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COHOMOLOGY RINGS OF THE MODULI OF ONE-DIMENSIONAL

SHEAVES ON THE PROJECTIVE PLANE

YAKOV KONONOV, WOONAM LIM, MIGUEL MOREIRA, AND WEITE PI

Abstract. We initiate a systematic study on the cohomology rings of the moduli stack

Md,χ of semistable one-dimensional sheaves on the projective plane. We introduce a set of

tautological relations of geometric origin, including Mumford-type relations, and prove that

their ideal is generated by certain primitive relations via the Virasoro operators. Using BPS

integrality and the computational efficiency of Virasoro operators, we show that our geometric

relations completely determine the cohomology rings of the moduli stacks up to degree 5.

As an application, we verify the refined Gopakumar–Vafa/Pandharipande–Thomas corre-

spondence for local P2 in degree 5. Furthermore, we propose a substantially strengthened

version of the P = C conjecture, originally introduced by Shen and two of the authors. This

can be viewed as an analogue of the P = W conjecture in a compact and Fano setting.
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0. Introduction

0.1. Overview. The primary purpose of this paper is twofold. First, we initiate a systematic

study on the cohomology rings of the moduli stack Md,χ of semistable one-dimensional sheaves

on P2, combining a variety of ideas and tools including geometric relations, Virasoro represen-

tations, and BPS integrality. Our methods produce explicit presentations of a number of new

Date: March 12, 2024.

Key words and phrases. Cohomology rings and relations, Virasoro representations, BPS integrality, perverse

filtrations, moduli spaces of sheaves.

1

http://arxiv.org/abs/2403.06277v1


2 Y. KONONOV, W. LIM, M. MOREIRA, AND W. PI

cohomology rings in degrees d ≤ 5. Second, we propose a substantially strengthened version

of the P = C conjecture introduced by Shen and two of the authors [KPS23], extending it to

all cohomological degrees. This can be viewed as an analogue of the P = W conjecture in

a compact, Fano setting, and has various structural implications on both sides of the equal-

ity. We verify this conjecture, among other predictions, on the cohomology rings we obtain.

Throughout, we work over the complex numbers C.

Fix two integers d and χ with d ≥ 1. We consider the moduli stack of sheaves

Md,χ := {semistable F ∈ Coh(P2) | [supp(F )] = d ·H, χ(F ) = χ},

where H is the class of a line, supp(F ) denotes the Fitting support, and the stability condition

is with respect to the slope

µ(F ) =
χ(F )

c1(F ) ·H
∈ Q.

This moduli stack is smooth and admits a good moduli space Md,χ parametrizing semistable

sheaves up to S-equivalence.

Our study of Md,χ and its cohomology is motivated in part by cohomological Hall algebras.

Cohomological Hall algebras (CoHA in short) are rich algebraic structures coming from various

moduli stacks, see Kontsevich–Soibelman [KS11]. Indeed, for a fixed slope µ ∈ Q and the

corresponding monoid of topological types Λµ, the direct sum of the cohomology groups
⊕

(d,χ)∈Λµ

H∗(Md,χ,Q)

underlies a CoHA whose structure is largely unknown. Therefore, studying H∗(Md,χ,Q)

may provide the first step towards understanding this CoHA. Furthermore, when d and χ

are coprime, cohomology ring of the moduli stack recovers that of the moduli space via the

isomorphism

(1) H∗(Md,χ,Q) ≃ H∗(Md,χ,Q)⊗H∗(BGm,Q)

induced from the good moduli map π : Md,χ → Md,χ, which is a trivial BGm-gerbe in this

case. Thus our study on the cohomology of Md,χ subsumes the coprime moduli spaces Md,χ

as particularly interesting cases, which we motivate below. In particular, we remark that our

approach is inductive and understanding the cohomology of Md,χ makes use of the moduli

stacks Md′,χ′ with non-coprime (d′, χ′) as well.

The study of the good moduli spaces Md,χ dates back to the works of Simpson [Sim94]

and Le Potier [LP93a]. We refer to [PS23, Introduction] for a brief overview of the basic

properties of Md,χ and various directions to study this moduli space. From our perspective,

the main motivation to investigate Md,χ comes from enumerative geometry. Briefly speaking,

a certain perverse filtration on the intersection cohomology IH ∗(Md,χ) defines interesting curve

counting invariants called refined BPS invariants for local P2, i.e. the Calabi–Yau threefold

Tot(KP2). These invariants are expected to recover curve counting invariants from other



COHOMOLOGY OF THE MODULI OF 1-DIM SHEAVES ON P2 3

enumerative theories [PT14]. We refer to [KPS23] for a detailed account on the history and

development of this proposal, and to [KPS23, Section 1.1] for generalities concerning the

perverse filtration. When d and χ are coprime, the moduli space Md,χ is a smooth projective

variety and its intersection cohomology coincides with singular cohomology. Furthermore, the

perverse filtration in this case is characterized by the cup product with a base ample class, cf.

Section 6.1, which is in turn determined by the cohomology ring structure.

The above motivations bring us to the following problem:

Problem 0.1. Study the cohomology rings of the moduli stacks Md,χ.

In this paper, we shall approach Problem 0.1 uniformly in the language of stacks. As we

will see, this is the more general setting for various constructions, and naturally relates to the

(not necessarily coprime) moduli spaces via the BPS integrality formula.

The stack Md,χ admits natural tautological classes coming from its universal family. We

will prove that these classes generate the rational cohomology ring, cf. Theorem 1.3. These are

the ring generators of H∗(Md,χ,Q) we use throughout the paper. Furthermore, we formulate

in Section 2 certain geometric relations, including notably Mumford-type relations, among

these classes. The main result of this paper, along the lines of Problem 0.1, can be stated as

follows.

Theorem 0.2. The geometric relations in Section 2 determine the cohomology rings of the

moduli stacks Md,χ for d ≤ 4 and the smooth (i.e. coprime) moduli spaces M5,χ.

Remark 0.3. (i) The main result of [LMP23], cf. Theorem 1.7, states that the cohomology rings

of Md,χ with gcd(d, χ) = 1 are in general χ-dependent. Thus for example we obtain two non-

isomorphic cohomology rings for M5,1 and M5,2, respectively. (ii) According to [ES93, Mar07]

and Theorem 4.4 in the case of stacks, the cycle class maps are isomorphisms for the coprime

moduli space Md,χ and the stack Md,χ. Thus Theorem 0.2, and more generally all structural

results for cohomology rings in this paper, hold for the Chow rings as well.

For d ≤ 4 coprime to χ, the cohomology rings of the stacks recover those of the moduli spaces

via the isomorphism (1); the latter are previous known via classical or birational methods

[LP93a, CM17], but our approach recovers them independently. All other cohomology rings

in Theorem 0.2, i.e., those of

M2,0, M3,0, M4,2, M4,0, M5,1, M5,2

are new to the best of our knowledge.1 We do not treat the moduli stack M5,0 in full, but

for a purely computational reason; see Section 5.2.7 for some partial results. For the same

reason we do not treat moduli stacks (and spaces) with d ≥ 6, but it is reasonable to expect

that our approach would produce complete sets of relations (at least) in low cohomological

1We restrict to 0 ≤ χ ≤ d/2 here since these are the essential cases, cf. Section 5.
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degrees, see for example [LMP23, Proposition 2.7]. To prove Theorem 0.2, we shall introduce

and utilize the ideas of Virasoro representations and BPS integrality in Sections 3 and 4,

proving independently interesting results and leading to a systematic strategy to compute the

cohomology rings, outlined in Section 5.1. The presentations of the cohomology rings are

given in Section 5.2.2

The last section is somewhat independent from the others, in which we strengthen the

(local) P = C conjecture of [KPS23] to all cohomological degrees, and verify a number of

non-trivial predictions on the cohomology rings. The P = C conjecture relates two filtrations

of highly different nature on the cohomology of Md,χ with gcd(d, χ) = 1: the perverse filtration

P•H
∗(Md,χ,Q) is defined in terms of the topology of a fibration from Md,χ to the linear system

|d ·H| of degree d planar curves, whose generic fiber is an abelian variety; the Chern filtration

C•H
∗(Md,χ,Q), on the other hand, is defined explicitly via the tautological classes.

Conjecture 0.4. For coprime d ≥ 1 and χ ∈ Z, we have P•H
∗(Md,χ,Q) = C•H

∗(Md,χ,Q).

As consequences of this conjecture, structures of either the perverse or the Chern filtration

can be transported to the other side. In particular, Conjecture 0.4 would imply the multi-

plicativity of the perverse filtration and a curious Hard Lefschetz symmetry for the Chern

filtration. See Remark 6.7 for a detailed discussion.

Since Theorem 0.2 determines the cohomology rings of the coprime moduli spaces up to

degree 5, we are able to verify numerous predictions in this range: the (strengthened) P = C

conjecture, the (refined) Gopakumar–Vafa/Pandharipande–Thomas correspondence, and a

conjecture of Chung–Moon [CM17]. See Section 6 for the precise statements.

In what follows, we briefly discuss the main ingredients in this paper.

0.2. Mumford and geometric relations. The original Mumford relations are formulated

over Mr,d(C), the moduli space of semistable holomorphic bundles of rank r and degree d

over a fixed algebraic curve C of genus g ≥ 2. Mumford conjectured that such relations form

a complete set in the rank two case [AB83]. A similar but more general construction of the

relations called generalized Mumford relations is carried out in [EK04].

Roughly speaking, the Mumford-type relations are obtained by constructing certain vector

bundles built from the universal family over the moduli spaces, and taking the (vanishing)

Chern classes of degrees beyond the rank of the bundle. Grothendieck–Riemann–Roch theorem

expresses the Chern classes in terms of tautological classes on the moduli space, thus giving

relations in the cohomology ring. More precisely, the constructions in [AB83] and [EK04]

relies on the following vanishing results:

(i) Higher cohomology of the bundles due to positivity.

(ii) Hom (and Ext) groups between semistable bundles due to slope differences.

2As a first indication of their complexity, we note that dim H∗(M5,χ) = 1695 for χ coprime to 5.
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In the following, we reserve the name Mumford relations (MR) for the first type, and call the

second type generalized Mumford relations (GMR) in accordance with the original terminology.

For the moduli space Mr,d(C), Mumford’s conjecture in the rank two case was first proved

by Kirwan [Kir92], while Earl–Kirwan [EK04] showed that the generalized Mumford relations

are complete for general rank coprime to the degree.

The study of Mumford-type relations for sheaves on (del Pezzo) surfaces was initiated in

[PS23] and played a key role in the proof of [LMP23, Theorem 1.2]; see Remark 2.13. One

primary goal of the current paper is to pursue this idea more systematically. In Section 2, we

carry out general constructions of the two Mumford-type relations for the moduli stack Md,χ.

In addition, there is a third type of relations, which we name base relations (BR), coming from

the fibration structure of Md,χ over the base |d ·H|. We shall refer to all of these as geometric

relations. In light of the results in [Kir92, EK04], it is natural to ask the following question:

Question 0.5. Are the geometric relations complete for general Md,χ?

The answer to Question 0.5 turns out to be positive for all moduli stacks (and spaces) in

Theorem 0.2, except for M5,1. In fact, we will see that Mumford and generalized Mumford

relations are already complete for these moduli stacks. The situation for M5,1 is more subtle:

the geometric relations are, somewhat surprisingly, not complete in the literal sense, but they

are still sufficient to determine the entire ring structure when combined with Poincaré duality.

We refer to Section 5.2.5 for a detailed explanation.

0.3. Virasoro representations. The Virasoro constraints predict a rich set of relations

among tautological invariants of moduli spaces in various settings. It is named so because

the predicted relations are described by certain representations of the half of the Virasoro

algebra Vir≥−1 := span{Ln |n ≥ −1}, where Ln are certain operators (cf. Section 3.1 for the

definition of these operators in our setting) satisfying the Virasoro relations

[Ln,Lm] = (m− n) Ln+m.

The Witten–Kontsevich theorem [Wit91, Kon92] was the first instance of the Virasoro con-

straints. This was conjecturally generalized to Gromov–Witten theory [EHX97]. After being

transported to the sheaf side via the GW/PT correspondence [MOOP22], there have been

rapid developments in the sheaf-theoretic Virasoro constraints [Mor22, vB23, BLM22, Boj24,

LM24].

For the moduli spaces of our interest, namely Md,χ, the Virasoro constraint was first con-

jectured in [BLM22] and proven for the coprime cases in [LM24] using quiver representations.

The Virasoro constraints is a priori a statement about top degree relations. However, it was
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observed in [LM24] that the constraints imply that a representation of Vir≥−1 on the descen-

dent algebra Dd,χ (see Section 1.1) factors through the surjective homomorphism3

Dd,χ ։ H∗(Md,χ,Q).

In other words, the representation preserves the kernel of this surjection, which we call the

ideal of tautological relations. In fact, this factorization property was proven for any Md,χ

with d and χ not necessarily coprime. Since we study the ideal of tautological relations using

geometric relations, the following question naturally arises.

Question 0.6. Does the representation of Vir≥−1 on Dd,χ interact nicely with the ideals of

geometric relations?

This question is interesting because there has been very little geometric understanding on

the Virasoro constraints. In Section 3, we shall give a positive answer to this question in the

form of the following theorem.

Theorem 0.7. The Vir≥−1-representation on Dd,χ preserves the ideal of geometric relations

of each type (MR, GMR, and BR). Furthermore, in each case the entire ideal is generated by

certain primitive relations, cf. Definition 3.12, as a Dd,χ ⊗ U(Vir≥−1)-module.

Among the entire set of generators for the geometric relations, the primitive ones form a

significantly smaller subset. This brings considerable computational efficiency when we work

with the ideal of geometric relations using a computer program.

0.4. BPS integrality. One of the most subtle and important aspects in the study of tauto-

logical rings is whether a given set of relations is complete, as inquired in Question 0.5. When

the moduli space is a smooth projective variety, Poincaré duality provides an easy criterion

for the completeness of the given set of relations. But unless we are in such a case, it is in

general difficult to determine whether the relations we have found are complete. One practical

method is to rely on the Poincaré series of the moduli stacks and spaces in question.

In this regard, the BPS integrality formula of cohomological Hall algebras (CoHA) for

hereditary categories by Mozgovoy–Reineke [MR15] is very helpful. For a fixed slope µ ∈ Q,

the universal extension diagram defines a CoHA structure on the direct sum
⊕

(d,χ)∈Λµ

H∗(Md,χ,Q).

Roughly speaking, the BPS integrality of [MR15] relates cohomology groups of the moduli

stacks Md,χ and intersection cohomology groups of the moduli spaces Md,χ in the localized

K-group of mixed Hodge modules. This in particular implies an equality between their virtual

Hodge polynomials.

3There are two representations of Vir≥−1 on Dd,χ, one from Ln operators and the other from Rn operators,

cf. Section 3.1. When we discuss the factorization property of the Vir≥−1-representation through H∗(Md,χ),

we always consider the one coming from Rn for computational simplicity.
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In order to derive an equality between the actual Poincaré series of the moduli stacks and

the intersection Poincaré series of the moduli spaces, we need the following properties (cf.

Theorem 4.4) of the cohomology of Md,χ. This is proven in Section 4 after we introduce BPS

integrality.

Theorem 0.8. The cohomology ring H∗(Md,χ,Q) is tautologically generated and pure. Fur-

thermore, the cycle class map from Chow to cohomology is an isomorphism.

The above theorem in particular shows that H∗(Md,χ,Q) is of (p, p)-type. The correspond-

ing property for IH ∗(Md,χ,Q) was proven by [Bou22]. Therefore, the BPS integrality formula

implies the following equality between the shifted (intersection) Poincaré series

(2)
∑

(d,χ)∈Λµ

E(Md,χ, q) · e
(d,χ) = PE


−q

1/2

1− q
·

∑

(d,χ)∈Λµ\{(0,0)}

IE(Md,χ, q) · e
(d,χ)


 .

where PE(−) denotes the plethystic exponential. Note that on the right hand side we have

moduli spaces Md,χ that are not necessarily smooth, whose (intersection) cohomology is a

priori more mysterious. In this regard, we recall the following χ-independence theorem of

Maulik–Shen:

Theorem 0.9 ([MS23, Theorem 0.1]). For any χ, χ′ ∈ Z not necessarily coprime to d, there

is a (non-canonical) isomorphism of graded vector spaces

IH ∗(Md,χ) ≃ IH ∗(Md,χ′).

Thanks to this theorem, we can use Equation (2) to effectively compute the Betti numbers of

Md,χ in terms of the Betti numbers of the smooth moduli spaces Md′,1 where (d, χ) = k(d′, χ′)

for some k ≥ 1. The latter can be computed directly (at least for d ≤ 5) using geometric

relations and the Poincaré duality criterion, see Section 5.2. Knowing the Betti numbers then

allows us to check whether our geometric relations are complete for the moduli stacks.

0.5. Perverse = Chern. We briefly recall the history and background of the ‘Perverse =

Chern’ phenomenon, manifested by the P = C conjecture we shall discuss in Section 6.1.

Very roughly, this phenomenon states that for certain abelian fibrations, the location of a

tautological class in the associated perverse filtration is determined by its Chern grading from

a universal family.

The idea traces back to Beauville and Deninger–Murre’s work [Bea86, DM91] on abelian

schemes π : A → B. The authors used the Fourier transform F induced by a normalized

Poincaré bundle L over A∨ ×B A to obtain a motivic decomposition, called Beauville decom-

position, on the cohomology of the abelian scheme that splits the (perverse) Leray filtration.

The Fourier transform is a sum with different Chern gradings

F =
∑

k

Fk : H∗(A∨,Q)→ H∗(A,Q),
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where Fk is induced by the k-th Chern character chk(L). It is then shown in [Bea86, DM91]

that the images of Fk land precisely in the k-th graded piece in the splitting of the Leray

filtration, i.e. their ‘perversity’ equals the Chern grading from the Poincaré line bundle.

The Beauville decomposition relies crucially on the multiplication by N operator on abelian

schemes, but similar P = C phenomena has been found for more general abelian fibrations with

possibly singular fibers, for instance Lagrangian fibrations associated to compact hyperkähler

manifolds [SY22] and compactified Jacobians of integral planar curves [OY17, MY14]. We

refer to [MSY23, Introduction] for a detailed discussion. Notably, the recently proved P = W

conjecture of de Cataldo–Hausel–Migliorini [dCHM12, MS22, HMMS22, MSY23] is equivalent

to a P = C statement for the Hitchin system associated to the Dolbeault moduli spaces

[dCMS22].

The P = C phenomenon we investigate in this paper arises from the Hilbert–Chow mor-

phism, cf. Section 1.2 (6), of the moduli spaces Md,χ with gcd(d, χ) = 1. Indeed, this is a

weak abelian fibration in the sense of [MS23], and induces a perverse filtration on the total

cohomology H∗(Md,χ,Q). Using the (normalized) tautological generators ck(j) of Proposition

1.9, Shen and two of the authors defined in [KPS23] a natural Chern filtration

C0H
≤2d−4(Md,χ) ⊂ C1H

≤2d−4(Md,χ) ⊂ · · · ⊂ H≤2d−4(Md,χ,Q).

Furthermore, the following local4 P = C conjecture [KPS23, Conjecture 0.3] was proposed:

(3) P•H
≤2d−4(Md,χ) = C•H

≤2d−4(Md,χ).

One consequence of this is an asymptotic product formula [KPS23, Conjecture 0.1] for the

refined BPS invariants for local P2. The equality (3) is verified in [KPS23] for degrees ≤ 4,

and [MSY23] established one side of the inclusion P ⊃ C. In Section 6.1, we shall explain how

to upgrade this local version into a global one, using a modified (and perhaps more natural)

definition of the Chern filtration involving all tautological classes in addition to the generators.

This removes the linear bound 2d− 4 on cohomological degrees.

Finally, we remark that by the spectral correspondence [BNR89], Higgs bundles on a curve

C are in correspondence with one-dimensional sheaves on the surface Tot(KC). Thus the

P = C conjecture we propose can be viewed as an analogue of the P = W conjecture in a

compact and Fano setting. Indeed, [dCHM12, Theorem 4.2.2] compares the perverse filtration

of meromorphic Hitchin system in rank 2 with another filtration defined by tautological classes

analogous to the Chern filtration.

0.6. Further directions. We outline a few directions of future research.

(i) The relations in H∗(M5,1,Q) that cannot be obtained as geometric relations, cf. Sec-

tion 5.2.5, seem rather mysterious to us. It is natural to ask if one can obtain these

relations by other geometric means involving new ideas. If this can be achieved, it

4In the sense that the cohomological degree is bounded by 2d − 4.
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is then reasonable to enlarge the set of geometric relations and study Problem 0.1 in

general, with the aim of proving a result similar to [EK04].

(ii) The P = C conjecture gives various predictions on the perverse and the Chern filtra-

tions on Md,χ, see Remark 6.7. Confirming these predictions independently would in

turn give more evidence to the conjecture. In particular, Remark 6.7 (ii) and (iv) are

closely related to the theme of finding relations in this paper. We will prove in Section

2.3 a subset of the vanishing Chern monomials predicted by Remark 6.7 (iv), and we

expect similar methods to extend and establish more results along this line.

(iii) The conjectures we verify in Section 6 mostly concern cohomology of the moduli spaces.

One can ask what extra structures the cohomology of the stacks Md,χ admit. Indeed,

with a careful formulation of the perverse filtration on the stacks as in [Dav23, Section

1.3], we have obtained strong numerical evidence towards a stacky P = C conjecture.

More precisely, it is verified that the graded dimensions of the perverse filtration and

the Chern filtration match perfectly in all cohomological degrees for the moduli stacks

we compute, cf. Theorem 6.9. A more systematic study of this conjecture would likely

require a better understanding of the CoHA structure and the interaction of BPS

integrality with the Chern filtration. We plan to explore this direction in the future.

We conclude with a remark on the generality of this work. We have focused exclusively on

moduli of sheaves on the surface P2, but the key ingredients and constructions used in this

paper, for example [MR15, PS23, LM24], are available to other smooth del Pezzo surfaces.

We expect that our approach can be adapted to study the cohomology of moduli of sheaves

in this more general setting.

0.7. Notations and conventions. All cohomology rings H∗(−) take Q-coefficients if un-

specfied, and will be considered only for smooth spaces. For possibly singular spaces, we

use the intersection cohomology IH ∗(−). The shifted (intersection) virtual Poincaré series,

denoted by E(−, q) or IE(−, q), is defined as the non-shifted one multiplied by (−q)− dim(−)/2.

Here are some notations we use throughout the paper:

α, α′ Topological type of one-dimensional sheaves

D, Dwt0
Descendent algebra and the weight zero subalgebra

Dα, Dα,wt0
Descendent algebra for topological type α

chi(γ) Formal descendent symbols

ck(j) Normalized tautological classes5

Id,χ, Id,χ Ideal of tautological relations for Md,χ and Md,χ

I•
d,χ, I

•
d,χ Ideal of geometric relations, where • ∈ {MR,GMR,BR,Geom}

Ln, Rn Virasoro operators acting on D

Lδ
n, R

δ
n Normalized Virasoro operators acting on Dwt0

Λ, Λµ Monoid of topological types (and of fixed slope µ)
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P•, C• Perverse and Chern filtrations on cohomology
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1. Moduli of sheaves and descendent algebras

1.1. Descendent algebra. Our goal in this paper is to study the cohomology rings H∗(Md,χ)

for general (d, χ) and H∗(Md,χ) for gcd(d, χ) = 1 in terms of generators and relations. A

natural set of generators can be constructed using the Chern classes of universal sheaves.

It is useful to introduce the free algebra generated by the formal descendent symbols. We

follow the notation and presentation in [BLM22], and later we establish the connection to the

normalized generators ck(j) used in [PS23, KPS23, LMP23].

Definition 1.1 (Descendent algebra). Let D be the free commutative and unital Q-algebra

generated by the formal symbols

chi(γ) for i ≥ 0, γ ∈ H∗(P2,Q)

modulo the linearity relations

chi(λ1γ1 + λ2γ2) = λ1chi(γ1) + λ2chi(γ2) for γ1, γ2 ∈ H
∗(P2), λ1, λ2 ∈ Q .

Given α = (d, χ), we let Dα be the quotient of D by the relations6

ch0(γ) =

∫

P2

ch(α) · γ, γ ∈ H∗(P2).

We call D the descendent algebra. Using the universal sheaf F on Md,χ×P2, we can realize

descendents in the cohomology on moduli stacks. Explicitly, denoting p and q the respective

projections to Md,χ and to P2, we have a map of algebras

ξ : D→ H∗(Md,χ)

given by

chi(γ) 7→
[
p∗
(
ch(F) · q∗γ)

]
2i
∈ H2i(Md,χ)

where the notation [−]2i means that we extract the degree 2i part of a non-homogeneous

cohomology class. In particular, we have

chi(H
j) 7→ p∗

(
chi+2−j(F) · q∗Hj) ∈ H2i(Md,χ) .

5We refer to Section 1.2.3 for the precise relations between chi(γ) and ck(j).
6Here, ch(α) denotes the Chern character of any one-dimensional sheaf of type α.
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Note that for a given α = (d, χ), the map ξ factors through a map Dα → H∗(Md,χ), which we

still denote by ξ.

For the good moduli space Md,χ with gcd(d, χ) = 1, we can only define a map

ξF : D→ H∗(Md,χ)

after we fix the choice of a universal sheaf F, which exists by [HL10, Corollary 4.6.7]. There

is, however, a subalgebra Dwt0
⊂ D on which a canonical map is defined.

Definition 1.2. Let R−1 : D→ D be a derivation defined on generators by

R−1(chi(γ)) = chi−1(γ) ,

where we set ch−1(γ) = 0. We define

Dwt0
= ker R−1 ⊂ D.

Similarly, we can define Dα,wt0
⊂ Dα.

As explained in [BLM22, Section 2.4], the restriction of ξF to Dwt0
does not depend on the

choice of F, so there is a canonical map

Dwt0
→ H∗(Md,χ) .

Descendents indeed generate the cohomology of moduli spaces and moduli stacks.

Theorem 1.3. Let d, χ ∈ Z with d > 0.

(i) For coprime (d, χ), the map Dα,wt0
→ H∗(Md,χ) is surjective.

(ii) For general (d, χ), the map Dα → H∗(Md,χ) is surjective.

The statement (i) for the moduli spaces follows from [PS23, Theorem 0.2 (a)] together with

the description of the generators ck(j) in terms of Dα,wt0
that we will explain in Section 1.2.

The statement (ii) for the stacks is new and is the content of Theorem 4.4.

Definition 1.4. Let Id,χ and Id,χ be the kernels of the maps

Dα,wt0
→ H∗(Md,χ) and Dα → H∗(Md,χ) ,

respectively.

Studying these ideals is the main goal of this paper. We start with a basic property of the

ideals on the stack by using the geometric interpretation of the operator R−1.

Proposition 1.5. The operator R−1 preserves the ideal Id,χ. Thus it descends to H∗(Md,χ),

i.e. there exists a morphism completing the diagram

Dα Dα

H∗(Md,χ) H∗(Md,χ).

R−1

ξ ξ
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Proof. We show this by constructing the operator on the cohomology of the stack that makes

the diagram commute. There is a BGm-action

act : Md,χ ×BGm →Md,χ

induced by the Gm-automorphisms of sheaves. Then we define the map

H∗(Md,χ)
act∗

−−→ H∗(Md,χ ×BGm) ∼= H∗(Md,χ)[ζ]
[ζ1]
−−→ H∗(Md,χ)

where the last map takes the ζ1 coefficient of a polynomial in ζ. The argument in [BLM22,

Lemma 4.9] shows that this makes the diagram in Proposition 1.5 commute. �

1.2. Normalized universal sheaves and generators. Although the algebra of weight zero

descendents is a very useful object from a conceptual point of view, it is not so easy to work

with in concrete computations, for instance to describe explicitly the ideal Id,χ for small d.

Instead, we can normalize the universal sheaf on Md,χ×P2, which is the approach taken in

[PS23]. There, the authors take an arbitrary universal sheaf F and modify it by

Fnorm = F⊗ eAF

where AF ∈ H
2(Md,χ × P2,Q) is chosen in a way such that Fnorm becomes independent of F.

More precisely, we have

Definition 1.6. Given a universal sheaf F, let AF ∈ H
2(Md,χ×P2,Q) be the class in [KPS23,

Lemma 2.5] and define the normalized classes

(4) ck(j) := p∗

(
chk+1(Fnorm) · q∗Hj) ∈ H2k+2j−2(Md,χ), j ∈ {0, 1, 2}

where chk+1(Fnorm) is the degree 2k + 2 part of ch(F) · eAF .

The class AF is the unique class such that the following holds [PS23, Proposition 1.3]:

(5) c1(0) = 0 ∈ H0(Md,χ) and c1(1) = 0 ∈ H2(Md,χ) .

Moreover, the normalized universal sheaf Fnorm, and hence the classes ck(j), does not depend

on the choice of F.

These normalized tautological classes have nice properties established in [PS23, KPS23,

Yua24]. Before stating them, we introduce two more structures on the moduli space Md,χ.

First, it admits a proper and flat Hilbert–Chow map

(6) h : Md,χ → |d ·H| = Pb, F 7→ supp(F)

sending a sheaf to its Fitting support, where

b = dimH0(P2,O(d)) − 1 =
1

2
d(d + 3).

This is a weakly abelian fibration in the sense of [MS23], and a general fiber of h is a Picard

variety whose dimension is g = 1
2 (d− 1)(d− 2). Second, the moduli space Md,χ (and similarly

the stacks Md,χ) admits two types of symmetry:
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(a) The first type is given by the isomorphism

ψ1 : Md,χ
∼
−→Md,χ+d, F 7→ F ⊗OP2(1).

(b) The second type [Mai10, Theorem 13] is given by the duality isomorphism

ψ2 : Md,χ
∼
−→Md,−χ, F 7→ Ext1(F , ωP2).

The following χ-dependence theorem is proved in [LMP23]. It provides context to our main

results and contrast with the χ-independence of the (intersection) Betti numbers of Md,χ, cf.

Theorem 0.9.

Theorem 1.7. For d ≥ 1 and χ, χ′ coprime to d, there is an isomorphism of graded Q-algebras

H∗(Md,χ) ≃ H∗(Md,χ′)

if and only if χ and χ′ are related by the two symmetries above.

Now we return to the normalized tautological classes ck(j).

Proposition 1.8 ([PS23, Section 1.2]). With the above notations,

(i) The class c0(2) is the pull-back of the hyperplane class via h, and c2(0) is relatively

ample. These two classes span H2(Md,χ,Q) for d ≥ 3.

(ii) We have

ψ∗
1ck(j) = ck(j), ψ∗

2ck(j) = (−1)kck(j).

Theorem 1.9 ([PS23, Yua24]). Assume d ≥ 3. We have:

(i) H∗(Md,χ) is generated as a Q-algebra by the 3d− 7 classes7 of degrees ≤ 2d− 4:

c0(2), c2(0) ∈ H2(Md,χ), ck(0), ck−1(1), ck−2(2) ∈ H2k−2(Md,χ), 3 ≤ k ≤ d− 1.

(ii) There are no relations among these 3d − 7 classes in degrees ≤ 2d − 2, and exactly

three linearly independent relations in degree 2d if d ≥ 5.

Remark 1.10. One reason we introduce the normalized classes ck(j) is that the vanishing

of c1(0) and c1(1) simplifies computations and we will use them to present our cohomology

rings. A more important motivation is that this choice of normalization gives the correct

formulation of the local P = C conjecture (3); see [KPS23, Proposition 1.2]. In fact, the

choice of normalization in the definition of ck(j) has been influenced by the P = W literature,

where similar normalized classes on the Dolbeault moduli spaces are denoted by ck(γ), see for

example [MS22]. A more canonical and normalization-free definition of the Chern filtration

will be given in Section 6.1.2.

We now proceed to understand the generators ck(j) in terms of the canonical map Dα,wt0
→

H∗(Md,χ). The class AF can be decomposed as a sum of classes in H2(Md,χ) and H2(P2); we

study the effect of twisting by a line bundle on Md,χ and on P2 separately, following ideas in

[BLM22, Sections 2.5 and 2.7].

7We call these 3d − 7 classes normalized tautological generators.
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1.2.1. Twist by line bundles on Md,χ. Let α = (d, χ) ∈ K(P2) and let δ = H/d ∈ H∗(P2).

This choice has the property that

ch0(δ) =

∫

P2

ch(α) · δ = 1 ∈ Dα .

We make the following definition:

Definition 1.11. For any universal sheaf F, we let

Fδ = F⊗ e−ξF(ch1(δ)) .

We call Fδ the δ-normalized universal sheaf, which is characterized by the property that

ξFδ
(ch1(δ)) = 0 .

Note that Fδ does not depend on the initial choice of F. Indeed, if F′ = F⊗ p∗L then

F′ ⊗ e−ξ
F′ (ch1(δ)) = F′ ⊗ e−ξF(ch1(δ))−c1(L)ξF(ch0(δ)) = F⊗ e−ξF(ch1(δ)) .

The effect of normalizing on descendents is controlled by the operator

η = ηδ : Dα → Dα

given by

η =
∑

j≥0

(−1)j

j!
ch1(δ)jR

j
−1 .

Proposition 1.12. Let α ∈ K(P2) and δ ∈ H∗(P2) be such that
∫
P2 ch(α) · δ = 1, and let

η = ηδ be the operator above. We have the following:

(i) R−1 ◦ η = 0, so

η : Dα → Dα,wt0
.

(ii) η is an algebra homomorphism.

(iii) η is the identity when restricted to Dα,wt0
⊂ Dα, and η(ch1(δ)) = 0.

(iv) The composition

Dα
η
−−→ Dα,wt0

−→ H∗(M)

is precisely ξFδ
.

Proof. (i) We have

[R−1, ch1(δ)j ] = j[R−1, ch1(δ)]ch1(δ)j−1 = jch0(δ)ch1(δ)j−1 = jch1(δ)j−1

where [−,−] denotes commutator of operators and we write ch1(δ)j for the operator

of multiplication by ch1(δ)j ∈ Dα. After applying the commutator above, the sum

R−1 ◦ η telescopes and we obtain zero.
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(ii) This is a formal consequence of the fact that R−1 is a derivation. Indeed, by the general

Leibniz rule,

η(D1D2) =
∑

j≥0

(−1)j

j!
ch1(δ)j

∑

s+t=j

(
j

s

)
Rs

−1(D1)Rt
−1(D2) = η(D1)η(D2) .

(iii) Both claims are immediate.

(iv) Apply [BLM22, Lemma 2.8], specializing to ζ = −ξF(ch1(δ)). �

The idea of δ-normalization and the operator η allow for a more concrete description of

Dα,wt0
. By (i)-(iii) in Proposition 1.12, η induces an algebra homomorphism

η : Dα/〈ch1(δ)〉 → Dα,wt0
.

We show that this map is an isomorphism in the next proposition. For this, we define algebra

homomorphisms

φ : Dα,wt0
[u]→ Dα and ϕ : Dα → Dα,wt0

[u]

as follows: φ restricted to Dα,wt0
is the inclusion Dα,wt0

→֒ Dα and φ(u) = ch1(δ), while

ϕ =
∑

i≥0

ui

i!
η ◦ Ri

−1 .

The same proof that η is an algebra homomorphism shows that ϕ is as well.

Proposition 1.13. The homomorphisms φ and ϕ are inverse isomorphisms. In particular,

η : Dα/〈ch1(δ)〉 → Dα,wt0

is an isomorphism.

Proof. We need to show that both ϕ ◦ φ and φ ◦ ϕ are the identity. By Proposition 1.12 (iii),

ϕ ◦ φ is the identity when restricted to Dα,wt0
. Moreover,

ϕ(φ(u)) = ϕ(ch1(δ)) = η(ch1(δ)) + u · η(ch0(δ)) = u .

For φ ◦ ϕ we have

φ ◦ ϕ =
∑

i≥0

∑

j≥0

ch1(δ)i

i!

(−1)jch1(δ)j

j!
R

i+j
−1 = id

by the binomial formula. The statement for η follows from the commutative diagram

Dα Dα,wt0
[u]

Dα/〈ch1(δ)〉 Dα,wt0

ϕ

η

where the arrow on the right sends u to zero. �
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1.2.2. Twist by line bundles on P2. Given ρ ∈ H2(P2), let Fρ : D→ D be the algebra isomor-

phism given by

Fρ
(
chi(γ)

)
= chi(e

ργ) .

Given any universal sheaf F on Md,χ × P2, we have

ξF⊗eρ = ξF ◦ Fρ .

Note that Fρ commutes with R−1, so it is also well-defined as a map Dwt0
→ Dwt0

. It can also

be easily checked that Fρ induces

Fρ : Deρ·α → Dα and Fρ : Deρ·α,wt0
→ Dα,wt0

.

Indeed,

Fρ

(
ch0(γ)−

∫

S
ch(eρ · α)γ

)
= ch0(eργ)−

∫

S
ch(α)eργ

is zero in Dα.

1.2.3. Normalized classes in terms of descendent algebra. We can now finally explain how the

classes ck(j) can be described in terms of the descendent algebra. Let

δ = H/d and ρ =

(
3

2
−
χ

d

)
H .

Note that the class ρ satisfies ∫

P2

ch(α) · eρ = 0 .

Consider the composition

Dα·eρ Dα·eρ,wt0
Dα,wt0

H∗(Md,χ) .
ηδ Fρ ξ

Then the normalized class ck(j) ∈ H∗(Md,χ) can be obtained as the image of chk+j−1(Hj) ∈

Dα·eρ under the composition ξ ◦ Fρ ◦ ηδ.

To justify this, we check that the normalization (5) is satisfied. Indeed, ch0(1) = 0 in Dα·eρ

due to our choice of ρ, and the composition annihilates ch1(H) by Proposition 1.12 (iv). We

will also write ck(j) for the image of chk+j−1(Hj) in Dα,wt0
, and Proposition 1.13 identifies

Dα,wt0
with a polynomial ring in infinitely many variables:

Dα,wt0
∼= Q[c0(2), c2(0), c1(2), · · · ] .

The variables are those in (4) with positive cohomological degrees, but excluding c1(1). In

particular, we can identify the ideal Id,χ with an ideal in this polynomial ring.

When working with the moduli stacks Md,χ, we have a canonical universal sheaf and there

is no need to consider the δ-normalized sheaf. However, to get a description of tautological

classes and generators that is uniform under the isomorphism Md,χ
∼= Md,χ+d, cf. Proposition

1.8 (ii), we shall still use the twist by Fρ and denote by ck(j) ∈ H∗(Md,χ) the image of

chk+j−1(Hj) after the composition
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Dα·eρ Dα H∗(Md,χ) .
Fρ ξ

As in the case of moduli spaces, we use the isomorphism

Dα
∼= Q[c0(2), c1(1), c2(0), c1(2), · · · ]

to identify the ideal Id,χ with an ideal of the above polynomial ring in infinitely many variables.

Note that we have an extra variable c1(1) now and the map η : Dα → Dα,wt0
becomes identified

with the quotient map

(7) Q[c0(2), c1(1), c2(0), c1(2), · · · ]→ Q[c0(2), c2(0), c1(2), · · · ]

that sets c1(1) to 0.

Remark 1.14. In Section 6.1.2, we will use Dα,wt0
and the identifications above to give a

canonical (and equivalent) definition of the Chern filtration on H∗(Md,χ). Previously, the

Chern filtration is only defined in [KPS23] using the normalized classes, which is very explicit

but conceptually less than ideal. We expect this new definition to shed more light on the

structure of the Chern filtration in various P = C phenomena.

Remark 1.15. By Proposition 1.8 (i), for d ≥ 3 the second cohomology H2(Md,χ) has dimension

2 and basis {c0(2), c2(0)}, while H2(Md,χ) has dimension 3 and basis {c0(2), c1(1), c2(0)}.

1.3. Descending tautological relations from the stacks. When we write down and study

tautological relations, it will be more natural to do so for the moduli stacks where canonical

universal sheaves exist. When gcd(d, χ) = 1, the good moduli map

π : Md,χ →Md,χ

is a trivial Gm-gerbe, so in particular we have an isomorphism

(8) H∗(Md,χ) ∼= H∗(Md,χ ×BGm) = H∗(Md,χ)[u]

where we write u for the generator of H2(BGm). However, such an isomorphism is non-

canonical as it depends on a choice of universal sheaf F on Md,χ×P2. Indeed, given F, by the

universal property of Md,χ there is a section sF : Md,χ → Md,χ such that s∗
FF = F, and this

section gives a trivialization

act ◦ (sF × idBGm) : Md,χ ×BGm →Md,χ

where act is the BGm-action on Md,χ, cf. the proof of Proposition 1.5. In light of the

identifications explained above, it is natural to consider the isomorphism associated to the

δ-normalized universal sheaf; even if Fδ might not be represented by an actual universal sheaf,

it still induces an isomorphism (8) with rational coefficients.

Lemma 1.16. Suppose that gcd(d, χ) = 1. There is an isomorphism H∗(Md,χ) ∼= H∗(Md,χ)[u]

that makes the following diagram commute:
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Dα Dα,wt0
[u]

H∗(Md,χ) H∗(Md,χ)[u]

ϕ

In particular, we have Id,χ = η
(
Id,χ

)
, or more explicitly

Id,χ|c1(1)=0 = Id,χ

via the identification (7).

Proof. The idea of the proof is essentially the same as in [Joy18, Proposition 3.24], so we

will just sketch it. Let F be any universal sheaf; there is an m ∈ Z+ and a BZm-fibration

f : T → Md,χ such that T has a line bundle L with c1(L) = −f∗ξF
(
ch1(δ)

)
. Then f∗F ⊗ L is

a sheaf on T × P2 with the property that

ch(f∗F⊗ L) = f∗ch(Fδ) .

By the universal property, we get a map s : T →Md,χ. A BZm-fibration induces an isomor-

phism f∗ on rational cohomology. Thus, we obtain the required isomorphism by composing

H∗(Md,χ)
act∗

−−→ H∗(Md,χ ×BGm)
s∗⊗id
−−−→ H∗(T ×BGm)

f∗⊗id
←−−− H∗(Md,χ ×BGm) .

The diagram is easily shown to commute using Proposition 1.12. The last statement follows

from the fact that η is obtained by applying ϕ and then setting u 7→ 0. �

2. Geometric relations

We will now focus on proving three families of relations — we call these families Mumford

relations (MR), generalized Mumford relations (GMR) and base relations (BR) — among the

generators of the descendent algebra. In other words, we will construct explicit ideals IMR
d,χ ,

IGMR
d,χ and IBR

d,χ, and show that

IMR

d,χ ,I
GMR

d,χ ,IBR

d,χ ⊂ Id,χ .

We will denote by IGeom
d,χ the ideal generated by IMR

d,χ ,I
GMR
d,χ ,IBR

d,χ. As we will explain, the

determination of IGMR
d,χ requires knowledge of the cohomology rings of Md′,χ′ for ‘smaller’ values

(d′, χ′), leading to an inductive approach to understanding this ideal and more generally the

cohomology ring structure.

Having defined these ideals, the natural question is the following (cf. Question 0.5):

Question 2.1. Do we have IGeom

d,χ = Id,χ?

If the answer to this question were positive, we would have a recursive algorithm to compute

the cohomology rings of Md,χ. We will look into Question 2.1 in Section 5.2 for small d; it turns

out that the answer is positive for d ≤ 4 and (d, χ) = (5, 2), but negative for (d, χ) = (5, 1).
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We work at the level of stacks where universal sheaves exist, but this also gives relations for

the good moduli spaces Md,χ when gcd(d, χ) = 1 by Lemma 1.16. More precisely, if we define

I•
d,χ = η(I•

d,χ) for • = MR,GMR,BR,Geom

then we have IGeom
d,χ ⊂ Id,χ.

2.1. Mumford relations. As explained in Section 0.2, one general approach to proving geo-

metric relations on the cohomology of moduli spaces is to construct some vector bundle V out

of the moduli data (in our case, the universal sheaf F) with a rank r that we can compute by

Hirzebruch–Riemann–Roch; then the vanishing of Chern classes

cj(V) = 0 for j > r

may give non-trivial relations. Usually V is first constructed as a complex, and then shown to

be a vector bundle by some cohomological vanishing. Mumford relations follow this strategy

applied to the following vanishing result:

Proposition 2.2. Let F be a semistable sheaf of type (d, χ). Assume

χ ≥ gd :=
(d− 1)(d− 2)

2
,

then H1(F ) = H2(F ) = 0.

Proof. This is proven in [DM11, Proposition 2.1.3], but we provide a proof for completeness.

The vanishing H2(F ) = 0 is obvious since F is one-dimensional. Let C ′ be the scheme-

theoretic support of F , thus 0 < d′ := deg(C ′) ≤ d. Suppose that H1(F ) 6= 0, we can pick an

element s 6= 0 in the dual

H1(C ′, F )∨ = Hom(F,ωC′) = Hom(F,OC′(−3 + d′)).

This gives rise to a non-zero morphism

s : F → OC′(−3 + d′),

whose image we denote by G(−3 + d′) with G ⊂ OC′ . By the semistability of F , we have

(9)
χ

d
≤
χ(G(−3 + d′))

degG
=
χ(G)

degG
− 3 + d′.

To estimate the RHS, we consider the diagram

T

0 G OC′ OC′′ 0

0 G̃ OC′ OC′′
pure

0.
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Here C ′′ is a closed subvariety of C ′, and OC′′
pure

is the quotient of OC′′ by its torsion part T .

Thus it is the structure sheaf of a planar curve of degree 0 ≤ d′′ < d′. We have

χ(G)

degG
≤
χ(G̃)

degG
=
χ(OC′)− χ(OC′′

pure
)

d′ − d′′
.

Using the formula χ(OCd
) = 1−gd = 1− (d−1)(d−2)

2 for any degree d planar curve, an elementary

computation shows that

max
0≤d′′<d′≤d

(
χ(OC′)− χ(OC′′

pure
)

d′ − d′′
− 3 + d′

)
=
d− 3

2
.

It follows from (9) that χ ≤ d(d−3)
2 , but this contradicts our assumption χ ≥ (d−1)(d−2)

2 . �

By the cohomology and base change theorem, it follows that for (d, χ) with χ ≥ g the

complex Rp∗F ∈ D
b(Md,χ) is actually a vector bundle with fibers H0(F ) over [F ] ∈ Md,χ.

Moreover, the rank of this vector bundle is χ. It follows that cj(Rp∗F) = 0 for every j > χ ≥ g.

To write down this formula in terms of descendents, Grothendieck–Riemann–Roch yields

ch(Rp∗F) = p∗
(
ch(F)td(Tp)

)
= p∗

(
ch(F)q∗td(P2)

)
,

so chj(Rp∗F) is given by the geometrical realization of chj(td(P2)). Thus by Newton’s identity,

the total Chern class c(Rp∗F) is the geometric realization of

exp


∑

j≥1

(−1)j−1(j − 1)!chj(td(P2))


 .

The upshot of the above discussion is the following:

Proposition 2.3. Suppose that j > χ ≥ g. Then

exp


∑

j≥1

(−1)j−1(j − 1)!chj(td(P2))






2j

∈ Id,χ .

For a fixed (d, χ), we can use the isomorphisms Md,χ
∼= Md,±χ+kd to obtain relations by

Proposition 2.3 if we take sufficiently large k. Given an arbitrary (d, χ), a choice of signs ±

and j, k ∈ Z such that j > ±χ+ kd ≥ g, we get a relation

MR
±,k,j
d,χ ∈ Id,χ

which corresponds to

exp


∑

k≥1

(−1)k−1(k − 1)!chk(td(P2))






2j

∈ Id,±χ+kd .

under the ismomorphism Id,χ
∼= Id,±χ+kd.

We define the ideal

IMR

d,χ :=
〈
MR

±,k,j
d,χ

∣∣ j > ±χ+ kd ≥ g
〉
⊂ Id,χ .
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Remark 2.4. The relations of the form MR
−,k,j
d,χ can also be understood as coming from the

dual version of Proposition 2.2, namely

H0(F ) = H2(F ) = 0 if χ ≤ −g.

Example 2.5. Recall that M1,0 is a Gm-gerbe over M1,0 ≃ P̌2 where P̌2 is the dual projective

plane. Denote the dual hyperplane section by Ȟ. Then we have

(10) H∗(M1,0,Q) ≃ H∗(M1,0)⊗H∗(BGm) = Q[Ȟ ]/Ȟ3 ⊗Q[u].

We work this out using Mumford relations. Write

γk = td(P2) · ekH and Vk = Rp∗ (F ⊗ q∗OP2(k)) , for k ∈ Z.

By the above discussions, we have

cj(−V−1) = 0 for j > 1, cj(V0) = 0 for j > 0,

cj(V1) = 0 for j > 1, cj(V2) = 0 for j > 2.

Set further α = ch1(γ1) and β = ch1(γ−1). The second vanishing above implies chk(γ0) = 0,

and the first and third imply

(11) chk(γ1) =
1

k!
αk, chk(γ−1) =

(−1)k+1

k!
βk for k ≥ 1.

Since {γ−1, γ0, γ1} form a basis of H∗(P2), it follows from Theorem 1.3 that α, β generate

H∗(M1,0). Finally, the last vanishing gives

(12) c3(V2) =
1

6
ch1(γ2)3 − ch1(γ2)ch2(γ2) + 2ch3(γ2) = 0.

Using γ2 = 3γ1 + γ−1 − 3γ0 and (11), the relation (12) simplifies into (α+ β)3 = 0. Thus

H∗(M1,0,Q) = Q[α, β]/(α + β)3,

matching the presentation (10). Note that

α+ β = ch1(γ1 + γ−1) = ch1(γ1 + γ−1 − 2γ0) = ch1(H2) = c0(2)

is indeed the (pull-back of) hyperplane class Ȟ, cf. Proposition 1.8 (i).

2.2. Generalized Mumford relations. Following the same strategy but using cohomo-

logical vanishing provided by stability, we can construct a generalized version of Mumford

relations.

Proposition 2.6. Let F,F ′ be semistable sheaves on P2 of topological types (d, χ) and (d′, χ′),

respectively. Suppose that

(13)
χ′

d′
<
χ

d
<
χ′

d′
+ 3 .

Then we have

Hom(F,F ′) = Ext2(F,F ′) = 0 .
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Proof. The vanishing Hom(F,F ′) = 0 follows from the first inequality in (13) and the semista-

bility of F and F ′. To see that Ext2(F,F ′) = 0, we use Serre duality

Ext2(F,F ′) ≃ Hom(F ′, F ⊗OP2(−3))∨,

which vanishes due to the second inequality in (13). �

Thanks to Proposition 2.6, whenever (d, χ) and (d′, χ′) satisfy the inequality (13), we can

construct a vector bundle on the product Md,χ ×Md′,χ′ of the moduli stacks . Indeed, let F

and F ′ be the universal sheaves on Md,χ×P2 and Md′,χ′×P2, respectively. Then the complex

V := RHomp(F ,F ′)[1]

is a vector bundle, where p : Md,χ ×Md′,χ′ × P2 → Md,χ ×Md′,χ′ and we omit the pull-

backs of F ,F ′ to the triple product. This vector bundle has fiber Ext1(F,F ′) over a point

([F ], [F ′]) ∈Md,χ ×Md′,χ′ , and its rank is equal to

dim Ext1(F,F ′) = −χ(F,F ′) = d · d′ .

Thus we obtain a relation

cj(−RHomp(F ,F ′)) = 0 for j > dd′

which holds in H∗(Md,χ×Md′,χ′). To extract from this a relation on Md,χ, we take a homology

class A ∈ H∗(Md′,χ′) and integrate along it, i.e. we apply the slant product map
∫

A
: H∗(Md,χ ×Md′,χ′)→ H∗(Md,χ) .

To describe explicitly the relations in terms of descendents, we use Grothendieck–Riemann–

Roch again to find a representative of −RHomp(F ,F ′) in the descendent algebra. For this,

we consider the realization map

D⊗ D→ H∗(Md,χ)⊗H∗(Md′,χ′) .

Define C by

C = exp




∑

a,b≥0
(a,b)6=(0,0)

∑

i

(−1)b+dL
i (a+ b− 1)!cha(γL

i )⊗ chb(γ
R
i )


 ∈ D⊗ D

where

(14)
∑

i

γL
i ⊗ γ

R
i = ∆∗td(P2)

is the Künneth decomposition of the push-forward of td(P2) along the diagonal and γL
i ∈

H2dL
i (P2). More concretely, we take the decomposition

∆∗td(P2) = H2 ⊗ 1 +H ⊗H + 1⊗H2 +
3

2
H ⊗H2 +

3

2
H2 ⊗H +H2 ⊗H2 .
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We let Cj be the part of C with cohomological degree 2j (recall that by definition cha(γ) has

cohomological degree 2a).

Lemma 2.7. The geometric realization of Cj equals cj(−RHomp(F ,F ′)).

Proof. This is a standard application of Grothendieck–Riemann–Roch, a diagonal trick and

Newton’s identity. We include a sketch of the proof for completeness, see [She16, Section 3.1]

for details. By Grothendieck–Riemann–Roch, we have

ch(RHomp(F ,F ′)) = p∗(ch∨(F ′) · ch(F) · q∗td(P2)).

Consider the following commutative diagram, where δ = id×∆ and p = π12 ◦ δ:

Md,χ ×Md′,χ′ × P2 Md,χ ×Md′,χ′ × P2 × P2 Md,χ ×Md′,χ′

P2 P2 × P2.

id×∆ π12

q π34

∆

By projection formula and the Künneth decomposition (14), we have

p∗(ch∨(F ′) · ch(F) · q∗td(P2)) =
∑

i

π12,∗

(
ch∨(F ′) · ch(F) · π∗

34(γL
i ⊗ γ

R
i )
)

=
∑

i

∑

a,b≥0

(−1)a+2−dL
i cha(γL

i )⊗ chb(γ
R
i ).

The sign in the last equality is obtained by tracing back the degree of ch∨(F ′) used for cha(γL
i ).

The lemma follows by applying Newton’s identity as in Section 2.1. �

Given α = (d, χ), α′ = (d′, χ′) satisfying (13), j > dd′ and A ∈ H∗(Md′,χ′), we define the

relation GMRα′,j,A
α ∈ Dα to be the image of Cj under

D⊗ D→ Dα ⊗ Dα′
id⊗ξ
−−−→ Dα ⊗H

∗(Md′,χ′)

∫
A−−→ Dα .

The upshot of the above discussion is the following:

Proposition 2.8. For every α = (d, χ), α′ = (d′, χ′) satisfying (13), j > dd′ and A ∈

H∗(Md′,χ′), we obtain a tautological relation GMRα′,j,A
α ∈ Id,χ.

Thus, we define the ideals

IGMR,α′

α =
〈

GMRα′,j,A
α

∣∣ j > dd′, A ∈ H∗(Md′,χ′)
〉
⊂ Id,χ .

Remark 2.9. There are several seemingly different ways to produce generalized Mumford

relations. First, one can easily check that IGMR,α′

α = I
GMR,d′,χ′+kd′

d,χ+kd , so the isomorphisms

Md,χ
∼= Md,χ+kd do not give new relations. One can also use the isomorphism Md,χ

∼= Md,−χ

and look at (d′, χ′) satisfying the dual version of the inequality (13). A third way is to use

the vector bundle RHomp(F ′,F) instead of RHomp(F ,F ′). The latter two approaches are

actually equivalent by an application of Grothendieck–Verdier duality [Huy06, Section 3.4].

Nevertheless, one can show that they also do not produce new relations.
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Remark 2.10. In the case gcd(d′, χ′) = 1, it is often more efficient to use the good moduli

space Md′,χ′ to produce relations. We use (−)† to denote the dual of an operator. Given A ∈

H∗(Md′,χ′), we can consider the relation GMRα′,j,A
α := GMRα′,j,A

α where A = η†([Md′,χ′ ] ∩ A).

By Lemma A.2, we have

GMR
α′,j,R†

−1
(A)

α = (j − 1− dd′)GMRα′,j−1,A
α .

From this identity and Lemma 1.16, we conclude that the relations GMRα′,j,a
α generate IGMR,α′

α .

In practice, we will indeed use the good moduli space Md′,χ′ when possible, for example in the

computations of Section 5.2.

Because the construction of the ideal IGMR,α′

α requires integration against homology classes

of Md′,χ′ , to explicitly compute this ideal we need to understand H∗(Md′,χ′) first. Thus it

makes sense to determine the cohomology ring structure inductively for all (d, χ), by using the

geometric relations with d′ < d. It turns out that, when working with moduli stacks where

gcd(d, χ) > 1, it is also useful to take d′ = d and χ′ with a smaller gcd.8 This motivates

Definition 2.11. We say that (d′, n′) ≺ (d, n) if either d′ < d, or d′ = d and gcd(d′, χ′) <

gcd(d, χ). We define the ideal of generalized Mumford relations to be

IGMR

d,χ :=
∑

(d′,χ′)≺(d,χ)
satisfying (13)

IGMR,α′

α ⊂ Id,χ.

Remark 2.12. As pointed out in Section 5.2.5, the ideal IGeom
5,1 turns out to be strictly smaller

than I5,1. On the other hand, we have IGeom
5,2 = I5,2. Thus from an algorithmic point of view,

it could make sense to extend ≺ so that (5, 2) ≺ (5, 1) and include I
GMR,5,2
5,1 in the geometric

relations. We have not been able to check if this produces the missing relations in IGeom
5,1 due

to the computational complexity involved.

Remark 2.13. On the moduli space level, the generalized Mumford relations IGMR,1,χ′

d,χ already

played a fundamental role in some recent developments understanding the cohomology rings.

For example, one key step in Theorem 1.9 (i) consists of showing that these relations express

all (normalized) tautological classes in terms of the 3d − 7 generators, and Theorem 1.7 fol-

lows from a careful study of the three relations in Theorem 1.9 (ii), which can be produced

by IGMR,1,χ′

d,χ . The current paper builds on these progresses and explore the full power of gen-

eralized Mumford relations; indeed, they make up the majority of all geometric relations we

formulate.

2.3. Base relations. The set of relations that we discuss now have a different nature; they

use the Hilbert–Chow morphism h : Md,χ → |d ·H| in a crucial way. Recall that |d ·H| = Pb

where b = d(d+ 3)/2 and that ch1(H2) = c0(2) is the pull-back of the hyperplane class via h.

It follows that ch1(H2)b+1 = 0. More generally, the following is true:

8For example, the computation of H∗(M3,0) in Section 5.2.2 requires GMR from M3,1 and M3,2.
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Proposition 2.14. For any i1, . . . , ib+1 ≥ 1,

chi1
(H2) · · · chib+1

(H2) ∈ Id,χ

is a tautological relation.

Proof. By the Grothendieck–Riemann–Roch theorem, the Chern character ch(F) is a cycle

pushed forward from supp(F) ⊂Md,χ × P2. Recall the geometric realization

chi(H
2) =

[
p∗
(
ch(F) · q∗H2)

]
2i
∈ H2i(Md,χ).

If we pick a point p ∈ P2 to represent the class H2, then q∗H2 can be identified with Md,χ×{p},

and the class chi(H
2) is a push-forward from the intersection supp(F) ∩ (Md,χ × {p}). In

particular, a sheaf [F ] ∈ [chi(H
2)] ⊂ Md,χ must be supported at the point p. Now we pick

b+ 1 points p1, p2, . . . , pb+1 ∈ P2 in general position, then there are no degree d curves passing

through all of them. It follows that

chi1
(H2) · · · chib+1

(H2) = 0. �

We define the ideal of base relations

IBR

d,χ :=
〈
chi1

(H2) · · · chib+1
(H2) | i1, . . . , ib+1 ≥ 1

〉
⊂ Id,χ.

Note that the base relations all have cohomological degrees ≥ 2(b+ 1).

3. Virasoro representations

In this section, we introduce the Virasoro operators and explain how they can be used

to study the cohomology ring of the moduli stacks and spaces. We explain the Virasoro

constraints for moduli spaces Md,χ with gcd(d, χ) = 1 proven in [LM24] and an important

consequence: the ideal of tautological relations is preserved by the Virasoro operators, hence

inducing a representation of Vir≥−1 on H∗(Md,χ). In fact, such a property is proven in loc. cit.

for any Md,χ with (d, χ) not necessarily coprime. Second, we refine the preservation of the ideal

under the Virasoro operators to the ideal of each type MR/GMR/BR/Geom. Furthermore, we

prove that each ideal is generated by suitable primitive elements under the Virasoro operators.

Working with the Virasoro operators and primitive relations is computationally much more

effective than working directly with the entire ideals.

3.1. Virasoro operators and Virasoro constraints. Recall the definition of the descen-

dent algebra D from Section 1.1. The Virasoro operators {Ln}n≥−1 acting on D is defined as

a sum Ln = Rn + Tn of the two operators: Rn is a derivation operator such that

Rn(chi(γ)) := i(i+ 1) · · · (i+ n)chi+n(γ)

and Tn is a multiplication operator by the element

Tn :=
∑

a+b=n, a,b≥0

∑

i

a!b! (−1)2−dL
i cha(γL

i ) · chb(γ
R
i ),
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where γL
i and γR

i are the same as in (14). Note that L−1 = R−1 agrees with Definition 1.2.

One can check that the operators satisfy the Virasoro bracket relations

[Rn,Rm] = (m− n)Rn+m, [Ln,Lm] = (m− n)Ln+m.

The weight zero Virasoro operator is defined as a combination of the Virasoro operators

Lwt0
:=

∑

n≥−1

(−1)n

(n+ 1)!
Ln ◦ Ln+1

−1 : D→ Dwt0
.

Virasoro constraints in sheaf theory have been studied in [BLM22] building on the previous

works [MOOP22, Mor22, vB23]. A proof of the Virasoro constraints for the moduli spaces

Md,χ with gcd(d, χ) = 1 is given in [LM24].

Theorem 3.1 ([LM24]). Given d and χ coprime, we have

∫

Md,χ

Lwt0
(D) = 0 for all D ∈ D .

For concrete calculations, it is useful to record here the normalized formulation of the Vira-

soro constraints (cf. [BLM22, Conjecture 2.15]) in terms of the generators ck(j). It has been

explained in Section 1.2 how the descendent algebra Dα is identified with the polynomial alge-

bra Q[c0(2), c1(1), c2(0), c1(2), · · · ]. In particular, the operators Rn and Tn can be interpreted

as operators acting on Q[c0(2), c1(1), c2(0), c1(2), · · · ], and we have

Rn(ck(j)) = (k + j − 1) · · · (k + j − 1 + n)ck+n(j) .

As discussed in Section 1.2, there is a normalized realization

Dα ≃ Q[c0(2), c1(1), c2(0), c1(2), · · · ]→ H∗(Md,χ)

that sends c1(1) to zero. The normalized Virasoro operators Lδ
n on Q[c0(2), c1(1), c2(0), c1(2), · · · ]

are given by

Lδ
n = Rn + Tn −

(n+ 1)!

d
R−1 ◦ cn+1(1) .

Corollary 3.2. Given d and χ coprime, we have

∫

Md,χ

Lδ
n(D) = 0 for all n ≥ 0, D ∈ Q[c0(2), c1(1), c2(0), c1(2), · · · ] .

Proof. This follows from the standard form of the Virasoro constraints in Theorem 3.1 and

[BLM22, Proposition 2.16]. Note that the definition of the realization of ck(j) also involves the

twisting operators Fρ from Section 1.2 and that these commute with the Virasoro operators

by [BLM22, Lemma 2.19]. �



COHOMOLOGY OF THE MODULI OF 1-DIM SHEAVES ON P2 27

3.2. Virasoro representation. Recall from the last section that we have a representation of

the half of the Virasoro algebra Vir≥−1 on D. On the other hand, we have an exact sequence

0→ Id,χ → Dd,χ → H∗(Md,χ)→ 0 .

It turns out that as a consequence of Virasoro constraints, one can show that the representation

of Vir≥−1 descends to the cohomology of the stack.

Theorem 3.3 ([LM24]). The representation of Vir≥−1 on D preserves the ideal of relations

Id,χ. Hence, the operators Rn descend to the cohomology H∗(Md,χ), i.e. there is a dashed

arrow completing the diagram

D D

H∗(Md,χ) H∗(Md,χ).

Rn

ξ ξ

Remark 3.4. Note that Vir≥−1 acts on D via either {Rn}n≥−1 or {Ln}n≥−1. Since the multi-

plication operator Tn trivially preserves the ideal Id,χ, the above theorem is true for either

choice of a representation. In practice, however, we always work with the simpler one using

{Rn}n≥−1.

Remark 3.5. The most natural way to prove a statement like Theorem 3.3 is to utilize the

approximation of H∗(Md,χ) by the cohomology of moduli spaces of Joyce–Song pairs PN
d,χ, see

the proof of Theorem 4.4. If we knew the pair Virasoro constraints (cf. [BLM22, Conjecture

2.18]) for Joyce–Song pairs, we could deduce that Rn descends to the cohomology H∗(PN
d,χ),

and hence to the cohomology of the stack by approximation. The Virasoro constraints for PN
d,χ

are equivalent to the Virasoro constraints for the Joyce invariant classes [Md,χ]inv for every

(d, χ), but currently we only know these unconditionally when gcd(d, χ) = 1. This problem

is worked around in [LM24] by identifying Md,χ with a stack of quiver representations and

approximating it by framed quiver representations, which are the analogue of Joyce–Song

pairs in the quiver context.

We can also make a statement for the cohomology of the good moduli spaces by using the

normalized realization. We have an exact sequence

0→ Id,χ → Q[c0(2), c2(0), c1(2), · · · ]→ H∗(Md,χ)→ 0 .

Define the derivation Rδ
n on Q[c0(2), c1(1), c2(0), c1(2), · · · ] by

Rδ
n = Rn −

(n+ 1)!

d
cn+1(1) ◦ R−1 .

This derivation satisfies the property that Rδ
n(c1(1)) = 0 for every n ≥ 0, so it induces an

operator on Q[c0(2), c2(0), c1(2), · · · ] which we denote in the same way. Note that Lδ
n = Rδ

n+Tδ
n

where Tδ
n = Tn −

(n+1)!
d cn(1) is linear.

The following proposition is immediate:
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Proposition 3.6. Let I ⊆ Dα ≃ Q[c0(2), c1(1), c2(0), c1(2), · · · ] be an ideal closed under the

action of the operators Rn, n ≥ −1. Then the ideal I ⊆ Q[c0(2), c2(0), c1(2), · · · ] obtained as

the image of I by the quotient setting c1(1) to 0 is closed under the operators Rδ
n, n ≥ 0.

Proof. Since Rn and R−1 preserve the ideal I, the operator Rδ
n also preserves the ideal I, so

the induced operator Rδ
n on the quotient Q[c0(2), c2(0), c1(2), · · · ] preserves the ideal I. �

Corollary 3.7. Let d, χ be coprime and n ≥ 0. The derivation Rδ
n preserves the ideal Id,χ.

Proof. By Proposition 3.6 above, this is a consequence of the stacky analogue (Theorem 3.3)

and Lemma 1.16. However, it is instructive to give a proof directly from the normalized form

of the Virasoro constraints, which we do below.

Suppose that D ∈ Id,χ and let E ∈ Q[c0(2), c2(0), c1(2), · · · ] be arbitrary. By the Virasoro

constraints in the form of Corollary 3.2,

0 =

∫

Md,χ

Lδ
n(D ·E) =

∫

Md,χ

Rδ
n(D) ·E +

∫

Md,χ

D · Lδ
n(E) =

∫

Md,χ

Rδ
n(D) ·E .

Since E was arbitrary and the realization map Q[c0(2), c2(0), c1(2), · · · ] → H∗(Md,χ) is sur-

jective, we conclude by Poincaré duality that Rδ
n(D) ∈ Id,χ. �

3.3. Preservation of geometric relations. In this subsection, we study preservation of the

ideal I•
d,χ under the Vir≥−1-representation for each • = MR,GMR,BR,Geom. The BR case is

trivial, and the Geom case follows from the other three cases by definition. So we study the

MR and GMR cases in the next two sections.

3.3.1. Mumford relations. We prove here the following proposition:

Proposition 3.8. The ideal IMR

d,χ is closed under the action of U(Vir≥−1). More is true: for

each choice of sign ± and k ∈ Z, the ideal generated by MR
±,k,j
d,χ for j > ±χ + kd is closed

under the action of U(Vir≥−1).

Proof. The Virasoro operators are well behaved with respect to the isomorphisms Id,χ
∼=

Id,±χ+kd, so it is enough to treat the case ± = + and k = 0. To simplify notation, we write

Aj = MR
+,0,j
d,χ . Recall that Aj is the degree 2j term of

A = exp


∑

ℓ≥1

(−1)ℓ−1(ℓ− 1)!chℓ(td(P2))


 .

To compute Rn(Aj), we apply Rn to the exponential:

Rn(A) =


∑

ℓ≥1

(−1)ℓ−1(ℓ+ n)!chℓ+n(td(P2))


A

hence

Rn(Aj) =
j∑

ℓ=1

(−1)ℓ−1(ℓ+ n)!chℓ+n(td(P2))Aj−ℓ .
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On the other hand, we have also

(n + j)An+j = R0(Aj+n) =
j+n∑

ℓ=1

(−1)ℓ−1ℓ!chℓ(td(P2))Aj+n−ℓ .

Assume first that n ≥ 0. Comparing the two equations we find that

(15) Rn(Aj) = (−1)n(n+ j)An+j +
n∑

ℓ=1

(−1)n+ℓℓ!chℓ(td(P2))Aj+n−ℓ .

If j > χ then j + n− ℓ ≥ j > χ, so clearly the right hand side is also in IMR

d,χ . When n = −1,

we obtain

R−1(Aj) =
(
ch0(td(P2))− j + 1

)
Aj−1 =

(
χ− j + 1

)
Aj−1 .

If j > χ+ 1 then j − 1 > χ and Aj−1 ∈ IMR

d,χ ; when j = χ+ 1 the factor χ− j + 1 vanishes, so

R−1(Aχ+1) = 0 is also in the ideal. �

By the definition of IMR

d,χ and Proposition 3.6 the corollary below follows:

Corollary 3.9. The ideal IMR
d,χ is closed under the action of the operators Rδ

n for n ≥ 0.

3.3.2. Generalized Mumford relations. We proceed now to prove that the generalized Mumford

relations are also preserved by the action of the Virasoro operators.

Theorem 3.10. Let α = (d, χ), α′ = (d′, χ′) satisfy (13). Then the ideal IGMR,α′

α is closed

under the action of U(Vir≥−1).

Proof. Recall that the ideal IGMR,α′

α is generated by relations of the form GMRα′,j,A
α where

j > dd′ and A ∈ H∗(Mα′). They are obtained by starting with the formal class Cj ∈ Dα⊗Dα′ ,

realizing the second factor Dα′ → H∗(M′
α) and then integrating against A. The crucial

ingredient in the proof is Theorem A.1, which we prove in the appendix. This is a combinatorial

identity which interacts C with the action of the Virasoro operators; it states that we have an

equality

(Rn ⊗ id)(Cj) +
n∑

k=−1

(
n+ 1

k + 1

)
(id⊗ Rk)(Cj+n−k)(16)

=
∑

0≤a+b≤n

∑

i

(−1)dL
i +1 a!(n− a)!

(n− a− b)!

(
cha(γL

i )⊗ chb(γ
R
i )
)
Cj+n−a−b

in Dα⊗Dα′ . Since the operators Rk descend to H∗(Mα′) by Theorem 3.3, the equality (16) can

be also viewed in Dα⊗H
∗(Mα′). Since H∗(Mα′) is dual to H∗(Mα′), we have dual operators

R†
n : H∗(Mα′)→ H∗(Mα′) on homology. Applying id⊗

∫
A to (16) we obtain

Rn(GMRα′,j,A
α ) +

n∑

k=−1

(
n+ 1

k + 1

)
GMR

α′,j+n−k,R†
k
(A)

α =(17)

∑

0≤a+b≤n

∑

i

(−1)dL
i +1 a!(n− a)!

(n− a− b)!
cha(γL

i )GMR
α′, j+n−a−b, chb(γR

i )∩A
α .
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Note that for k ≤ n and a+ b ≤ n we have j + n− k, j + n− a− b ≥ j > dd′, so we conclude

that Rn(GMRα′,j,A
α ) ∈ IGMR,α′

α . �

Once again, a similar statement can be made at the level of the good moduli space:

Corollary 3.11. The ideal IGMR,α′

α is closed under the action of the operators Rδ
n for n ≥ 0.

3.4. Primitive relations. Knowing that I•
α is closed under the action of Vir≥−1 can provide

a strong simplification on the computations. We now proceed to present and explain a con-

siderably smaller set of generators of the ideals I•
α when we regard them as a Dα⊗U(Vir≥−1)-

module, rather than just as an ideal in Dα. Here, the algebra structure of Dα ⊗ U(Vir≥−1) is

induced from that of Dα and U(Vir≥−1) together with the commutation rule [Rk,D] = Rk(D).

Definition 3.12. We define the set P•
α of primitive relations of three types as follows:

(i) PMR
α is the set of relations MR±,k,j

α with ±χ+ kd ≥ g and j = ±χ+ kd+ 1.

(ii) PGMR,α′

α is the set of relations GMRα′,j,A
α with either

j = dd′ + 1 or
(
j = dd′ + 2 and deg(A) = dd′ + 2

)
.

(iii) PBR
α consists of the single relation ch1(H2)b+1.

Clearly each of these sets are contained in the corresponding ideals including non-primitive

relations. For example, IMR
α is generated by all relations MR±,k,j

α with j ≥ ±χ+ kd + 1, but

PMR
α consists only of the first Chern class beyond the rank. It turns out that the primitive

relations are enough to generate all the relations once we know that the ideals are closed under

the Virasoro action.

Theorem 3.13. The ideals IMR
α ,IGMR,α′

α ,IBR
α are the smallest ideals containing PMR

α , PGMR,α′

α ,

PBR
α , respectively, that are closed under the action of U(Vir≥−1).

Proof. We have already shown that the ideals IMR
α , IGMR,α′

α , IBR
α are closed under the action

of U(Vir≥−1) and they clearly contain the primitive relations, so it is enough to show that

they are the smallest such ones.

We start with the ideal of Mumford relations. As we did in the proof of Proposition 3.8,

it is enough to consider k = 0 and ± = +. Considering equation (15) for n = 1, it is clear

that if Aj is in some ideal closed under R1, then Aj+1 is also in such ideal. Since Aχ+1 is

by definition in PMR
α , it follows by induction on j that Aj is contained in the smallest ideal

containing PMR
α and closed under the U(Vir≥−1)-action for every j > χ.

Let us consider the case of generalized Mumford relations. First, we observe that we can

modify (16) by using Lemma A.2 to remove the k = −1 term, which gives

(18) Rn(GMRα′,j,A
α ) +

n∑

k=0

(
n+ 1

k + 1

)
GMR

α′,j+n−k,R†
k
(A)

α = (j + n)GMRα′,j+n,A
α + · · ·

where · · · denotes the remaining terms on the right hand side of (17) with 0 < a + b ≤ n;

note that all these terms are in the ideal generated by relations of the form GMRα′,i,A′

α with
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j ≤ i < j + n. The operator R0 is given by R0(D) = 1
2 deg(D)D where deg(D) ∈ Z is

the cohomological degree, so R
†
0(A) = 1

2 deg(A)A where deg(A) is the homological degree.

Considering this, the “leading term” GMRα′,j+n,A
α appears twice in (18): in the k = 0 term of

the sum, and in the right hand side. If

(19)
1

2
(n+ 1) deg(A) 6= j + n

then we can express GMRα′,j+n,A
α in terms of relations GMRα′,j′,A′

α with j ≤ j′ < j + n.

We now argue that every relation of the form GMRα′,i,A
α is contained in any ideal containing

the primitive relations and closed under the Virasoro action. We proceed by induction on

i. If i = dd′ + 1 then the relation GMRα′,i,A
α is primitive, so there is nothing to prove. If

i = dd′ + 2 then either deg(A) = dd′ + 2, in which case GMRα′,i,A
α is primitive by definition,

or (j, n) = (i − 1, 1) satisfies the inequality (19), in which case we conclude by induction. If

i ≥ dd′ + 3 then the inequality (19) holds for either (j, n) = (i− 1, 1) or (j, n) = (i− 2, 2), so

we conclude again by induction.

For base relations, we show by induction on j ≥ 0 that any ideal containing ch1(H2)b+1

closed under the Virasoro action contains every element of the form

(20) chi1
(H2) · · · chij (H2)ch1(H2)b+1−j

for any i1, . . . , ij ≥ 2. Note that if we apply Rij+1−1 to a term of the form (20) we obtain

(b+ 1− j)ij+1!chi1
(H2) · · · chij (H2)chij+1

(H2)ch1(H2)b−j +
(
terms of the form (20)

)
.

This shows that the claim for j implies the same claim for j+ 1, and concludes the proof. �

Remark 3.14. The primitive generalized Mumford relations with j = dd′ + 2 are indeed nec-

essary. For example, take (d, χ) = (2, 1) and (d′, χ′) = (1, 0), the two (primitive) relations in

degrees 1 and 2 given by j = dd′ + 1 = 3 are

(21) c0(2) − 2c2(0), 2c2(0)c1(1)− 2c2(0)c0(2)− c1(1)c0(2) + c0(2)2 + 2c1(2)− 4c3(0).

Applying L1 to c0(2) − 2c2(0), we obtain a second relation 2c1(2) − 4c3(0) in degree 2. Note

that it lies in the ideal generated by (21). On the other hand, the degree 2 relation obtained

by taking j = 4, A = [M1,0] is not in this ideal (by direct computation). Thus we do need to

include the latter into the primitive relations.

4. BPS integrality

In this section, we recall cohomological Hall algebras (CoHA in short) and BPS integral-

ity of Mozgovoy–Reineke [MR15]. By establishing tautological generation and purity of the

cohomology of the moduli stacks, we relate the Betti numbers of the moduli stacks to the

intersection Betti numbers of the good moduli spaces and vice versa. As applications, we

prove structural formulas for the Poincaré series of the moduli stacks and free generation of

cohomology rings in low degrees.
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4.1. Cohomological Hall algebra. Denote the monoid of topological types of one-dimensional

sheaves by

Λ := {(0, 0)} ⊔ Z≥1 × Z.

For a fixed slope µ ∈ Q, we define the submonoid

Λµ := {(d, χ) ∈ Λ |χ = d · µ}.

Denote the set of nonzero elements by Λ×
µ := Λµ − {(0, 0)}. Recall that semistable one-

dimensional sheaves of slope µ form an abelian category Aµ. This is a hereditary category

in the sense that Ext2(F1, F2) = 0 for any F1, F2 ∈ Aµ by semistability and Serre duality.

Denote the corresponding smooth moduli stack by

Mµ :=
⊔

(d,χ)∈Λµ

Md,χ

where M0,0 is simply a point. Consider the stack of short exact sequences in Aµ and forgetful

morphisms

(22)

SESµ

Mµ ×Mµ Mµ.

π1×π3 π2

Precisely, the stack SESµ parametrizes short exact sequences 0 → F1 → F2 → F3 → 0 where

all Fi’s are semistable one-dimensional sheaves of slope µ and the morphisms π1 × π3 and π2

send this to (F1, F3) and F2, respectively. Since Aµ is hereditary, we can use diagram (22) to

define the cohomological Hall algebra multiplication

⋆ := (π2)∗ ◦ (π1 × π3)∗ : H∗(Mµ)⊗H∗(Mµ)→ H∗(Mµ).

We remark that the push-forward (π2)∗ is defined because π2 is a proper morphism between

smooth stacks. This indeed defines an associative algebra with a unit 1 ∈ Q = H∗(M0,0) ⊂

H∗(Mµ).

Definition 4.1. We call (H∗(Mµ), ⋆, 1) the slope µ semistable cohomological Hall algebra.

4.2. BPS integrality. One of the most important aspects of CoHA’s in various settings is

the so-called BPS integrality. Roughly speaking, BPS integrality relates the cohomology of the

moduli stacks and intersection cohomology of the moduli spaces in the setting of hereditary

categories. The precise meaning of BPS integrality varies with the context. We use the BPS

integrality theorem for hereditary categories, following Mozgovoy–Reineke.

Theorem 4.2 ([MR15]). We have an equality

(23) H∗(Mµ,Q
vir) = Sym


H∗(BGm,Q

vir)⊗
⊕

(d,χ)∈Λ×
µ

H∗(Md,χ, IC
vir)



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in K̂(MHM(Λµ)), the Λµ-graded localized K-theory of mixed Hodge modules.9

In the rest of the subsection, we explain the terminology in this theorem. The main language

we use is Saito’s theory of mixed Hodge modules, see [Sai88] for precise definitions. Let X

be a separated reduced scheme of finite type. Then there is an abelian category of mixed

Hodge modules MHM(X) and its bounded derived category Db(MHM(X)). When X = p is

a point, MHM(p) recovers the category of polarizable mixed Hodge structures with rational

coefficients. Important properties of mixed Hodge modules include:

(1) There is a faithful functor rat : Db(MHM(X)) → Db
cst(X) to the bounded derived

category of constructible sheaves.

(2) The functor rat sends MHM(X) to the category Perv(X) of perverse sheaves.

(3) There exists a six functor formalism with Verdier duality D for Db(MHM(−)).

(4) Every object M ∈ MHM(X) admits a weight filtration W•M .

We say that M ∈ Db(MHM(X)) is pure of weight w if grW
i H

j(M) = 0 unless i = j+w. We

simply say that M is pure if it is pure of weight 0. The shift functor [d] changes the weight

of a complex of mixed Hodge modules by d. The weight filtration behaves nicely with respect

to the six functors which in particular implies the following.

(5) (Derived) push-forward along proper morphisms preserves pure complexes.

The following fact, called semisimplicity, is perhaps the deepest result about mixed Hodge

modules, which together with (5) recovers the decomposition theorem [BBD82].

(6) If M ∈ Db(MHM(X)) is pure, then there is a (non-canonical) isomorphism

M ≃
⊕

j∈Z

Hj(M)[−j].

Suppose moreover that X is irreducible of dimension dX . The construction of the intersec-

tion complex as a perverse sheaf naturally lifts to mixed Hodge modules. We also call such a

lift the intersection complex and denote it by ICX ∈ MHM(X). Consider the elements

T := Q(−1) ∈ MHM(p), L := H∗
c (A1) = Q(−1)[−2] ∈ Db(MHM(p))

which are used for the Tate twist and Lefschetz twist, respectively. We use the same notations

for the pull-backs of T and L via X → p. When the dimension dX is even, the virtual

intersection complex is defined by

ICvir
X := T−dX /2 ⊗ ICX ∈ MHM(X).

9The same equality holds in the derived category of monodromic mixed Hodge modules D+(MMHM(Λµ))

if we consider semistable CoHA’s for quivers without relations, see [DM20]. Equality in D+(MMHM(Λµ)) for

global hereditary categories as in our case seems to be unknown in the literature, even though this is expected

to hold.
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This complex is pure of weight 0, so it is preserved by the Verdier duality functor D. If X is

smooth, the virtual intersection complex becomes

ICvir
X = QX(dX/2)[dX ] = L−dX /2.

which we simply denote by Qvir
X . When dX is odd, we take the above definition valued in

K(MHM(X))[L1/2] where the square root L1/2, or equivalently T1/2, is formally added.10

We now explain how the theory of mixed Hodge modules extends to stacks, as required by

Theorem 4.2. Since the abelian category of mixed Hodge modules forms a sheaf with respect

to the smooth topology [Ach13, Theorem 2.3], we can define MHM(X) for a locally finite Artin

stack X. The six functor formalism, however, is not defined in full generality, hence requiring

more care. This can be worked around for a certain class of Artin stacks, including global

quotient stacks by reductive groups, see [Dav22] for details. According to such a definition,

for example, we have

H∗(BGm,Q) = 1⊕ L⊕ L2 + · · · ∈ D+(MHM(p))

where D+(−) denotes the derived category bounded from below. The virtual cohomology of

BGm defines an element

H∗(BGm,Q
vir) =

L1/2

1− L
∈ K̂(MHM(p))

where K̂(MHM(p)) denotes the localized K-theory of mixed Hodge modules over a point

defined by

(24) K̂(MHM(p)) := K(MHM(p))⊗Z[L] Q[L1/2, (1 − Ln)−1 |n ≥ 1].

Finally, we explain the Λµ-grading and symmetric product Sym(−) with respect to a certain

symmetric monoidal structure. Recall that (Λµ,+) is a commutative monoid that is abstractly

isomorphic to Z≥0. We regard Λµ as a commutative monoid object in the category of schemes

by considering it as a disjoint union of points, denoted by pα for each α = (d, χ) ∈ Λµ. Define

the bounded below derived category of Λµ-graded mixed Hodge modules as

D+(MHM(Λµ)) :=
∏

α∈Λµ

D+(MHM(pα)).

This is equipped with a monoidal structure given by

D+(MHM(pα1
))×D+(MHM(pα2

))→ D+(MHM(pα1+α2
)), (M1,M2) 7→ +∗(M1 ⊠M2)

where + : pα1
× pα2

→ pα1+α2
. Moreover, this can be upgraded to a symmetric monoidal

structure by [MSS11]. This induces a λ-ring structure and a symmetric product Sym(−) on

K̂(MHM(Λµ)).

10An alternative approach to this is to use the derived category of monodromic mixed Hodge modules where

the square root of the Tate twist exists, see [Dav23, Section 2.1.6].
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Remark 4.3. The way we state Theorem 4.2 is not exactly the same as in the reference [MR15].

Our formulation follows easily by applying the Verdier duality D to Equation (12) combined

with Theorem 5.4 of loc. cit. Note that we need to use that the Verdier duality preserves the

virtual intersection complexes Qvir
Md,χ

and ICvir
Md,χ

. The authors illustrated their theory in the

case of semistable sheaves on curves, but it was explained that the same result applies to any

hereditary categories with an exact framing functor such that the Euler form is symmetric,

see [MR15, Remark 3.12]. These assumptions are satisfied for the abelian category Aµ of

semistable one-dimensional sheaves of slope µ on P2.11

4.3. Tautological generation. In this section, we prove the following properties of the co-

homology of the moduli stacks, including tautological generation, cf. Theorem 1.3 (ii).

Theorem 4.4. The cohomology ring H∗(Md,χ,Q) is tautologically generated and pure. Fur-

thermore, the cycle class map from Chow to cohomology is an isomorphism.

To motivate our proof, we explain some of its main ingredients in the analogous statement

for the classifying stack BGLn := [p/GLn]. Denote by V → BGLn the universal rank n vector

bundle. For each N ≥ n, we have a diagram

(25)

HomN
n := Hom(CN ⊗OBGLn ,V) Gr(N,n)

BGLn

π

j

where HomN
n is the total space of the vector bundle over BGLn and Gr(N,n) is the Grassman-

nian. The stack HomN
n can be interpreted as a stack parametrizing all morphisms CN → V

with dim(V ) = n. Then j : Gr(N,n) → HomN
n is an open embedding that corresponds to

surjective morphisms CN
։ V . The complement of j has codimension at most

Nn− (N(n − 1) + n− 1) = N − n+ 1

since it parametrizes morphisms CN → V that factor through some V ′ ( V . The geometry

of the above diagram thus implies

CHi(BGLn)
π∗

−−→∼ CHi(HomN
n )

j∗

−−→∼ CHi(Gr(N,n)), N − n+ 1 > i

where the isomorphisms come from homotopy invariance and excision, respectively. On the

other hand, a similar argument gives an isomrophism H≤2i(BGLn) ≃ H≤2i(Gr(N,n)) for

N − n+ 1 > i. Consequently, the cohomology and Chow groups of BGLn can be understood

via those of Gr(N,n) if N is sufficiently large. This reduces problems about tautological

11The Euler form is symmetric for a trivial reason. We also have a left exact framing functor

Hom(O(−N), −) : Aµ → Vect. For any given (d, χ) ∈ Λµ, we can choose N sufficiently large so that this

functor is exact up to degree d, and the proof of [MR15] can be adapted to this setting. Alternatively, we

can use the exact framing functor Ext1(F ′, −) : Aµ → Vect where F ′ is a fixed semistable sheaf such that

µ < µ′ < µ + 3.
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generation, purity and the cycle class map for BGLn to those of Gr(N,n), which are better

understood.

We follow the same strategy to study Md,χ. We first introduce the moduli of limit stable

pairs, also known as Joyce–Song pairs, that plays the role of Grassmannians above. Let N be

an integer such that

(26) dN + χ ≥ g =
(d− 1)(d − 2)

2
.

Then Proposition 2.2 implies

(27) Ext1(O(−N), F ) = Ext2(O(−N), F ) = 0

for any semistable sheaf F of type (d, χ).

Definition 4.5. Assume that N and (d, χ) satisfy (26). We say that a pair (F, φ) of a

one-dimensional sheaf F of type (d, χ) and a nonzero map φ : O(−N)→ F is limit stable if

(i) F is semistable, and

(ii) φ does not factor through any destabilizing subsheaf of F .

A morphism between two of such pairs (F, φ) and (F ′, φ′) is a morphism f : F → F ′ such

that f ◦ φ = φ′.

Remark 4.6. A morphism f : F → F ′ between two limit stable pairs (F, φ) and (F ′, φ′)

of identical topological type is necessarily an isomorphism. This is because if f is not an

isomorphism nor zero, then the image of f defines a destabilizing subsheaf of F ′ that φ′

factors through.

The limit stable pairs form a projective moduli space, denoted by PN
d,χ, whose construction

via geometric invariant theory is due to [LP93b]. See also [Lin18] for a modern account in a

generalized setting.

Proof of Theorem 4.4. Assume throughout the proof that N and (d, χ) satisfy (26). We first

construct a diagram analogous to (25). By the vanishing (27), we obtain a vector bundle

HomN
d,χ := p∗Hom(q∗O(−N),F)

π
−→Md,χ.

The total space HomN
d,χ of this vector bundle is a stack parametrizing pairs of a semistable

sheaf F of type (d, χ) together with a morphism φ : O(−N) → F . Since limit stable pairs

form an open subset among all such pairs, we obtain a diagram

(28)

HomN
d,χ PN

d,χ

Md,χ

π

j

where π is a vector bundle and j in an open embedding. We note that PN
d,χ is smooth because

it is an open subset inside the total space of a vector bundle over a smooth stack.
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We now estimate the codimension of the complement of j. For each semistable sheaf F of

type (d, χ), we need to study the closed inclusion of the unstable locus

(29) Hom(O(−N), F )unstable →֒ Hom(O(−N), F ),

i.e., the locus of morphisms that factor through some destabilizing subsheaf F ′ ( F . Note

that the dimension of the space of destabilizing subsheaves F ′ ( F can be bounded from above

by a constant c = c(d, χ) that only depends on (d, χ). For example, such an upper bound can

be obtained by the maximum dimension of Quot schemes QuotP2(F, (d′, χ′)) for each F and

1 ≤ d′ < d with χ/d = χ′/d′. The precise bound will not be relevant to the proof. On the

other hand, for each destabilizing subsheaf F ′ ( F of type (d′, χ′) we have

dim Hom(O(−N), F ′) = χ(O(−N), F ′)

=
d′

d
(dN + χ)

≤
d− 1

d
(dN + χ).

Combining these estimates, we obtain that

dim Hom(O(−N), F ) − dim Hom(O(−N), F )unstable

≥ (dN + χ)−

(
c(d, χ) +

d− 1

d
(dN + χ)

)
=: N − c̃(d, χ).

In other words, the codimension of the complement of j is bounded below by N− c̃(d, χ) where

c̃ depends only on (d, χ). In particular, it grows arbitrarily large as N does.

By homotopy invariance and the excision sequence again, as in the case of BGLn, we

conclude that the diagram (28) implies

(30) CH≤i(Md,χ) ≃ CH≤i(PN
d,χ) , H≤2i(Md,χ) ≃ H≤2i(PN

d,χ), if N − c̃(d, χ) > i.

For any given i ≥ 0, we can find a sufficiently large N that realizes the above isomorphisms.

So it suffices to prove the statement of the theorem for the moduli space of limit stable pairs

PN
d,χ. This is done in the next proposition, finishing the proof. �

Proposition 4.7. Assume that N and (d, χ) satisfy (26). The cohomology ring of PN
d,χ is

tautologically generated and pure. Furthermore, the cycle class map from Chow to cohomology

is an isomorphism.

Proof. Purity of the cohomology follows directly from smoothness and projectivity of P = PN
d,χ.

Note that there exists a universal pair

Φ : q∗O(−N)→ F

over P ×P2 by restricting that from HomN
d,χ×P2. By tautological classes of P in either Chow

or cohomology, we mean those classes obtained from F just like in the case of moduli stack

of sheaves. Since F is indeed a pull-back from Md,χ × P2, the notion of tautological classes
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for Md,χ and PN
d,χ agrees in both Chow and cohomology in the range (30) where they are

isomorphic.

To prove statements about tautological generation and the cycle class map, we shall con-

struct an explicit Chow–Künneth decomposition of the diagonal

∆ ∈ CHk(P1 × P2), k := dim(P ).

The subscripts in P1 and P2 are just to distinguish the two copies of P . Denote the perfect

complex coming from the universal pair by

S• :=
[
q∗O(−N)

Φ
−→ F

]
∈ Db(P × P2)

which is placed in degrees [0, 1]. We consider the complex

RHomp(S•
1 ,F2) ∈ Db(P1 × P2)

where p : P1 × P2 × P2 → P1 × P2 is the projection map and S•
i and Fi are pull-backs from

Pi × P2. We claim that RHomp(S•
1 ,F2) is a vector bundle of rank k admitting a tautological

section τ that cuts out the diagonal P = Zero(τ) →֒ P × P . Assuming the claim for the

moment, we obtain the formula

∆ = ck(RHomp(S•
1 ,F2))

=


exp


∑

i≥1

(−1)i−1(i− 1)!
∑

a+b=i

ch
(S•

1 )∨

a chF2

b (td(P2))






k

.

Here ch
(S•

1
)∨

a chF2

b (td(P2)) denotes12

∑

i

ξ(S•
1

)∨(cha(γL
i ))ξF2

(chb(γ
R
i )) ∈ H∗(P ) ,

where ∆∗td(P2) =
∑

i γ
L
i ⊗ γ

R
i , see Lemma 2.7 for a similar statement. This yields an explicit

Chow–Künneth decomposition of the diagonal in the tautological classes after expanding the

formula. Note that this argument uses the Chow–Künneth decomposition of the diagonal of

P2. By standard arguments, see for example [Bea95], this implies tautological generation and

the cycle class map being an isomorphism for P .

We finish the proof by establishing the above claim. To show the vector bundle property,

it suffices to prove

(31) Exti ([O(−N)
φ1
−→ F1] , F2

)
= 0

for all i 6= 0 and (Fj , φj) ∈ P with j = 1, 2. This can be proved by using the long exact

sequence obtained by applying Hom(−, F2) to the exact triangle

S•
1

i1−−→ O(−N)
φ1
−−−→ F1

+1
−−−→ .

12For a K-theory class V ∈ K0(P × P2), the notation ξV(−) means that we use ch(V) for the realization.
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Both (i) and (ii) in Definition 4.5 are used to show the vanishing. The argument is standard, see

for example [BLM22, Lemma 5.3]. The only difference is that we need to use an extra vanishing

Ext2(F1, F2) = 0. The rank of the vector bundle can be computed by χ(S•, F ) = dim(P ).

Over P1 × P2 × P2, consider the following morphism given by the composition

τ̃ : S•
1

I1−−→ O(−N)
Φ2−−−→ F2.

Via adjunctions, this induces a tautological section OP1×P2

τ
−→ RHomp(S•

1 ,F2) of the vec-

tor bundle. We show that Z := Zero(τ) equals the diagonal ∆ scheme-theoretically. Since

τ̃
∣∣
∆×P2 = Φ ◦ I = 0, we have ∆ →֒ Z. On the other hand, we have the following diagram

(32)

S•
1

∣∣
Z×P2 O(−N) F1

∣∣
Z×P2

S•
2

∣∣
Z×P2 O(−N) F2

∣∣
Z×P2

I1 Φ1 +1

I2 Φ2 +1

over Z × P2. By definition of Z, we have Φ2 ◦ I1 = 0 where we suppressed the restriction to

Z × P2 from the notation. Since RHomp(S•
1 ,F2) is a vector bundle, local-to-global spectral

sequence implies that

Ext−1
Z×P2(S•

1

∣∣
Z×P2,F2

∣∣
Z×P2) = H−1(RHomp(S•

1 ,F2)
∣∣
Z×P2) = 0.

Therefore, we have a part of the long exact sequence

0→ Hom(S•
1

∣∣
Z×P2,S

•
2

∣∣
Z×P2)

I2∗−−→ Hom(S•
1

∣∣
Z×P2,O(−N))

Φ2∗−−→ Hom(S•
1

∣∣
Z×P2,F2

∣∣
Z×P2)→ · · ·

where we used the above vanishing for the leftmost zero. Since I1 in the middle term is

mapped to Φ2 ◦ I1 = 0, there exists unique g ∈ Hom(S•
1

∣∣
Z×P2,S

•
2

∣∣
Z×P2) such that I2 ◦ g = I1.

In other words, the vertical map g makes the left square in (32) commutes. By the axioms of

triangulated category, this induces a morphism h ∈ Hom(F•
1

∣∣
Z×P2,F

•
2

∣∣
Z×P2) making the right

square commutes in (32). Such a morphism h is necessarily an isomorphism by the relative

version of Remark 4.6. The universal property of the moduli space P = PN
d,χ then implies

that a family of limit stable pairs O(−N)
Φi−→ Fi

∣∣
Z×P2 for i = 1, 2 defines the same morphism

Z → Pi = P . In other words, Z → P1 × P2 factors through the diagonal ∆, completing the

proof. �

Remark 4.8. The results in this section, i.e. Theorem 4.4 and Proposition 4.7, apply to more

general settings. For example, let S be a smooth del Pezzo surface, H an ample divisor and α

a topological type of either positive rank or one-dimensional sheaves. Then Ext2
S(F1, F2) = 0

for all F1, F2 ∈MH-ss
α (S), which in particular implies that MH-ss

α (S) is smooth. By picking a

positive enough line bundle L, we can construct the limit stable pair moduli space PL
α (S) which

is smooth projective. Then the same proof of Proposition 4.7 applies to show that H∗(PL
α (S))

is pure, tautologically generated and isomorphic to the Chow ring. The same properties hold
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for the moduli stack MH-ss
α (S) because we can identify H i(MH-ss

α (S)) ≃ H i(PL
α (S)) where L

is chosen sufficiently positive according to the cohomological degree i.

4.4. Applications. In this subsection, we apply results from Sections 4.2 and 4.3 to the

structure of the cohomology ring of the moduli stacks. See [MR15] for the related discussion.

We define the virtual Hodge polynomial of M ∈ MHM(p), viewed as a mixed Hodge struc-

ture, by

E(M) = E(M,u, v) :=
∑

p,q∈Z

dim hp,q(grW
p+qM)upvq ∈ Z[u±, v±].

The virtual Hodge polynomial satisfies the short exact sequence relation, hence extends to the

K-theory K(MHM(p)). In fact, this defines a ring homomorphism

E(−) : K(MHM(p))→ Z[u±, v±].

We further extend this homomorphism to the localized K-theory (24)

E(−) : K̂(MHM(p))→ Z[u±, v±, (uv)1/2, (1− (uv)n)−1 | n ≥ 1]

by letting

E(L1/2, u, v) = −(uv)1/2, E((1 − Ln)−1, u, v) = (1− (uv)n)−1.

Denote by QJΛµK the (completed) monoid ring associated to Λµ whose elements are of the form∑
α∈Λµ

cα · e
α for a collection of cα ∈ Q.13 The Hodge polynomial homomorphism naturally

extends to the Λµ-graded version by

E(−) : K̂(MHM(Λµ))→ QJΛµK⊗ Z[u±, v±, (uv)1/2, (1− (uv)n)−1 | n ≥ 1].

Denote the shifted (intersection) Hodge polynomial of the moduli stacks and spaces by

E(Md,χ) := E(H∗(Md,χ,Q
vir), u, v), IE(Md,χ) := E(H∗(Md,χ, IC

vir), u, v).

Note that we have

E(BGm) =
−(uv)1/2

1− uv
.

By applying the homomorphism E(−) to the BPS integraity (23), we obtain the following

Corollary 4.9. We have an equality

(33)
∑

(d,χ)∈Λµ

E(Md,χ, u, v) · e(d,χ) = PE



−(uv)1/2

1− uv
·

∑

(d,χ)∈Λ×
µ

IE(Md,χ, u, v) · e(d,χ)




in QJΛµK⊗ Z[u±, v±, (uv)1/2, (1 − (uv)n)−1 | n ≥ 1].

13We consider the completion to be compatible with our definition of K̂(MHM(Λµ)), which is defined as a

product
∏

λ
K̂(MHM(pλ)) rather than a direct sum.
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Here, the notation PE(−) denotes the plethystic exponential for the variables u, v and eα.

Explicitly, it is given by

PE(f(u, v, eα)) := exp


∑

n≥1

f(un, vn, enα)

n




where f ∈ QJΛµK ⊗ Z[u±, v±, (uv)1/2, (1 − (uv)n)−1 |n ≥ 1] has zero coefficient for the e0

component.

Remark 4.10. Since E(−, u, v) is defined using the graded factors with respect to the weight

filtration, it does not necessarily remember the cohomologically graded dimensions. In the case

of pure Hodge structures, however, taking graded factors does not lose anything, so E(−, u, v)

can recover the information on cohomological gradings. Note that the purity of H i(Md,χ) is

proved in Theorem 4.4 and the intersection cohomology of a proper variety is always pure.

Therefore, Corollary 4.9 relates two sets of numerical data

Betti numbers of {Md,χ}(d,χ)∈Λµ
←→ intersection Betti numbers of {Md,χ}(d,χ)∈Λ×

µ
.

In fact, both sides of the formula in (33) depend only on the product uv rather than the

individual u and v, because the Hodge structures involved are not just pure but also algebraic,

in the sense that they are of (p, p)-type. This was proved in Theorem 4.4 for H∗(Md,χ), and the

case for the intersection cohomology of the moduli spaces follows from [Bou22, Theorem 0.4.1].

Therefore, we do not lose any information by substituting u = v = q1/2 and (uv)1/2 = q1/2 to

(33), which reads

(34)
∑

(d,χ)∈Λµ

E(Md,χ, q) · e
(d,χ) = PE



−q1/2

1− q
·

∑

(d,χ)∈Λ×
µ

IE(Md,χ, q) · e
(d,χ)




in QJΛµK ⊗ Z[q±, q1/2, (1 − qn)−1 | n ≥ 1]. Note that E(−, q) and IE(−, q) are simply the

shifted (intersection) Poincaré series

E(Md,χ, q) = (−q1/2)− dimMd,χ
∑

i≥0

dimH2i(Md,χ) · qi,

IE(Md,χ, q) = (−q1/2)− dim Md,χ
∑

i≥0

dim IH 2i(Md,χ) · qi

by the purity and algebraicity of the (intersection) cohomology. We will use the notation

E(Md,χ, q) and IE(Md,χ, q) for the non-shifted Poincaré series, i.e. without the (−q1/2)− dim

factors.

The BPS integrality formula (34) (combined with Theorem 0.9) allows us to compute Betti

numbers of the stacks using those of the coprime moduli spaces, as explained in Section 0.4.

This gives a key completeness criterion for geometric relations in our computation of their

cohomology rings. Furthermore, the BPS integrality formula implies strong structural results

on the cohomology of Md,χ as we explain next.
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Theorem 4.11. The (non-shifted) Poincaré series E(Md,χ, q) depends on (d, χ) only through

its degree d and its multiplicity m := gcd(d, χ). More precisely, there exists a polynomial

Ad,m(q) = 1 + · · · + (−1)m−1qN , N = d2 +
m(m+ 1)

2

such that

E(Md,χ, q) =
Ad,m(q)

(1− q)(1 − q2) · · · (1− qm)
.

Proof. The first statement, concerning the dependence of E(Md,χ, q), follows immediately from

the BPS integrality formula (34) and the χ-independence theorem for intersection cohomology

[MS23, Theorem 0.1] (cf. Theorem 0.9).

By (34), the (non-shifted) Poincaré series E(Md,χ, q) is a sum of terms of the form

(35) qd2/2
ℓ∏

i=1

qki/2

1− qki
q−ki(d2

i +1)/2IE(Mdi,χi
, qki)

with

ℓ, ki ≥ 1 ,
ℓ∑

i=1

kiχi = χ ,
ℓ∑

i=1

kidi = d , (di, χi) ∈ Λµ .

For any such term

m = gcd(d, χ) =
ℓ∑

i=1

ki gcd(di, χi) ≥
ℓ∑

i=1

ki .

Hence the denominator
∏ℓ

i=1(1 − qki) divides
∏m

j=1(1 − qj) (for example by using the fact

that q-multinomial coefficients are polynomials in q), so we can write E(Md,χ, q) in the form

stated by the theorem with Ad,m(q) a Laurent polynomial in q. It remains to show that Ad,m

is actually a polynomial and that it has the specified degree, specified constant term and

specified leading coefficient.

We first observe that terms (35) only contribute to the qs coefficient of Ad,m(q) for

(36) s ≥
d2

2
+

ℓ∑

i=1

(
ki

2
−
ki(d

2
i + 1)

2

)
=
d2

2
−

ℓ∑

i=1

kid
2
i

2
≥
d2

2
− d

ℓ∑

i=1

kidi

2
= 0 .

This shows that Ad,χ(q) is a polynomial. Equality in (36) holds only if ℓ = 1, k1 = 1 and

(d1, χ1) = (d, χ), so only this term (which we will refer to as the “main term”) contributes to

the constant coefficient. Similarly we can bound the degree of the rational function and find

that only the main term contributes to the leading coefficient. The contribution of the main

term to E(Md,χ, q) is

1

1− q
IE(Md,χ, q) =

IE(Md,χ, q)(1− q
2)(1− q3) . . . (1− qm)

(1− q)(1− q2) . . . (1− qm)

which makes it clear that the constant coefficient is 1 and the top coefficient is (−1)m−1. �
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Remark 4.12. Note that degree of the rational function on the right hand side is equal to

the dimension dimMd,χ = d2. This type of equality need not be true for arbitrary smooth

quotient stacks X = [X/G].

The BPS integrality formula provides control of the cohomology in small degrees, and can

be used to prove a free generation result for the moduli stacks analogous to Theorem 1.9 (ii).

Theorem 4.13. The homomorphism Dα → H∗(Md,χ) defines an isomorphism up to degree

2d− 4.

Proof. We already showed that the homomorphism Dα → H∗(Md,χ) is surjective in Theo-

rem 4.4, so it is enough to prove that the dimensions agree up to degree 2d−4. The dimension

dimH2i(Md,χ) is the qi coefficient of E(Md,χ, q). We follow the proof of Theorem 4.11 and ar-

gue that only the main term contributes to the coefficient of qi with i ≤ d−2 by strengthening

the inequality (36). If either ℓ ≥ 2 or k1 ≥ 2 it is easy to see that

s ≥
d2

2
−

(d− 1)2

2
−

12

2
= d− 1 ,

showing that indeed the other terms only contribute in higher degrees. Hence, for i ≤ d − 2

we have the following chain of equalities that we will justify below:

dimH2i(Md,χ) = [qi]E(Md,χ, q) = [qi]
IE(Md,χ, q)

1− q
= dim2i H

∗(Md,1)[u]

= dim2i Dα,wt0
[u] = dim2i Dα .

We have used [qi] to denote the qi-coefficient in a series and dim2i to denote the dimension

of the 2i-graded part of some graded algebra. The formal variable u has degree 2. The first

equality is by definition, the second comes from the previous observation that only the main

term contributes for such degrees, the third uses the χ-independence theorem of Maulik–Shen

([MS23, Theorem 0.1] or Theorem 0.9), the fourth uses the freeness for the good moduli spaces

([PS23, Theorem 0.2] or Theorem 1.9), and finally the last equality uses the isomorphism

Dα ≃ Dα,wt0
[u] from Proposition 1.13. �

We also have an analogue of Theorem 1.9 (i) for stacks by following essentially the same

strategy as in [PS23].

Theorem 4.14. The algebra H∗(Md,χ) is generated by the 3d classes

ck+1(0), ck(1), ck−1(2) ∈ H2k(Md,χ), 1 ≤ k ≤ d.

Proof. See Step 1 in [PS23, Section 2.3]. Note that when χ = 0 we are not allowed to use the

relations R1 (in the notation of loc. cit.) as the inequality (13) is not satisfied, but this can

easily be avoided. �
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Note that this result is weaker than Theorem 1.9 (i), in the sense that we require more

generators and that we do not claim that this is a minimal generating set. This is due to the

fact that the leading terms analyzed in Steps 2–4 of [PS23, Section 2.3] are not necessarily

non-zero if χ = d or χ = d/2 (see for instance the formula for det(M) in loc. cit.).

5. Computation of the cohomology rings

In this section we compute all the cohomology rings in Theorem 0.2. By the symmetries

before Theorem 1.7, it suffices to restrict our attention to 0 ≤ χ ≤ d/2. We shall use the

normalized classes ck(j) in Definition 1.6 to present the rings, as explained in Remark 1.10.

5.1. Strategy of the computation. We start by outlining a detailed strategy for the com-

putation, combining the results and tools we developed in the previous sections. All our

computations are implemented in the software Macaulay2 [GS].

(i) By Theorem 1.3, the normalized tautological classes ck(j) generate the cohomology

rings of Md,χ and Md,χ. For the moduli spaces Md,χ, classes in cohomological degrees

≤ 2d− 4 generate according to Theorem 1.9 (i); for the stacks Md,χ classes in degrees

≤ 2d generate the cohomology, see Theorem 4.14. The other normalized classes can

be expressed in terms of these generators via the relations in I
GMR,1,χ′

d,χ .

Let R be a free polynomial ring in these generators, with correct cohomological

degrees specified for each. We form an ideal I to which we shall add geometric relations

step by step and take its quotient. For now, we set I = (0).

(ii) Compute the Poincaré series of the quotient R/I and compare it with the Poincaré

series of the moduli space Md,χ (known in small degrees, see for example [LP93a,

CC16, CC15]) or the moduli stack Md,χ (obtained from BPS integrality). Identify the

first cohomological degree, say ℓ, where the two series do not match. This is where

the first missing relations occur.

(iii) Apply Virasoro operators to generators of I to obtain relations in degree ℓ. Using Step

(i), reduce the new relations to expressions in terms of the ring generators only, and

add these to the ideal I.

(iv) If Step (iii) does not give all the missing relations in degree ℓ, produce primitive

relations in degree ℓ. Note that we do not need primitive relations of degrees less than

ℓ according to Theorem 3.13, since we have already performed Step (iii). Reduce the

new relations and add them to the ideal I.

(v) Repeat Steps (ii)-(iv) above, until the Poincaré series match in all degrees, meaning

that we have obtained all the tautological relations14, or conclude that the geometric

relations are not complete.

14Note that R is Noetherian and the ideal of tautological relations is finitely generated.
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(vi) (Optional) Use the command minimalPresentation to obtain a minimal presentation

of the cohomology ring and the ideal I.

Remark 5.1. Although the strategy above makes use of the known Poincaré series [LP93a,

CC16, CC15] of the moduli spaces Md,χ, we remark that our results have an independent

nature and do not depend on these numerical data in any essential way. Indeed, since Md,χ

is smooth and projective when gcd(d, χ) = 1, once we have an ideal I of geometric relations

such that the quotient ring R/I is Gorenstein with the correct dimension, Poincaré duality

would force an isomorphism H∗(Md,χ) ≃ R/I. The fact that we do have enough relations to

obtain the cohomology rings is precisely the content of Theorem 0.2 (for the moduli spaces).

One then follows Steps (ii)-(v) to treat the moduli stacks. We chose to present our strategy

as above since it is in practice much more algorithmic.

5.2. The cohomology rings. In this section, we describe the computation of H∗(M2,0,Q)

in detail following the above strategy. For the other moduli stacks (or spaces), we merely list

key information such as Poincaré series, numbers of generators and relations, etc. for their

cohomology rings, as the computations are much more involved. All presentations of the coho-

mology rings, including the partial one for M5,0, are uploaded to the fourth author’s website

https://github.com/Weite-Pi/weitepi.github.io

in a folder named cohomology rings.

Remark 5.2. The moduli space M1,0 is isomorphic to P2, whose cohomology is well-known

and can be obtained as in Example 2.5. The moduli spaces M2,1 and M3,1 are also classical

[LP93a]. The cohomology of the moduli spaceM4,1 is first computed in [CM17] using birational

geometry, and translated to a presentation in terms of normalized classes ck(j) in [KPS23].

As explained in the previous remark, the cohomology rings of these moduli spaces can all be

obtained directly using geometric relations, and we omit the details for them in the following.

5.2.1. The moduli stack M2,0. The cohomology of the stack M2,0 is generated by the normal-

ized classes in degrees ≤ 4. We thus input the command

R = QQ[c02,c11,c20,c12,c21,c30, Degrees => {2,2,2,4,4,4}]

in Macaulay2 to get a free polynomial ring. Its Poincaré series has first terms

E(R, q) = 1 + 3q + 9q2 + 19q3 + 39q4 + 69q5 + 119q6 + · · · .

On the other hand, the correct Poincaré series for M2,0 can be obtained by BPS integrality:

E(M2,0, q) =
1 + q + 2q2 + 2q3 + 3q4 + q5 − q7

(1− q) (1− q2)

= 1 + 2q + 5q2 + 8q3 + 14q4 + 18q5 + 24q6 + · · · .

https://github.com/Weite-Pi/weitepi.github.io
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Thus the first relation occurs in cohomological degree 2 (note that this is twice the exponent

of q since the latter records algebraic degrees). We produce a Mumford relation in this degree:

r1 = c2(0)−
1

8
c0(2).

One can also use GMR with M1,χ′ , which produces the same relation. Setting I to be the ideal

generated by this relation, we compute the Poincaré series

E(R/I, q) = 1 + 2q + 6q2 + 10q3 + 20q4 + 30q5 + 50q6 + · · · .

Comparing with E(M2,0, q), we see that the next relation occurs in (cohomological) degree

4. We apply the Virasoro operator L1 to the relation c2(0)− 1
8c0(2), which gives a new relation

r2 = −
1

4
c1(2) + 2c3(0).

Adding this to the ideal I, we have

E(R/I, q) = 1 + 2q + 5q2 + 8q3 + 14q4 + 20q5 + 30q6 + · · · .

The next relations thus occur in degree 10, and there are two of them. We apply the

Virasoro operators to the two relations in I; this time, however, they do not give anything

new, i.e. the relations we obtain still lie in I. We proceed by producing GMR with M1,χ′ , and

this does give two new relations. After simplifying, they are

r3 = c1(1)c2(0)4 − 2c2(0)3c3(0),

r4 = c1(1)2c2(0)3 + 16c2(0)5 + 2c2(0)3c2(1) − 6c1(1)c2(0)2c3(0) + 6c2(0)c3(0)2.

Adding these to I, we have

E(R/I, q) = 1 + 2q + 5q2 + 8q3 + 14q4 + 18q5 + 26q6 + · · · .

The next two missing relations lie in degree 12. We apply Virasoro operators to the four

generators in I, and this gives two new relations r5 = L1(r3) and r6 = L1(r4). Adding these

to the ideal and computing the Poincaré series, we found that15

E(R/I, q) =
1 + q + 2q2 + 2q3 + 3q4 + q5 − q7

(1− q) (1− q2)
,

matching the correct Poincaré series of M2,0. Thus we have found all the relations and

H∗(M2,0,Q) ≃ R/I

where I = 〈r1, r2, r3, r4, r5, r6〉.

We can further trim the quotient ring and obtain a minimal presentation of H∗(M2,0,Q).

In the trimmed form, it has four tautological generators

c1(1), c2(0), c2(1), c3(0),

and four relations, two in degree 10 and two in degree 12.

15Macaulay2 is able to reduce Poincaré series to this rational form using the command reduceHilbert.
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5.2.2. The moduli stack M3,0. The Poincaré series of M3,0 is as follows:

E(M3,0, q) =
1

(1− q) (1− q2) (1− q3)
· (1 + 2q + 3q2 + 3q3 + 3q4 + 4q5 + 7q6

+ 6q7 + 5q8 + q9 − 4q10 − 6q11 − 2q12 + q13 + 2q14 + q15)

= 1 + 3q + 7q2 + 13q3 + 22q4 + 35q5 + 55q6 + 79q7 + 111q8 + · · · .

We obtain H∗(M3,0,Q) following the same algorithm as for M2,0. In the trimmed form, it

has 7 generators

c0(2), c1(1), c2(0), c1(2), c2(1), c2(2), c3(1).

There are in total 16 relations among these generators:

degrees H4 H6 H8 H14 H16 H18 H20

# of rel. 1 2 2 2 3 4 2

5.2.3. The moduli stack M4,2. The Poincaré series of M4,2 is as follows:

E(M4,2, q) =
1

(1− q)(1 − q2)
· (1 + 2q + 5q2 + 8q3 + 9q4 + 6q5 + 5q6 + 4q7 + 5q8

+ 5q9 + 6q10 + 4q11 + 3q12 − 3q14 − 8q15 − 8q16 − 5q17 − 2q18 − q19)

= 1 + 3q + 9q2 + 19q3 + 34q4 + 50q5 + 70q6 + 90q7 + 115q8 + · · · .

In the trimmed form, the cohomology ring H∗(M4,2,Q) has 7 generators

c0(2), c1(1), c2(0), c1(2), c2(1), c3(0), c4(0).

There are in total 19 relations among these generators:

degrees H6 H8 H10 H12 H22 H24 H26 H28 H30

# of rel. 1 5 5 1 2 2 1 1 1

5.2.4. The moduli stack M4,0. The Poincaré series of M4,0 is as follows:

E(M4,0, q) =
1

(1− q)2(1− q2)(1 − q4)
· (1 + q + 3q2 + 4q3 + 3q4 + q5 + 3q6 + 2q7

+ 5q8 + 6q9 + 7q10 + 4q11 + 3q12 − 6q13 − 11q14 − 13q15 − 6q16 + 3q17

+ 10q18 + 10q19 + 4q20 − 2q21 − 3q22 − q23 − q24)

= 1 + 3q + 9q2 + 20q3 + 39q4 + 65q5 + 105q6 + 158q7 + 234q8 + · · · .

In the trimmed form, the cohomology ring H∗(M4,0,Q) has 10 generators

c0(2), c1(1), c2(0), c1(2), c2(1), c3(0), c3(1), c4(0), c4(1), c5(0).

There are in total 40 relations among these generators:
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degrees H6 H8 H10 H12 H18 H20 H22 H24 H26 H28

# of rel. 1 5 5 2 2 2 4 6 8 5

5.2.5. The moduli space M5,1. The Poincaré series of M5,1 have been computed by various

methods, see for example [Yua14, CC16, Mai13]:

E(M5,1, q) = 1 + 2q + 6q2 + 13q3 + 26q4 + 45q5 + 68q6 + 87q7 + 100q8 + 107q9 + 111q10

+ 112q11 + 113q12 + 113q13 + 113q14 + 112q15 + 111q16 + 107q17 + 100q18

+ 87q19 + 68q20 + 45q21 + 26q22 + 13q23 + 6q24 + 2q25 + q26.

As we mentioned in Section 0.2, the geometric relations IGeom
5,1 turn out to be not complete.

Indeed, our algorithm stops when we try to find a new relation in degree 36. On the other

hand, imposing all geometric relations does reduce the top dimension to one:

E(R/IGeom

5,1 , q) = 1 + 2q + 6q2 + 13q3 + 26q4 + 45q5 + 68q6 + 87q7 + 100q8 + 107q9 + 111q10

+ 112q11 + 113q12 + 113q13 + 113q14 + 112q15 + 111q16 + 107q17 + 101q18

+ 91q19 + 78q20 + · · · + q26.

Recall that M5,1 is a smooth projective variety [LP93a]. In particular, the cohomology ring

H∗(M5,1,Q) satisfies Poincaré duality. Thus once the top dimension is reduced to one, we can

use the Poincaré pairing to find the remaining relations. This completely determines the ring

structure.

The generators for M5,1 are given by Theorem 1.3. There are in total 34 relations as follows.

The cross signs indicate three relations that are not geometric.

degrees H10 H12 H14 H30 H34 H36 H38 H40

# of rel. 3 12 13 1 1 1× 2× 1

5.2.6. The moduli space M5,2. The Poincaré series and ring generators of M5,2 are the same

as those of M5,1. This time the geometric relations are complete, namely IGeom
5,2 = I5,2 and

also IGeom
5,2 = I5,2 on the stack level. There are in total 41 relations for the moduli space:

degrees H10 H12 H14 H16 H18 H28 H30 H32 H34 H36 H38 H40

# of rel. 3 12 13 2 1 1 1 1 2 3 1 1

Remark 5.3. Our results on the cohomology of M5,1 and M5,2 give a different and explicit

proof for the first non-trivial case of Theorem 1.7. Also as we discussed in Remark 2.12, one

can ask whether IGMR,5,2
5,1 will produce the missing tautological relations for M5,1.
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5.2.7. The moduli stack M5,0. Finally, we determine the cohomology ring of the stack M5,0

up to cohomological degree 32. We did not complete this for a purely computational reason,

as the current ring structure is already quite complicated, and it takes an exceedingly long

time to compute Poincaré series or to reduce the relations. We hope this partial result would

still be interesting and useful for future research.

First, we list the first terms in the Poincaré series of M5,0:

E(M5,0, q) = 1 + 3q + 9q2 + 22q3 + 49q4 + 98q5 + 180q6 + 302q7 + 476q8

+ 713q9 + 1032q10 + 1449q11 + 1994q12 + 2690q13 + 3575q14

+ 4679q15 + 6047q16 + 7706q17 + 9696q18 + 12027q19 + 14731q20 + · · ·

Our computation shows that the geometric relations are complete up to cohomological

degree 32. The cohomology ring H∗(M5,0) has 13 generators

c0(2), c1(1), c2(0), c1(2), c2(1), c3(0), c2(2), c3(1), c4(0), c3(2), c4(1), c4(2), c5(1).

There are in total 56 relations up to degree 32:

degrees H8 H10 H12 H14 H16 H18 H22 H24 H26 H28 H30 H32 · · ·

# of rel. 1 3 8 11 5 1 2 2 2 4 7 10 · · ·

The next relations occur in degree 34, and there are 14 of them. To find these relations,

one can start by applying the Virasoro operators to the existing ones.

6. P = C and other conjectures

In this final section, we formulate the strengthened version of the P = C conjecture and

verify several predictions on the cohomology rings of the moduli spaces (mostly M5,χ) in

Theorem 0.2. Again, it suffices to verify each of the conjectures for 0 ≤ χ ≤ d/2.

6.1. The P = C conjecture.

6.1.1. The perverse filtration. We start by recalling the construction of the perverse filtration

[dC16, Lecture 5]; see also [KPS23, Section 1.1]. Let f : X → Y be a proper morphism

between irreducible varieties. For simplicity, we assume that X and Y are both smooth and

projective. The perverse truncation functors [BBD82] filter the derived push-forward complex

Rf∗QX , thus inducing an increasing filtration

P0H
∗(X) ⊂ P1H

∗(X) ⊂ · · · ⊂ H∗(X,Q)

called the perverse filtration. Intuitively, it measures the complexity of the fibers of the proper

map f : X → Y .

We recall the following useful properties of the perverse filtration:
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(i) Let η be an ample class on Y , and denote by ξ := f∗η its pull-back to X. Then the

perverse filtration on H∗(X,Q) is completely determined by the multiplication by ξ

operator; see [dCM05, Proposition 5.2.4] and [KPS23, Proposition 1.1] for the explicit

formula.

(ii) Let r be the defect of semismallness of f :

r := dimX ×Y X − dimX

When f is equidimensional, this is simply the relative dimension dimX−dimY . Then

the perverse filtration P•H
∗(X,Q) stabilizes in 2r steps, i.e. P2rH

∗(X) = H∗(X).

(iii) The graded pieces grP
• H

∗(X) of the perverse filtration satisfy two Hard Lefschetz type

symmetries [dCM05, Theorem 2.1.4]. They arise respectively from the pull-back of an

ample class on Y and a relative ample class on X.

Consider the moduli space Md,χ with gcd(d, χ) = 1 and the Hilbert–Chow map

h : Md,χ −→ |d ·H|.

This is a proper map with generic fibers being abelian varieties. Its topology is encoded in

the perverse filtration P•H
∗(Md,χ,Q). This is one side of the P = C conjecture.

6.1.2. The Chern filtration. We turn to the Chern side next. Recall that the (local) Chern

filtration C•H
≤2d−4(Md,χ) was defined in [KPS23, Section 0.2] for coprime Md,χ. By definition,

it involves only the normalized tautological generators in Theorem 1.9 (i). In order to extend

this to a filtration on the entire cohomology rings, it is natural to include all normalized

tautological classes. We thus define the (global) Chern filtration

(37) CkH
∗(Md,χ) := span

{
s∏

i=1

cki
(ji)

∣∣∣∣∣
s∑

i=1

ki ≤ k

}
⊂ H∗(Md,χ,Q)

where we impose no restriction on the cohomological degree, and cki
(ji) is allowed to be any

normalized class.16 Equivalently, this is the smallest multiplicative filtration where each class

ck(j) lies in the k-th step of the filtration.

The definition above has the advantage of being explicit and computable, but apparently

relies on the normalization in Section 1.2. Recall that the normalized classes are closely related

to the weight zero descendent algebra via the identification Q[c0(2), c2(0), c1(2), · · · ] ≃ Dα,wt0
,

where α = (d, χ) as usual. We now explain how the latter can be used to give a more canonical

definition of the Chern filtration, without any choice of normalization. To motivate this, we

note that the previous definition (37) can be viewed as being induced from a parallel Chern

filtration C•Q[c0(2), c2(0), c1(2), · · · ] on the free polynomial ring, via the surjective map

Q[c0(2), c2(0), c1(2), · · · ] ։ H∗(Md,χ).

16This corrects the mismatch between perversity and the Chern degrees in [KPS23, Remark 2.10].
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We can also define the Chern filtration C•H
∗(Md,χ) for the stacks in the same way, using a

surjective map from C•Q[c0(2), c1(1), c2(0), c1(2), · · · ] for any (d, χ).

Definition 6.1. The Chern filtration C̃•Dα ⊂ Dα is the minimal multiplicative filtration such

that chk(Hj) ∈ C̃k−j+1 Dα for any k > 0 and j = 0, 1, 2. The Chern filtration on the weight

zero descendent algebra Dα,wt0
is defined by restriction, i.e.

C̃•Dα,wt0
= C̃•Dα ∩ Dα,wt0

.

Remark 6.2. Since ξ(chk(Hj)) = p∗

(
chk−j+2(F) · q∗Hj

)
, the Chern filtration index (k− j+ 1)

is one less than the Chern character degree of the universal sheaf we take in the realization.

The shift by one can be motivated by the codimension of the sheaves we parametrize.

Remark 6.3. The Chern filtrations are preserved under the isomorphism

C̃•Deρ·α
Fρ
−→ C̃•Dα

from Section 1.2.2. Indeed, we have Fρ(chk(Hj)) = chk(Hj · eρ) ∈ C̃k−j+1Dα, and the mul-

tiplicativity shows the inclusion Fρ(C̃•) ⊆ C̃•. The other inclusion follows from the same

argument applied to F−ρ. The same statement holds for the weight zero descendent algebra.

Definition 6.4. We define the Chern filtration on the cohomology of the moduli stacks and

spaces to be

C̃•H
∗(Md,χ) := Im(C̃•Dα

ξ
−→ H∗(Md,χ)), C̃•H

∗(Md,χ) := Im(C̃•Dα,wt0

ξ
−→ H∗(Md,χ))

where gcd(d, χ) = 1 is assumed for the moduli space.

The next proposition justifies the same choice of terminology for the above definitions.

Proposition 6.5. The two definitions of the Chern filtration match, i.e.

C•H
∗(Md,χ) = C̃•H

∗(Md,χ) and C•H
∗(Md,χ) = C̃•H

∗(Md,χ)

where gcd(d, χ) = 1 is assumed for the moduli space.

Proof. It suffices to show that the two filtrations match under the identifications of the formal

algebras as in Section 1.2.3. Consider the commutative diagram of ring homomorphisms

Q[c0(2), c1(1), c2(0), c1(2), · · · ] Dα

Q[c0(2), c2(0), c1(2), · · · ] Dα,wt0
.

∼

η′ η

∼

The left and the right columns are equipped with the C• and C̃• filtrations, respectively. The

top row isomorphism identifies the two Chern filtrations C• and C̃• by Remark 6.3. This

proves the statement for Md,χ.

Now we consider the moduli space Md,χ which corresponds to the bottom row. On the left

hand side, it is clear that η′(C•) = C• since η′ simply sets c1(1) = 0. Therefore, we are left
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with showing that η(C̃•) = C̃• on the right hand side. Since η restricts to the identity on

Dα,wt0
, we have η(C̃•) ⊇ C̃•. On the other hand, recall the formula

η =
∑

j≥0

(−1)j

j! · dj
ch1(H)jR

j
−1 .

It is clear from the definition of R−1 and the C̃• filtration that R−1(C̃•) ⊆ C̃•−1 and ch1(H)C̃• ⊆

C̃•+1, since ch1(H) ∈ C̃1. We conclude that η(C̃•) ⊆ C̃•, which completes the proof. �

We expect the Chern filtration C•H
∗(Md,χ) to play a role in a stacky version of the P = C

conjecture; see Theorem 6.9 for the numerical evidence.

6.1.3. The conjecture and the result. We are now ready to state the (strengthened) P = C

conjecture.

Conjecture 6.6. For coprime d ≥ 1 and χ ∈ Z, we have

P•H
∗(Md,χ,Q) = C•H

∗(Md,χ,Q).

It was shown in [MSY23, Theorem 0.6] that the Chern filtration is contained in the perverse

filtration in small cohomological degrees, i.e.

P•H
≤2d−4(Md,χ) ⊃ C•H

≤2d−4(Md,χ) .

In addition, the equality between the two filtrations up to cohomological degree 4 is shown in

[Yua23a].

Remark 6.7. Before presenting more evidence, we discuss a number of structural implications

of Conjecture 6.6 on both sides of the equality.

(i) The perverse filtration is in general not multiplicative, meaning that we do not neces-

sarily have

PkH
∗(X,Q)× Pk′H∗(X,Q)

∪
−→ Pk+k′H∗(X,Q).

See [dC16, Exercise 5.6.8] for a counterexample, and [dCMS22, Theorem 0.6] on how

the P = W conjecture can be reduced to a multiplicativity statement. On the other

hand, the (global) Chern filtration is multiplicative by definition. Thus Conjecture 6.6

would imply that the perverse filtration on Md,χ is multiplicative as well.

(ii) The Hilbert–Chow morphism is equidimensional, and thus P•H
∗(Md,χ) stabilizes in

2g steps, where g = 1
2(d − 1)(d − 2) is the relative dimension. This implies that the

Chern filtration should also stabilize, i.e. C2gH
∗(Md,χ) = H∗(Md,χ). Explicitly, every

monomial in the normalized classes ck(j), possibly with Chern degrees > 2g, should

be expressed by those with Chern degrees ≤ 2g in the cohomology ring H∗(Md,χ,Q).
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(iii) According to [MS23, Theorem 0.4], the perverse numbers (i.e. dimensions of graded

pieces of the perverse filtration) of Md,χ are independent on the Euler characteristic

χ, and satisfy two Hard Lefschetz type symmetries [dCM05, Theorem 2.1.4]. Thus the

graded dimensions of the Chern filtration on Md,χ should also be independent on χ and

satisfy these symmetries. This prediction is particularly non-trivial given Theorem 1.7,

which states that the cohomology ring structure of Md,χ is as χ-dependent as possible.

(iv) Also from the equidimensionality of the Hilbert–Chow map and the two Hard Lefschetz

symmetries, the perverse filtration P•H
∗(Md,χ) is not ‘full’ when the cohomological

degree is large. For example, it only has the highest perversity piece

0 = P2g−1H
top(Md,χ) ⊂ P2gH

top(Md,χ) = Htop(Md,χ,Q)

in top cohomological degree. More generally, we have

P2ℓ−1H
2(b+ℓ)(Md,χ,Q) = 0 for ℓ ≥ 1.

Conjecture 6.6 thus predicts that monomials in ck(j) that lie in C2ℓ−1H
2(b+ℓ)(Md,χ)

should also vanish, providing a wealth of non-trivial relations in the cohomology ring

H∗(Md,χ,Q). For example, the base relations (cf. Proposition 2.14) are a special case

of this prediction since

b+1∏

i=1

cki
(2) ∈ CkH

2b+2k+2(Md,χ) ⊆ C2(k+1)−1H
2(b+k+1)(Md,χ)

where k =
∑b+1

i=1 ki. It remains to be studied how these (conjectural) relations deter-

mine the ring structure.

Here is our main evidence for the P = C conjecture:

Theorem 6.8. Conjecture 6.6 holds for all moduli spaces Md,χ with d ≤ 5 and gcd(d, χ) = 1.

In particular, the perverse filtrations on these moduli spaces are multiplicative.

Proof. According to [KPS23, Corollary 1.3], the perverse filtration on Md,χ is characterized

by the cup product with the class ξ = c0(2). Thus the cohomology ring structure completely

determines the perverse filtration. The theorem follows by straightforward verifications of the

P = C equality as explained in [KPS23, Section 2.4]. �

We also record the following result towards a stacky P = C conjecture, without going into

details on how the perverse filtration on the stacks [Dav23] is defined. The proof is again a

direct verification in Macaulay2.17

Theorem 6.9. For the moduli stacks M2,0, M3,0, M4,2, M4,0, the graded dimensions of the

perverse filtration and the Chern filtration coincide in all cohomological degrees.

17See Remark 6.11 on how the stacky perverse numbers can be computed via BPS integrality.
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The same numerical match holds for M5,0 up to cohomological degree 32 where we are able

to determine the ring structure, cf. Section 5.2.7.

6.2. Refined GV/PT/Nekrasov correspondence. As we have discussed in the overview,

one major motivation to study Md,χ, and in particular the perverse filtration P•H
∗(Md,χ),

arises from its connection to the refined BPS invariants of local P2, which we write simply KP2.

We organize the numerical information of the perverse filtration in the Laurent polynomial in

two variables

Ωd(q, t) = (−1)d2+1q−gt−b
∑

i,j≥0

dim grP
i IH i+j(Md,χ)qitj ,

where b = d(d+3)
2 and g = (d−1)(d−2)

2 are the dimension of the base and fibers of the Hilbert–

Chow map, respectively. The right hand side does not depend on χ by Theorem 0.9. The two

hard Lefschetz symmetries imply that Ωd is invariant under the two symmetries q ↔ q−1 and

t↔ t−1.

We define the refined BPS invariants N jL,jR
d for d ≥ 1 and jL, jR ∈

1
2Z≥0 to be the unique

integers satisfying the equality

(38) Ωd(q, t) =
∑

jL,jR

(−1)2jL+2jRN jL,jR
d χjL

(q)χjR
(t)

where

χj(x) =
x2j+1 − x−2j−1

x− x−1
= x−2j + x−2j+2 + . . .+ x2j−2 + x2j .

The numbers N jL,jR
d are supposed to be the numbers of BPS particles with charge d and

quantum spin numbers (jL, jR) in a certain 5D gauge theory; see for example the discussion

in the introductions of [IKV09] or [CKK14]. These numbers are a refinement of the standard

Gopakumar–Vafa invariants, which conjecturally control the enumerative geometry (Gromov–

Witten or Pandharipande–Thomas invariants) of KP2. Indeed, the definition of Maulik–Toda

[MT18] of the (unrefined) Gopakumar–Vafa invariants ng,d of KP2 is

(−1)d2+1Ωd(q,−1) = Ωd(−q, 1) =
∑

g≥0

ng,d

(
q1/2 + q−1/2)2g

.

Choi, Katz and Klemm propose in [CKK14] to use refined stable pairs to define N jL,jR
d .

Comparing their proposal to our definition of N jL,jR
d leads to a refined GV/PT correspondence,

which we now formulate precisely.

The (unrefined) Pandharipande–Thomas invariants are integers PTd,n which (virtually)

count stable pairs on KP2 with discrete invariants (d, n). Pandharipande–Thomas invariants

admits a refinement18

PTref

d,n ∈ Z[t±1]

18See for example [NO16] or [CKK14]. Our formal variable t corresponds to κ1/2 in [NO16] or to L1/2 in

[CKK14].
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symmetric under t ↔ t−1 which specializes to PTd,n when t = 1. The refined PT vertex is a

generating series in formal variables q, t,Q:

Zref

PT =
∑

d≥0

Qd
∑

n∈Z

PTref

d,n · (−q)
n .

The refined PT vertex Zref
PT

can be combinatorially calculated (at least up to Q14 in [KPS23])

via the refined topological vertex [IKV09, IK17]. Alternatively, it can be read from the

Nekrasov partition function of rank 2 instantons, as explained in [KPS23, Section 3.3], which

also admits a combinatorial description. The refined GV/PT correspondence is the following

expression for the refined topological vertex in terms of Ωd:

(39) Zref

PT = PE


− q

(1− qt)(1− q/t)

∑

d≥1

Ωd(q, t)Qd


 .

This conjecture is an equivalent formulation of [KPS23, Conjecture 3.1]. The specialization

t = 1 of the conjecture is precisely the (also conjectural) unrefined GV/PT correspondence

for KP2. On the other hand, the specialization q = t, known as the Nekrasov–Shatashvili

limit (which forgets the information of the perverse filtration, namely Ωd(q, q) = IE(Md,χ, q)),

was shown in [Bou23] to be related to the relative Gromov–Witten theory of the pair (P2, E)

where E ⊆ P2 is a smooth elliptic curve.

Remark 6.10. The numbers N jL,jR
d are defined in [CKK14, (8.1)] from Zref

PT
; see Table 1 in loc.

cit. for these numbers up to d = 7. Conjecture (39) is the statement that our definition (38)

matches with theirs.

Remark 6.11. It is quite interesting to notice the similarity between (39) and the BPS inte-

grality formulas, for instance (34). Indeed, the Qd coefficient of

(40) PE


− q

1− qt

∑

d≥1

Ωd(q, t)Qd




is the generating function keeping track of the numbers dim grP
i H

i+j(Md,0) where P• is a

stacky perverse filtration as in [Dav23]. We do not have any good explanation for the apparent

similarity between (39) and (40).

Our calculation of the cohomology rings allow us to compute Ωd for d ≤ 5, and thus check

the refined GV/PT conjecture up to d = 5. Previously, this was known only up to d = 4

[KPS23, Theorem 0.7], using the calculation of the cohomology ring in [CM17].

Theorem 6.12. The refined GV/PT correspondence (39) holds up to order Q5.
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6.3. Euler characteristics of line bundles. We finish with a conjecture of Chung–Moon:

Conjecture 6.13 ([CM17, Conjecture 8.2]). For d ≥ 1 and coprime χ, we have

(41) χ
(
Md,χ, m · c0(2)

)
=

(
m+ 3d− 1

m

)
.

Here we write c0(2) also to denote its associated line bundle, i.e. the pull-back of O(1) under

the Hilbert–Chow map. The Euler characteristics in (41) are known as generalized K-theoretic

Donaldson numbers, and are relevant to the strange duality conjecture [CM17, Section 8] for

P2. Note that this is formulated only for Md,1 (and verified for d ≤ 4) in [CM17]. The next

proposition justifies our extension of the conjecture to arbitrary χ coprime to d.

Proposition 6.14. For a fixed d, the Euler characteristic in (41) is independent of the choice

on χ. In particular, Conjecture 6.13 holds for Md,1 if and only if it holds for all coprime Md,χ.

Proof. We first observe that the Euler characteristics in question are computed by the Hilbert

polynomial of the derived push-forward Rh∗OMd,χ
, where

h : Md,χ −→ |d ·H|

is the Hilbert–Chow map. Thus it suffices to show that Rh∗OMd,χ
is χ-independent over the

base |d ·H| = Pb. This follows from [MS23, Theorem 0.4] combined with the theory of Hodge

modules. Indeed, for any χ coprime to d, let π : C → U be the universal smooth curve over

U ⊂ Pb; recall that [MS23] we have an isomorphism

(42) Rh∗QMd,χ
[n] ≃

2g⊕

i=0

IC
(
∧iR1π∗QC

)
[−i+ g]

in the bounded derived category Db(MHM(Pb)), where n = dimMd,χ, and

QMd,χ
[n] = (OMd,χ

, F•), 0 = F−1OMd,χ
⊂ F0OMd,χ

= OMd,χ

is the trivial Hodge module. Consider its associated de Rham complex

DR(OMd,χ
) =

[
OMd,χ

→ Ω1
Md,χ

→ · · · → Ωn
Md,χ

]
[n]

with the induced Hodge filtration F•DR(OMd,χ
). A direct computation yields

grF
−ℓDR(OMd,χ

) = Ωℓ
Md,χ

[n − ℓ].

Taking ℓ = 0, we have

Rh∗OMd,χ
= Rh∗

(
grF

0 DR(OMd,χ
)
)

= grF
0 DR

(
Rh∗QMd,χ

[n]
)

≃ grF
0 DR




2g⊕

i=0

IC
(
∧iR1π∗QC

)
[−i+ g]




is independent of χ, where we used in the second equality the commutativity of grF
• DR(−)

with derived push-forward [Sai88, Section 2.3.7]. This finishes the proof. �
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Theorem 6.15. Conjecture 6.13 holds for all coprime moduli spaces M5,χ.

Proof. By Proposition 6.14, it suffices to consider M = M5,1. We first determine the point

class in H∗(M,Q). Recall that Md,χ has only (p, p)-classes [Bou22, Theorem 0.4.1]. It follows

that

(43) χ(M,OM ) =
∑

k≥0

(−1)k dimHk(M,OM ) =
∑

k≥0

(−1)kh0,k(M) = 1.

On the other hand, the Hirzebruch–Riemann–Roch theorem gives

(44) χ(M,OM ) =

∫

M
ch(OM ) · td(M) =

∫

M
td(M).

The Todd class td(M) can be written in terms of the normalized tautological classes ck(j)

using the expression of the tangent bundle

TM = −Rq∗RHom(F,F) +OM ∈ K(M),

see for example [KPS23, Section 2.3.3]. Combining Equations (43) and (44) gives the point

class in H∗(M,Q) in terms of the normalized classes19. The proof of Theorem 6.15 is then

a straightforward verification in the cohomology ring, using the Hirzebruch–Riemann–Roch

formula

χ
(
M,m · c0(2)

)
=

∫

M
ch(m · c0(2)) · td(M).

Note that the LHS of (41) is a polynomial in the variable m ∈ Z, so we only need to check

the equality for a finite number of values. �

Appendix A. An identity in the quadratic descendent algebra

In this appendix we state and prove an identity involving the interaction between the

Virasoro derivations Rn and a special class C in (the completion of) the quadratic descendent

algebra D ⊗ D. This is a purely formal identity and it holds for the descendent algebra

D = DX of an arbitrary target variety X (in the main text X is always P2); for simplicity, we

will assume that X does not have odd cohomology and that dim(X) is even, but this can be

adapted with minor changes in the signs. This identity is used in the proof that the Virasoro

operators preserve the ideal of GMR and we hope that it can be of use in other contexts in

the study of Virasoro constraints.

Define C by

C = exp




∑

a,b≥0
(a,b)6=(0,0)

∑

i

(−1)b+dL
i (a+ b− 1)!cha(γL

i )⊗ chb(γ
R
i )




19Explicitly, it is represented by 7812500000

62868347
c0(2)8c2(2)6.
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where
∑

i

γL
i ⊗ γ

R
i = ∆∗td(X)

is the Künneth decomposition of the push-forward of td(X) along the diagonal and γL
i ∈

H2dL
i (X). Let Cj ∈ D ⊗ D be the degree 2j part of C. Recall that Cj is a natural lift to the

quadratic descendent algebra of the Chern class cj(−RHomp(F ,F ′)).

We define also the operators

∂n : D⊗ D→ D⊗ D

by the formula

∂n = Rn ⊗ id +
n∑

k=−1

(
n+ 1

k + 1

)
id⊗ Rk .

Note that both the class C and the operators ∂n make sense in Dα ⊗Dα′ as well.

Theorem A.1. For n ≥ 0, we have

∂n(C) =


 ∑

0≤a+b≤n

a!(n− a)!

(n− a− b)!

∑

i

(−1)dL
i +1cha(γL

i )⊗ chb(γ
R
i )


C

in (the completion of) Dα ⊗ Dα′.

Note that for n = 0, the formula reads (see for example (46) below)

(R0 ⊗ id + id⊗ R0 + id⊗ R−1)(C) = −χ(α,α′)C.

We illustrate this special case first. Applying the derivation R0⊗ id + id⊗R0 to the definition

of C yields

(45)
∑

j≥1

jCj =




∑

a,b≥0
(a,b)6=(0,0)

∑

i

(−1)b+dL
i (a+ b)!cha(γL

i )⊗ chb(γ
R
i )


C ,

which is just Newton’s identity for −RHomp(F ,F ′). The n = 0 case of Theorem A.1 then

follows from the following lemma.

Lemma A.2. We have

(id ⊗ R−1)(Cj) = −(R−1 ⊗ id)(Cj) = −(j − 1 + χ(α,α′))Cj−1

in Dα ⊗ Dα′ .
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Proof. We have

(id ⊗ R−1)(C) =




∑

a,b≥0
(a,b)6=(0,0)

∑

i

(−1)b+dL
i (a+ b− 1)!cha(γL

i )⊗ chb−1(γR
i )


C

=


 ∑

a,b≥0

∑

i

(−1)b+1+dL
i (a+ b)!cha(γL

i )⊗ chb(γ
R
i )


C

where in the second line we replaced b− 1 by b. Now the term in the sum with a = b = 0 is

(46) −
∑

i

(−1)dL
i ch0(γL

i )⊗ ch0(γR
i ) = −

∑

i

(−1)dL
i

∫

X
ch(α) · γL

i

∫

X
ch(α′) · γR

i = −χ(α,α′) .

The terms with (a, b) 6= (0, 0) are, up to a minus sign, the ones in (45), so we conclude the proof

of the lemma for the id⊗R−1. The statement for R−1⊗id is similar; it can also be deduced from

the fact that −RHomp(F ,F ′) is unaffected when we twist both F and F ′ by a line bundle,

which formally implies that its Chern classes are annihilated by R−1 ⊗ id + id⊗ R−1. �

Proof of Theorem A.1. Observe that ∂n is a derivation. When we apply ∂n to C, we obtain a

sum of the form 
∑

a,b≥0

∑

i

(−1)b+dL
i Ka,bcha(γL

i )⊗ chb(γ
R
i )


C

where Ka,b are some constants. These constants are a sum of contributions of each summand

of ∂n:

(i) When Rn ⊗ id hits (−1)b+dL
i (a+ b− n− 1)!cha−n(γL

i )⊗ chb(γ
R
i ) we get

(−1)b+dL
i (a+ b− n− 1)!(a)n+1cha(γL

i )⊗ chb(γ
R
i )

where (a)m denotes the falling factorial

(a)m = a(a− 1) . . . (a−m+ 1) .

Thus, we get a contribution of (a+ b−n− 1)!(a)n+1 to the constant Ka,b coming from

this summand. Note that if a < n then (a)n = 0, so the formula for the contribution

makes sense as long as a+ b ≥ n + 1. If a+ b ≤ n then the contribution of this term

is also set to 0.

(ii) When id⊗ Rk hits (−1)b−k+dL
i (a+ b− k − 1)!cha(γL

i )⊗ chb−k(γR
i ) we get

(−1)b−k+dL
i (a+ b− k − 1)!(b)k+1cha(γL

i )⊗ chb(γ
R
i ) .

Hence, the summand
(n+1

k+1

)
id⊗ Rk contributes to Ka,b with

(−1)k

(
n+ 1

k + 1

)
(a+ b− k − 1)!(b)k+1 .

As before, this formula holds as long as a+ b ≥ k + 1.
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Now for (a, b) with a+ b > n, we have

Ka,b = (a+ b− n− 1)!(a)n+1 +
n∑

k=−1

(−1)k

(
n+ 1

k + 1

)
(a+ b− k − 1)!(b)k+1 = 0 ,

where the last equality results in an application of Lemma A.3 with m = n + 1, ℓ = k + 1,

which we will prove next.

When a+ b ≤ n, we have

Ka,b =
a+b−1∑

k=−1

(−1)k

(
n+ 1

k + 1

)
(a+ b− k − 1)!(b)k+1

= a!b!
b−1∑

k=−1

(−1)k

(
n+ 1

k + 1

)(
a+ b− k − 1

a

)
= −a!b!

(
a+ b− n− 1

b

)

= (−1)b−1 a!(n− a)!

(n− a− b)!

where the penultimate identity is (47). This finishes the proof. �

Lemma A.3. Let m ∈ Z≥0 and a, b ∈ C. Then the following identity holds:

(a)m =
m∑

ℓ=0

(−1)ℓ

(
m

ℓ

)
(a+ b− ℓ)m−ℓ(b)ℓ .

Proof. This is a polynomial identity in a and b, so it is enough to prove it for a, b ∈ Z with

a, b > m. In this case, we may replace the falling factorials by a quotient of factorials, and

the identity we want can be rewritten as

(47)

(
a+ b−m

b

)
=

m∑

ℓ=0

(−1)ℓ

(
m

ℓ

)(
a+ b− ℓ

a

)
.

This follows by taking the za+b coefficient in the identity of generating series

za

(1− z)a+1−m
= (1− z)m za

(1− z)a+1
. �
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[IK17] A. Iqbal and C. Kozçaz, Refined topological strings on local P2, J. High Energy Phys., (2017),

pp. 069, front matter+20.
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[Mai10] M. Maican, A duality result for moduli spaces of semistable sheaves supported on projective curves,

Rend. Semin. Mat. Univ. Padova, 123 (2010), pp. 55–68.

[Mai13] M. Maican, The homology groups of certain moduli spaces of plane sheaves, Int. J. Math., 24

(2013), p. 42. Id/No 1350098.

[Mar07] E. Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson

surfaces, Adv. Math., 208 (2007), pp. 622–646.

[MOOP22] M. Moreira, A. Oblomkov, A. Okounkov, and R. Pandharipande, Virasoro constraints for

stable pairs on toric threefolds, Forum Math. Pi, 10 (2022), pp. Paper No. e20, 62.

[Mor22] M. Moreira, Virasoro conjecture for the stable pairs descendent theory of simply connected 3-

folds (with applications to the Hilbert scheme of points of a surface), J. Lond. Math. Soc. (2), 106

(2022), pp. 154–191.

[MR15] S. Mozgovoy and M. Reineke, Intersection cohomology of moduli spaces of vector bundles over

curves, 2015.

[MS22] D. Maulik and J. Shen, The P = W conjecture for GLn. arXiv:2209.02568, 2022.

[MS23] D. Maulik and J. Shen, Cohomological χ-independence for moduli of one-dimensional sheaves

and moduli of Higgs bundles, Geom. Topol., 27 (2023), pp. 1539–1586.
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