) = {(e,[F]): e = 0,1 and dim(F) =1} = Z x K2,(9),
S ={u': teRoy}.

Note that we have already shown [Joy6, Ass. 4.4] in Definition 4.4. Most of the
assumptions 5.1 - 5.3 are satisfied by a simple adaptation of the arguments in [Joy6,
§]. New ideas are only needed for assumptions 5.2(b) and 5.2(h) where one needs
to show that the stacks of semistable pairs are finite type and the moduli spaces of
stable quiver-pairs defined in [Joy6, Def. 5.5] are proper.

Under this assumption, formula (55) holds also in the case (m,d) = (2,1). These
assumptions can be summarized as follows without going into too much detail:

An important point in the rank reduction induction that we will use is that there
are no contributions of rank 0 objects in the wall-crossing formula above.

Lemma 5.8. Let « be such that r(a) > 0. If the coefficient U(«) is non-zero, then
r(a;) > 0 for each 1 =0,1,... 1.

Proof. Let t be a wall and let t_ < t < t, define stability conditions on the two
chambers adjacent to the wall. We have the wall-crossing formula between p'--
stability and p'+-stability:

[P ] = Y Ulas =) [[Man]™, [[Ma]™, o [[Ma ™, [P, ]

ala

13As opposed to A which was used in [Joy6] to denote the category of all pairs without the
restriction on dimension.
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To prove the Lemma it is enough to show that the coefficients U(q; =, pu'+) vanish
unless r(a;) # 0 for every i, since (55) can be obtained by putting together the
pt=/pt+ wall-crossing formulas.

Since p'~, p'+ are in the adjacent chambers to the wall defined by ¢, the stability
p' dominates (cf. [Joy6, Definition 3.8]) both u'~ and p*+. By [Joy6, Theorem
3.11], U(a; pt=, u'+) = 0 unless

p(L o) = plar) = ... = plar) = p'(1, ).
Since r(a) > 0, p'(1, ) < o0 so it follows that r(c;) > 0 for each i = 0,1,...,1. O

Formula (55) holds a priori in the Lie algebra H, (N5¢) or H,(Ny). As explained
in Remark 4.5, we can pushforward this identity to the Lie algebra H,.(PY®) or,
equivalently, VP? (recall Lemma 4.10). However, our formulation of the Virasoro

constraints for the pair moduli spaces P! is not in terms of the class [PL]"'" e ‘v/.pa,
but instead of its lift [Pé]‘(’gm € VP? to the vertex algebra (see Corollary 1.8). Hence
it is desirable to lift the formula (55) to the vertex algebra. We use the following
Lemma to do so:

Lemma 5.9. a) Suppose that € V. ‘V/,pa and v € VP?* is such that
chY(pt) nv =0.

Then
chY (pt) n [@,v] =0
where the bracket is the partial lift to the vertex algebra from Lemma 3.12.

b) Let u,v e V7 with rk(ay) > 0 be such that

o, (a1,a2)
chY(pt) nv =0 = chY(pt) nu

and w = v in VP* Then u = v in V2

Proof. Since xb?,, is non-degenerate by Lemma 4.6, there is w € K*(X)®* such that
Xls);m(w7 _> = <ptv7 _>'

Comparing (19) and (43) it follows that chY(pt) n — = w;. Using the identity (12)
we have

chY (pt) N [@, v] = wi(ugv) = uo(wiv) + (wou)v — (wiw)yv.

By hypothesis wiv = 0. Since u € V, both wou = wyu = 0 as the pullbacks of
chY (pt), chy (pt) to H*(Mx) both vanish.

For the second part, suppose that u — v = T'(z). Then
0 = chY(pt) n T'(x) = (R_ichy(pt)) n = = rk(oy)z

so x = 0 and u = v. We used Lemma 4.9 stating that 7" is dual to R_;. O
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We can use the Lemma to lift the previous wall-crossing formula to an equality

(56) P(SJr v1r Z U al]lnv’ [[MOQ]inV’ o, [[M ]mv [POO]E/(lor F)] ]]
ala

holding in VP? where the last bracket on the right hand side is the partial lift of

the Lie bracket to the vertex algebra. To deduce this from the Lemma we note that

chy (pt) N [Py, {6 = 0

since the pullback of chY (pt) to P! is £o(chi(pt)) = 0. By part a) of the Lemma the
right hand side is also annihilated by ch}(pt) and by part b) we must have equality
— both sides live in V.pa o) and their classes in V* agree by (55).

5.5. Rank reduction of Virasoro. We can now explain the rank reduction argu-
ment for proving Virasoro on M, assuming that it holds for the stable pair moduli
space P. We described these spaces explicitly in Section 5.2.

Theorem 5.10. Suppose that the pair Virasoro (Conjecture 2.18) holds for P for
every « with r(a) > 0. Then the Virasoro conjecture holds for M,, P! for every «
with () > 0 and ¢ € [0+, 0], i.e

[M,]™ e Py and [PL]™ e PP,

The strategy of the proof is quite simple: we will argue by induction on r(a) and
we will prove (assuming the induction hypothesis) that

@ (I1) (I11)

— [PVl e PP =T, e b=

[P € B = [P g e By

Implications (I) and (III) will follow from (56), (54) and the compatibility between
wall-crossing and Virasoro constraints proven in Propositions 3.11 and 3.13.

The implication (IT) is a projective bundle compatibility. We will postpone its
proof until the next section, see Theorem 5.11, and prove Theorem 5.10 assuming
it.

Proof of Theorem 5.10. We argue by induction on r(a). The base case is when
r(a) > 0 is minimal and is dealt essentially in the same way as the induction step.
Assume then that [My]™ € P, for every o such that 0 < r(a/) < r(a); note in
particular that this holds vacuously if 7(«) is minimal.

To prove implication (I) we consider the wall-crossing formula (56) and we look
at each individual summand

[[Mo, ], [[Mo, ™, [[Ma ™, [P0 ) ) - 1]

with Zi 0@ = o and non-vanishing coefficient U(a) # 0. By hypothesis,
[POO]Z(% r) € Iy - Moreover by Lemma 5.8 we have for i = 1,...,1 that

ag

0 <r(a) <r(a;) +r(ag) <r(a).
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So the induction hypothesis applies and
[My]™ e Py fori=1,...,1.

By Propositions 3.11 and 3.13 we have
[[Mal]inv7 [[Maz]inv> ttt [[Maz]irw? [Pcf)]z,(i;,F)L c ]] € Pé)a

so [Py ]G m € 3" The exact same argument shows that [P]i5 ) € Py for any

t > 0: just replace the 0+ /o0 wall-crossing formula (56) by the t/oo wall-crossing,.

For both implications (II) and (III) we will assume that a satisfies Assump-
tion 5.1. This is enough to prove the result for every « since we may replace o by
a(mH) for large enough m so that «(mH) satisfies the assumption. As explained
in Section 5.3, Joyce classes [My]|™, [Mamm)|™ are related by the automorphism
H.(Mx) — HJ(Myx) induced by —® Ox(mH). This automorphism preserves
physical states by Lemma 2.19.

The implication (II) is precisely Theorem 5.11. So we are left with implication
(III). For that, we use (54) and induction as in (I). The left hand side of (54)
is To € Py. The right hand side is the sum of the leading term x(a)[M,]™ with
terms of the form

[[ .. [[Mal]inv7 [Maz]inv]’ N _]’ [Mal]inv]

with I > 2, a + « and p(a;) = p(a). The latter condition implies that r(«;) > 0,
and since | > 2 it follows that 0 < r(«a;) < r(«). Thus the induction hypothesis
€ Py, so by Proposition 3.11 we get

guarantees that [M,, ™

([ (Mo |™, [May]™], .. ], [ Mo ]™] € By .

Finally this implies that the leading term also satisfies Virasoro, i.e.
[Ma]inv c PO

since y(a) > 0 by Assumption 5.1. O

5.6. Projective bundle compatibility. We recall the reader of the notation
I1, I, T, Ty, introduced in Section 5.3.

Theorem 5.11. Let « be a class satisfying Assumption 5.1. Suppose that Po*

satisfies the pair Virasoro constraints (Conjecture 2.18), i.e. [PS*]?};’F) e PJ*. Then

Yo = I ()1 (T™) A [P 5) € B,

«

satisfies the sheaf Virasoro constraints.

Proof. We ought to show that STQ Luto (D) = 0 for any D € DX where we use
the suggestive integral notation to denote the pairing between a homology class
Y, € H,(M"8) and a cohomology class Ly, (D) € DX, =~ H*(M"8),

wto,o0 —

We have the following commutative diagram:
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Hence we can compute:

r

fa Lwt, (D) = Luto (D)

J(Ma) s (crop (T, ) A[PEH]Y)

~
= HZ(LWtO (D))Ct0p<THa)
J [Pg+]vir

~

= &F (Lwto (D)Cx(a)fl)

I[Pt

(57) = 5 T gy & G D)

S0+

We use ¢y (a)-1 € D to denote the element in the algebra of descendents
Cx(a)-1 = Cx(a)-1(RpuF) € H*(Ma) = D7 .
The penultimate equality is using that
T, = (fom) T = (flon)* (RpF —O) = Rp,F - O.

We can calculate c¢y(o)—1 more explicitly: by Grothendieck-Riemann-Roch we
have

ch(Bp.F) = pu(ch(F)td(X)) = &x(cha(td(X))) ;
and by Newton identities it follows that
c(RpJF) =¢&x (exp (Z(—l)ﬁ_l(f — 1)!Chg(td(X)))> :
=1

We denote by ¢ the corresponding element in the algebra of descendents and we
let ¢; be the degree ¢ part of ¢, i.e.,

Dlei=c=exp (Z(—n“(e - 1)!chg(td(X))> .
=0 (=1

Let n = x(a)—1. We shall now argue that the integral at the end of (57) vanishes
assuming that P2* satisfies the pair Virasoro constraints. For convenience, from
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now on we leave implicit the geometric realization map &g in all the integrals against
[P£+]vir.

We start with the j = —1 and j = 0 terms in the last line of (57), which we treat
together. Their sum vanishes by simple degree considerations:

f . (L()R_l(D) - R_l(D>)Cn = J s (LQ —id—n ld)(CnR_l(D))
[PYF]vir [P0+ vir

58 = LOO CnR—l D = 0
" J[PS*]vir ( ()
Note that we used

(b (1) = | ch(@d(X) = xfa) = n+ 1.

Consider now j > 1. By the Virasoro constraints on P>" we have
o= [ RTOE) - [ LREO)
[P2+]vir [P2+]vir

(59) +f . RYD)R;(cy) —j!f ~ chy;(td(X))R7TH(D)ey.
[PQ+]v1r [P2+]vlr

We analyze the term where the derivation R; applies to ¢,; we may do so using the
interaction between an exponential and a derivation:

Rj(c) = (Z(—l)“(é + j)!che+j(td(X>)> ¢,
=1
Ri(ca) = >0 (=1)" 7 'alch,(td(X))cp.

a=j+1,6=0
a+b=n+j

Using the Newton identities and the fact that Ty is a vector bundle of rank n, the
geometric realization of the above is
&GRi(c) = Do (1" 'alehy(Th, )ep(Th,) = jleh;(Tr, )en (T, )

a=j+1,b=>0

a+b=n+j
(60) = & (jlch; (td(X))cy) -
It follows that the two last terms in (59) cancel out and we are left with
(61) J L;(RZAN(D))e, = 0
[Pg+]vir

for j > 1. Using (58) and (61) for every j = 1 we have shown that the last integral
in (57) vanishes, and we are done. O

Remark 5.12. We can formulate the Lemma more abstractly as follows: let u €
V. (L. be such that

(1) ch’(y) nu =0 fori>0,ve H*(X);
(2) cp(RpeF) nu =0 for b > x(a).
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Then

ue P = T (cy(o)-1(T) nu) € by .
The first condition is used when formulating the pair Virasoro constraints in terms
of LY as in Conjecture 2.18. Condition (2) was used in (60); in the setting of the
Lemma, it is a consequence of the fact that Ty, is a vector bundle of rank x(«) — 1.

6. VIRASORO FOR PO?O AND VIRTUAL PROJECTIVE BUNDLE COMPATIBILITY

In this section we will finish the proof of Theorem A. By Theorem 5.10 it is

sufficient to prove the Virasoro constraints for P°, which is what we now proceed

to do. Recall that we explained in Section 5.2 that these moduli spaces are:

(1) symmetric powers C" for curves,
(2) nested Hilbert scheme S [[30’”] (both in the torsion-free and torsion cases).

Both CI" and S g]’n] can be regarded as pairs formed by either rank 1 sheaves or
torsion sheaves. There is a sequence of equivalences of Virasoro constraints for
different spaces:

Mot

JS
(62) Cln) %

Jac(C)

The labels RR, JS and PB stand for rank reduction (Theorem 5.10), Joyce-Song
wall-crossing and projective bundle compatibility, respectively. The rank reduction

M 8.
Vz
[V/é
0,n
Sﬂ
w
NS
Slnl

argument was explained previously. Joyce-Song wall-crossing expresses the virtual
fundamental class of moduli of pairs in terms of the classes of moduli of sheaves.
A general formulation of this is proved in [Bojl, Thm. A.4] (see (70) below); in
the case of higher rank curves it appears already in [Bu, Theorem 2.8]. For the
symmetric power of curves the consequence of (70) is

6 [y = 3 g Ml [ [T ]

nkn

where e € VP* is the class of a point {(Ox,0)} in the component P(; ). Virasoro
constraints follow from Lemma 6.6, which shows that [M,|™ € Py. We also give
an alternative direct proof of the Virasoro constraints for the symmetric product in
§6.1 that has no interpretation in terms of the diagrams in (62).

When rk(a) = 1, P* = P%" is a (virtual) projective bundle over M,. This
structure can be used to show the equivalence between Virasoro constraints on P5°
or M,. Indeed, the implication from P to M, was already used in the general
rank reduction argument (Theorem 5.11); the implication from M, to P follows
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from (a special case of) Joyce—Song wall-crossing as explained in §6.4. For nested
Hilbert schemes of points it leads to the expression

64 [S[o,n]] _ [ il ,e([[L]]’O)},
(64 SRR [5]

where e(I/10) e VP2 is the class of a point {(L,0)} in the component Py for
B = —c1(L). We give an independent proof of this formula in 6.3 using a direct
proof of Joyce-Song wall-crossing for (virtual) projective bundles in 6.2.

Concluding this section is the application of Joyce-Song wall-crossing to Quot-
schemes Quot (V) n) parameterizing 0-dimensional quotients V' — F' for a torsion-
free sheaf V on X = (., S. Because of

Quot(O¢,n) = ch

Proposition 6.1 is a consequence of this more general result.

6.1. Symmetric powers of curves. Symmetric powers C[™ parametrize divisors
E < C of degree n or, equivalently, pairs of the form Oc — O¢(E). They come
equipped with a universal pair

Octrixe = Octmiyc(€)
where £ < CI" x C is the universal divisor.
Let
{e;f—1 € HYN(C), {f;¥io, € HY(O)

j=1 & j=1%

L fiei=— L eifj = dij.

Proposition 6.1. Let C' be a curve and n > 1. Then the pair Virasoro conjecture
) € Vpa,

be basis such that

(cf. Conjecture 2.18) holds for the symmetric powers O™, i.e. [C[”]](O o)

Proof. Let f: C™ — CI" be the projection from the n-fold product C" = C*" to
the symmetric product; f is an étale morphism of degree n!. The pullback via f of
the universal pair

Ocxetm = Ocyein (5)
to C'x C™ is
Ocnxc — Ocnxc(A)
where A = > A; and A; € C" x (' is the pullback of the class of the diagonal

C < C x C via the projection onto coordinates ¢ and n + 1. By the push-pull
formula we have

. Soa)(D) = n! LM Soe) (D).

Thus Virasoro for symmetric powers may be formulated entirely as a relation
among integrals in C™. Let us denote by «; € H*(C™) the pullback of a class
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a € H*(C) via projection onto the i-th coordinate with ¢ = 1,...,n. We com-
pute descendents in H*(C™); in the formulas below and from now on we omit the
geometric realization morphism {o(a)

Chlzf(pt)— Z [ et = k,,n

1, I|=k i€l
k k—1

n On

chll(1) = nch2<pt> 0L () = iy — 7y
k

n
chy!(e;) = chy (e;)chy (pt) = Chg(ej)y
" " . - nkfl
Chk (fj) = Chl (fj)Chk—l(pt) = Chl (fj) (/{3 — 1)!

where

chH e] Z €ji ChH f] Z f]z )

6= > chil(f)ehil(e;), n=chi(pt) = ) pt,.

j=1 =1

The formulas above show that the geometric realization map factors through the
ring

D¢ = C[n, {chg (e;)}? i 1,{ChH(fg> s

formally generated by symbols 7, chg (e;), chj'(f;). Moreover the Virasoro operators
are well defined on DY. Indeed, define

T, = R, + 70, B - B°
as follows:
(1) Ry is a derivation on D defined on generators by
Ri(n) = 7", Ri(chil(e;)) =0, Ru(chi'(f;) = (k + 1)nchi'(f;).
(2) 'T'ko is multiplication by the element
(1 —g)kn® —nn* + kon*~' € DC .

Claim 2. The following square commutes:

DC ; I[N))C

1o
e I

D¢ > DC » H*(C™)

Proof. The proof is a straightforward computation. O
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We now take an element
g
D = '] [ehl(f;)chf(e;)" e DO
j=1
Then we have
LO(D) = (¢ + (k + 1)a)n*D + (1 — g)kn*D — mn*D + kén*~'D
where a = Y7

j=1
a + ¢ = n; when that is the case, it simplifies to

L9(D) = k(a — g)n*D + kbn*'D.

a;. By degree reasons, the integral of LY (D) vanishes unless k +

To finish the proof we are required to show that

(65) G- oD~ 46D
n CTL

We use the following easy claim:

Claim 3. The integral

g
f ] T bl () chg (e;)"

=1

vanishes unless a; = b; € {0,1} for every j = 1,...,g and k + £+ 37 a; = m. In

J n" = n!

By the claim we may assume that a; = b; € {0, 1}, otherwise both sides of (65)

that case, the integral is equal to

vanish. Letting J = {1 < j < g: a; = 1} we have

J ) W | [ bl (f;)eh (e;)

jed

_ZJ (£ eh (e HChH 1) chH(ej)

jedJ
— Z f MR (f)chg (e HChH fi)chg' (e;)
jedJ
~ (gt =g —a) [ Tl
o jedJ
showing (65) and concluding the proof. O

We have opted for giving a direct proof of the constraints in C" since this is easy
enough and does not rely on wall-crossing or even on the vertex algebra language.
However, as explained in the beginning of the section,there are two alternative ways
of proving this result. By using Joyce-Song wall-crossing formula (63) as is done
in Proposition 6.7 or by using the (virtual) projective bundle CI"l — Jac(C) — the
Virasoro constraints on the Jacobian are almost trivial — and Corollary 6.3. Note
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that [C’[n]](0705) e VP> and [C[”]]
the proof of Proposition 6.5.

pa - .
©0.0€) € VP2 can be shown to be equivalent as in

6.2. Virtual projective bundle compatibility. Let M = M, be a moduli space
with universal sheaf G as in Section 1.2, without strictly semistable sheaves. If
H>Y(G) = 0 for every sheaf [G] € M, then Rp,G = p,G is a vector bundle of
rank x(a) and we may form the projective bundle

f: P=Py(Rp,G) —> M.

This projective bundle is naturally a moduli space of pairs: it parametrizes non-zero
pairs of the form Ox — F such that [F'] € M.

More generally, H. Park considers in [Par, Section 4] the situation in which
HZ%(G) = 0. In this case, we have a virtual projective bundle f: P — M where

P =Py (Rp:G) := Proj Sym*(p.G").

The morphism f comes equipped with a natural relative perfect obstruction theory.
By [Man], there is a virtual pullback f': A,(M) — A.(P) between Chow homolo-
gies. It is easily seen that the sheaf obstruction theory on M, the pair obstruction

theory on P and the relative obstruction theory on f are compatible in the sense
of [Man, Corollary 4.9], hence

[P = fM]¥

The moduli space P comes equipped with a unique universal pair
Opxx = F = f*G(1).

Note that F does not depend on the choice of G.

The virtual pullback relation between the virtual fundamental classes can be
translated to Joyce’s vertex algebra framework as follows:

Proposition 6.2. Let f: P — M be a virtual projective bundle as described
before. Then we have:

(66) [Pl& s = [[MT™", 0],
(67) x(@)[M]" = L (¢y(a)-1(T™) N [Pliom) -

In the first formula, the bracket is the partial lift to the vertex algebra in Lemma
3.12 and e is the class of the point {(Ox,0)} in Hy(P ) S VP

Proof. The second statement (67) is a consequence of [Par, Theorem 0.5(2)] with
E = Ox. The first formula is (the lift to the vertex algebra of) a special case of
a Joyce-Song type formula due to Joyce that can be found in [Bu, Theorem 2.8|
for curves. Since this case is much easier, we give a direct proof straight from the
definition of the bracket. We do so by evaluating both sides against descendents

X,pa .
DeDi™ = H*(Py.).



72 ARKADIJ BOJKO, WOONAM LIM, AND MIGUEL MOREIRA

By a similar argument to the one in Lemma 5.9.a) it is enough to consider D €

DX < ]D)ﬁ":; since otherwise both sides would vanish.

We start with the left side:

J vir D= J . L![M]m {prey(D) = deg (f* (&) (D) N f![M]Vir))) :

(O )

By Lemma 2.8 we have

Erraq)(D 2 —I"6a(R, D)er (O(1))

J>0

and the argument in the proof of Proposition 4.2 in [Par] shows that

(@O A FIM]™) = sjx(@1(BpG) 0 [M]™,

where s;(Rp.G) = ¢;(—Rp,G) are the Segre classes of Rp,G. Putting everything
together, we find

(68) J[P]m D=3 f (R, D)s; (a1 (Rp.G).

(0,F) 7=0

The analogous formula for the pairing with the right hand side can be deduced
directly from Joyce’s definition of the fields (32). Since [M]d" is a lift of [M]|"" we
can compute the bracket by

[[M]Vir,e( ] Res,—o Y ([M]¥r, 2)et0)
Recall that R_; is dual to T and note that the pullback of ©P* to M via the map
M >~ {(Ox,())} x M — /P(l’o) X P(O,a)

is precisely —Rp.G. Using these two facts one checks that

Si—i=x(e A
o [ pe N T R nE).
y(MEm2e00 A2 [
Clearly taking the residue in (69) gives (68), finishing the proof of (66). O

As a result, we get compatibility of the Virasoro constraints with respect to
(virtual) projective bundles.

Corollary 6.3. Let f: P — M be a virtual projective bundle as described before.
Then the sheaf Virasoro constraints on M imply the pair Virasoro constraints on
P, ie.

[M]" e Vo= [Pliog € Vo
If f: P — M is actually a smooth projective bundle (i.e. R'p,G = 0) we have the
converse implication

[Pl e € VP = [M]™ € V).
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Proof. The first implication follows from the first formula in Theorem 6.2, Propo-
sition 3.13 and the straightforward fact that e e PP*. The converse implication
follows from Theorem 5.11. O

Remark 6.4. For the second implication, we really need f to be a smooth projective
bundle. This is due to the fact that in the proof of Theorem 5.11 we used that Ty,
is a vector bundle of rank x(«) — 1, see Remark 5.12. Indeed, if the moduli space
M is such that p,G = 0 (e.g. if M = Myumm) for m sufficiently negative) then P is
empty but the Virasoro constraints on M are non-trivial.

6.3. Nested Hilbert scheme. We now treat the base cases for parts (2), (3) of

Theorem A. Let S be a surface with h%! = h%2 = 0. Let Sg)’n] be the nested Hilbert
scheme as in [GSY]. It parametrizes a pair of subschemes

Z<cFEcCS

where F is a divisor in class § and Z < FE is a 0 dimensional subscheme of length n.
We have universal subschemes

Zc€EcCS,
where we use S = S x Sg)’n]. As explained in Section 5.2, the nested Hilbert scheme

S g)’"] can be seen as a moduli of Bradlow pairs in 2 ways, by looking at a point

(E,Z) e Sg)’n] either as
Os - Iz(E) or Og— Og(Z).
That is,
S5 = Ps nispa
= P gn-p/2)-
Each description comes with a natural universal pair, namely

OS - 12(5) and OS - Og(Z)

The first description allows us to describe S éo’n] as a virtual projective bundle over
the Hilbert scheme of points on S. Let o be such that ch(a) = (1,8, —n + (£%/2).
Since a does not decompose as a; + ap with r(a;) > 0, a pair Og — F is p'-
(semi)stable if and only if F' is torsion free if and only if F is stable, so the moduli
space P! does not change with ¢ and we have a map

f:PY=PS > M,.
Since h%! = 0 there exists a unique line bundle Lg with ¢;(Lg) = 3. Hence,
M, ={Iz®Lg: Z < X is 0 dimensional of lenfth n} =~ M _,) = sl

We claim that if S /[30’"] is not empty then the map f is a virtual projective bundle as
described in the previous section. For this we need to show that if F' = I,®Lgz € M,
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then H*(F) = 0. If S[[_,O’n] is not empty then there must exist a divisor £ < S in
class 8. Considering the long exact sequence on cohomology obtained from

0—>05—>03(E) %L5—>OE(E) — 0

and using that H?(Og) = 0 it follows that H*(Lg) = 0. Then the long exact
sequence on cohomology associated to

0—>Iz®L5—>L5—>Oz®Lﬂ—>O
shows that H*(Iz ® Lg) = 0.

Proposition 6.5. The nested Hilbert scheme Sg)’n] satisfies the Virasoro con-
straints with either of the two descriptions as a pair moduli space, that is,

S[O’"]]Vir e P** and [S[O’"]]Vir e pr* .
[’3 ©r1z) b Jooez)  °

Proof. We begin with the first statement. It was proven in [Mor, Theorem 5] that
the Hilbert scheme S ~ M 0,—n) satisfies Virasoro constraints; see Remark 2.4
and Proposition 2.16 for a comparison between the formulation in loc. cit. and
ours. By Lemma 2.19, it follows that Virasoro constraints hold for M, for any « of
rank 1. By Corollary 6.3 and the discussion preceeding this Proposition,

[0,m] vir . vir - 04 1vi X
[S'B ](O,zz(s)) =[P or =[P liom € Fo -

We now deduce the second statement from the first. The dual of Og(Z) in K-theory
can be computed to be

O¢(2)" = -0e(-2)®0s(€) = —12(€) + Os .
In the first equality we used [Huy, Example 3.41] and in the second we used
Og(—2) = Og — Oz = —(0s(=€) — I).
As a consequence,
(0e(2) = Os)" = —1z(€).
Define the involution |: DXP? — DXP2 by
(b7 () = —(—1) P ()
(b 7V (7)) = =(=1)"Peh" (7).
By the previous computation of duals, we have
§0.0:(2) = &0 1280 ° |-

We can see straight from the definition of the pair Virasoro operators L}* (see
Section 2.6) that

loLP* = (1)L ol.
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With all these observations, the equivalence between the two statements becomes
clear. Indeed,

pa _ pa
—[[S[O*"] vir Lk (D) o J[S[O!"]]Vir 6(0705(2))“_/6 (D>>

B

w 0120 (1I(LY(D)))

s

= O J g G2 (L))

— (-1 f[sw L L) =0,

'
A (0,12(€))

This shows that [S /[30’”]] € P as well and finishes the proof. O
(0,0¢(2))

6.4. Joyce—Song wall-crossing. Joyce-Song stable pairs have their name after
their first appearance in the work of Joyce and Song [JS, §12.1]. Denote by p(F)
the reduced Gieseker polynomial for a sheaf F', then they are defined as pairs

Ox > F
satisfying Assumption 1.7 for a fixed monic polynomial r = r(F) and

(1) F is Gieseker-semistable;
(2) s #0;
(3) there is no 0 # G < F with r(G) = r such that im(s) < G.

Notice that unlike the result in Proposition 5.4, where the stability is given in
terms of p-stability, we now work with Gieseker stability because of a technicality
explained in [Bojl, Rem. A.3]. This makes no difference in our applications, because
we either work with sheaves supported in dimension < 1 or ideal sheaves, but for
the sake of consistency of notation we denote the resulting moduli spaces by PIO;.

The necessary assumptions for wall-crossing formulae to hold equivalent to the
ones alluded to in Assumption 5.7 were explicitly checked in [Bojl, App. A] in
larger generality that we now explain. In the definition of Pﬁz, one can replace Ox
with any sufficiently negative torsion-free sheaf V' so that

Ext>*(V,F) =0

for any semistable sheaf F' of class a. We denote the resulting moduli space by P‘(}L
with the obstruction theory at each [V — F] e PSL given by

RHom([V — F], F).
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Denote by [P&Z]Vir the resulting virtual fundamental class. Then by [Bojl, Thm.
A.4] we have the wall-crossing formula for any X = C, S

. 1 . )
(PO = D0 g M ™, [ [[Me ™, O]
aka :

where e([V10) € VP2 is the class of a point {(V,0)} in the component P(pyp0). As it
is point-normalized, i.e., ch;(pt¥) nelV1? = 0, the same holds for [P‘(}f;]‘(’;@vﬁ) which

satisfy
. 1 . .
M) RN = D) g Ml [ [V, e10] ],
gl—gm :

where [—, —] is the lift from Lemma 3.12.

The first immediate implication of this result is the proof of (64) and therefore
using [Mor, Thm. 5] also the proof of

I:S[[ao,n]]vn" c PO
by the arguments in §6.3.

One other example that (70) covers that we currently can not address by hand
are the punctual quot-schemes Quoty(V,n) for X = C,S. These parameterize
surjective morphisms V' — F' from a torsion-free sheaf V' to a zero-dimensional
sheaf F'. When V' is a vector bundle the virtual fundamental classes

[QuotX (V, n)]Vir

were constructed by Marian—Oprea—Pandharipande [MOP, Lem. 1.1] (see Stark
[Sta, Prop. 5| for a more detailed proof) in the case that V' is a vector bundle.
It was remarked in §[Bojl, §1.1] that the same obstruction theory given at each
[V = F] € Quoty (V;n) by

RHom([V — F], F)

is perfect of tor-amplitude [—1,0] whenever V' is more generally torsion-free. To
apply (70), we use the identifications of moduli spaces and virtual fundamental
classes

Pg; = Quot(V,n), [P‘(};]Vir = [Quot(V7 n)]VIr
following immediately from their descriptions above. To prove Virasoro constraints
for Quot schemes, we first show that zero-dimensional sheaves satisfy them.
Lemma 6.6. For any n > 0 and any X = C, S, the class [M,]™ is physical, i.e.

[M,]"™ € By .
Proof. By Proposition 3.16, it is sufficient to prove that

J (L= 6k0)(D) =0 forall k=0, DeD",
[My]

inv
n
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where [M,]™ is the 1-normalized lift satisfying ch!'(1) n [M,]™. Since L, acts as
the multiplication by the conformal degree 1, the case k = 0 follows. On the other
hand Rl(D) annihilates [ M, ] by degree reasons. In conclusion, it suffices to prove
that §, e T1 = 0.

Recall the definition of Ty from Section 2.3. By simple modification, we have
Ti = 21O (=) + (<1 | eff (o F)ehl ()

where A, (td(X)) = >, 7 @ vE. Therefore it suffices to consider the Kunneth
components satisfying |p8 | = |pE| which is further restricted by pL + pZ > dim(X).
On the other hand, chi(—) has a property that (after realization)

hF (7 1) = Scvlunpt if ph =gl =0,
B 0 if pL=¢l'>0 or pl>qZ.

These vanishing properties are enough to prove that S v T: =0 when X =C.
When X = S, we additionally need that

() il (112) 0 [M]™ = b (%) o [M ™ = 0
for all v'? € H"?(X) and v** € H**(X). This follows from [Bojl, Lemma 4.2], but

we make the argument used to prove it explicit in terms of descendants. Note that
both chf (7"?) and chi'(y**) use the first chern character chi(F) of the universal
complex over M,,x x X. By the construction of invariant classes, they lie in the
image of the pushforward map

Ly @ H.(ant> g H.(ant)7

where ¢ : Nppr = ./\/’(Ovnpt) — M,pt denotes the open immersion from the stack
of zero dimensional coherent sheaves of length n. Then the extra vanishings (71)
follow from the geometric fact that (v x idx)*F is the universal zero dimensional
sheaves on NV, x X hence (¢ x idx)*ch; (F) = 0. O

We now conclude the precise version of Theorem 1.10.

Theorem 6.7. If X = C or X = S with h?%(S) = 0, punctual Quot schemes
Quot y (V, n) satisfy pair Virasoro constraints, i.e.

[Quot  (V, n)]VH*VJF) e P}™.

Proof. As a corollary of (70), we obtain the wall-crossing formula for Quot scheme
involving invariant classes of zero dimensional sheaves:

ot (Vi) gy = 30 2 ([0 1 [ [, 9] ]

nkn

Using Lemmas 6.6 and 3.13, we conclude the result. O
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