
VIRASORO CONJECTURE FOR THE STABLE PAIRS DESCENDENT

THEORY OF SIMPLY CONNECTED 3-FOLDS

(WITH APPLICATIONS TO THE HILBERT SCHEME OF POINTS OF A SURFACE)

MIGUEL MOREIRA

Abstract. This paper concerns the recent Virasoro conjecture for the theory

of stable pairs on a 3-fold proposed by Oblomkov, Okounkov, Pandharipande

and the author in [12]. Here we extend the conjecture to 3-folds with non-
(p, p)-cohomology and we prove it in two specializations.

For the first specialization, we let S be a simply-connected surface and

consider the moduli space Pn(S × P1, n[P1]), which happens to be isomorphic

to the Hilbert scheme S[n] of n points on S. The Virasoro constraints for

stable pairs, in this case, can be formulated entirely in terms of descendents

in the Hilbert scheme of points. The two main ingredients of the proof are the
toric case and the existence of universal formulas for integrals of descendents

on S[n]. The second specialization consists in taking the 3-fold X to be a cubic

and the curve class β to be the line class. In this case we compute the full
theory of stable pairs using the geometry of the Fano variety of lines.

1. Introduction

1.1. Stable pairs. Let X be a smooth projective 3-fold over C. A stable pair on
X is a coherent sheaf F on X together with a section s : OX → F satisfying the
following two stability conditions:

(1) F is pure of dimension 1, i.e. every non-trivial coherent sub-sheaf of F has
dimension1 1.

(2) The cokernel of s has dimension 0.

We can associate two discrete invariants to a stable pair, namely

n = χ(X,F ) ∈ Z and β = [C] ∈ H2(X;Z)

where C is the support of F . There is a projective fine moduli space Pn(X,β)
parametrizing stable pairs with fixed discrete invariants n and β. Moreover this
space carries an obstruction theory and a virtual fundamental class2

[Pn(X,β)]vir ∈ H2dβ (Pn(X,β))

where

dβ =

∫
β

c1(X)

is the (complex) virtual dimension of Pn(X,β) – note that, unlike in Gromov-Witten
theory, the virtual dimension doesn’t depend on n. See [14] for the construction of
the virtual fundamental class.

Over X × Pn(X,β) we have the universal stable pair OX×Pn(X,β) → F; when
restricted to a fiber X × (F, s), the universal stable pair is canonically isomorphic
to s : OX → F . We use this universal structure to define tautological descendent

1Dimension of a coherent sheaf means the dimension of its support.
2Unless otherwise specifies, homology and cohomology are understood with rational coeffi-

cients, which are enough for our purposes. However, the virtual fundamental class is actually
constructed in the integral Chow ring Adβ (Pn(X,β);Z).
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2 VIRASORO CONSTRAINTS FOR STABLE PAIRS

classes. Denote by πX : X × Pn(X,β) → X and πP : X × Pn(X,β) → Pn(X,β)
the projections onto the first and second factors, respectively.

Definition 1. Given γ ∈ H∗(X) and k ∈ Z≥0, we define

chk(γ) = (πP )∗
(
chk

(
F−OX×Pn(X,β)

)
· π∗X(γ)

)
∈ H∗(Pn(X,β)). (1)

Because F is supported in codimension 2, the Chern character chk(F) vanishes
for k = 0, 1, hence

ch0(γ) = −
∫
X

γ ∈ Q ∼= H0(Pn(X,β)) and ch1(γ) = 0; (2)

in particular, ch0(γ) vanishes if γ ∈ H<6(X).
Note that if γ has (real cohomological) degree d then chk(γ) has (real cohomo-

logical) degree d+2k−6; moreover, if γ has Hodge degree (p, q) then the descendent
chk(γ) has Hodge degree (p+ k− 3, q+ k− 3). Alternatively, the descendents may
be defined by their action on H∗(Pn(X,β)), which by the push-pull formula is

(πP )∗
(
chk(F−OX×Pn(X,β)) · π∗X(γ) ∩ π∗P ( · )

)
.

Given a product of descendent classes D =
∏m
j=1 chkj (γj), we denote integration

against the virtual fundamental class by

〈D〉X,PT
n,β =

∫
[Pn(X,β)]vir

D. (3)

The generating function of these invariants is called the partition function and
denoted by

ZXPT(q | D)β =
∑
n∈Z

qn 〈D〉X,PT
n,β ∈ Q((q)); (4)

the series lies in Q((q)) because Pn(X,β) is empty for very small n. We omit X,β
from the notation if it’s clear from the context.

Conjecture 1. For any product of descendents D =
∏m
k=1 chkj (γj), the Laurent

series ZPT(q | D) is the Laurent expansion of a rational function in q satisfying the
following functional equation:

ZPT(q−1 | D) = (−1)
∑m
j=1 kjq−dβZPT(q | D).

We refer to [16] for a survey of partial results in the direction of these conjectures,
as well as a discussion of equivariant and relative versions.

It’s widely believed that the theory of stable pairs is equivalent to other curve
counting theories on 3-folds, such as Gromow-Witten and Donaldson-Thomas the-
ories, [10,11]. Precise statements are known for toric varieties by work of Pandhari-
pande and Pixton, [17]; simpler formulas for the correspondence were found more
recently by Oblomkov, Okounkov and Pandharipande in [12,13].

1.2. String, divisor and dilaton equations for stable pairs. The string, di-
visor and dilaton equations of Gromov-Witten theory have parallel incarnations in
the stable pairs side. Their stable pairs versions take a much simpler form and can
be formulated as expressions for descendents in non-positive degree.

Proposition 1. For any smooth projective 3-fold X, β ∈ H2(X;Z) and n ∈ Z, we
have the following identities of descendents:

i) ch2(γ) = 0 for any γ ∈ Hp,0(X) or γ ∈ H0,q(X)
ii) ch2(δ) =

∫
β
δ for any δ ∈ H2(X)

iii) ch3(1) = n− dβ
2 .
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The second and third equations are understood in H0(Pn(X,β)) ∼= Q. Equations
i) (in the case γ = 1), ii) and iii) are known as the string equation, divisor equation
and dilaton equation, respectively. They are well known (see for instance [16,
Section 3.2]), but we include a proof for completeness.

Proof. Let Z ⊆ X × Pn(X,β) be the support of F. Set theoretically

Z = {(x, (F, s)) ∈ X × Pn(X,β) : Fx 6= 0}.

Since OZ → F|Z has cokernel supported in codimension 1, F|Z is a coherent sheaf
of rank 1 in Z. Thus by Grothendieck-Riemann-Roch we get ch2(F) = [Z] ∈
H4(X × Pn(X,β)). Hence

ch2(γ) = (πP )∗([Z]π∗Xγ) = (πZP )∗(π
Z
X)∗γ

where πZP and πZX are the projections of Z onto Pn(X,β) and X, respectively. The
string equation follows immediately because (πZP )∗ reduces the Hodge grading by
(1, 1). For the divisor equation, integration along the fibers gives

ch2(δ) =

∫
C

δ =

∫
β

δ

where C = (πZP )−1(F, s) is the support of F .
Finally, for the dilaton equation we have

ch3(1) = (πP )∗ch3(F) =

∫
X

j∗ch3(F) =

∫
X

ch3(F )

where j : X ∼= X × (F, s) ↪→ X × Pn(X,β) is the inclusion of some fiber. By
Hirzebruch-Riemann-Roch and using the facts that cj(F ) = 0 for j = 0, 1 and
ch2(F ) = [C] = β where C is the support of F we get

n = χ(F ) =

∫
X

ch3(F ) +
1

2

∫
β

c1(X)

and thus

ch3(F ) = n− dβ
2
.

�

We may formulate the equations of proposition 1 in terms of the partition func-
tion:

i) ZXPT (q | ch2(1)D)β = 0,

ii) ZXPT (q | ch2(δ)D)β =
(∫

β
δ
)
ZXPT (q | D)β ,

iii) ZXPT (q | ch3(1)D)β =
(
q ddq −

dβ
2

)
ZXPT (q | D)β .

These hold for any δ ∈ H2(X) and for an arbitrary product of descendents D.

1.3. Virasoro constraints for stable pairs. The existence of universal equations
satisfied by the theory of stable pairs of any 3-fold X, parallel to the Virasoro
constraints for the Gromov-Witten theory of X, was first conjectured in [16]. By
using explicit calculations in P3, Oblomkov, Okounkov and Pandharipande guessed
the explicit equations for P3. More recently a general conjecture was proposed for
3-folds with only (p, p)-cohomology and proven for toric 3-folds in the stationary3

case.

3Stationary descendents are descendents chk(γ) of classes γ ∈ H≥2(X).
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We briefly describe the proposed conjecture here in slightly more generality by
allowing 3-folds with non-(p, p)-cohomology, and in particular we allow odd coho-
mology. To state the Virasoro conjecture for stable pairs we introduce the formal
supercommutative Q-algebra DXPT generated by

{chk(γ) : k ≥ 0, γ ∈ H∗(X)}
with the linearity relations

chk(λ1γ1 + λ2γ2) = λ1chk(γ1) + λ2chk(γ2).

We will write chk(γ) both for the generator in the abstract algebra DXPT and for its
geometric realization in H∗(Pn(X,β)) defined earlier. Note that for instance ch1(γ)
is non zero in DXPT but its geometric realization is zero. However, we’ll frequently
simplify expressions by replacing ch0(γ), ch1(γ) using equations (2); when we do so
we say we “collapsed” ch0, ch1.

We have the cohomological grading in DXPT: a generator chk(γ) has degree |γ|+
2k − 6. For each n ≥ 0, integration against the virtual fundamental class of the
geometric realization of an element of DXPT gives a linear map

〈·〉X,PT
n,β : DXPT → Q.

We will define some operators on the algebra DXPT.

• For k ≥ −1, define a derivation Rk on DXPT by fixing its action on the
generators: given γ ∈ Hp,q(X), let

Rk(chi(γ)) =

 k∏
j=0

(i+ p− 3 + j)

 chi+k(γ). (5)

• The operator Tk : DXPT → DXPT is multiplication by a fixed element of DXPT:

Tk = −1

2

∑
a+b=k+2

(−1)p
LpR(a+ pL − 3)!(b+ pR − 3)!chachb(c1)

+
1

24

∑
a+b=k

a!b!chachb(c1c2). (6)

We are using the abbreviation

(−1)p
LpR(a+ pL − 3)!(b+ pR − 3)!chachb(c1)

for ∑
i

(−1)p
L
i p

R
i (a+ pLi − 3)!(b+ pRi − 3)!cha(γLi )chb(γ

R
i )

where
∑
i γ

L
i ⊗ γRi is the Kunneth decomposition of ∆∗c1 ∈ H∗(X × X)

(∆ : X → X × X is the diagonal map) and γLi and γRi have Hodge type
(pLi , q

L
i ) and (pRi , q

R
i ), respectively.

• For α ∈ H∗(X), we define the derivation R−1[α] : DXPT → DXPT by its action
on the generators:

R−1[α](chi(γ)) = chi−1(αγ).

In particular, R−1[1] = R−1. For k ≥ −1, we define the operators Sk :
DXPT → DXPT by

Sk = (k + 1)!
∑
pLi =0

R−1[γLi ]chk+1(γRi ).

The sum runs over the terms γLi ⊗ γRi of the Kunneth decomposition of
∆ ∈ H∗(X × X) such that pLi = 0. The operators being summed up are
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the composition of two operators: first we multiply by chk+1(γRi ) and then
we apply the derivation R−1[γLi ] to the product.

Note that if h0,1 = h0,2 = h0,3 = 0 then Sk is simply (k + 1)!R−1chk+1(p). For
k = −1, after collapsing ch0, ch1, we have S−1 = ch0(p)R−1 = −R−1. For k = 0
we have

S0 =
∑
pLi =0

ch0

(
γLi γ

R
i

)
=

1

24
ch0(c1c2) = − 1

24

∫
X

c1c2.

The above formula is a variation of lemma 16 for 3-folds; note that td3(X) = 1
24c1c2.

Definition 2. Let X be a smooth projective 3-fold. For k ≥ −1, we define the
operator Lk : DXPT → DXPT by

Lk = Rk + Tk + Sk. (7)

Conjecture 2. Let X be a (simply-connected) projective smooth 3-fold. For all
k ≥ −1, β ∈ H2(X;Z), n ∈ Z and D ∈ DXPT we have

〈Lk(D)〉X,PT
n,β = 0.

Similarly to the Virasoro conjecture on Gromov-Witten theory, the cases k =
−1, 0 of the Virasoro conjecture are easy: k = −1 is a formal consequences of the
rules for collapsing ch0, ch1; the case k = 0 uses the divisor equation (proposition 1)
and the vanishing of invariants whenever the Hodge degrees of the integrand don’t
match (dβ , dβ) (note that the virtual fundamental class is algebraic).

Proposition 2. The Virasoro conjecture for stable pairs holds for k = −1, 0: for
any projective smooth 3-fold and any D ∈ DXPT, we have

〈L−1(D)〉X,PT
n,β = 0 and 〈L0(D)〉X,PT

n,β .

Strong evidence for the Virasoro conjecture is provided in [12], where it’s shown
that the Virasoro operators on the stable pairs side and on the Gromov-Witten side
are intertwined by the conjectural (stationary) GW/PT correspondence.

Theorem 3 (Theorem 5 in [12]). Let X be a projective smooth 3-fold with only
(p, p)-cohomology for which the following two properties are satisfied:

(i) The stationary Virasoro constraints for the Gromov-Witten theory of X
hold.

(ii) The stationary GW/PT correspondence holds (see [12, Section 0.6]).

Then, the stationary Virasoro constraints for the stable pairs theory of X in con-
jecture 2 hold.

Both the GW/PT correspondence and the Virasoro conjecture for Gromov-
Witten are known for toric 3-folds, the first by work of Oblomkov, Okounkov,
Pixton and Pandharipande [13,17] and the latter by Givental [6].

Theorem 4 (Theorem 4 in [12]). Conjecture 2 holds when X is a toric 3-fold and
D is stationary.

Remark 1. We may define a modification of the Virasoro operators Lk via the
Hodge symmetry (p, q) ↔ (q, p), i.e. by replacing all the appearances of the first
Hodge index in the definition of Lk by the second Hodge index. See [5, Section
2.10.] for a similar observation in Gromov-Witten theory. A simple formula for the
commutator [Lk,L`] doesn’t seem to exist.
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1.4. Vanishing of descendents of (p, 0)-classes. Let γ ∈ Hp,0(X) with p = 2 or
p = 3. Proposition 1 shows that ch2(γ) = 0 in H∗(Pn(X,β)). However, conjecture
2 implies a much more general and surprising vanishing. Let D ∈ DXPT be arbitrary.
We have

[Lk, ch2(γ)] = Rk(ch2(γ)) =
(p− 1 + k)!

(p− 2)!
ch2+k(γ).

Since ch2(γ) = 0 in H∗(Pn(X,β)), and assuming conjecture 2 is true, it follows
that

〈ch2+k(γ)D〉X,PT
n,β = 0

for every k ≥ −1, γ of type (p, 0) with p ≥ 2 and D ∈ DXPT.

Conjecture 3. Let X be a simply-connected projective smooth 3-fold, let k ≥ 0
and let γ ∈ Hp,0(X) with p = 2 or p = 3. Then, for D ∈ DXPT,

〈chk(γ)D〉X,PT
n,β = 0.

One can also speculate that this numerical vanishing holds due to a stronger
vanishing at the level of cycles:

chk(γ) ∩ [Pn(X,β)]vir = 0.

1.5. Virasoro for the Hilbert scheme of points on a surface. One interest-
ing specialization of the Virasoro constraints for the moduli space of stable pairs
produces Virasoro constraints on the Hilbert scheme of points on a surface. This
specialization was already considered in [12, Section 6].

Let S be a non-singular and projective surface such that H1(S) = 0. We denote
by S[n] the Hilbert scheme of points on S parametrizing 0 dimensional subschemes
of S with length n. If we set X = S × P1 and β = n[P1], the minimal Euler
characteristic of a stable pair in X = S × P1 with support in a curve of class
β = n[P1] is n and we have an isomorphism of schemes

Pn(S × P1, n[P1]) ∼= S[n].

The isomorphism is defined by sending ξ ∈ S[n] to the stable pair

OS×P1 → Oξ×P1 .

Moreover, since S[n] is smooth and has the expected dimension

2n =

∫
n[P1]

c1(S × P1)

the virtual fundamental class of Pn(S, n[P1]) is just the fundamental class.
We define the algebra of descendents and the geometric realization of descendents

in S[n] parallel to the stable pairs definitions.

Definition 3. Given a surface S, we let DS be the commutative algebra generated
by

{chk(γ) : k ≥ 0, γ ∈ H∗(S)}
subject to the linearity relations.

Definition 4. Given a surface S and n ≥ 0, we denote by Σn ⊆ S[n] × S the
universal subscheme and we let π1 : S[n] × S → S[n] and π2 : S[n] × S → S denote
the projections onto the two factors.

Given k ∈ Z≥0 and γ ∈ H∗(S), we define the geometric realization of descendents
by

chk(γ) = (π2)∗
(
chk

(
OΣn −OS[n]×S

)
· π∗1(γ)

)
∈ H∗(S[n])
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The stable pairs descendents in Pn(S ×P1, n[P1]) are determined by the Hilbert
scheme descendents:

chPT
k (γ × 1) = 0 and chPT

k (γ × p) = chHilb
k (γ)

where 1, p ∈ H∗(P1) are the unit and point classes. In particular, the Virasoro con-
straints on Pn(S×P1, n[P1]) are equivalent to constraints on integrals of descendents
on S[n]. We formulate these constraints now:

• For k ≥ −1, define a derivation Rk on DS by fixing its action on the
generators: given γ ∈ Hp,q(S), let

Rk(chi(γ)) =

 k∏
j=0

(i+ p− 2 + j)

 chi+k(γ). (8)

• The operator Tk : DS → DS is multiplication by a fixed element of DS :

Tk =
∑

a+b=k+2

(−1)p
LpR(a+ pL − 2)!(b+ pR − 2)!chachb(1)

+
∑
a+b=k

a!b!chachb

(
c21 + c2

12

)
. (9)

We are using the abbreviation

(−1)p
LpR(a+ pL − 2)!(b+ pR − 2)!chachb(1)

for ∑
i

(−1)p
L
i p

R
i (a+ pLi − 2)!(b+ pRi − 2)!cha(γLi )chb(γ

R
i )

where
∑
i γ

L
i ⊗ γRi is the Kunneth decomposition of the diagonal class ∆ ∈

H∗(S×S) and γLi , γRi have Hodge types (pLi , q
L
i ) and (pRi , q

R
i ), respectively.

• For α ∈ H∗(S), we define the derivation R−1[α] : DS → DS by its action
on the generators:

R−1[α](chi(γ)) = chi−1(αγ).

In particular, R−1[1] = R−1. For k ≥ −1, we define the operators Sk :
DS → DS by

Sk = (k + 1)!
∑
pLi =0

R−1[γLi ]chk+1(γRi ).

The sum runs over the terms γLi ⊗ γRi of the Kunneth decomposition of
∆ ∈ H∗(S × S) such that pLi = 0.

Definition 5. We define the operators Lk : DS → DS, for k ≥ −1, by

Lk = LSk = Rk + Tk + Sk. (10)

One of the two main results of this paper is that indeed these operators impose
universal constraints on descendent integrals on the Hilbert scheme of points of S,
as predicted by the Virasoro conjecture for Pn(S × P1, n[P1]).

Theorem 5. Let S be a surface with H1(S) = 0 and let D ∈ DS. Then∫
S[n]

LkD = 0.

This result, in the case that S is a toric surface, follows from the Virasoro
constraints for the stable pairs theory of toric 3-folds, [12, Section 6].

Theorem 6 (Theorem 20 in [12]). Theorem 5 holds when S is a (connected) toric
surface.
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1.6. Plan of the paper. In section 2 we explain how to adapt some arguments
of [12] to get a more general version of theorem 3 that allows (simply-connected)
3-folds with non-(p, p)-cohomology as long as we don’t have insertions with (0, p)
classes. In particular, we explain the appearance of Sk in proposition 9. This
section is completely independent of the rest of the paper.

The two main results of this paper are verifications of conjecture 2 in two in-
stances:

Theorem 7. Let S be a surface with H1(S) = 0 and n ∈ Z≥0. Conjecture 2 holds
when X = S × P1, β = n[P1] and the Euler characteristic is n, i.e.

〈Lk(D)〉S×P
1,PT

n,n[P1] = 0.

Theorem 8. Conjecture 2 holds when X is a cubic 3-fold and β ∈ H2(X;Z) is the
line class.

The natures of the two proofs are quite different. For the surface, theorem 7
is formally equivalent to the Virasoro constraints for descendents in the Hilbert
scheme of points on a surface, theorem 5. We give the proof of theorem 5 in section
3. The basic idea of the proof is to reduce the general case to the toric case via the
existence of universal formulas for integration of descendents on Hilbert schemes
of points, from [4]. Two interesting aspects of the proof are the need to allow
disconnected surfaces and the role that the Hodge degrees play.

For the cubic 3-fold, we compute all the stable pairs invariants and then we
check directly that the Virasoro constraints hold by verifying some identities. The
computation of all the invariants is done in sections 5 (case n = 1) and 6 (case
n > 1). The verification of the Virasoro constraints is done in section 4. The
computation of the invariants is as directly from the definitions as possible: we
identify the moduli spaces (which are smooth), the virtual fundamental class and
compute expressions for all the descendents.

Acknowledgements. The author would like to thank his advisor R. Pandhari-
pande for many useful discussions and for suggesting both the problems treated in
this paper. Discussions with A. Oblomkov regarding the PT Virasoro operators
and the PT/GW transformation were also extremely useful.

This project has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme
(ERC-2017-AdG-786580-MACI).

2. Intertwining

In this section we will very briefly explain what can be recovered of the intertwining
in [12] between the Gromov-Witten Virasoro operators and the stable pairs Virasoro
operators. This section is highly dependent on [12] and we’ll use the notation from
there. In particular, the reader should be aware of the definition of the stationary
GW/PT correspondence, section 0.6, and the key intertwining statement, theorem
12.

2.1. Intertwining between Rk + Tk and L̃GW
k . The proof of theorem 12 in [12]

can be entirely adapted to our more general situation to show that

C• ◦ LPT
k (D) = (ιu)−kL̃GW

k ◦ C•(D)

for anyD in the algebra DX,p>0
PT generated by descendents chi(γ) where γ ∈ Hp,q(X)

for p > 0.
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The necessary modifications for the proof of [12, Theorem 12] are basically re-
placing every (complex) cohomological degree by the first Hodge degree. In partic-
ular, in the statements and proofs of propositions 16, 17 and 18 we replace every
condition “α ∈ H2p(X)” by “α ∈ Hp,∗(X)”.

We note that descendents with p = 0 are not treated in [12] and that’s why
we exclude them now. Indeed it seems that the key propositions in the proof of
theorem 12, namely propositions 16, 17, 18 and 19, fail when we allow descendents
of (0, p) classes.

2.2. Intertwining between Sk and T 0
k . The main difference between the Vira-

soro operators in definition 2 and their specialization to toric varieties, in [12, Defi-
nition 2], is the operator Sk. In the toric case, Sk specializes to (k+1)!R−1chk+1(p).
This term is obtained by applying the transformation to the operator T 0

k on the
Gromov-Witten side, [12, Equation (18)]. In the general case, T 0

k is transformed
via the GW/PT into Sk. Indeed we have

1

2
T 0
k = (k + 1)!

∑
pLi =0

: τ0(γLi )τk−1(γRi ) :

where the sum runs over the terms γLi ⊗ γRi of the Kunneth decomposition of
∆ ∈ H∗(X ×X) with pLi = 0.

Given a class α ∈ H∗(X), we define the following operators on the Gromov-
Witten side twisted by α:

• We let RGW
−1 [α] : DXGW → DXGW be a derivation defined on the generators of

the algebra by

RGW
−1 [α](τj(γ)) = τj−1(αγ).

• We define a quadratic differential operator B0[α] : DXGW → DXGW by fixing
its action on products of two generators:

B0[α](chi(γ)chj(γ
′)) = δiδj

∫
X

αγγ′.

Here δi represents the usual Kronecker delta, giving 1 if i = 0 and 0 other-
wise.
• Finally, we define LGW

−1 [α] : DXGW → DXGW by

LGW
−1 [α] = τ0(α)−RGW

−1 [α] +
(ιu)2

2
B0[α].

If α ∈ H0,q(X), the operators LGW
−1 [α] constrain the Gromov-Witten invariants,

that is, we have 〈
LGW
−1 [α](D)

〉X
β

= 0.

When α = 1 this is just the usual string equation, see [18]. The general case can
be shown with a minor modification of the usual proof of the string equation; the
condition that α ∈ H0,q(X) ensures a vanishing corresponding to [18, Equation
2.38] in the case α = 1.

To state the next proposition we introduce the following variation of the Sk
operator:

S̃k =
∑
pLi

R−1[γLi ]chk+1(γRi )− (−1)!ch1(γLi c1)chk+1(γRi ).

The non-geometric descendents (−1)!ch1(γ) play an important role in the inter-
twining property of [12] and are explained there.
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Proposition 9. For any D ∈ DX,p>0
PT , we have〈

C•(S̃kD)
〉X,GW

β
=

(ιu)2−k

2

〈
T 0
kC
•(D)

〉X,GW

β
.

Proof. The proof of [12, Proposition 11] is easily adapted to show that we have, for
any α ∈ H0,q(X), the following intertwining:

C• ◦
(
RPT
−1 [α]− (−1)!ch1(c1α)

)
= (ιu)

(
RGW
−1 [α]− (ιu)2

2
B0[α]

)
◦ C•.

Consider now a term γL⊗γR of the Kunneth decomposition with γL ∈ H0,q(X)

and γR ∈ H3,3−q(X). Since D ∈ DX,p>0
PT , the descendent chk+1(γR) doesn’t bump

D, hence

C•(chk+1(γR)D) = C◦(chk+1(γR))C•(D) = (ιu)−k+1τk−1(γR)C•(D).

Combining the previous observations with the γL-string equation we get〈
τ0(γL)τk−1(γR)C•(D)

〉
GW
β = (ιu)k−1

〈
τ0(γL)C•(chk+1(γR)D)

〉GW

β

= (ιu)k−1

〈(
RGW
−1 [γL]− (ιu)2

2
B0[γL]

)
C•(chk+1(γR)D)

〉GW

β

= (ιu)k−2
〈
C•
(
RPT
−1 [γL]chk+1(γR)D

−(−1)!ch1(γLc1)chk+1(γR)D
)〉GW

β

The proposition then follows by summing over the terms γLi ⊗γRi of the Kunneth
decomposition with pLi = 0. �

2.3. Extending theorem 3. The previous discussion provides the adaptations
needed to extend theorem 3 of [12]. The original result says that for a 3-fold
with only (p, p)-cohomology (as is the case of toric 3-folds) the stationary Gromov-
Witten Virasoro combined with the stationary GW/PT correspondence imply the
stationary stable pairs Virasoro. We extend this to any simply-connected 3-fold

and to the algebra DX,p>0
PT .

Theorem 10. Let X be a projective smooth simply-connected 3-fold for which the
following two properties are satisfied:

(i) The stationary Virasoro constraints for the Gromov-Witten theory of X
hold.

(ii) The stationary GW/PT correspondence holds (see [12, Section 0.6]).

Then for any k ≥ −1, n ∈ Z, β ∈ H2(X;Z) and D ∈ DX,p>0
PT we have

〈Lk(D)〉X,PT
n,β = 0.

Although the stationary GW/PT correspondence allows descendents in the larger

stationary algebra DX+
PT ⊇ DX,p>0

PT , we were not able to prove an adequate intertwin-
ing statement in the presence of descendents of (0, q)-classes. Note that if conjecture

3 holds then we automatically have 〈Lk(D)〉X,PT
n,β = 0 when D contains descendents

of (0, 2) or (0, 3) classes since all the terms in the expansion of 〈Lk(D)〉X,PT
n,β will

also contain such descendents.
In the two examples discussed in the paper, the cubic 3-fold and S × P1 with

β = n[P1], these issues don’t exist. In the cubic 3-fold H0,2(X) = H0,3(X) = 0 and
in the surface case we have chk(γ) = 0 for γ ∈ H0,q(X).
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3. Virasoro constraints for the Hilbert scheme of points of a
surface

In this section we will give the proof of theorem 5. The key idea is to use the
existence of universal formulas for integrals of descendents in the Hilbert scheme,
in the spirit of [4], to reduce to the toric case, theorem 6. The analysis of the
universal formulas and their interaction with the Virasoro operators is done in 3.2.
Proposition 18 is the ingredient to show that disconnected toric surfaces provide
enough data to show the vanishing in general; in 3.1 we explain how to deal with
disconnected surfaces. Finally, the actual argument for the proof of theorem 5 is
given in subsections 3.4 and 3.5. The first treats the case where D ∈ DS only
contains descendents of (p, p) classes and follows almost immediately from the pre-
vious steps. In subsection 3.5 we allow non-(p, p) insertions. The key trick here is
to replace the (0, 2) and (2, 0) insertions by (0, 0) and (2, 2) insertions, respectively.
For this we need once again to consider additional connected components.

3.1. Disconnected surfaces. Suppose that S is a disconnected surface and admits
a decomposition S = S1 t S2. We’ll describe the descendents of S in terms of
descendents of S1 and S2 and we’ll conclude that if theorem 5 holds for S1 and S2

then it also holds for S.
The cohomology of S is the direct sum

H∗(S) = H∗(S1)⊕H∗(S2).

If (γ1, γ2) ∈ H∗(S1) ⊕ H∗(S1) we’ll denote the corresponding class by γ1 + γ2 ∈
H∗(S). We have

DS = DS1 ⊗ DS2

and, given Di ∈ DSi , we denote by D1 ⊗D2 ∈ DS the corresponding element.

Lemma 11. If S = S1 t S2 then

LSk : DS1 ⊗ DS2 = DS → DS = DS1 ⊗ DS2

is given by

LSk = idDS1 ⊗ LS2

k + LS1

k ⊗ idDS2 .

Proof. This property holds for the 3 operators Rk, Tk, Sk defining Lk. For Rk
it holds simply because Rk is a derivation. For both Tk and Sk it holds since
the diagonal class of S is the sum of the diagonal classes of S1 and S2 via the
inclusions H∗(Si × Si) ↪→ H∗(S × S). For the Sk operator note also that for
γLi ∈ H∗(S1) ↪→ H∗(S) we have

RS−1[γLi ](D1 ⊗D2) = (RS1
−1[γLi ]D1)⊗D2

since RS−1[γLi ] is a derivation and it doesn’t interact with descendents coming from
S2. �

We now describe the evaluation map 〈·〉S : DS → Q in terms of the evaluation
maps of S1 and S2.

Proposition 12. Let S = S1 t S2, let D1 ⊗D2 ∈ DS = DS1 ⊗ DS2

and let n ≥ 0.
Then

〈D1 ⊗D2〉Sn =
∑

n1+n2=n

〈D1〉S1
n1
〈D2〉S2

n2

where the sum runs over n1, n2 ≥ 0 summing to n. Hence

〈LSk (D1 ⊗D2)〉Sn =
∑

n1+n2=n

(
〈D1〉S1

n1
〈LS2

k (D2)〉S2
n2

+ 〈LS1

k (D1)〉S1
n1
〈D2〉S2

n2

)
(11)
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Proof. We begin with the decomposition

S[n] =
⊔

n1+n2=n

S
[n1]
1 × S[n2]

2 .

The universal subscheme ΣSn (we use the superscript S to make the surface we’re
referring to explicit) admits a decomposition in connected components

ΣSn =
⊔

n1+n2=n

ΣS1
n1
× S[n2]

2 t
⊔

n1+n2=n

S
[n1]
1 × ΣS2

n2
.

Here ΣS1
n1
× S

[n2]
2 is contained in the connected component S1 × S

[n1]
1 × S

[n2]
2 of

S × S[n]. Thus

chk
(
OΣSn

)
=

∑
n1+n2=n

(
1
S

[n1]
1

⊗ chk

(
O

Σ
S2
n2

)
+ chk

(
O

Σ
S1
n1

)
⊗ 1

S
[n2]
2

)
.

It follows formally that the geometric realization of D1 ⊗D2 in

H∗(S[n]) =
⊕

n1+n2=n

H∗(S
[n1]
1 × S[n2]

2 )

is given in each component of the direct sums by the external product of the geo-

metric realizations of D1 and D2 in H∗(S
[n1]
1 ) and H∗(S

[n2]
2 ), respectively. The

result then follows. �

From equation (11) the following holds:

Corollary 13. Let S = S1 t S2 be a disconnected surface. If theorem 5 holds for
S1 and S2 then it also holds for S.

Combining corollary 13 with the result for toric surfaces, theorem 6, it follows
that the Virasoro constraints also hold for disconnected toric surfaces.

Corollary 14. Theorem 5 holds for disconnected toric surfaces.

3.2. Universal formulas for integrals of descendents on the Hilbert scheme.
Integrals of descendents on the Hilbert scheme of points on a (possibly disconected)
surface admit universal expressions by a well known argument due to Ellingsrud,
Göttsche and Lehn, [4]. The original result of [4] is for descendents of K-theory
classes or, equivalently, descendents of cohomology classes in the image of the map
K(S) → H∗(S) mapping α ∈ K(X) to ch(α)td(X). The recursive argument of
[4] was adapted to our setting in [9]. These universal formulas are polynomials in
integrals involving insertions and the Chern classes c1 = c1(TS) and c2 = c2(TS).

Definition 6. Let (γ1, . . . , γm) be a m-tuple of classes in H∗(S). The set of inte-
grals of (γ1, . . . , γm) is the assignment

(I, ε) 7→ P εI =

∫
S

cε
1

1 c
ε2

2

∏
j∈I

γj

4where I ⊆ {1, . . .m} and ε = (ε1, ε2) ∈ {(0, 0), (1, 0), (2, 0), (0, 1)}. If D =∏m
j=1 chkj (γj) ∈ DS we say that the set of integrals of D is the set of integrals

of (γ1, . . . , γm).

In particular, taking I = ∅, the numbers
∫
S
c21 and

∫
S
c2, which depend only on

S, are part of the set of integrals of any D.

4The γj in the product
∏

j∈I γj are ordered according to the natural ordering of I ⊆ {1, . . . ,m}.
We allow the set I to be empty.
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Theorem 15 (([4], [9])). Given fixed k1, . . . , km and n, let D =
∏m
j=1 chkj (γj).

Then the evaluation 〈D〉Sn is a polynomial in the integrals of D. More precisely,

〈D〉Sn =
∑

ε1,...,εk,I1,...,Ik

aε1,...,εkI1,...Ik

k∏
j=1

P
εj
Ij

where the sum runs over every partition (possibly with empty parts)

[m] =

k⊔
j=1

Ij

and every possibility of εj. The coefficients aε1,...,εkI1,...Ik
∈ Q depend only on k1, . . . , km, n.

Our formulation uses the fact that 〈D〉Sn depends linearly on the classes γj . In
particular this explains why there are no integrals involving higher powers of the
classes γj and why the sets Ij form a partition.

From this we can get similar universal formulas for 〈LkD〉Sn . To prove those, we’ll
use the following identities which are easy consequences of Hirzebruch-Riemann-
Roch.

Lemma 16. For any surface S we have the identities∑
pLj =0

γLj γ
R
j =

1

12

(
c21 + c2

)
=
∑
pLj =2

γLj γ
R
j and

∑
pLj =1

γLj γ
R
j =

1

6

(
5c2 − c21

)
where the sums run over the terms in the Kunneth decomposition

∑
j γ

L
j ⊗ γRj of

the diagonal with pLj = 0, 1, 2.

Proof. Writing the class of the diagonal using some dual basis of H∗(S) respecting
the Hodge grading one can show that∫

S

∑
pLj =k

γLj γ
R
j = (−1)k

(
hk,0 − hk,1 + hk,2

)
.

By Hirzebruch-Riemann-Roch the latter may be expressed using the Chern classes

hk,0−hk,1+hk,2 = χ(ΩkS) =

∫
S

ch(ΩkS)td(S) =

{∫
S

td(S) =
∫
S

1
12 (c21 + c2) if k = 0, 2∫

S
1
6

(
5c2 − c21

)
if k = 1.

�

Note that summing over k produces the well-known identity ∆∗∆∗1 = c2(S) =
χtop(S). Ultimately, the last lemma (more precisely: the fact we can write such
sums in terms of Chern classes) is the crucial property of the Hodge degrees in our
proof. The fact that we can’t express sums over terms in the diagonal with fixed
cohomological degree explains why our proof wouldn’t work if we had defined the
Virasoro operators using the cohomological degree.

Lemma 17. Let

D =

m∏
i=1

chki(γi) ∈ DS

where γi ∈ Hpi,qi(S). Assume that k,m, ki, pi are all fixed. Then

〈LkD〉Sn
is a polynomial in the set of integrals of (γ1, . . . , γs).
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Proof. The claim for the term

〈RkD〉Sn
follows immediately from theorem 15. It remains to study the operators Tk, Sk.
Given a term γ⊗γ′ in the Kunneth decomposition of the diagonal, we consider the
formal expression provided again by theorem 15:

〈cha(γ)chb(γ
′)D〉Sn =

∑
I

(∫
S

γγ′
∏
i∈I

γi

)
XI
a,b

+
∑

J1,J2,ε1,ε2

∫
S

γ
∏
j∈J1

γjc
ε11
1 c

ε21
1

∫
S

γ′
∏
j∈J2

γjc
ε12
1 c

ε22
1

Y J1,J2,ε1,ε2a,b (12)

where the first runs through every subset I ⊆ [m] and the second sum runs through
disjoint subsets J1, J2 ⊆ [m] and ε1, ε2 ∈ {(0, 0), (1, 0), (2, 0), (0, 1)}. Both XI

a,b and

Y J1,J2,ε1,ε2a,b are expressions depending only on the polynomials of D, on a, b and on
the fixed variables.

We look to the contribution of the two lines of (12) to the diagonal part of
〈TkD〉Sn given by∑

j

(−1)p
L
j p

R
j (a+ pLj − 2)!(b+ pRj − 2)!〈cha(γLj )chb(γ

R
j )D〉Sn . (13)

We begin with the second line. First we note that the terms in the second line of
the expansion (12) of 〈cha(γLj )chb(γ

R
j )D〉Sn vanish unless we have

pLj = pJ1,ε1 ≡ 2−
∑
i∈J1

pi − ε1
1 − 2ε2

1 and pRj = pJ2,ε2 ≡ 2−
∑
i∈J2

pi − ε1
2 − 2ε2

2.

Hence the contribution of the second line of (12) to (13) is∑
J1,J2,ε1,ε2

(−1)pJ1,ε1pJ2,ε2 (a+ pJ1,ε1 − 2)!(b+ pJ2,ε2 − 2)!P ε1+ε2
J1tJ2 Y

J1,J2,ε1,ε2
a,b

and pJ1,ε1 , pJ2,ε2 are determined by the collection of numbers pi as above, so the
claim is proven for this term.

For the first line of (12) we used the identities in lemma 16. The contribution of
the first line of (12) to (13) is∑

I

(
1

12
(a− 2)!b!

∫
S

((
c21 + c2

)∏
i∈I

γi

)
+

1

12
a!(b− 2)!

∫
S

((
c21 + c2

)∏
i∈I

γi

)

−1

6
(a− 1)!(b− 1)!

∫
S

((
−c21 + 5c2

)∏
i∈I

γi

))
XI
a,b

The argument for chachb
(
c21 + c2

)
is analogous and easier.

For Sk a similar analysis is once again possible. Theorem 15 provides again a
universal expression for

〈R−1[γ]chk+1(γ′)D〉Sn
similar to the one in the right hand side of (12). The rest of the argument is similar.
The contribution of (the analogue of) the first line of (12) is treated exactly in the
same way using

∑
pLj =0 γ

L
j γ

R
j = 1

12

(
c21 + c2

)
. The contribution of (the analogue

of) the second line is again a sum of P ε1+ε2
J1tJ2 , with certain coefficients, running

over J1, J2, ε1, ε2 such that pJ1,ε1 = 0, pJ2,ε2 = 3. Since the numbers pJi,εi are
determined by the collection of numbers pi, once again we get a similar universal
expression for 〈SkD〉Sn as a polynomial in the integrals of D. �
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3.3. Zariski density of data from toric varieties. The next proposition will
show that disconnected toric varieties provide enough data points to guarantee that
the Virasoro constraints always hold. Taking disconnected surfaces is necessary
since for a connected toric surface Hirzebruch-Riemann-Roch gives the restriction
on the data ∫

S

c21 +

∫
S

c2 = 12χhol(S) = 12.

Proposition 18. Fix m ≥ 0. Given a (possibly disconnected) toric surface S and
classes γ1, . . . , γm ∈ H2(S), we associate to this data a

((
m+1

2

)
+m+ 2

)
-tuple of

rational numbers{∫
S

γiγj

}
1≤i≤j≤m

∪
{∫

S

γic1

}
1≤i≤m

∪
{∫

S

c21,

∫
S

c2

}
.

By varying the toric surface and the classes γj, the set of possible such
((
m+1

2

)
+m+ 2

)
-

tuples is Zariski dense in Q(m+1
2 )+m+2.

Proof. We start with the union of N ≥ 2 copies of P1×P1. Picking one of the copies,
we successively perform M toric blow-ups at points fixed by the torus action; we
call S the resulting disconnected surface. We do so in a way that the last m blow-
ups have disjoint exceptional divisors D1, . . . , Dm; this is possible as long as M is
large enough, namely M ≥ max{m, 2m−4} (for example, if m = 4 we just blow-up
the 4 vertices of P1 × P1). Let D0 be a divisor [p× P1] in another copy of P1 × P1.
Let

γi =

m∑
j=0

aijDj

with aij ∈ Q for 1 ≤ i ≤ m, 0 ≤ j ≤ m.
One checks immediately that we have∫

S

c1(S)2 = 8N −M and

∫
S

c2(S) = 4N +M

since blowing up one point increases the integral
∫
S
c2(S) by 1 and decreases∫

S
c1(S)2 by 1.
The set of pairs

{(8N −M, 4N +M) : N ≥ 2,M ≥ max{m, 2m− 4}} ⊆ Q2

is Zariski dense in Q2, so it’s enough to show that fixing M,N and varying aij
produces a Zariski dense set of

((
m+1

2

)
+m

)
-tuples{∫

S

γiγj

}
1≤i≤j≤m

∪
{∫

S

γic1

}
1≤i≤m

.

By construction of the divisors Di we have∫
S

DiDj =

{
0 if i 6= j or i = j = 0

−1 if i = j > 0

and ∫
S

Dic1 = 2 +D2
i =

{
2 if i = 0

1 if i > 0

We refer to [2, Theorems 8.2.3, 10.4.4] for the properties of toric surfaces required
for this. Hence ∫

S

γiγj = −
m∑
k=1

aikajk



16 VIRASORO CONSTRAINTS FOR STABLE PAIRS

and ∫
S

γic1 = 2ai0 +

m∑
j=1

aij .

If we let a = {ai0}1≤i≤m ∈ Qm and A = {aij}1≤i,j≤m ∈ Mm×m(Q) we want to
show that the map

Mm×m(Q)×Qm → Symm(Q)×Qm

(A, a) 7→ (−AAt, 2a+A1)

has a Zariski dense image. Here 1 = (1, . . . , 1)t and Symm(Q) denotes the set of
m×m symmetric matrices. To show this, it’s enough to show that the map

Mm×m(R)→ Symm(R)

A 7→ −AAt

has Zariski dense image since Mm×m(Q) is dense inside Mm×m(R). But the image
of the latter map is precisely the set of negative semi-definite matrices, which is
open in the standard topology and hence Zariski dense. �

3.4. Proof of theorem 5: (p, p) insertions. We’ll begin now the proof of theorem
5 with the case of (p, p) insertions. More precisely, we’ll prove theorem 5 when D
is in the algebra DS0 generated by

{chk(γ) : γ ∈ Hp,p(S) for some p = 0, 1, 2}.
The ingredients for this step are the universality statement in lemma 17, the

result for toric surfaces proven previously (theorem 6) and the Zariski density of
proposition 18.

Proposition 19. Theorem 5 holds when D ∈ DS0 is in the algebra generated by
descendents of (p, p) classes.

Proof. By corollary 13 it’s enough to prove the result when S is connected, and in
that case we may assume that D has the form

D =

s∏
i=1

chki(1)

t∏
i=1

ch`i(p)

m∏
i=1

chmi(γi)

where s, t,m, ki, `i,mi ≥ 0 are integers, γi ∈ H1,1(S) and p ∈ H4(S) is such
that

∫
S
p = 1. By lemma 17, if we fix k, s, t,m, ki, `i,mi there is a polynomial in(

m+1
2

)
+m+ 2 variable F such that

〈LkD〉Sn = F

({∫
S

γiγj

}
1≤i≤j≤m

,

{∫
S

γic1

}
1≤i≤m

,

∫
S

c21,

∫
S

c2

)
.

Since the result holds for (disconnected) toric surfaces by corollary 14 and by
proposition 18, the polynomial F vanishes in a Zariski dense set, and thus is iden-
tically 0. �

3.5. Proof of theorem 5: Non-(p, p) insertions. For the proof in the general
case, we proceed by induction on the amount of non-(p, p) insertions. To be more
precise, we consider a basis α1, . . . , αh0,2 of H0,2(S) and its dual basis β1, . . . , βh0,2 ∈
H2,0(S), that is, ∫

S

αiβj = δij .

The algebra DS admits a filtration

DS0 ⊆ DS1 ⊆ . . . ⊆ DSh0,2 = DS
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defined as follows: DSl is the algebra generated by descendents of (p, p) classes and
descendents of α1, . . . , αl, β1, . . . , βl. In particular, DS0 agrees with the previous
definition. We prove that theorem 5 holds for every D ∈ DSl by induction on
l. The base case was proposition 19 in the previous section. From now on we
fix l and assume that 5 holds for D0 ∈ DSl−1. We want to show that for any

s, t, k1, . . . , ks, `1, . . . , `t and D0 ∈ DSl−1 we have

〈Lk (D)〉Sn = 0

where

D =

(
s∏
i=1

chki(αl)

t∏
i=1

ch`i(βl)

)
D0 (14)

Once again we may assume that S is connected, and thus we can write

D0 =

u∏
i=1

chmi(1S)

v∏
i=1

chni(γi)

where 1S ∈ H0(S) is the fundamental class and γi are classes either in Hp,p(S) for
p > 0 or in {α1, . . . , αl−1, β1, . . . , βl−1}. In either case we have αlγi = 0 = βlγi.

The idea to deal with the non-(p, p) classes αl, βl is to add more (toric) connected
components and replace the classes αl, βl with classes in H0 and H4 of the new
connected component. We define

E = E1 t . . . t EN and T = S t E

where E1, . . . , EN are N copies of P2 (or any other toric surface) and N > s. We
let 1i ∈ H0(T ) and pi ∈ H4(T ) denote the fundamental class [Ei] and the point
class pi of the connected component Ei. Similarly we consider 1S ∈ H0(T ). Let

1
′ =

N∑
i=1

1i and 1 = 1
′ + 1S .

Note that 1 is the unit of H∗(T ). We denote

D̃0 =

u∏
i=1

chmi(1)

v∏
i=1

chni(γi) ∈ DTl−1 ⊆ DT .

We will now introduce two new classes in H0(T ;C) and H4(T ;C). Note that we
can extend the definitions of descendents to allow classes in H∗(S;C); we replace
the algebra DS by DS ⊗ C, extend Lk linearly and everything we previously said
(for example the universality statements in 15 and 17) still holds. We let

α =
N∑
i=1

ωi1i ∈ H0(T ;C) and β =
1

N

N∑
i=1

ω−ipi ∈ H4(T ;C)

where ω = e
2πi
N is a primitive N -th root of unity.

Claim 20. The sets of integrals ofαl, . . . , αl︸ ︷︷ ︸
s

, βl, . . . , βl︸ ︷︷ ︸
t

,1, . . . ,1︸ ︷︷ ︸
u

, γ1, . . . , γv


and α, . . . , α︸ ︷︷ ︸

s

, β, . . . , β︸ ︷︷ ︸
t

,1, . . . ,1︸ ︷︷ ︸
u

, γ1, . . . , γv


are the same.
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Proof. We have by construction∫
S

αβ =

∫
T

(
1

N

N∑
i=1

pi

)
= 1 (15)

and, for j = 0, 2, . . . , s, ∫
T

αjβ =
1

N

N∑
i=0

ω(j−1)i = 0 (16)

since s < N . Similarly ∫
S

αjc1(T )2 = 0 and

∫
S

αjc2(T ) = 0 (17)

for j = 1, . . . , s. Equations (15), (16) and (17) also hold replacing α, β by αl, βl,
and moreover we have

αlγi = βlγi = αγi = βγi = 0 for i = 1, . . . , v.

These facts prove the claim. �

By the claim and by proposition 17 it follows that〈
Lk

((
s∏
i=1

chki(αl)

t∏
i=1

ch`i(βl)

)
D̃0

)〉T
n

=

〈
Lk

((
s∏
i=1

chki(α)

t∏
i=1

ch`i(β)

)
D̃0

)〉T
n

= 0. (18)

The vanishing holds by the induction hypothesis since(
s∏
i=1

chki(α)

t∏
i=1

ch`i(β)

)
D̃0 ∈ DTl−1.

Equation (18) is almost what we wanted except that we replaced the appearances

of 1S in D0 by 1 = 1S + 1
′ in D̃0. If there are no such appearances, i.e. u = 0,

then D0 = D̃0 and by (11)

0 =
〈
LTk (D)

〉T
n

=
〈
LSk (D)

〉S
n

+ 〈D〉Sn−k/2
〈
LEk (1DE )

〉E
k/2

. (19)

Since we know already that
〈
LEk (1DE )

〉E
k/2

= 0 vanishes, it follows that
〈
LSk (D)

〉S
n

=

0 also vanishes. Here the 1DE denotes the unit in the algebra DE .
To finish the proof we now argue by induction on u. We abbreviate

B =

s∏
i=1

chki(αl)

t∏
i=1

ch`i(βl)

v∏
i=1

chni(γi).

Now we have

0 =

〈
LTk

(
B

u∏
i=1

chmi(1)

)〉T
n

=
〈
LTk (D)

〉T
n

+
∑
I([u]

〈
LTk

∏
i∈I

chmi(1S)
∏

i∈[u]\I

chmi(1
′)

B

〉T
n

.
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For I ( [u] we can write by equation 11〈
LTk

∏
i∈I

chmi(1S)
∏

i∈[u]\I

chmi(1
′)

B

〉T
n

=
∑

n1+n2=n

〈
LSk

((∏
i∈I

chmi(1S)

)
B

)〉S
n1

〈 ∏
i∈[u]\I

chmi(1
′)

〉E
n2

+
∑

n1+n2=n

〈(∏
i∈I

chmi(1S)

)
B

〉S
n1

〈
LEk

 ∏
i∈[u]\I

chmi(1
′)

〉E
n2

and this expression must vanish: the second line vanishes by the induction hypoth-
esis on u since |I| < u and the third line vanishes since theorem 5 holds for E. So
we conclude that

〈LTk (D)〉Tn = 0

and again using (19) we find

〈LSk (D)〉Sn = 0.

4. The cubic 3-fold

Let X ⊆ P4 be a smooth cubic hypersurface and let F ∈ H0(P4,O(3)) be the degree
3 polynomial defining X.

Moreover let F (X) be the Fano variety of lines in X, i.e.,

F (X) = {` ∈ G(1, 4) : ` ⊆ X}.

Here G(1, 4) = G(2, 5) is the Grassmanian of lines on P4 or, equivalently, the
Grassmanian of 2-subspaces of C5.

4.1. Basic facts about X. Let j : X ↪→ P4 be the inclusion. We will denote
by H ∈ H2(P4) the hyperplane class and, when confusion doesn’t arise, we’ll also
denote by H the pullback j∗H ∈ H2(X). By the Lefschetz hyperplane theorem j∗

induces an isomorphism Hk(X) ∼= Hk(P4) for k < 3 and j∗ induces an isomorphism
Hk(X) ∼= Hk+2(P4) for k > 3; moreover

j∗j
∗Hj = [X]Hj = 3Hj+1 ∈ H∗(P4).

Thus H∗(X) is generated outside degree 3 by 1, H, 1
3H

2, 1
3H

3.
The Chern class of X is computed via the normal sequence to get

c(X) =
j∗c(P4)

j∗c(OP4(3))
= j∗

(1 +H)5

1 + 3H
= 1 + 2H + 4H2 − 2H3.

In particular, χ(X) =
∫
X

(−2H3) = −6 so it follows that

b3(X) = 10.

More generally, we can compute χ−y and get the Hodge numbers h3,0 = h0,3 = 0
and h2,1 = h1,2 = 5 (see [8, Theorem 1.11] and the table afterwards).

The Gromov-Witten theory of X is reasonably understood in genus 0, but very
hard to compute in higher genus. We refer to [7] for a reconstruction theorem of
genus 0 Gromov-Witten invariants of X and a discussion about some higher genus
invariants. The Gromov-Witten Virasoro constraints are not known for X.
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4.2. Basic facts about F (X). Denote by S the tautological rank 2 bundle over
the Grassmannian G(1, 4) and by Q = O⊕5

G /S the quotient rank 3 bundle. The
Fano variety F (X) is a smooth closed 2-dimensional subvariety of G(1, 4) (see [8,
Corollary 1.14]). The Fano variety can be described as the zero-set of a section
sF , canonically determined by F , of the rank 4 bundle Sym3(S∗) over G(1, 4). In
particular, we can compute the class [F (X)] ∈ H4(G(1, 4)) ∼= H8(G(1, 4)) in terms
of the Chern classes c1 = c1(S) and c2 = c2(S) of the tautological bundle S:

[F (X)] = c4(Sym3(S∗)) = 18c21c2 + 9c22 ∈ H8(G(1, 4)).

We also denote by c1, c2 the pullbacks of c1, c2 to F (X) via the inclusion F (X) ↪→
G(1, 4); note that c1 = −g where g is the Plücker polarization. It will later be useful
to have the following integrals:∫

F (X)

c21 = 45 and

∫
F (X)

c2 = 27. (20)

These are computed using the expression of [F (X)] and the relations

0 = c4(Q) = c22 − 3c21c2 + c41 and 0 = c5(Q) = −3c1c
2
2 + 4c31c2 − c51

in H∗(G(1, 4)) between the generators c1, c2. From those we also have

2c32 = 2c21c
2
2 = c41c2.

The computation is then finished with
∫
G(1,4)

c32 = 1 (see [3, Corollary 4.2]).

A description of the Hodge structure of F (X) is given in [8] and we will quickly
explain it. We introduce the universal line L = P(S|F (X)); set theoretically L is
described as

L = {(x, `) ∈ X × F (X) : x ∈ `}.
Let πLX : L → X and πLF : L → F (X) be the obvious projections. We let

ϕ = (πLF )∗(π
L
X)∗ : H3(X)→ H1(F (X)).

It’s proven in [8, Proposition 4.2] that ϕ is an isomorphism. In particular, we
get the Hodge numbers h1,0(F (X)) = 5 = h0,1(F (X)). By [8, Lemma 2.3] the
product on cohomology induces an isomorphism ∧2H1(F (X)) ∼= H2(F (X)), thus
h2,0(F (X)) = h0,2(F (X)) = 10 and h1,1(F (X)) = 25. Finally, [8, Proposition 4.2]
also gives the identity∫

F (X)

ϕ(α)ϕ(β)c1 = 6

∫
X

αβ for all α, β ∈ H3(X). (21)

4.3. Virasoro conjecture in the line class of the cubic 3-fold. In the next two
sections we’ll explain how to compute the full theory of stable pairs with descendents
for the line class of the cubic 3-fold. We state here the list of all the relevant partition
functions:

Theorem 21. Let X be the cubic 3-fold and β ∈ H2(X;β) be the line class. Writing
ZPT(D) for ZXPT(q|D)β we have:

ZPT(ch4(1)ch4(1)) =
5(q − 44q2 + 126q3 − 44q4 + q5)

4(1 + q)4
(22)

ZPT(ch4(1)ch3(H)) =
15(q − 5q2 + 5q3 − q4)

4(1 + q)3
(23)

ZPT(ch4(1)ch2(H2)) =
15(−q + 4q2 − q3)

2(1 + q)2
(24)

ZPT(ch3(H)ch3(H)) =
45q

4
(25)
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ZPT(ch3(H)ch2(H2)) =
45(−q + q2)

2(1 + q)
(26)

ZPT(ch2(H2)ch2(H2)) = 45q (27)

ZPT(ch5(1)) =
15(q − 5q2 + 5q3 − q4)

4(1 + q)3
(28)

ZPT(ch4(H)) =
21q

4
(29)

ZPT(ch3(H2)) =
45(−q + q2)

2(1 + q)
(30)

ZPT(ch2(H3)) = 18q (31)

ZPT(ch2(γ)ch3(γ′)) =
3(q − q2)

1 + q

∫
X

γγ′ (32)

ZPT(ch2(γ)ch2(γ′)ch4(1)) =
q − 4q2 + q3

(1 + q)2

∫
X

γγ′ (33)

ZPT(ch2(γ)ch2(γ′)ch3(H)) =
3(q − q2)

1 + q

∫
X

γγ′ (34)

ZPT(ch2(γ)ch2(γ′)ch2(H2)) = −6q

∫
X

γγ′ (35)

ZPT(ch2(γ1)ch2(γ2)ch2(γ3)ch2(γ4)) = q

((∫
X

γ1γ2

)(∫
X

γ3γ4

)
+

(∫
X

γ1γ4

)(∫
X

γ2γ3

)
+

(∫
X

γ1γ3

)(∫
X

γ4γ2

))
(36)

for γ, γ′, γi ∈ H3(X). In particular, conjecture 1 (rationality and functional equa-
tion) holds in this case.

This calculation will be explained, modulo the computational steps, in the next
two sections; section 5 will compute the coefficient of q1 in these partition functions
and, using that, we’ll compute the full partition function in section 6.

The explicit computation allows us to verify the Virasoro constraints in this
case, proving theorem 8. Indeed, it’s enough to check a finite amount of relations
since, according to the next proposition, we can restrict ourselves to products of
descendents with positive cohomological degree. The next proposition holds in
general for any X, β and not only for the cubic 3-fold with the line class.

Proposition 22. Suppose that conjecture 2 holds for some D ∈ DXPT, that is,

〈LkD〉X,PT
n,β = 0.

Then conjecture 2 also holds for

ch0(γ)D, ch1(γ)D, ch2(1)D, ch2(δ)D, ch3(1)D

for any γ ∈ H∗(X), δ ∈ H1,1(X).

Proof. All of these are fairly easy verifications using the expressions for ch0, ch1

and the string, divisor and dilaton equations from proposition 1.

(1) We have

Lk(ch0(γ)D) = (Rkch0(γ))D + ch0(γ)Lk(D);
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by our assumption on D it follows that 〈ch0(γ)Lk(D)〉 = 0. Moreover if
γ ∈ Hp,q(X)

Rkch0(γ) =

(
k∏

n=0

(p+ n− 3)

)
chk(γ);

if p + k − 3 ≥ 0 then the product vanishes; otherwise 〈chk(γ)D〉X,PT
n,β = 0

because p+ k − 3 is the first Hodge degree of chk(γ) ∈ H∗(Pn(X,β)).
(2) We have

Lk(ch1(γ)D) =(Rkch1(γ))D + ch1(γ)Lk(D)

+ (k + 1)!
∑
pLi =0

(
R−1[γLi ]ch1(γ)

)
chk+1(γRi )D.

The bracket of the middle term vanishes by definition and

Rkch1(γ) =

(
k∏

n=0

(p+ n− 2)

)
ch1+k(γ).

If p < 3 the same argument as before shows that 〈Rkch1(γ)〉X,PT
n,β = 0, and

also the last term vanishes since

R−1[γLi ]ch1(γ) = ch0(γγLi ) = −
∫
X

γγLi = 0.

If p = 3 then the first term is (k + 1)!chk+1(γ)D and the last term (after
collapsing ch0, ch1) is

−(k + 1)!
∑
pLi =0

(∫
X

γLi γ

)
chk+1(γRi )D = −(k + 1)!chk+1(γ)D.

(3) We have

Lk(ch2(1)D) =(Rkch2(1))D + ch2(1)Lk(D)

+ (k + 1)!
∑
pLi =0

ch1(γLi )chk+1(γRi )D.

Applying the bracket to the last two terms gives 0 immediately since ch2(1) =
ch1(γLi ) = 0. Repeating the previous argument Rkch2(1) = 0.

(4) We have

Lk(ch2(δ)D) =(Rkch2(δ))D + ch2(δ)Lk(D)

+ (k + 1)!
∑
pLi =0

ch1(δγLi )chk+1(γRi )D.

The bracket of the first and the last terms vanish once again. By the divisor
equation and by hypothesis:

〈Lk(ch2(δ)D)〉X,PT
n,β = 〈ch2(δ)LkD〉X,PT

n,β =

(∫
β

δ

)
〈LkD〉X,PT

n,β = 0.

(5) We have

Lk(ch3(1)D) =(Rkch3(1))D + ch3(1)Lk(D)

+ (k + 1)!
∑
pLi =0

ch2(γLi )chk+1(γRi )D.
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Once again the first and last term vanish; for the last term we use the
γLi -string equation, proposition 1 i). The bracket of the middle term van-
ishes by the assumption that D satisfies the Virasoro constraint and by the
dilaton equation.

�

Since the virtual dimension of Pn(X,β) is dβ = 2, we only have to check

〈Lk(D)〉X,PT
n,β = 0 for 2k + |D| = 2dβ = 4. Moreover proposition 22 reduces us to

the cases where D is a product of descendents chi(γ) with i ≥ 2 and 2i+ |γ|−6 > 0.
We know already the result holds for k = −1 and k = 0 so this leaves us with the
following cases:

(1) k = 2 and D = 1;
(2) k = 1 and D = chj(γ) for (j, γ) ∈ {(2, H2), (3, H), (4, 1)};
(3) k = 1 and D = ch2(γ)ch2(γ′) for γ ∈ H1,2(X), γ′ ∈ H2,1(X).

We’ll check these cases by hand. We have c1 = 2H,

∆∗c1 =
2

3
(H ⊗H3 +H2 ⊗H2 +H3 ⊗H)

and c1c2 = 8H3 = 24p. After collapsing ch0, ch1 we have the following expressions
for L1,L2:

L1 = R1 − 2ch3(H) +
2

3
ch2(H3)R−1

L2 = R2 − 4ch4(H) +
4

3
ch2(H)ch2(H3)− 1

3
ch2(H2)ch2(H2)− 4

3
ch2(H3) + 2ch2(H3).

Using that ch2(H) = 1, by the divisor equation, case (1) turns out to be equiv-
alent to the identity

−4ZPT(ch4(H))− 1

3
ZPT(ch2(H2)ch2(H2)) + 2ZPT(ch2(H3)) = 0

which is equivalent to

−4
21q

4
− 45q

3
+ 2× 18q = 0.

Case (2) is equivalent to

ZPT(chj+1(γ))− ZPT(ch3(H)chj(γ)) +
1

3
ZPT(ch2(H3)chj−1(γ)) = 0.

These relations are checked for (j, γ) = (1, H3), (2, H2), (3, H), (4, 1) using theorem
21.

Finally, case (3) turns into

ZPT(ch2(γ)ch3(γ′))− ZPT(ch2(γ)ch2(γ′)ch3(H)) = 0

which also holds by the computations in theorem 21.

5. Computation in P1(X,β)

We are interested in computing the stable pairs theory Pn+1(X,β) for X when
the curve class β is the class of a line in X, that is, β = 1

3H
2. The virtual dimension

of Pn+1(X,β) is given by ∫
β

c1(TX) =

∫
X

2

3
H3 = 2.

We can describe explicitly what is Pn+1(X,β). Since the support of a stable
pair in Pn+1(X,β) is necessarily a line L ∈ F (X), and in particular is Gorenstein,
by the results in [15, Appendix B] it follows that stable pairs supported in L are
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in correspondence with 0-dimensional subschemes of L or, equivalently, effective
divisors on L.

Given such a divisor D, the Euler characteristic of the associated stable pair is
|D|+1−g(L) = |D|+1, by Riemann-Roch for curves. Thus, Pn+1(X,β) is a bundle
over F (X) with fiber L[n] over L ∈ F (X). Here L[n] means the n-fold symmetric
product of L, which parametrizes degree n effective divisors on L.

It follows from this description that Pn+1(X,β) is a smooth projective variety
of dimension 2 + n. When n = 0 then P1(X,β) = F (X) and its actual dimension
matches its virtual dimension 2. So in this case [P1(X,β)]vir is the fundamental
class of P1(X,β) = F (X).

5.1. Computing descendents, n = 0. We will now compute all the descendents
in P1(X,β). We introduce the following maps which we’ll use during the computa-
tions:

X P4 × F (X)

L X × F (X) P4 ×G(1, 4)

F (X)

j2

ι

πL
X

πL
F

j

πX

πF

j1

The first observation is that the universal stable pair is F = ι∗OL. Indeed when
we restrict OX×F (X) → ι∗OL to X × {L} ⊆ X × F (X) we get the corresponding
stable pairOX → i∗OL. Hence we can use Grothendieck-Riemann-Roch to compute
the Chern character of F.

ch(F) = ι∗
(
ch(OL)td(−NL/X×F (X))

)
= ι∗td(−NL/X×F (X)).

We relate this normal bundle to the normal bundles of L and X × F (X) inside
P4 ×G(1, 4) using the exact sequence

0→ NL/X×F (X) → NL/P4×G(1,4) → ι∗NX×F (X)/P4×G(1,4) → 0.

Moreover, the normal bundles inside P4 ×G(1, 4) can be identified by writing L
and X × F (X) as zero locus of (dimensionally transverse) sections of bundles.

Clearly X × F (X) is the zero locus of the section F ⊕ sF of the rank-4 bundle
OP4(3) ⊕ Sym3(S∗). Regarding L, we can write L as a dimensionally transverse

intersection L̃∩ (P4×F (X)) where L̃ = {(x, L) ∈ P4×G(1, 4) : x ∈ L}. Now L̃ can
be described as the zero locus of a section of OP4(1)�Q: given (x, L) ∈ P4×G(1, 4),
we have a homomorphism

OP4(−1)x → C5 → QL
determining a section of Hom(OP4(−1),Q) ∼= OP4(1) � Q whose zero locus is L̃.
Thus we compute

ch(F) = ι∗td(−NL/X×F (X)) = ι∗
ι∗j∗td

(
O(3)⊕ Sym3(S∗)

)
ι∗j∗td

(
O(1) �Q⊕ Sym3(S∗)

) (37)

= [L]j∗
td (O(3))

td (O(1) �Q)
. (38)

where we used the push-pull formula for ι∗ι
∗α = (ι∗1)α = [L]α and wrote [L] for

the class in H6(X × F (X)) ∼= H4(X × F (X)). Now

td(O(3)) =
3H

1− e−3H

and td (O(1) �Q) can be computed formally with the splitting principle: we get
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j∗
td (O(3))

td (O(1) �Q)
=1− 1

2
c1 +

1

6
c21 −

1

12
c2 +

1

12
Hc1 −

1

24
Hc21 +

1

4
H2 − 1

8
H2c1

+
31

720
H2c21 −

1

60
H2c2 +

7

360
H3c1 −

7

720
H3c21

Computing [L] ∈ H4(X ×F (X)) is not straightforward since L is the zero locus
of j∗O(1) � Q but L has codimension 2 inside X × F (X) while j∗O(1) � Q has
rank 3. However, we can compute the pushforward of [L] to P4 × F (X) as

(j1)∗[L] = j∗2c3(O(1) �Q) ∈ H6(P4 × F (X)).

The pushforward (j1)∗ kills the component of H3(X)⊗H1(F (X)) in the Künneth
decomposition of H4(X × F (X)) but we can recover the rest, finding

[L] =
1

3
H2 − 1

3
Hc1 +

1

3
(c21 − c2) +A

where A ∈ H3(X)⊗H1(F (X)).
This is enough to compute all the even descendents, which we now list:

ch3(1) = 0, ch2(H) = 1 (39)

ch4(1) =
1

6
c1, ch3(H) =

1

2
c1, ch2(H2) = −c1 (40)

ch5(1) =
1

12
c21, ch4(H) = − 1

12
c21 +

1

3
c2 (41)

ch3(H2) = −1

2
c21, ch2(H3) = c21 − c2 (42)

Moreover the push-pull formula gives

ch2(γ) = (πF )∗ι∗ι
∗π∗Xγ = (πLF )∗(π

L
X)∗γ = ϕ(γ).

Finally, for γ ∈ H3(X)

ch3(γ) = (πF )∗

(
A

1

2
c1π
∗
Xγ

)
=

1

2
c1ϕ(γ).

5.2. Computing the invariants. All the invariants that only have descendents
of even classes are straightforward to compute using the integrals (20) of c21 and c2
in F (X).

〈ch4(1)ch4(1)〉1 =
5

4
, 〈ch4(1)ch3(H)〉1 =

15

4
(43)

〈ch4(1)ch2(H2)〉1 = −15

2
, 〈ch3(H)ch3(H)〉1 =

45

4
(44)

〈ch3(H)ch2(H2)〉1 = −45

2
, 〈ch2(H2)ch2(H2)〉1 = 45 (45)

〈ch5(1)〉1 =
15

4
, 〈ch4(H)〉1 =

21

4
, 〈ch3(H2)〉1 = −45

2
, 〈ch2(H3)〉1 = 18 (46)

The invariants with two odd descendents are computed using the identity∫
F (X)

ϕ(γ)ϕ(γ′)c1 = 6

∫
X

γγ′.

Note that this is enough to compute everything because the descendents of degree
2 are all proportional to c1 and ch3(γ) = 1

2c1ϕ(γ). Let γ, γ′ ∈ H3(X).

〈ch2(γ)ch2(γ′)ch4(1)〉1 =

∫
X

γγ′, 〈ch2(γ)ch2(γ′)ch3(H)〉1 = 3

∫
X

γγ′ (47)
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〈ch2(γ)ch2(γ′)ch2(H2)〉1 = −6

∫
X

γγ′, 〈ch2(γ)ch3(γ′)〉1 = 3

∫
X

γγ′ (48)

Finally, we’re missing the case of 4 odd descendents. The required integral is
computed in [7, Theorem 6.7, iv)]:

〈ch2(γ1)ch2(γ2)ch2(γ3)ch2(γ4)〉 =

∫
F (X)

ϕ(γ1)ϕ(γ2)ϕ(γ3)ϕ(γ4)

=

(∫
X

γ1γ2

)(∫
X

γ3γ4

)
+

(∫
X

γ1γ4

)(∫
X

γ2γ3

)
+

(∫
X

γ1γ3

)(∫
X

γ4γ2

)
(49)

6. Computation in Pn+1(X,β), n > 0

We now study descendents in the moduli space Pn+1(X,β) for n > 0.
We introduced previously L as the universal line over F (X). Let also L[n] denote

the n-fold symmetric product of L over F (X), that is,

L[n] =
(
L ×F (X) . . .×F (X) L

) /
Σn

where Σn is the permutation group acting by permuting the factors of the product.
Then Pn+1(X,β) = L[n]. Recall that5 L = PF (X)(S) where we still denote by S
the restriction of the tautological bundle S on the Grassmanian G(1, 4) to F (X).
Hence

L[n] = PF (X)(SymnS).

As a set:

L[n] = {(L,D) : L ∈ F (X), D ∈ Diveff(L), |D| = n}.
As a projective bundle, L[n] carries a tautological line bundle OL[n](−1) (whose

fiber over L is identified with the line inside SymnS corresponding to L). We denote
by ζn the Chern class

ζn = c1 (OL[n](1)) ∈ H2
(
L[n]

)
.

By the projective bundle theorem the cohomology of L[n] is

H∗(L[n]) = H∗(F (X))[ζn]/
(
ζn+1
n + ζnnc1(SymnS) + . . .+ cn+1(SymnS)

)
.

6.1. The universal divisor. There is a universal (effective) divisor D = Dn in the
fiber product L×F (X)L[n] such that its restriction to a fiber L×F (X) {(L,D)} ∼= L

is D. We can identify the class of D in H2
(
L ×F (X) L[n];Z

)
. We will use, now and

for the rest of the section, the maps p, q, π1, πn which are the obvious projections
in the pullback diagram:

D L×F (X) L[n] L

L[n] F (X)

q

p π1

πn

We still denote by ζn, ζ1, c1 the pull-backs of the original classes to L×F (X) L[n]

via p, q and πLX ◦ q, respectively.

5For us, a projective bundle PE parametrizes 1-dimensional subspaces of E (and not 1-
dimensional quotients).
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Proposition 23. We have

[D] = ζn + nζ1 + nc1

in H2
(
L ×F (X) L[n];Z

)
.

Proof. The result follows by identifying D as the vanishing locus of a (canonical)
section s of the line bundle

Hom
(
q∗OL(−1)⊗n ⊗ p∗OL[n](−1), (Λ2S)⊗n

)
.

Indeed this section can be described as follows: let (L, x,D) ∈ L ×F (X) L[n] and
consider the embeddings OL(−1) ↪→ S and OL[n](−1) ↪→ SymnS. Let a1⊗ . . .⊗an
be in the fiber of OL(−1)⊗n over (L, x) and b1 . . . bn be in the fiber of OL[n](−1)
over (L,D), with ai, bi ∈ SL. Then the value of the section at (L, x,D) is the
morphism

a1 ⊗ . . .⊗ an ⊗ b1 . . . bn 7→ (a1 ∧ b1)⊗ . . .⊗ (an ∧ bn) ∈ (Λ2SL)⊗n.

Now this section vanishes at (L, x,D) if and only if bi is proportional to ai for some
i = 1, . . . , n, that is, bi ∈ OL(−1)(L,x) for some i. If we write D =

∑n
i=1 xi then

the fiber of OL[n](−1) over (L,D) is

OL[n](−1)(L,D) =
{
b1 . . . bn : bi ∈ OL(−1)(L,xi)

}
⊆ SymnSL

But then the condition that bi ∈ OL(−1)(L,x) for some i is equivalent to x = xi for
some i, that is, x ∈ D which is precisely the defining condition of D.

�

6.2. Obstruction bundle and virtual fundamental class. We can identify the
obstruction bundle of Pn+1(X,β) as follows. By [14, Proposition 4.6] the obstruc-
tion bundle has fiber over (L,D) ∈ L[n] given by H0(OD(D) ⊗ KX)∨ (note that
H1(NL/X) = 0 for any L by [8, Lemma 1.9]).

In other words,

Obs = p∗(OD(D)⊗KX)∨ = Rp∗(OD(D)⊗KX)∨.

We now compute Obs in the K-theory of Pn+1(X,β) = L[n]. We have KX =
OX(−2H) in X, so the pullback of KX to L ×F (X) L[n] is O(−2ζ1). We also have

OD(D) = O(D)−O = O(ζn + nζ1 + nc1)−O

in K(L ×F (X) L[n]), by proposition 23. Thus

Obs∨ = Rp∗ (O(ζn + (n− 2)ζ1 + nc1)−O(−2ζ1))

= O(ζn + nc1)⊗Rp∗O((n− 2)ζ1)−Rp∗O(−2ζ1)

in K(L[n]). Since O((n− 2)ζ1) is the pullback of OL(n− 2) via q we have

Rp∗O((n− 2)ζ1) = π∗nRπ1∗OL(n− 2) = π∗nSymn−2S∨

by [1, Lemma 30.8.4].
Similarly,

Rp∗O(−2ζ1) = −π∗nΛ2S.

Proposition 24. For n > 0 the obstruction bundle of Pn+1(X,β) = L[n] is(
O(ζn + nc1)⊗ π∗nSymn−2(S∨)⊕ π∗nΛ2S

)∨ ∈ K(L[n]). (50)

In particular,

[Pn+1(X,β)]vir = (−1)nc1

(
ζn−1
n +

(n+ 2)(n− 1)

2
ζn−2
n c1

)
. (51)
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Proof. The identification of the obstruction bundle was done before. Letting α, β
be the Chern roots of S it follows that

[Pn+1(X,β)]vir = cn(Obs) = (−1)nc1

n−2∏
j=0

(ζn + nc1 − jα− (n− 2− j)β) .

The result is obtained from using α + β = c1 and noting that homogeneous poly-
nomials in c1, α, β of degree at least 3 vanish because H>4(F (X)) = 0. �

6.3. Descendents. The universal stable pair F is given by ι∗O(D) where

ι : L ×
F (X)

L[n] ↪→ X × L[n]

is the canonical inclusion of the universal curve. By Grothendieck-Riemann-Roch
and proposition 23 it follows that

ch(F) = ι∗
(
eζn+nζ1+nc1td(−Nι)

)
= eζn+nH+nc1ι∗td(−Nι). (52)

Writing ch(γ) for the sum of the descendents
∑
k chk(γ) and ch0(γ) for the same

sum when n = 0 (the descendents calculated in 5.1) we get the following expression
for the descendents in terms of descentents with n = 0:

ch(γ) = eζn+nc1ch0(enHγ).

Combining this with 5.1 gives a full computation of the descendents. By the
expression of the virtual fundamental class, for n > 0 it’s enough to compute the
descendents modulo the ideal

R = H>4(L[n]) +H>2(F (X))[ζn] ⊆ H∗(L[n]).

All the following equalities should be understood modulo R:

ch3(1) = n, ch2(H) = 1 (53)

ch4(1) = c1

(
1

6
+
n

2
+
n2

2

)
+ nζn, ch3(H) =

1

2
c1 + ζn, ch2(H2) = −c1 (54)

ch5(1) = c1ζn

(
1

6
+
n

2
+
n2

2

)
+ nζ2

n, ch4(H) =
1

2
c1ζn +

1

2
ζ2
n (55)

ch3(H2) = −c1ζn, ch2(H3) = 0 (56)

ch2(γ) = ϕ(γ), ch3(γ) = ζnϕ(γ). (57)

Here γ ∈ H3(X).

6.4. Descendent invariants. We’re now in conditions to compute all the de-
scendent invariants. To illustrate the type of expressions arising we’ll compute
ZPT(ch5(1)). All the remaining equations in theorem 21 are calculated in the same
way. We have for n > 0

〈ch5(1)〉Xn+1,β =

∫
[Pn+1(X,β)]vir

ch5(1)

=

∫
L[n]

(−1)nc1

(
ζn−1
n +

(n+ 2)(n− 1)

2
c1ζ

n−2
n

)(
c1ζn

(
1

6
+
n

2
+
n2

2

)
+ nζ2

n

)
= (−1)n

45

2
(3 + n2).

The last computation is done using that∫
L[n]

c21ζ
n
n = 45 and

∫
L[n]

c1ζ
n+1
n = −45

n(n+ 1)

2
.
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The first integral is clear by (20) and the second is reduced to the first using

ζn+1
n = −c1(SymnS)ζnn − c2(SymnS)ζn−1

n

and

c1(SymnS) =
n(n+ 1)

2
c1.

Thus

ZPT(ch5(1)) =
15q

4
+

∞∑
n=1

(−1)n
45

2
(3 + n2)qn+1 =

15(q − 5q2 + 5q3 − q4)

4(1 + q)3
.
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