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The aim of this paper is to explain and unify some work by Tanaka1, Lohe2 and Chandra et al.3,4 on a generalization
of Kuramoto oscillator networks to the case of higher dimensional “oscillators.” Instead of oscillators represented by
points on the unit circle S1 in R2, the individual units in the network are represented by points on a higher dimensional
unit sphere Sd−1 in Rd . Tanaka demonstrates in his 2014 paper that the dynamics of such a system can be reduced
using Möbius transformations fixing the unit ball, similar5 to the classic case when d = 2. Tanaka also presents a
generalization of the famous Ott-Antonsen reduction6 for the complex version of the system7. Lohe derives a similar
reduction using Möbius transformations for the finite-N model, whereas Chandra et al. concentrate on the infinite-
N or continuum limit system, and derive a dynamical reduction for a special class of probability densities on Sd−1,
generalizing the Poisson densities used in the Ott-Antonsen reduction.

Previously studied oscillator systems1–4 are intimately related to the natural hyperbolic geometry on the unit ball Bd in
Rd ; as we shall show, once this connection is realized, the reduced dynamics, evolution by Möbius transformations and
the form of the special densities3,4 all follow naturally. This framework also allows one to see the seamless connection
between the finite and infinite-N cases. In addition, we shall show that special cases of these networks have gradient
dynamics with respect to the hyperbolic metric, and so their dynamics are especially easy to describe.

In 1975, Kuramoto introduced a model of collective syn-
chronization in a large population of coupled oscilla-
tors with randomly distributed natural frequencies. Ku-
ramoto’s model displayed many remarkable features: It
was exactly solvable (at least in some sense, and in the limit
of infinitely many oscillators), despite being nonlinear and
high-dimensional. Its solution shed analytical light on a
phase transition to mutual synchronization that Winfree
had previously discovered in a similar but less convenient
system of oscillators. Since then, the Kuramoto model has
been an object of fascination for nonlinear dynamicists, as
well as a simplified model for many real-world instances
of synchronization in physics, biology, chemistry, and en-
gineering.

From a mathematical standpoint, one of the most intriguing
problems has been to explain the tractability of the Kuramoto
model. What symmetry or other hidden structure accounts for
its solvability?

The first clues came from work on an adjacent topic: the dy-
namics of series arrays of N identical overdamped Josephson
junctions. The governing equations for these superconduct-
ing oscillators are closely related to the those of the Kuramoto
model, and themselves displayed remarkable dynamical fea-
tures. These included ubiquitous neutral stability of splay
states, invariant low-dimensional tori, and evidence of con-
stants of motion, despite the presence of damping and driving
in the governing equations. These features were explained in
1993 by the discovery of a certain change of variables, now
called the Watanabe-Strogatz transformation, which showed
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that for the governing equations have N−3 constants of mo-
tion, for all N ≥ 3. Goebel then simplified and rationalized
this transformation by showing that it could be viewed as a
time-dependent version of a linear fractional transformation,
a standard tool in complex analysis. For more than a decade,
however, these results did not attract much attention, perhaps
because they were assumed to be restricted to problems about
Josephson junctions, and within that specialized setting, even
further restricted to junctions that were strictly identical.

A breakthrough occurred in 2008 with the work of Ott
and Antonsen. They found an astonishing way to capture
the macroscopic dynamics of the infinite-N Kuramoto model,
even when the oscillators’ frequencies were non-identical and
randomly distributed. First, they wrote down an ansatz –
seemingly pulled out of thin air – for the density function
ρ(θ ,ω, t) of oscillators having phase θ and intrinsic fre-
quency ω at time t.

Their ansatz had the form of a time-dependent Poisson
density (a density better known for its role in the study of
partial differential equations, specifically for the solution of
Laplace’s equation on a disk, given the values of the unknown
function on the bounding circle). By making this ansatz of a
Poisson density, Ott and Antonsen reduced the infinite-N Ku-
ramoto model, an integro-partial differential equation, to an
infinite set of coupled ordinary differential equations. Then,
by further assuming the intrinsic frequencies were randomly
distributed according to a Lorentzian (aka Cauchy) distribu-
tion, Ott and Antonsen showed that the order parameter dy-
namics of the Kuramoto model could be reduced tremen-
dously, all the way down to an ordinary differential equation
for a single scalar variable, the amplitude of the order param-
eter. With this discovery, the floodgates were now open. Al-
most immediately the Ott-Antonsen ansatz was used to solve
many longstanding problems about the Kuramoto model and
its variants, as well as to generate and solve many new prob-
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lems.
Still, a lot of old questions hung in the air. Both

the Watanabe-Strogatz transformation and the Ott-Antonsen
ansatz appeared somewhat unmotivated and almost miracu-
lous. Where did they come from, really, and why did they
work? It also wasn’t clear whether they were connected, or
perhaps even equivalent; the Watanabe-Strogatz transforma-
tion could be used on any system of globally, sinusoidally
coupled, phase oscillators for all finite N ≥ 3, but seemed
restricted to identical oscillators, whereas the Ott-Antonsen
ansatz allowed for non-identical oscillators but seemed re-
stricted to the continuum limit of infinite N. Also, why were
ideas like linear fractional transformations and Poisson densi-
ties – tools from other branches of mathematics – popping up
in these questions about dynamical systems?

Later work made sense of all of this. The Josephson ar-
rays and the Kuramoto model both turned out to have deep
mathematical ties to group theory, hyperbolic geometry, and
projective geometry, and both the Watanabe-Strogatz transfor-
mation and the Ott-Antonsen ansatz were tapping into these
structures. For the Josephson arrays, the governing equations
turned out to be generated by a group action, specifically the
action of the Möbius group of linear fractional transforma-
tions of the unit disk to itself. Seen in this light, the constants
of motion for the Josephson arrays were cross-ratios, and the
invariant tori were group orbits. The same group-theoretic
structure was found to underlie the Kuramoto model (in the
special case where all the oscillator frequencies are identi-
cal) as well as other sinusoidally coupled systems of identical
phase oscillators.

In the past few years, several researchers wondered how far
this story could be pushed. Are there higher-dimensional or
quantum extensions of the Kuramoto model that might show
similar reducibility? A number of results along these lines
have now been found. In particular, several researchers have
explored a generalization of the Kuramoto model in which the
oscillators move on spheres instead of the unit circle. These
spheres could be either the ordinary two-dimensional sphere
or higher-dimensional spheres. A counterpart of the Ott An-
tonsen ansatz has been discovered for the continuum version
of the Kuramoto model on the d-dimensional sphere and used
to reduce its infinite-dimensional dynamics to a lower dimen-
sional set of ODEs. But as before, some of the results appear
disconnected and a bit miraculous.

Our goal in this paper is to show that hyperbolic geometry
and group theory can unify and clarify our understanding of
the Kuramoto model on spheres, and make all the latest re-
sults seem natural, just as they did before for the traditional
Kuramoto model. Our approach explains the new model’s
reducibility for any finite number of oscillators, as well as
for the continuum limit, and it reveals why Poisson densi-
ties arise again in this setting. There is a close connection
to Laplace’s equation and harmonic analysis, as we’ll see in
Section V below. We also find that complex analysis is not
really essential – which is just as well, since it does not gener-
alize to the higher-dimensional spheres being considered here.
Instead, the proper mathematical setting is harmonic analysis
and hyperbolic geometry on higher -dimensional balls. Our

work also allows us to do more than merely unify existing re-
sults. For instance, by establishing that that systems of identi-
cal Kuramoto oscillators on spheres have a “hyperbolic gradi-
ent” structure, we can prove new global stability results about
convergence to the synchronized state, as described in Section
VII.

I. PRELIMINARIES

A. The Kuramoto Model

A natural generalization of Kuramoto oscillator networks
to higher dimensions is an “oscillator” system governed by
equations of the form

ẋi = Aixi +Z−〈Z,xi〉xi, i = 1, . . . ,N, (1)

where xi is a point on the unit sphere Sd−1 ⊂ Rd , each Ai is
an antisymmetric d×d matrix, and Z ∈Rd such that Ai and Z
are functions of the population (x1, . . . ,xN). Note Z does not
depend on i. A straightforward computation shows 〈xi, ẋi〉 =
0, which proves each higher oscillator is indeed confined to a
sphere. The state space for this system is the N-fold product
X = (Sd−1)N , which has dimension N(d− 1). (Later we will
also consider the natural infinite-N analogue of (1), where a
state is a probability measure on Sd−1). When d = 2 these are
just Kuramoto networks given by equivalent equations

θ̇i = ωi +Bcosθi +C sinθi, i = 1, . . . ,N.

We think of the function Z as the system order parameter; it
can be any smooth function on the space X , though in exam-
ples we usually restrict to fairly simple functions, like a linear
combination of the form

Z =
N

∑
i=1

aixi.

B. Hyperbolic geometry and Möbius transformations

In this paper, a “Möbius transformation" is a composition
of Euclidean isometries and spherical inversions of Rd map-
ping the unit ball homeomorphically to itself and preserving
orientation. This is a more restrictive definition than the com-
monly defined Möbius transformations which in general do
not need to preserve the unit ball.

As in the case d = 2, flows of the form (1) are intimately
related to the natural hyperbolic geometry on the unit ball Bd

with boundary Sd−1. This geometry has metric

ds =
2|dx|

1−|x|2
,

where |dx| is the ordinary Euclidean metric. Isometries are
assumed to be with respect to this geometry, unless otherwise
qualified as Euclidean. The metric ds has constant (sectional)
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curvature −1, and we can describe its isometries, which gen-
eralize the Möbius transformations preserving the unit disc for
d = 2. For d = 2, let w ∈ B2 and consider the Möbius trans-
formation

Mw(x) =
x−w
1−wx

;

Mw preserves the unit disc B2 and its boundary S1. To gen-
eralize this to higher dimensions, we need to express Mw(x)
without reference to complex arithmetic operations or conju-
gation. Using the identity 2〈w,x〉= wx+wx, we see that

(x−w)(1−wx)
(1−wx)(1−wx)

=
x−w−w|x|2 +w2x
1−2〈w,x〉+ |w|2|x|2

=
x−w−w|x|2 +w(2〈w,x〉−wx)

1−2〈w,x〉+ |w|2|x|2

=
(1−|w|2)x− (1−2〈w,x〉+ |x|2)w

1−2〈w,x〉+ |w|2|x|2
.

This form of Mw generalizes to higher dimensions: Let w∈Bd

and define

Mw(x) =
(1−|w|2)x− (1−2〈w,x〉+ |x|2)w

1−2〈w,x〉+ |w|2|x|2

=
(1−|w|2)(x−|x|2w)
1−2〈w,x〉+ |w|2|x|2

−w,

where x ∈ Bd or Sd−1. We call Mw a boost transformation. If
|x|= 1 this formula simplifies to

Mw(x) =
(1−|w|2)(x−w)
|x−w|2

−w.

Now see that

Mw(w) =
(1−|w|2)w− (1−2〈w,w〉+ |w|2)w

1−2〈w,w〉+ |w|2|w|2

=
(1−|w|2)w− (1−|w|2)w

1−2〈w,w〉+ |w|2|w|2
= 0.

Alternatively, we can use the second form to show

Mw(w) =
(1−|w|2)(w−|w|2w)
1−2〈w,w〉+ |w|2|w|2

−w=
(1−|w|2)2w
(1−|w|2)2 −w= 0.

Similar computations show that M0 is the identity, M−1
w =

M−w, and Mw(0) =−w.
Any orientation-preserving isometry of Bd can be expressed

uniquely in the form

g(x) = ζ Mw(x)

and also uniquely in the form

g(x) = M−z(ξ x),

for some w,z∈ Bd and ζ , ξ ∈ SO(d), the group of orientation-
preserving orthogonal linear transformations on Rd . Comput-
ing the linearization with these two formulas at x = 0 (a com-
putation involving matrix calculus identities, which we leave
to the reader) gives

g(x)≈ ζ (−w+(1−|w|2)x)≈ z+(1−|z|2)ξ x,

which implies z =−ζ w (hence |z|= |w|) and ξ = ζ .
The group G of all such isometries is isomorphic to the lin-

ear group SO+(d,1), which has dimension d(d + 1)/2. The
infinitesimal transformations are given by flows on Bd of the
form

ẏ = Ay−〈Z,y〉y+ 1
2
(1+ |y|2)Z, (2)

with A antisymmetric d× d and Z ∈ Rd . Note that this flow
extends to a flow on Sd−1 of the form in (1). To derive these
infinitesimal transformations, we can work separately with the
boost and rotation components. Replace w by tw, expand to
first order in t to see

Mtw(x)≈
x−|x|2tw

1−2t〈w,x〉
− tw≈ x+ t

(
2〈w,x〉x− (1+ |x|2)w

)
.

Now take the linear t coefficient to deduce the infinitesimal
generator is an “infinitesimal boost” of the form (2) with
Z =−2w and A = 0. The infinitesimal generators correspond-
ing to the rotation components are flows of the form ẋ = Ax
with A antisymmetric; together with the infinitesimal boosts
we get all flows of the form (2). The group G acts on the space
X in the natural way (component by component) and the in-
finitesimal generators of this group action on X are flows of
the form (1) with all Ai identical. Therefore the evolution of
any initial point p ∈ X under the system (1) with all Ai = A
lies in the group orbit Gp.

II. REDUCED EQUATIONS

The given Kuramoto system has Nd degrees of freedom,
for some large N. However, since the flow of the system is
determined via an action of the d(d + 1)/2 dimensional Lie
group G, we can alternatively study the auxiliary dynamical
system on G, which we call the reduced equations. By ignor-
ing rotations, we can further restrict our attention to a system
on the d-dimensional quotient G/SO(d) ∼= Bd . The dimen-
sional reduction not only makes the reduced equations easier
to analyze than the original Kuramoto system, but the reduced
equations require fewer computational resources to numeri-
cally integrate.

Now suppose all the terms Ai in (1) are equal. Fix a base
point p = (p1, . . . , pN) ∈ X . Then if the points pi are in suffi-
ciently general position, every element in the G-orbit of p can
be expressed uniquely as gp for some g ∈ G, with parame-
ters w,z and ζ . We wish to derive the corresponding evolution
equations for w,z and ζ . Let (xi(t)) be any solution to (1) in
the group orbit Gp; we do not require that the initial point



Kuramoto models on spheres: Using hyperbolic geometry to explain their low-dimensional dynamics 4

(xi(0)) = p. Then (xi(t)) = gt p for a unique gt ∈ G, which
determines the parameters w,z,ζ as functions of t. Now con-
sider the equation (2), with coefficients A and Z evaluated at
(xi(t)). This is a non-autonomous ODE on Bd , and its time-t
flow must be given by some g̃t ∈ G. This ODE has solutions
(xi(t)) = gt p = gtg−1

0 (xi(0)), which implies that g̃t = gtg−1
0 .

So for any y0 ∈ Bd ,

y(t) = gtg−1
0 (g0(y0)) = gt(y0) = ζ Mw(y0) = M−z(ζ y0)

must satisfy the ODE (2) with A and Z evaluated at (xi(t)) at
time t. In particular, if we let y0 = 0, then y(t) =−ζ w = z, so
z satisfies the ODE (2).

Now expand y = ζ Mw(y0) = M−z(ζ y0) to first order in y0,
using the variables z and ζ :

y≈ z+(1−|z|2)ζ y0,

so

ẏ≈ ż−2〈ż,z〉ζ y0 +(1−|z|2)ζ̇ y0.

On the other hand, (2) gives

ẏ = Ay+
1
2
(
1+ |y|2

)
Z−〈Z,y〉y

≈ Az+
1
2
(1+ |z|2)Z−〈Z,z〉z

+(1−|z|2)
(

Aζ y0 + 〈z,ζ y0〉Z−〈Z,z〉ζ y0−〈Z,ζ y0〉z
)
.

Setting y0 = 0 gives the ż equation

ż = Az+
1
2
(1+ |z|2)Z−〈Z,z〉z (3)

as expected, and this in turn implies that

〈ż,z〉= 1
2
(1−|z|2)〈Z,z〉

(use 〈Az,z〉= 0). Equating the y0 terms, factoring out 1−|z|2
and canceling the common term 〈Z,z〉ζ y0 gives

ζ̇ y0 = Aζ x0 + 〈z,ζ y0〉Z−〈Z,ζ y0〉z.

Together, the last two terms above define a special type of
antisymmetric operator of ζ y0: Given any y1,y2 ∈ Rd , define
the antisymmetric operator α as

α(y1,y2)y = 〈y1,y)y2−〈y2,y)y1;

this operator has range = span(y1,y2) providing y1 and y2 are
linearly independent; otherwise α(y1,y2) = 0. Then for all
y0 ∈ Rd ,

ζ̇ y0 = Aζ y0 +α(z,Z)ζ y0

and therefore

ζ̇ = (A+α(z,Z))ζ .

Differentiating z =−ζ w gives

Az+
1
2
(1+ |z|2)Z−〈Z,z〉z =−ζ ẇ− ζ̇ w

so

ζ ẇ = (A+α(z,Z))z−Az− 1
2
(1+ |z|2)Z + 〈Z,z〉z

= Az+ |z|2Z−〈Z,z〉z−Az− 1
2
(1+ |z|2)Z + 〈Z,z〉z

=−1
2
(1−|z|2)Z;

hence

ẇ =−1
2
(1−|w|2)ζ−1Z.

Summing up, the evolution equations for the (z,ζ ) coordi-
nate system on Gp are

ż = Az+
1
2
(1+ |z|2)Z−〈Z,z〉z (4a)

(1+ |z|2)Z−〈Z,z〉zζ̇ = (A+α(z,Z))ζ (4b)

with Z evaluated at M−z(ζ p), and for the (w,ζ ) coordinate
system on Gp are

ẇ =−1
2
(1−|w|2)ζ−1Z (5a)

ζ̇ = (A−α(ζ w,Z))ζ , (5b)

with Z evaluated at ζ Mw(p). Note that these equations gener-
alize the evolution equations for the parameters w and ζ given
in Chen et. al.8 for the classic case d = 2.

III. COMPARISON OF Z VERSUS W COORDINATES

The ż equation is an extension of the system equation on
Sd−1. However, for finite N, the ż equation does not uncouple
from ζ , since Z is evaluated at M−z(ζ p). The exception to
this is in the infinite-N limit: if the base point p is now the
uniform density on Sd−1, then ζ p = p (the uniform density is
invariant under rotations) and the density M−z(p) is a hyper-
bolic Poisson density on Sd−1 whose centroid a function of z.
In the case d = 2, this Poisson density has centroid z. Unfor-
tunately this is false for d ≥ 3 (we will give more details on
this in the next section).

The advantage of the ẇ equation is that for an order param-
eter function of the form

Z =
N

∑
i=1

aixi,
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with ai ∈ R, ζ drops out of the ẇ equation and we get the
reduced equation

ẇ =−1
2
(1−|w|2)Z(Mw(p)).

The parameter w essentially defines the “phase relations”
among the xi; two configurations have the same w if and only
if they are related by a rotation. So w is the key parameter that
determines whether the system is approaching synchrony or
incoherence.

The w variable also has a nice invariance under change of
base points. Suppose p′ = M(p) ∈ Gp; then we have coordi-
nates w′,ζ ′ associated to the base point p′. Any q ∈ Gp has
two expressions

q = ζ Mw(p) = ζ
′Mw′ p

′ = ζ
′Mw′(M(p)).

Assuming the coordinates of p are in sufficiently general po-
sition, this implies ζ Mw = ζ ′Mw′ ◦M, and hence

0 = ζ Mw(w) = ζ
′Mw′(M(w)).

But the unique solution to Mw′(y) = 0 is w′, and hence w′ =
M(w). In other words, the coordinates w and w′ transform
exactly as the base points p and p′.

IV. CONTINUUM LIMIT

Next, we consider the dynamics of the network (1) in the
limit N→∞. Let us assume first that the rotation terms Ai = A
are constant across the population; later we will consider the
case where A varies depending on some distribution. Let us
also assume that

Z =
K
N

N

∑
i=1

xi

is proportional to the centroid of the population. In the con-
tinuum limit, a state of the system is a probability measure ρ

on Sd−1, and

Z = K
∫

Sd−1
xdρ(x).

The measure ρ evolves according to the continuity equation
(AKA noiseless Fokker-Planck) associated to the flow in (1).
Naturally, this flow must preserve group orbits under the ac-
tion of G. Recall that if M ∈ G, then the measure M∗ρ is
defined by the adjunction formula∫

Sd−1
f (x)d(M∗ρ)(x) =

∫
Sd−1

f (M(x))dρ(x).

In particular, we can consider the G-orbit of the uniform
probability measure σ on Sd−1. This orbit is special; whereas
a typical group orbit Gρ has dimension equal to the dimension
of G, namely d(d +1)/2, the orbit Gσ has dimension only d.
This is because the stabilizer of σ is SO(d); any rotation fixes
σ , whereas the boosts deform σ . Hence the orbit Gσ has

dimension d. Any element in Gσ can be written as (M−z)∗σ ,
with z ∈ Bd . The evolution equation for z is (3), with

Z(z) = K
∫

Sd−1
xd(M−z)∗σ(x) = K

∫
Sd−1

M−z(x)dσ(x). (6)

In the case d = 2 with x = ζ ∈ S1, we have

dσ(ζ ) =
1

2πi
dζ

ζ
,

so the integral

Z(z) =
K

2πi

∫
S1

ζ + z
1+ zζ

· dζ

ζ
= K

ζ + z
1+ zζ

∣∣∣∣∣
ζ=0

= Kz

by the Cauchy integral formula. Therefore (3) simplifies to
the equation

ż = iωz+
K
2
(1−|z|2)z

when d = 2. Unfortunately, the formula Z(z) = Kz is not cor-
rect for d ≥ 3; though as we shall see later, this formula is cor-
rect in higher dimensions for the complex hyperbolic model
in even dimensions, which we discuss in the next section. For
d = 2 the two geometries agree, which explains the coinci-
dence for d = 2.

Any Riemannian manifold X has a Laplace-Beltrami oper-
ator ∆ associated to its metric; functions f on X satisfying the
equation ∆ f = 0 are called harmonic. For functions on the
ball Bd with the hyperbolic metric, the operator is

∆hyp = (1−|x|2)2
∆euc +2(d−2)(1−|x|2)

d

∑
i=1

xi
∂

∂xi
,

where

∆euc =
d

∑
i=1

∂ 2

∂x2
i

is the standard Laplace operator (see Stoll9, Chapter 3). We
will call solutions to the equation ∆hyp f = 0 hyperbolic har-
monic functions; for d = 2 these coincide with ordinary (Eu-
clidean) harmonic functions. We can consider the analogue of
the Dirichlet problem: given a continuous function f on Sd−1,
extend f to a hyperbolic harmonic function f̃ on Bd . Assum-
ing this problem has a unique solution, then for any rotation
ζ ∈ SO(d) we must have f̃ ◦ζ = f̃ ◦ ζ , since rotations pre-
serve the hyperbolic metric. If we average f ◦ζ on Sd−1 over
all rotations ζ ∈ SO(d) we get the constant function

fave =
∫

Sd−1
f (x)dσ(x)

on Sd−1, and any constant is hyperbolic harmonic on Bd .
Therefore the average on Bd of f̃ ◦ζ = f̃ ◦ ζ over all ζ ∈
SO(d) must be the constant fave. But f̃ (ζ (0)) = f̃ (0) for all
ζ , so we must have

f̃ (0) =
∫

Sd−1
f (x)dσ(x).
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Now let z∈ Bd ; since M−z preserves the hyperbolic metric, we
must have f̃ ◦M−z = f̃ ◦M−z, which implies

f̃ (z) = f̃ ◦M−z(0)

=
∫

Sd−1
f (M−z(x))dσ(x)

=
∫

Sd−1
f (x)d(M−z)∗σ(x).

As shown in Chapter 5 in Stoll, we can express the measure

d(M−z)∗σ(x) = Phyp(z,x)dσ(x),

where the hyperbolic Poisson kernel function is

Phyp(z,x) =
(

1−|z|2

|z− x|2

)d−1

. (7)

Thus the solution to the hyperbolic Dirichlet problem with
boundary function f on Sd−1 is given by the hyperbolic Pois-
son integral

f̃ (z) =
∫

Sd−1
Phyp(z,x) f (x)dσ(x), z ∈ Bd .

The orbit Gσ consists of all hyperbolic Poisson measures
P(z,x)dσ(x), parametrized by z ∈ Bd . By contrast, the Eu-
clidean Poisson kernel function is

Peuc(z,x) =
1−|z|2

|z− x|d
,

so the hyperbolic Poisson measures agree with the Euclidean
Poisson measures only if d = 2.

Now we can calculate the expression Z(z) in the general
case d ≥ 2. We see from (6) that Z(z) is the hyperbolic Pois-
son integral of the function Kx on Sd−1. The function Kx is
(Euclidean) harmonic and homogeneous of degree 1 on Rd ;
following the recipe in Chapter 5 in Stoll, we see that its ex-
tension from Sd−1 to a hyperbolic harmonic function on Bd is
given by

Z(z) = K
F(1,1−d/2;1+d/2; |z|2)
F(1,1−d/2;1+d/2;1)

z, (8)

where F is the hypergeometric function

F(a,b;c; t) =
∞

∑
k=0

(a)k(b)k

(c)k

tk

k!
,

with (a)0 = 1 and (a)k = a(a+ 1) · · ·(a+ k− 1) for k ≥ 1.
Notice that if a or b = 0, then F(a,b;c; t) = 1; this gives
Z(z) = Kz for d = 2, as expected.

V. COMPLEX CASE

There is an alternative generalization of Kuramoto net-
works to higher-dimensional oscillators when d = 2m is even.
Then Rd = Cm, and we can study systems of the form

ẋ j = A jx+Z−〈x j,Z〉x j, i = 1, . . . ,N, (9)

where now xi is a point on the unit sphere S2m−1 ⊂ Cm, Ai
is an anti-Hermitian m×m complex matrix, Z ∈ Cm and 〈,〉
denotes the complex-valued Hermitian inner product. These
systems are the same as the real case when d = 2,m = 1 but
are different for m≥ 2. To see this, suppose

Ax+Y −〈x,Y 〉R x = Bx+Z−〈x,Z〉C x

for all x ∈ S2m−1 ⊂ Cm = Rd , where A is antisymmetric, B is
anti-Hermitian, Y,Z ∈ Cm and we use the subscripts R and C
to distinguish the real and complex inner products. Then

(A−B)x = Z−Y +
(
〈x,Y 〉R−〈x,Z〉C

)
x

and so (A−B)(−x) = (A−B)x for all x ∈ S2m−1, which im-
plies A = B. This implies

Y −Z =
(
〈x,Y 〉R−〈x,Z〉C

)
x

for all x ∈ S2m−1, hence Y −Z ∈ spanC(x) for all x ∈ Cm; if
m≥ 2, this implies Y = Z. But then we have

〈x,Y 〉R = 〈x,Y 〉C

for all x∈Cm, which can only hold if Y = 0. Hence for m≥ 2,
the only flows simultaneously of the form (1) and (9) have
Z = 0 and A anti-Hermitian.

Flows of the form (9) are related to the complex hyper-
bolic geometry on the complex unit ball Bm with the Bergman
metric (see Rudin7, Chapter 1). The orientation-preserving
isometries of this metric are generated by unitary transforma-
tions ζ ∈U(m) and “boost” transformations of the form

Mw(x) =

√
1−|w|2 x+

(
〈x,w〉

1+
√

1−|w|2
−1
)

w

1−〈x,w〉

=
x−w+ 〈x,w〉w−|w|

2x
1+
√

1−|w|2

1−〈x,w〉
.

Notice that when m = 1, this reduces to the standard com-
plex Möbius map Mw. As in the real case M0 is the identity,
M−1

w = M−w, Mw(w) = 0 and Mw(0) =−w. Any orientation-
preserving isometry of Bd can be expressed uniquely in the
form

g(x) = ζ Mw(x) = M−z(ξ x),

where w,z ∈ Bm but now ζ , ξ ∈ U(m), the complex unitary
group. Linearizing at x = 0 gives

g(x)≈ ζ

(
−w−〈x,w〉w+

√
1−|w|2 x+

〈x,w〉w
1+
√

1−|w|2

)

≈ ζ

(
−w+

√
1−|w|2 x−

√
1−|w|2〈x,w〉w

1+
√

1−|w|2

)

≈ z+
√

1−|z|2 ξ x−
√

1−|z|2〈ξ x,z〉z
1+
√

1−|z|2
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FIG. 1. A first order linear Kuramoto system on S2 with equal weights, and randomly chosen initial conditions. The states shown are at
t = 0, t = 10, and t = 40 respectively. This simulation was written in Python and visualized with Plotly.

which implies z=−ζ w (hence |z|= |w|) and ξ = ζ , as before.
The corresponding infinitesimal transformations are given by
flows on the complex unit ball Bm of the form

ẏ = Ay+Z−〈y,Z〉y, (10)

with A anti-Hermitian m×m and Z ∈ Cm. This flow extends
to a flow on S2m−1 of the form in (9). Note the absence of
the quadratic term |y|2Z here. To derive these infinitesimal
transformations, we again work separately with the boost and
rotation components. Replace w by tw and expand to first
order in t, using that to first order in t, (1−|w|2)1/2 = 1:

Mtw(x)≈
x− tw

1− t〈x,w〉
≈ x+ t (〈x,w〉x−w) ,

so the infinitesimal generator is an “infinitesimal boost” of the
form (10) with Z = −w and A = 0. The infinitesimal gener-
ators corresponding to the rotation components are flows of
the form ẋ = Ax with A anti-Hermitian; together with the in-
finitesimal boosts we get all flows of the form (10).

VI. RELATIONS TO WORKS OF TANAKA, LOHE,
CHANDRA-GIRVAN-OTT

Many of the results above can be found in some form in the
papers of these authors: Tanaka is studying the same system
as (1) (see his equation (9)). He writes his Möbius transfor-
mations differently, but he’s using the same group of transfor-
mations as we use above, and he gets reduced equations for
his Möbius parameters. Tanaka’s equation (10b) looks similar
to the ż equation, except without the |z|2 term, which is puz-
zling. He doesn’t mention the reduction down to dimension d
in the finite-N case that we get with the ẇ equation. He also
understands that the complex case when d = 2m is different,
and generalizes the OA residue calculation to this case, which
is the highlight of his paper. In the real case, Tanaka’s equa-
tion (15) is similar to our equation (8), though we were not
able to show that the two expressions are equivalent.

Lohe is also looking at the same system as (1) (see his equa-
tion (22)). His transformation (30) on Sd−1 is our Mw (with

v = w) and his equation (31) is the same as our ż equation. He
also has something that looks like the ẇ equation (42), which
he says is independent of the rest of the reduced system for (in
our notation) an order parameter function of the form

Z =
1
N

N

∑
i=1

λiQixi,

where Qi ∈O(d) and λi ∈R. But such a Z does not satisfy the
identity ζ Z(p) = Z(ζ p) for all rotations ζ , unless Qi =±I, so
we don’t see how the ζ term cancels.

Lohe’s map M in equation (55) (ignoring the R factor)
agrees with our map M−v on the sphere Sd−1, but not on the
ball Bd . So it’s not a Möbius transformation of the type we’re
using. For example, M(−v) = v whereas M−v(−v) = 0. We’re
not sure why Lohe prefers these maps over the boosts; he
claims that M preserves cross-ratios, but we don’t see why this
is advantageous. His map F in equation (63) (again ignoring
the R factor) is exactly our M−v.

Chandra, Girvan and Ott4 proceed directly to the infinite-N
version of (1). They make a very clever guess (their equation
(7)) of the form of the special densities that generalize the
Poisson densities for d = 2, and then calculate the exponent
in the denominator of their expression, getting exactly the hy-
perbolic Poisson kernel densities in (7) above. Their equation
(15) is exactly the same as our ż equation (4) in the infinite-N
limit. The integral in their equation (19) can be evaluated, as
shown above in (8).

VII. AN EXAMPLE: FIRST-ORDER LINEAR ORDER
PARAMETER GIVES GRADIENT SYSTEM

We conclude with an analysis of the system (1) with order
parameter function

Z =
N

∑
i=1

aixi, (11)

where the ai are real constants.
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FIG. 2. A first order linear Kuramoto system on S2 with a majority cluster, where one body is chosen to have a weight which exceeds the
combined weights of all other bodies. The states shown are at t = 0, t = −10, and t = −40 respectively. In this simulation, one body was
chosen to have a weight of 0.6, and the remaining 400 bodies were chosen to have equal weights of 1/1000.

A. A Computer Visualization

We implemented the Runge-Kutta algorithm for solving
differential equations in the case where d = 2, N = 1000,
A = 0, and ai =

1
N . See Fig. 1. Setting A = 0 is tantamount to

ignoring the rotational influence, or equivalently, rotating the
frame of reference along with the system as it evolves. Ran-
domly chosen points on the sphere were used as initial condi-
tions. As time increases, one can see that the bodies coalesce
to a limit point, mimicking the synchronization that is well ob-
served in the d = 1 case. These bodies never actually collide,
since this would violate uniqueness of solutions to differential
equations with distinct initial conditions. Later in this section,
we will prove this synchronization behavior is generic in the
space of Kuramoto systems of this form, provided the weight-
ing satisfies an upper bound.

When time runs backwards, almost all configurations of the
bodies will tend towards an equally spaced position where
their centroid is at the origin. The exception is when we have
a majority cluster, where one body has a weight which ex-
ceeds the weight of all other bodies. When this occurs, it is
impossible to arrange the bodies so their weighted centroid is
at the origin, so the backwards time limit will tend towards an
antipodal configuration, where all bodies not in the majority
cluster will coalesce around the antipode of the cluster. See
Fig. 2.

B. Existence of Hyperbolic Gradient

As mentioned above, the ẇ equation in (5) reduces to

ẇ =−1
2
(1−|w|2)Z(Mw(p)), (12)

independent of the parameter ζ . We will show that this is a
gradient flow on the unit ball Bd with respect to the hyper-
bolic metric. In the presence of a Riemannian metric we can
associate a 1-form to any vector field, and the vector field is

gradient if and only if the associated 1-form is closed (which
is equivalent to exactness because the unit ball is simply con-
nected). For the Euclidean metric on Bd (or any open subset
of Rd) and standard coordinates w1, . . . ,wd , the 1-form asso-
ciated to the vector field with components f1, . . . , fd is

ω = f1 dw1 + · · ·+ fd dwd .

If we scale the Euclidean metric by a positive smooth function
φ , then the associated 1-form for the metric ds= φ |dw| is now

ω = φ
2( f1 dw1 + · · ·+ fd dwd).

Now let’s consider the vector field defined by (12). By linear-
ity, it suffices to treat the case Z = xi, and we can take i = 1
without loss of generality. We have φ(w) = 2(1−|w|2)−1 for
the hyperbolic metric, so to prove that the flow in (12) is gra-
dient we must prove that the 1-form

ω =
4

(1−|w|2)2

(
−1

2
(1−|w|2)

)
·

d

∑
j=1

(
(1−|w|2)(p1, j−w j)

|p1−w|2
−w j

)
dw j

=−2
d

∑
j=1

(
p1, j−w j

|p1−w|2
−

w j

1−|w|2

)
dw j

is closed, where p1, j denotes the jth component of the point
p1 ∈ Sd−1. Let E j denote the coefficient of dw j in parentheses
above; then

dω =−2
d

∑
j,k=1

∂E j

∂wk
dwk ∧dw j.

Applying the chain and quotient rules gives

∂E j

∂wk
=

2(p1, j−w j)(p1,k−wk)

|p1−w|2
+

2w jwk

(1−|w|2)2
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for j 6= k, which is symmetric in j and k; hence the sum above
for dω simplifies to dω = 0. Thus ω is closed and we see that
the flow (12) is gradient for any order parameter function of
the form (11).

Next, we show that the hyperbolic potential to W , up to

an additive constant, is Φ(w) = 1
4N

N
∑

l=1
al log 1−|w|2

|w−pl |2
. Note that

this potential doesn’t involve Poisson kernels in higher dimen-
sions because the exponent in the denominator is 2, not d.
We will make several uses of the identity ∇E |w|2 = 2w, for
w ∈ Rd . Observe that

∇EΦ(w) =
1

4N

N

∑
l=1

al
|w− pl |2

1−|w|2

·
(
−2|w− pl |2w−2(1−|w|2)(w− pl)

)
|w− pl |4

=
1

4N

N

∑
l=1

al
−2|w− pl |2w−2(1−|w|2)(w− pl)

(1−|w|2)|w− pl |2

=
1

4N

N

∑
l=1

al

(
w

1−|w|2
+

w− pl

|w− pl |2

)
.

Hence, we can see that ∇HΦ = (1−|w|2)2∇EΦ = W , as de-
sired. The interpretation that the potential is the hyperbolic
logarithmic average of the bodies still holds in higher dimen-
sions.

C. Analysis of Dynamics

We can use the existence of the potential Φ(w) for the flow
on Bd to prove a global synchrony result for the system (1)
when the coefficients ai in the order parameter Z are all pos-
itive. Specifically, we assume that 0 < ai < 1/2 for all i,
and ∑

N
i=1 ai = 1. We also assume N ≥ 3. Under these con-

ditions, almost all trajectories for (1) converge to the (d−1)-
dimensional diagonal manifold ∆⊂ X as t→ ∞. As t→−∞,
almost all trajectories for (1) converge to the codimension-d
subspace Σ⊂ X consisting of states with Z(p) = 0.

The proof is modeled after Theorem 1 in Tanaka, and will
be based on two preliminary lemmas. In each of these lemmas
we assume the conditions on the ai above, and that the base
point p = (pi) for the flow (12) has all distinct coordinates.

We begin with a general observation about gradient flows
in the ball Bd : if w0 ∈ Bd is any initial condition and w∗ ∈ Bd

is in the forward limit set Ω+(w0), then w∗ is a fixed point
for the flow. To see this, let Φ be a potential for the flow, and
suppose w(tn)→ w∗ ∈ Bd for some sequence tn → ∞. Since
the potential decreases along trajectories,

lim
t→∞

Φ(w(t)) = lim
n→∞

Φ(w(tn)) = Φ(w∗).

Let Ft denote the time-t flow map. If w∗ is not a fixed point,

then for any s > 0,

lim
t→∞

Φ(w(t)) = lim
n→∞

Φ(w(tn + s))

= lim
n→∞

Φ(Fs(w(tn)))

= Φ(Fs(w∗))
< Φ(w∗),

which is a contradiction, so w∗ must be a fixed point. (Com-
pact limit sets are connected, so Ω+(w0) cannot consist of two
or more but finitely many fixed points; however it is possible
that forward or backward limits sets for gradient flows consist
of a continuum of fixed points. We will see that this is not the
case for our system on Bd .)

Lemma 1. Any fixed point for the flow (12) in Bd is repelling.

Proof. Suppose w∗ ∈ Bd is a fixed point for (12). As dis-
cussed above, an advantage of using the w-parameter is the
equivariance with respect to change of base point p. Conse-
quently we can assume w∗ = 0 without loss of generality, so

Z(p) =
N
∑

i=1
ai pi = 0. To first order in w,

Mw(pi) =
pi−w

1−2〈w, pi〉
−w

= (pi−w)
(
1+2〈w, pi〉

)
−w

= pi−2w+2〈w, pi〉pi.

The linearization of (12) at the fixed point w∗ = 0 is

ẇ =−1
2

N

∑
i=1

ai

(
pi−2w+2〈w, pi〉pi

)
= w−

N

∑
i=1

ai〈w, pi〉pi.

We claim that the linear map

Tw =
N

∑
i=1

ai〈w, pi〉pi

has ||T ||< 1; to see this, suppose |w|= 1. Then |〈w, pi〉pi| ≤
1 and Tw is a convex combination of the vectors 〈w, pi〉pi.
We can only obtain |Tw| = 1 if all terms 〈w, pi〉pi = u with
|u| = 1, which implies all pi = ±u, and this cannot happen if
at least three of the pi are distinct. Hence ||T ||< 1 and so the
eigenvalues µi of T satisfy |µi|< 1. The eigenvalues for the ẇ
linearization are λi = 1−µi, so wee see that Reλi > 0 for all
i, establishing that the fixed point w∗ is repelling.

Lemma 2. lim
|w|→1

Φ(w) =−∞.

Proof. The potential function, up to a positive multiplicative
constant, is given by

Φ(w) =
N

∑
i=1

ai log
1−|w|2

|w− pi|2
.
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To prove Lemma 2, it suffices to show that

lim
n→∞

Φ(wn) =−∞

for any sequence wn ∈ Bd with wn → x ∈ Sd−1. The result
is clear if x 6= pi, since as n→ ∞ the terms |wn− pi| will be
bounded away from 0, and 1− |wn|2 → 0. So let’s say that
wn→ p1. We rewrite Φ(wn) as

Φ(wn) = log(1−|wn|2)−2a1 log |wn− p1|

−2
N

∑
i=2

ai log |wn− pi|

= log(1−|wn|)−2a1 log |wn− p1|

+ log(1+ |wn|)−2
N

∑
i=2

ai log |wn− pi|.

The latter two terms above have finite limit as n→ ∞, so we
focus on the first two terms. We have 1−|wn| ≤ |p1−wn|, so

log(1−|wn|)−2a1 log |wn− p1| ≤ (1−2a1) log |wn− p1|→−∞

as n→ ∞, which proves our result. Notice that we need the
assumption ai < 1/2 for this argument.

Theorem 3. Under the conditions above, almost all trajecto-
ries for (1) converge to ∆ as t→ ∞ and to Σ as t→−∞.

Proof. Let p = (p1, . . . , pN) ∈ X be any point with all distinct
coordinates. The points on Gp are parametrized by w∈Bd and
ζ ∈ SO(d), and the dynamics for these parameters are given
by (5). We begin with the dynamics as t→−∞. Let w(t) be a
trajectory for (12) with initial condition w0 ∈ Bd , and consider
the backward time limit set Ω−(w0); this is a nonempty, com-
pact, connected subset of Bd . The potential Φ is decreasing
along all trajectories w(t), hence bounded below as t →−∞,
so Lemma 2 implies that the limit set Ω−(w0) must be con-
tained in the interior Bd . We know that any w∗ ∈Ω−(w0) is a
fixed point for the flow. By Lemma 1, w∗ is repelling and so
any trajectory w(t) which comes sufficiently close to w∗ must
have w(t)→ w∗ as t →−∞; therefore Ω−(w0) = {w∗}. This
proves the existence of fixed points for (12), and that every
trajectory w(t) converges to a fixed point as t →−∞. If the
flow had multiple fixed points, we would obtain a partition
of Bd into the disjoint open basins of repulsion of the fixed
points, violating connectedness of the ball. Therefore (12)
has a unique fixed point w∗, and w(t)→ w∗ as t → −∞ for
all trajectories. The fixed point w∗ has Z(Mw∗(p)) = 0, so all
trajectories in Gp converge to Σ as t→−∞.

In forward time, the limit set Ω+(w0) for any w0 6= w∗

must be completely contained in the boundary Sd−1, since the
unique fixed point w∗ ∈ Bd is repelling. Suppose we remove
the factor (1/2)(1− |w|2) in the flow (12); the scaled vector
field on Bd given by

ẇ =−
N

∑
i=1

aiMw(pi) = w−
N

∑
i=1

ai

(
(1−|w|2)(pi−w)
|pi−w|2

)
(13)

has the same trajectories as the original flow, just with dif-
ferent time parametrizations. Observe that this scaled vector
field extends smoothly to Rd−{pi}, and reduces to the radial
vector field x at any x ∈ Sd−1 with x 6= pi. Therefore there is
a unique trajectory passing through each point x ∈ Sd−1, flow-
ing from the interior to the exterior of the sphere, as long as
x 6= pi. Consequently the original flow (12) has a unique tra-
jectory w(t) in Bd with w(t)→ x as t → ∞, as long as x 6= pi.
This also shows that there is a neighborhood U of Sd−1−{pi}
such that if w(t0)∈U for some t0, then w(t)→ x 6= pi for some
x ∈ Sd−1. So if Ω+(w0) contains some x 6= pi, then the trajec-
tory w(t) of w0 must enter the neighborhood U , and therefore
w(t)→ x ∈ Sd−1 as t→ ∞.

Since limit sets are connected, the only other possibility is
Ω+(w0) = {pi} for some i; equivalently, w(t)→ pi. We will
show that there is a unique trajectory with this behavior for
each pi. Assuming this, we see that with N + 1 exceptions,
any trajectory w(t) converges to a point x ∈ Sd−1 with x 6= pi
(the exceptions are the N trajectories converging to the base
point coordinates pi, and the fixed point trajectory w∗). The
corresponding trajectory in Gp has coordinates

ζ (t)Mw(t)(pi) = ζ (t)
(
(1−|w(t)|2)(pi−w(t))

|pi−w(t)|2
−w(t)

)
.

We have |w(t)| → 1 and |pi−w(t)| is bounded away from 0
as t → ∞, so Mw(t)(pi)→−x and the trajectory ζ (t)Mw(t)(p)
in Gp converges to ∆ as t→ ∞.

This analysis breaks down at x = pi because the scaled vec-
tor field above does not have a unique limit as w→ pi; rather,
its limit depends on the direction of the approach. To see this,
write w = p1−ru, where 0 < r < 1 and |u|= 1 (with this con-
vention, u = p1 corresponds to w approaching p1 radially).
Then |p1−w|= r and

|w|2 = 1−2r〈p1,u〉+ r2

so

(1−|w|2)(p1−w)
|p1−w|2

=
(2r〈p1,u〉− r2)ru

r2 = (2〈p1,u〉− r)u.

As r→ 0, the magnitude of this term is 2〈p1,u〉, which de-
pends on the angle of approach given by u (which is positive
because −u points inwards at p1).

To complete the proof, we will examine the scaled system
(13) using the polar representation (r,u), and show that the
polar system has the unique fixed point r∗ = 0,u∗ = p1, which
has a unique attracting trajectory because it’s a saddle with a
(d−1)-dimensional unstable manifold.

We see that the scaled system has

ẇ = p1− ru−a1 (2〈p1,u〉− r)u+O(r)
= p1−2a1〈p1,u〉u+O(r),

where the O(r) term is a smooth function of r and u for |r|<
ε = min |pi− p1|, i≥ 2. This condition insures that |pi−w| ≥
|pi− p1|− |r|> 0, so the i≥ 2 terms in the scaled ẇ equation
are all smooth functions of r and u. And we can allow r < 0
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here, even though it’s not relevant to the ẇ system. Now r2 =
|w− p1|2, so

rṙ = 〈w− p1, ẇ〉=−r〈u, ẇ〉,

which gives

ṙ =−(1−2a1)〈p1,u〉+O(r).

Differentiating ru = p1−w gives

ru̇ =−ṙu− ẇ

= (1−2a1)〈p1,u〉u−
(

p1−2a1〈p1,u〉u
)
+O(r)

= 〈p1,u〉u− p1 +O(r).

Hence the scaled system in polar form can be written

rṙ =−(1−2a1)r 〈p1,u〉+O(r2),

ru̇ = 〈p1,u〉u− p1 +O(r).

We emphasize that the O(r) and O(r2) terms are smooth func-
tions of r,u as long as |r|< ε . We consider the “semi-scaled”
polar system

ṙ =−(1−2a1)r 〈p1,u〉+O(r2), (14a)

u̇ = 〈p1,u〉u− p1 +O(r), (14b)

which has the same trajectories as the original system, just
with different time parametrizations. The advantage of this
modified system is that the equations are smooth on (−ε,ε)×
Sd−1.

Observe that (14) has {0}× Sd−1 invariant, and has fixed
point (r∗,u∗) = (0, p1). The fixed point p1 is repelling on the
invariant manifold {0}×Sd−1; to see this, observe that

〈p1,u〉˙= 〈p1,u〉2−1

when r = 0. In fact, if we assign the coordinate θ on any
great circle joining p1 and −p1 on Sd−1 so that u = eiθ and
p1 = 1, then the system reduces to θ̇ = sinθ . We also see that
the ṙ equation linearized at (0, p1) is ṙ = −(1−2a1)r, so the
linearization of (14) has the single negative eigenvalue −(1−
2a1) and d−1 positive eigenvalues +1. Therefore (0, p1) is a
saddle with a one-dimensional stable manifold, and hence has
a unique trajectory (r(t),u(t))→ (0, p1) with r(t)> 0.

Now suppose we have a trajectory w(t)→ p1 in our original
system (12). The corresponding trajectory for (14) will have
r(t)→ 0; we cannot achieve r(t) = 0 in finite time because
the manifold {r = 0} is invariant for (14). We must prove that
u(t)→ p1, so that this trajectory is in fact the saddle stable
manifold. Observe that

〈p1,u〉˙= 〈p1,u〉2−1+O(r).

Also note that 〈p1,u(t)〉 > 0 since |w(t)| < 1. Let 0 < c < 1;
then for some T ≥ 0, t ≥ T implies O(r(t)) ≤ (1− c2)/2. If
for some t0 ≥ T we have 0 < 〈p1,u(t0)〉 ≤ c, then

〈p1,u(t)〉˙≤ c2−1+
1
2
(1− c2)≤−1

2
(1− c2)

for all t ≥ t0. But then eventually 〈p1,u(t)〉 < 0, which is a
contradiction. Hence we must have c < 〈p1,u(t)〉 for suffi-
ciently large t, which proves that u(t)→ p1.
VIII. SUMMARY

The natural hyperbolic geometry on the unit ball, with
isometries consisting of the higher-dimensional Möbius
group, is key to understanding the dynamics of networks of
the form (1). Using this framework, we see that dynamical tra-
jectories are constrained to lie on group orbits, and we can ex-
plicitly give the equations for the reduced dynamics on group
orbits. For the special class of linear order parameters, the
dynamics can be further reduced to holonomic constraints de-
termining a flow on the unit ball Bd , which is gradient with
respect to the hyperbolic metric.
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