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Abstract. In this paper, we address two long-standing questions about finding good separators
in graphs of bounded genus and degree:

1. It is a classical result of Gilbert, Hutchinson, and Tarjan [J. Algorithms, 5 (1984), pp. 391–
407] that one can find asymptotically optimal separators on these graphs if given both the
graph and an embedding of it onto a low genus surface. Does there exist a simple, efficient
algorithm to find these separators, given only the graph and not the embedding?

2. In practice, spectral partitioning heuristics work extremely well on these graphs. Is there
a theoretical reason why this should be the case?

We resolve these two questions by showing that a simple spectral algorithm finds separators of cut
ratio O(

√
g/n) and vertex bisectors of size O(

√
gn) in these graphs, both of which are optimal. As our

main technical lemma, we prove an O(g/n) bound on the second smallest eigenvalue of the Laplacian
of such graphs and show that this is tight, thereby resolving a conjecture of Spielman and Teng. While
this lemma is essentially combinatorial in nature, its proof comes from continuous mathematics,
drawing on the theory of circle packings and the geometry of compact Riemann surfaces.
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1. Introduction. Spectral methods have long been used as a heuristic in graph
partitioning. They have had tremendous experimental and practical success in a wide
variety of scientific and numerical applications, including mapping finite element cal-
culations on parallel machines [24, 29], solving sparse linear systems [7, 8], partitioning
for domain decomposition [8], and VLSI circuit design and simulation [6, 16, 3]. How-
ever, it is only recently that people have begun to supply formal justification for the
efficacy of these methods [15, 25]. In [25], Spielman and Teng used the results of
Mihail [22] to show that the quality of the partition produced by the application of a
certain spectral algorithm to a graph can be established by proving an upper bound
on the Fiedler value of the graph (i.e., the second smallest eigenvalue of its Laplacian).
They then provided an O(1/n) bound on the Fielder value of a planar graph with
n vertices and bounded maximum degree. This showed that spectral methods can
produce a cut of ratio O(

√
1/n) and a vertex bisector of size O(

√
n) in a bounded

degree planar graph.
In this paper, we use the theory of circle packings and conformal mappings of

compact Riemann surfaces to generalize these results to graphs of positive genus.
We prove that the Fiedler value of a genus g graph of bounded degree is O(g/n)
and demonstrate that this is asymptotically tight, thereby resolving a conjecture of
Spielman and Teng. We then apply this result to obtain a spectral partitioning
algorithm that finds separators whose cut ratios are O(

√
g/n) and vertex bisectors

of size O(
√
gn), both of which are optimal. To our knowledge, this provides the only
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truly practical algorithm for finding such separators and vertex bisectors for graphs
of bounded genus and degree. While there exist other asymptotically fast algorithms
for this, they all rely on being given an embedding of the graph in a genus g surface
(e.g., [14]). It is not always the case that we are given such an embedding, and
computing one is quite difficult. (In particular, computing the genus of a graph is
NP-hard [27], and the best known algorithms for constructing such an embedding
are either nO(g) [12] or polynomial in n but doubly exponential in g [11]. Mohar has
found an algorithm that depends only linearly on n [21], but it has an uncalculated
and very large dependence on g.) The excluded minor algorithm of Alon, Seymour,
and Thomas [2] does not require an embedding of the graph, but the separators that
it produces are not asymptotically optimal.

The question of whether there exists an efficient algorithm for providing asymp-
totically optimal cuts without such an embedding was first posed twenty years ago by
Gilbert, Hutchinson, and Tarjan [14].1 We resolve this question here, as our algorithm
proceeds without any knowledge of an embedding of the graph, instead relying only
on simple matrix manipulations of the adjacency matrix of the graph. While the anal-
ysis of the algorithm requires some somewhat involved mathematics, the algorithm
itself is quite simple, and it can be implemented in just a few lines of Matlab code.
In fact, the algorithm is only a slight modification of the spectral heuristics for graph
partitioning that are widely deployed in practice without any theoretical guarantees.

We believe that the techniques that we employ to obtain our eigenvalue bounds
are of independent interest. To prove these bounds, we make what is perhaps the
first real use of the theory of circle packings and conformal mappings of positive
genus Riemann surfaces in the computer science literature. This is a powerful theory,
and we believe that it will be useful for addressing other questions in spectral and
topological graph theory.

The structure of the paper is as follows. In section 2, we provide the necessary
background in graph theory and spectral partitioning, and we state our main results.
In section 3, we provide a brief outline of our proof techniques. In section 4, we review
the basic theory of circle packings on compact Riemann surfaces. We then use this
theory in sections 5 and 6 to prove our main results.

2. Background in graph theory and spectral partitioning. In this section
we provide the basic definitions and results from graph theory and spectral partition-
ing that we shall require in what follows.

2.1. Graph theory definitions. Throughout the remainder of this paper, let
G = (V,E) be a finite, connected, undirected graph with n vertices, m edges, and no
loops. In this section, we shall define two objects associated with G: its Laplacian
and its genus.

Let the adjacency matrix A(G) be the n × n matrix whose (i, j)th entry equals
1 if (i, j) ∈ E and equals 0 otherwise. Let D(G) be the n× n diagonal matrix whose
ith diagonal entry equals the degree of the ith vertex of G.

Definition 2.1. The Laplacian L(G) is the n× n matrix given by

L(G) = D(G) −A(G).

Since L(G) is symmetric, it is guaranteed to have an orthonormal basis of real
eigenvectors and exclusively real eigenvalues. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenval-

1Djidjev claimed in a brief note to have such an algorithm [10], but it has never appeared in the
literature.
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ues of L(G), and let v1, . . . , vn be a corresponding orthonormal basis of eigenvectors.
For any G, the all-ones vector will be an eigenvector of eigenvalue 0. It is not dif-
ficult to see that all of the other eigenvalues will always be nonnegative, so that
v1 = (1, . . . , 1)T and λ1 = 0.

There has been a great deal of work relating the eigenvalues of L(G) to the
structure of G. In the present paper, we shall concern ourselves exclusively with λ2,
also known as the algebraic connectivity or Fiedler value of G. We call the vector v2

the Fiedler vector of G. As we shall see in section 2.2, the Fiedler value of a graph is
closely related to how well connected the graph is.

A different measure of the connectivity of a graph is provided by its genus, which
measures the complexity of the simplest orientable surface on which the graph can
be embedded so that none of its edges cross. Standard elementary topology provides
a full classification of the orientable surfaces without boundary. Informally, they are
all obtained by attaching finitely many “handles” to the sphere, and they are fully
topologically classified (i.e., up to homeomorphism) by the number of such handles.
This number is called the genus of the surface. The genus 0, 1, 2, and 3 surfaces are
shown in Figure 2.1.

Fig. 2.1. The surfaces of genus 0, 1, 2, and 3.

Definition 2.2. The genus g of a graph G is the smallest integer such that G can
be embedded on a surface of genus g without any of its edges crossing one another.

In particular, a planar graph has genus 0. By making a separate handle for each
edge, it is easy to see that g = O(m), where m is the number of edges in G.

Using these definitions, we can now state our main technical result, as follows.
Theorem 2.3. Let G be a graph of genus g and bounded degree. Its Fiedler value

obeys the inequality

λ2 ≤ O
( g

n

)
,

and this is asymptotically tight.
The constant in this bound depends on the degree of the graph. The proof that

we provide yields a polynomial dependence on the degree, but no effort is made to
optimize this polynomial. Finding the optimal such dependence is an interesting open
question.

2.2. Spectral partitioning. We recall that a partition of a graph G is a de-
composition V = A ∪ A of the vertices of G into two disjoint subsets. For such a
partition, we let δ(A) be the set of edges (i, j) such that i ∈ A and j ∈ A, and we call
|δ(A)| the cut size of our partition. The ratio of our partition is defined to be

φ(A) =
|δ(A)|

min(|A|, |A|)
.

If our partition splits the graph into two sets that differ in size by at most one, we
call it a bisection.
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Spectral methods aim to use the Fiedler vector to find a partition of the graph
with a good ratio. A theorem that begins to address why these work was proven by
Mihail and restated in a more applicable form by Spielman and Teng, as follows.

Theorem 2.4 (see [22, 25]). Let G have maximum degree Δ. For any vector x
that is orthogonal to the all-ones vector, there is a value s so that the partition of G
into {i : xi ≤ s} and {i : xi > s} has ratio at most√

2Δ
xTL(G)x

xTx
.

If x is an eigenvector of L(G), the fraction xTL(G)x
xT x

is equal to its eigenvalue. So,
if we find the eigenvector with eigenvalue λ2, we will thus quickly be able to find
a partition of ratio

√
2Δλ2. By Theorem 2.3, finding the second eigenvector of the

Laplacian thus allows us to find a partition of ratio O(
√
g/n) for a graph of bounded

degree. There is no guarantee that this partition has a similar number of vertices in
each of the two sets. However, a theorem of Lipton and Tarjan [19] implies that a
simple method based on repeated application of this algorithm can be used to give a
bisector of size O(

√
gn).

For every g, Gilbert, Hutchinson, and Tarjan exhibited a class of bounded de-
gree graphs that have no bisectors smaller than O(

√
gn) [14]. This implies that our

algorithm gives the best results possible, in general. Furthermore, it establishes the
asymptotic tightness of our eigenvalue bound, as a smaller bound would show that
every genus g graph has a partition of size o(

√
gn).

Putting all of this together yields our main algorithmic result, the following.
Theorem 2.5. Let G be a genus g graph of bounded maximum degree. There is

a polynomial time algorithm that produces cuts of ratio O(
√
g/n) and vertex bisectors

of size O(
√
gn) in G, and both of these values are optimal.

All that remains of the proof of Theorem 2.5 is the eigenvalue bound set forth in
Theorem 2.3, which is the goal of the remainder of this paper.

3. Outline of the proof of Theorem 2.3. The proof of Theorem 2.3 neces-
sitates the introduction of a good deal of technical machinery. Before launching into
several pages of definitions and background theorems, we feel that a brief roadmap of
where we’re going will be helpful.

The basic motivation for our approach comes from an observation made by Spiel-
man and Teng [25]. They noted that one can obtain bounds on the eigenvalues of a
graph G from a nice representation of G on the unit sphere in R

3, known as a circle
packing for G. This is a presentation of the graph on the sphere so that the vertices
are the centers of a collection of circles, and the edges between vertices correspond to
tangencies of their respective circles, as shown in Figure 4.1. Only planar graphs can
be embedded as such if we require that the circles have disjoint interiors. However,
if we allow the circles to overlap, as shown in Figure 4.2, we can represent nonplanar
graphs as well. This will give rise to a weaker bound in which the eigenvalue bound
is multiplied by the maximum number of circles containing a given point (i.e., the
number of layers of circles on the sphere).

There is a well developed theory of circle packings, both on the sphere and on
higher genus surfaces. The portions of it that we shall use will tell us two main things:

1. We can realize our graph as a circle packing of circles with disjoint interiors
on some genus g surface.

2. The theory of discrete circle packings can be thought of as a discrete analogue
of classical complex function theory, and many of the results of the latter carry
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over to the former.
In classical complex analysis, you can put a complex analytic structure on a genus

g surface to obtain a Riemann surface. Any genus g Riemann surface has a map to the
sphere that is almost everywhere k-to-one for k = O(g), with only O(g) bad points
at which this fails. With this as motivation, we shall try to use the representation of
G as a circle packing on a genus g surface to obtain a representation of it as a circle
packing on the sphere with O(g) layers.

Unfortunately, the discrete theory is more rigid than the continuous one, and
finding such a representation will turn out to be impossible. Instead, we shall actually
pass to the continuous theory to prove our result. To do this, we shall provide a
subdivision lemma that shows that it suffices to prove Theorem 2.3 for graphs that
have circle packings with very small circles. We shall then show that the smooth map
that we have from the Riemann surface to the sphere will take almost all of the circles
of our circle packing to curves on the sphere that are almost circles. We will then
show that this representation of our graph as an approximate circle packing is enough
to provide our desired bounds.

4. Introduction to circle packings. Our proof of Theorem 2.3 operates by
obtaining a nice geometric realization of G. We obtain this realization using the theory
of circle packings. In this section, we shall review the basics of circle packing theory
and quote the main results that our proof will employ. For a more comprehensive
treatment of this theory and a historical account of its origins, see [26].

Loosely speaking, a circle packing is a collection of circles on a surface with a
given pattern of tangencies. We remark at the outset that the theory that we are
discussing is not the same as the classical theory of sphere packing. Our theory is
concerned with the combinatorics of the tangency patterns, not with the maximum
number of circles that one can fit in a small region. The coincidence of nomenclature
is just an unfortunate historical accident.

Fig. 4.1. A univalent circle packing with its associated graph.

4.1. Planar circle packings. For simplicity, we begin by discussing circle pack-
ings in the plane.

Definition 4.1. A planar circle packing P is a finite collection of (possibly
overlapping) circles C1, . . . , Cn of respective radii r1, . . . , rn in the complex plane C.
If all of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle Ci and connecting vi and vj by an edge if and only if Ci and Cj are
mutually tangent.

This is illustrated in Figures 4.1 and 4.2.
We thus associate a graph with every circle packing. It is clear that every graph
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Fig. 4.2. A nonunivalent circle packing with its associated graph.

associated with a univalent planar circle packing is planar. A natural question to ask
is whether every planar graph can be realized as the associated graph of some planar
circle packing. This is answered in the affirmative by the Koebe–Andreev–Thurston
theorem [18, 1, 28].

Theorem 4.2 (Koebe–Andreev–Thurston). Let G be a planar graph. There
exists a planar circle packing P such that A(P) = G.

This theorem also contains a uniqueness result, but we have not yet developed the
machinery to state it. We shall generalize this theorem in section 4.3, at which point
we shall have the proper terminology to state the uniqueness part of the theorem.

We note that if we map the plane onto the sphere by stereographic projection,
circles in the plane will be sent to circles on the sphere, so this theorem can be
interpreted as saying that every genus 0 graph can be represented as a circle packing
on the surface of a genus 0 surface. This suggests that we attempt to generalize
this theorem to surfaces of higher genus. The theory of circle packings on surfaces
of arbitrary genus acts in many ways like a discrete analogue of classical Riemann
surface theory. As such, a basic background in Riemann surfaces is necessary to state
or motivate many of its results. It is to this that we devote the next section.

4.2. A very brief introduction to Riemann surface theory. In this section,
we provide an informal introduction to Riemann surface theory. Our goal is to provide
geometric intuition, not mathematical rigor. We assume some familiarity with the
basic concept of a manifold, as well as with the basic definitions of complex analysis.
For a more complete exposition of the theory, see [13].

We recall that an n-dimensional manifold is a structure that looks locally like
R

n. More formally, we write our manifold M as a topological union of open sets Si,
each endowed with a homeomorphism ϕi : Si → Bn, where Bn is the ball {|x| < 1 |
x ∈ R

n}. Furthermore, we require a compatibility among these maps to avoid cusps
and such. To this end, we mandate that the compositions ϕj ◦ ϕ−1

i : ϕi(Si ∩ Sj) →
ϕj(Si∩Sj) be diffeomorphisms. The orientable 2-dimensional manifolds are precisely
the genus g surfaces described above.

An n-dimensional complex manifold is the natural complex analytic generalization
of this. We write our manifold M as a union of open sets Si and endow each such
set with a homeomorphism ϕi : Si → BCn , where BCn is the complex unit ball
{|x| < 1 | x ∈ C

n}. Now, instead of requiring that the compositions of these functions
obey a smooth compatibility condition, we require that they obey an analytic one:
we demand that the compositions ϕi ◦ ϕ−1

j be biholomorphic maps.
As such, an n-dimensional complex manifold M is a 2n-dimensional real manifold

with additional complex analytic structure. This structure allows us to transfer over
many of the definitions from standard complex analysis. The basic idea is that we
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define these notions as before on the Si, and the compatibility condition allows them
to make sense as global definitions. In particular, if M = (SM

i , φM
i ) and N = (SN

j , φn
j )

are complex manifolds of the same dimension, we say that a function f : M → N is
holomorphic if its restriction to a map fij : SM

i → SN
j is holomorphic for all i and j.

Since the compositions ϕM
i ◦ (ϕM

j )−1 and ϕN
i ◦ (ϕN

j )−1 are holomorphic, this notion
makes sense where the regions overlap.

Definition 4.3. A Riemann surface is a 1-dimensional complex manifold.
In this paper, we shall take all of our Riemann surfaces to be compact. Since there

is a natural way to orient the complex plane, we note that the complex structure can
be used to define an orientation on the manifold. As such, all complex manifolds, and
in particular all Riemann surfaces, are orientable. Compact Riemann surfaces are
thus, topologically, 2-dimensional orientable real manifolds. Every compact Riemann
surface is therefore topologically one of the genus g surfaces discussed above. The
complex structure imposed by the ϕi, however, varies much more widely, and there
are many different such structures that have the same underlying topological space.

Nothing in the definition of a Riemann surface supplies a metric on the surface.
Indeed, there is no requirement that the different φi agree in any way about the
distance between two points in their intersection. One can assign many different
metrics to the surface. However, it turns out that there is way to single out a unique
metric on the surface, called the metric of constant curvature. This allows us to supply
an intrinsic notion of distance on any Riemann surface. In particular, this allows us to
define a circle on our Riemann surface to be a simple closed curve that is contractible
on the surface and all of whose points lie at a fixed distance from some center.

One particularly important Riemann surface that we shall consider is the Riemann
sphere, which we denote Ĉ. It is topologically a sphere. It should be thought of as
being obtained by taking the complex plane and adjoining a single point called ∞.
One way of visualizing its relation to C is to consider the stereographic projection
away from the North Pole of a sphere onto a plane. The North Pole corresponds to
∞, and the rest of the sphere corresponds to C.

We recall from single variable complex analysis that the requirement that a map
be analytic is quite a stringent one, and that it imposes a significant amount of local
structure on the map. Let f : C → C be nonconstant and analytic in a neighborhood
of the origin, and assume without loss of generality that f(0) = 0. There is some
neighborhood of the origin in which f can be expressed as a power series f(z) =
a1z+a2z

2 +a3z
3 + · · · . If a1 
= 0, f(z) is analytically invertible in some neighborhood

of the origin, and thus it is locally an isomorphism. In particular, it is conformal—it
preserves the angles between intersecting curves, and the image of an infinitesimal
circle is another infinitesimal circle.

If a1 = 0 and an is the first nonzero coefficient in its power series, f has a
branch point of order n at the origin. In this case, f operates, up to a scale factor
and lower order terms, like the function f(z) = zn. This function is n-to-one on a
small neighborhood of the origin, excluding the origin itself. It sends only 0 to 0,
however. The preimages of the points in this small neighborhood thus trace out n
different “sheets” that all intersect at 0. This confluence of sheets is the only sort
of singularity that can appear in an analytic map. We note that the angles between
curves intersecting at the branch point are not preserved, but they are instead divided
by n.

This local behavior is identical for Riemann surfaces. From this, we can deduce
that if f : M → N is an analytic map of Riemann surfaces, it has some well-defined



GRAPH THEORY AND SPECTRAL PARTITIONING BACKGROUND 889

degree k. For all but finitely many points p in N , #f−1(p) = k. The preimage of
each of these points looks like a collection of k sheets, and f has nonzero derivative
at all of them. There exist some points q ∈ M at which f ′(q) = 0. At each such point
there is a branch point, so the sheets intersect, and f(q) has fewer than k preimages.

However, the global structure of Riemann surfaces provides further constraints on
maps between them, and there are, generally speaking, very few functions f : M → N
of a given degree. For example, topological arguments, using the local form of analytic
maps described above, show that there are no degree 1 maps from the torus to the
sphere, and no degree 2 maps from the genus 2 surface to the sphere.

There is a deep theory of maps of Riemann surfaces that describes rather precisely
when a map of a given degree exists between two Riemann surfaces, and, if it exists,
where and how such a map must branch. Of this theory we shall require only one
main result, which is a direct corollary of the celebrated Riemann–Roch theorem.

Theorem 4.4. Let M be a Riemann surface of genus g. There exists an analytic
map f : M → Ĉ of degree O(g) and with O(g) branch points.

4.3. Circle packings on surfaces of arbitrary genus. We now have the
machinery in place to deal with general circle packings. Throughout this section, let
G be a graph of genus g, and suppose that it is embedded on a genus g surface S so
that none of its edges cross. The graph G divides S into faces. We say that G is a
fully triangulated graph if all of these faces are triangles, in which case we say that it
gives a triangulation of S. If G is not fully triangulated, one can clearly add edges to
it to make it so. It will follow immediately from (5.2) in section 5 that this will only
increase λ2(G), so we shall assume for convenience that G gives a triangulation of S.
We are now ready to define our primary objects of study, as follows.

Definition 4.5. Let S be a compact Riemann surface endowed with its metric
of constant curvature. A circle packing P on S is a finite collection of (possibly
overlapping) circles C1, . . . , Cn of respective radii r1, . . . , rn on the surface of S. If all
of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle Ci and connecting vi and vj by an edge if and only if Ci and Cj are
mutually tangent. Alternatively, we say that P is a circle packing for A(P) on S.

The main result on circle packings that we shall use is the circle packing theo-
rem, which is the natural extension of the Koebe–Andreev–Thurston theorem to this
more general setting. It was originally proven in a restricted form by Beardon and
Stephenson [4] and then proven in full generality by He and Schramm [17].

Theorem 4.6 (circle packing theorem). Let G be a triangulation of a surface
of genus g. There exists a Riemann surface S of genus g and a univalent circle
packing P such that P is a circle packing for G on S. This packing is unique up to
automorphisms of S.

If G is embedded in a surface of genus g but is not fully triangulated, the Riemann
surface and circle packing guaranteed by the theorem still exist, but they need not be
unique.

The complex structure on the Riemann surface allows us to define the angle at
which two edges of a face meet. If the points u, v, and w are the vertices of a face, we
denote the angle between the edges uv and vw at v by 〈uvw〉. We can thus define the
angle sum at a vertex to be

∑
〈uvw〉, where the sum is taken over all faces containing

v. If P is a univalent sphere packing, the angle sum at any vertex of A(P) is clearly 2π.
In a nonunivalent circle packing, it is possible for the circles at a point to wrap

around the point more than once. In the case of a nonunivalent circle packing, the
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edges of its associated graph may intersect, but we can still define an associated
triangulation of the surface—there just may be more than one triangle covering a
given point. We can therefore compute the angle sum at a point. In this case, it need
not be 2π. However, the circles must wrap around the vertex an integral number of
times, so it must be some multiple 2πk. (See Figure 4.2.) We then say that the vertex
is a discrete branch point of order k.

These discrete branch points behave very much like the continuous branch points
present on Riemann surfaces. In fact, there is an extensive theory that shows that a
large portion of the theory of Riemann surfaces has an analogue in the discrete realm
of circle packing. One can define maps of circle packings, just as one can define maps
of Riemann surfaces. They consist of a correspondence of the circles on one surface to
those on another in a way that commutes with tangency. While analytic maps send
infinitesimal circles to infinitesimal circles, maps of circle packings send finite circles
to finite circles. The analogue of branched covering maps in Riemannian geometry
takes univalent circle packings and places them as nonunivalent circle packings on
other surfaces. Unfortunately, these maps are somewhat rarer than their continuous
analogues.

In particular, if we have a circle packing on a genus g surface S, there is no known
analogue of the Riemann–Roch theorem, and thus no analogue of Theorem 4.4. We
are therefore not guaranteed that there is a nonunivalent circle packing on the sphere
carrying the same associated graph. Intuitively, this comes from the fact that the
analytic maps from S to Ĉ are required to be branched over a very restricted locus of
points. The discrete maps, however, can only be branched over the centers of circles.
If there does not exist an admissible set of branch points among the centers of the
circles, we will have difficulty constructing a discrete analytic map. This will lie at
the root of many of the technical difficulties that we shall face in the remainder of
this paper.

5. An eigenvalue bound. In this section, we prove Theorem 2.3. The proof
will assume a technical lemma whose proof we shall postpone until section 6.

We begin by recalling the expression of the Fiedler value of G as a so-called
Rayleigh quotient :

λ2 = min
x⊥(1,...,1)T

xTL(G)x

xTx
.(5.1)

A straightforward calculation shows that for x = (x1, . . . , xn)T ∈ R
n,

xTL(G)x =
∑

(i,j)∈E

(xi − xj)
2,

so that (5.1) becomes

λ2 = min
x⊥(1,...,1)T

∑
(i,j)∈E(xi − xj)

2

xTx
.(5.2)

As noted by Spielman and Teng [25], it follows easily from (5.2) that we can replace
the scalar values xi with vectors vi ∈ R

k, so that

λ2 = min

∑
(i,j)∈E ‖vi − vj‖2∑n

i=1 ‖vi‖2
,(5.3)
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where the minimum is taken over all sets of n-vectors such that
∑

vi = (0, . . . , 0)T

and such that at least one of the vi is nonzero.
The general goal is thus to find a set of vi that gives a small value for this quotient.

The vi that we use will almost be the centers of a nonunivalent circle packing on the
unit sphere S2 ⊆ R

3. The efficacy of this follows from the following theorem, which
follows easily from the work of Spielman and Teng [25].

Theorem 5.1. Let P be a circle packing on the sphere S2 = {x ∈ R
3 | ‖x‖2 = 1}

so that the graph A(P) has no vertex of degree greater than Δ. Suppose further that
the packing is of degree k, so that no point on the sphere is contained in the interior
of more than k circles, and that the centroid of the centers of the circles is the origin.
Then the Fiedler value

λ2(A(P)) ≤ O

(
Δk

n

)
.

Proof. The proof follows from (5.3). Let the circles be C1, . . . , Cn, and let the
corresponding radii be r1, . . . , rn. Let vi ∈ R

3 be the x, y, and z coordinates of the
center of the ith circle. The sum

∑
vi = 0 by assumption, so λ2 is less than or equal to

the fraction in (5.3). Since all of the vi are on the unit sphere, we have
∑

‖vi‖2 = n,
so it just remains to bound the numerator. If there is an edge (i, j), the two circles
Ci and Cj must be mutually tangent, so that ‖vi − vj‖2 ≤ (ri + rj)

2 ≤ 2(r2
i + r2

j ). It
thus follows that

∑
(i,j)∈E

‖vi − vj‖2 ≤
∑

(i,j)∈E

2(r2
i + r2

j ) ≤ 2Δ

n∑
i=1

r2
i .

However, the total area of all of the circles is less than or equal to k times the area of
the sphere, since the circle packing is of degree k. We thus have that

∑n
i=1 r

2
i ≤ O(k),

from which the desired result follows.
This suggests that we use the circle packing theorem (Theorem 4.6) to embed

our graph on a genus g surface and then try to use some analogue of Theorem 4.4
to obtain a branched circle packing on the sphere of degree O(g). Unfortunately, as
previously noted, such a circle packing need not exist, due to the restrictiveness of
the discrete theory. Thus, we shall instead show that a certain subdivision process on
our graph does not significantly decrease nλ2. We shall then show that performing
this subdivision enough times causes our discrete circle packing to approximate a
continuous structure on the Riemann surface, at which point we can use the continuous
theory in addition to the discrete one.

The refinement procedure that we shall use is called “hexagonal refinement.” It
operates on a triangulation of a surface by replacing each triangle with four smaller
triangles, as shown in Figure 5.1. This process produces another triangulation of the
same surface, so we can iterate it arbitrarily many times.

Lemma 5.2. Let G be a graph with n vertices, m edges, and maximum degree
Δ that triangulates some surface without boundary, and let G′ be the graph with n′

vertices and m′ edges obtained by performing k successive hexagonal refinements on
G. Then

nλ2(G) ≤ C(Δ)n′λ2(G
′).

For the sake of continuity, we defer this proof to section 6.
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Fig. 5.1. The hexagonal subdivision procedure applied to a triangulation with two triangles.

The refinement process replaces each triangle in our graph with four smaller
triangles. If all of the original triangles remained the same size and shape, this
would imply that performing enough hexagonal refinements would give rise to a circle
packing whose circles have arbitrarily small radii. However, it is possible for the
original triangles to change size and shape as we refine, so this is no longer obvious.
Nevertheless, it remains true, as shown by the following lemma.

Lemma 5.3. Let G be a graph that triangulates a genus g Riemann surface without
boundary, and let G(k) be the graph obtained by performing k hexagonal refinements
on G. For every ε > 0, there exists some kε so that for all � ≥ kε every circle in G(�)

has radius less than ε.
Proof. This was essentially proven by Rodin and Sullivan [23]; their proof, how-

ever, was stated for only the genus 0 case. The precise statement above was proven
by Bowers and Stephenson [5].

We get a new Riemann surface for each iteration of the refinement procedure.
It is intuitive that, as the number of iterations grows and the circles in the refined
graph get arbitrarily small, the Riemann surfaces will somehow converge, and the
embedding of the graph on these Riemann surfaces will somehow stabilize. This can
be made formal by the following lemma.

Lemma 5.4. Let G be a graph that triangulates a genus g compact Riemann
surface without boundary, let G(k) be the result of performing k hexagonal refinements
on G, and let S(k) be the Riemann surface on which G(k) is realized as a circle packing.
Further, let hk : S(k) → S(k+1) be the map that takes a triangle to its image under the
subdivision procedure by the obvious piecewise-linear map. The sequence of surfaces
{S(k)} converges in the moduli space of genus g surfaces, and the sequence of maps
{hk} converges to the identity.

Proof. This has been shown by Bowers and Stephenson [5].
We shall also require one last definition, as follows.
Definition 5.5. Let f : X → Y be a map between two locally Euclidean metric

spaces. The quantity

Hf (x, r) =
max|x−y|=r |f(x) − f(y)|
min|x−y|=r |f(x) − f(y)| − 1

is called the radius r distortion of f at x.
We are now finally ready to prove Theorem 2.3.
Proof of Theorem 2.3. Using the circle packing theorem (Theorem 4.6), realize

the graph G = G(0) as a circle packing on some Riemann surface S of genus g. Let
G(k) be the result of performing k hexagonal refinements on G, and let S(k) be the
Riemann surface on which it can be realized as a circle packing. By Theorem 4.4,
there exists an analytic map f (k) from S(k) to the Riemann sphere of degree O(g)
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and with O(g) branch points. Embed the Riemann sphere as the unit sphere in R
3

using the conformal map given by inverse stereographic projection. By the work of
Spielman and Teng (Theorem 9 of [25]), postcomposing with a Möbius transformation
allows us to assume, without loss of generality, that the centroid of the images of the
vertices of each G(k) under f (k) is the origin. By Lemma 5.4, the S(k) converge to
some surface S(∞), and the f (k) can be chosen so as to converge to some continuous
limit map f (∞).

By Lemma 5.2, it suffices to the prove the theorem for an arbitrarily fine hexagonal
refinement of the original graph. Away from its branch points, a map of Riemann
surfaces is conformal, meaning it sends infinitesimal circles to infinitesimal circles. In
particular, given a map f : S → Ĉ, the compactness of S guarantees that for every
ε, κ > 0 there exists a δ > 0 so that the radius δ′ distortion Hf (x, δ′) is less than ε
for every x that is at least distance κ from any branch point and any δ′ ≤ δ. In fact,
by the convergence results of the last paragraph, there exist some N and δ such that
this holds for every f (k) with k > N . Fix ε and κ, and let δ and N be chosen so that
this is true. By possibly increasing N if necessary, we can assume by Lemma 5.3 that
all of the circles on S(k) have radius at most δ for all k > N .

Let k be at least N . We shall break S(k) into two parts, S(k) = S
(k)
1 ∪ S

(k)
2 , as

follows. Construct a ball of radius κ around each branch point of f (k), and let S
(k)
2

be the union of these balls. Let S
(k)
1 be the complement S(k) \ S(k)

2 .
We can now use (5.3) to bound λ2, just as in the proof of Theorem 5.1. Let G(k)

have nk vertices. The denominator of (5.3) is equal to nk, so it suffices to bound the

numerator. We shall separately consider the circles contained entirely in S
(k)
1 and

those that intersect S
(k)
2 .

We begin with the circles contained in S
(k)
1 . Every circle of the packing gets

mapped by f to some connected region on Ĉ, and there are at most O(g) such regions

covering any point of the sphere. Let C be a circle in S
(k)
1 , let D be the diameter

function, which takes a region to the length of the longest geodesic it contains, and

let A be the area function. Since the radius δ distortion of f inside of S
(k)
1 is at most

ε, and the radius of C is at most δ, the ratio D2(f(C))/A(f(C)) is at most O(1 + ε).
Using the same argument as in the proof of Theorem 5.1, the vertex at the center of a
circle C cannot contribute more than O(dD2(f(C))) to the sum, and the total area of

the regions from S
(k)
1 cannot exceed O(g), so the total contribution to the numerator

of the vertices in S
(k)
1 cannot be more than O(dg(1 + ε)).

If this were the only term in the numerator, we could complete the proof by
setting ε to be a constant. It thus remains to show that the contribution from the

circles intersecting S
(k)
2 can be made small. To do this, we need only show that the

contribution θ(k)(x) to the numerator per unit area at a point x from these circles

remains bounded as we subdivide, since we can make the area of S
(k)
2 arbitrarily small

by sending κ to zero, and thus the area of the circles intersecting S
(k)
2 will go to zero

as k goes to infinity and the circles get arbitrarily small. Our argument is similar to
one used by McCaughan to analyze the recurrence of random walks on circle packings
[20].

Let xi, i = 1, . . . , 3, be the coordinate functions on R
3, and let f (k)∗xi be their

pullbacks along f (k) to S(k). (That is, if y is a point on S(k), f (k)∗xi(y) = xi(f
(k)(y)).)

In addition, let C
(k)
1 and C

(k)
2 be a pair of adjacent circles in S

(k)
2 with respective radii

r
(k)
1 and r

(k)
2 and respective centers c

(k)
1 and c

(k)
2 . The contribution of the correspond-
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ing edge in G(k) to the numerator of (5.3) will be∥∥∥∥(f (k)∗xi(c
(k)
1 )

)3

i=1
−
(
f (k)∗xi(c

(k)
2 )

)3

i=1

∥∥∥∥2

(5.4)

=
3∑

i=1

(
f (k)∗xi(c

(k)
1 ) − f (k)∗xi(c

(k)
2 )

)2

.

The distance between c
(k)
1 and c

(k)
2 equals r

(k)
1 + r

(k)
2 . As k goes to infinity, the

radii r
(k)
1 and r

(k)
2 both go to zero, by Lemma 5.3. By the smoothness of the f (k), their

convergence to f (∞), and the compactness of their domains, we can approximate each
term on the right-hand side of (5.4) arbitrarily well by its first order approximation,
so that (

f (k)∗xi(c
(k)
1 ) − f (k)∗xi(c

(k)
2 )

)2

(5.5)

≤ (1 + o(1))(r
(k)
1 + r

(k)
2 )2‖∇f (k)∗xi(c

(k)
1 )‖2

as k goes to infinity and the distance between c
(k)
1 and c

(k)
2 shrinks to zero.

The right-hand side of (5.5) is bounded above by

(2 + o(1))[(r
(k)
1 )2 + (r

(k)
2 )2]‖∇f (k)∗xi(c

(k)
1 )‖2(5.6)

= O(1)[(r
(k)
1 )2‖∇f (k)∗xi(c

(k)
1 )‖2 + (r

(k)
2 )2‖∇f (k)∗xi(c

(k)
2 )‖2].

The degree of our graph is bounded, so every vertex appears in at most a constant
number of edges. If we sum the right-hand side of (5.6) over all of the edges in our
graph, the total contribution of terms involving a fixed circle of radius r centered at
c is thus bounded above by

O(1)r2‖∇f (k)∗xi(c)‖2,

so the contribution per unit area is bounded above by

O(1)‖∇f (k)∗xi(c)‖2.

This clearly remains bounded as k goes to infinity and f (k) approaches f (∞). It thus

follows that the contribution to the numerator of (5.3) of the vertices in S
(k)
2 tends

to zero as k goes to infinity and κ is made arbitrarily small. By setting ε to be a
constant and sending κ to zero, Theorem 2.3 follows.

6. The proof of Lemma 5.2. In this section, we shall prove Lemma 5.2. In
proving this bound, it will be convenient to consider the following weighted form of
the Laplacian.

Definition 6.1. The weighted Laplacian LW (G) of a graph G is the matrix

LW (G) = W−1/2L(G)W−1/2,

where L(G) is the Laplacian of G, and W is a diagonal matrix whose ith diagonal
entry wi is strictly positive for all i.

We shall denote the eigenvalues of LW (G) by λ̃W
1 (G) ≤ · · · ≤ λ̃W

n (G) and the
corresponding eigenvectors by ṽW1 (G) . . . ṽWn (G). A straightforward calculation shows
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that the weighted Laplacian has λ̃W
1 = 0 and ṽW1 = W 1/21. Our main quantity

of interest will be λ̃W
2 (G), which we can compute using a weighted analogue of the

Rayleigh quotient:

λ̃W
2 = min

x⊥W1

∑
(i,j)∈E(xi − xj)

2∑
i x

2
iwi

.(6.1)

The second eigenvector ṽW2 (G) equals W 1/2x, where x is the vector that achieves the
minimum in (6.1).

If all of the weights are Θ(1), standard linear algebra shows that λ2(G) and λ̃W
2 (G)

differ by at most a constant factor, so proving a bound on one implies a bound on
the other. (See Chung’s book [9] for detailed proofs of the above facts and for other
foundational information about the weighted Laplacian.)

Before we can proceed to the body of the proof of Lemma 5.2, we require two
fairly general technical lemmas about independent random variables.

Lemma 6.2. Let a1, . . . , an be independent real-valued random variables, possibly
drawn from different probability distributions. Let w1, . . . , wn ∈ R

+ be strictly positive
constants. If the expectation E[

∑
i wiai] = 0, then

E

⎡⎢⎣
⎛⎝∑

j

wjaj

⎞⎠2
⎤⎥⎦ ≤ E

⎡⎣∑
j

w2
ja

2
j

⎤⎦ .

Proof. This follows by expanding the left-hand side:

E

⎡⎢⎣
⎛⎝∑

j

wjaj

⎞⎠2
⎤⎥⎦ = E

[∑
i

w2
i a

2
i

]
+ E

⎡⎣∑
i

wiai

⎛⎝∑
j �=i

wjaj

⎞⎠⎤⎦
= E

[∑
i

w2
i a

2
i

]
+
∑
i

− (E[wiai])
2

≤ E

⎡⎣∑
j

w2
ja

2
j

⎤⎦ ,

where the second equality follows from the independence of the variables and the fact
that the sum of their expectations is zero.

We shall now use this lemma to establish our second lemma, which is the one
that will actually appear in our main proof.

Lemma 6.3. Let a1, . . . , an be independent real-valued random variables, possibly
drawn from different probability distributions, and let w1, . . . , wn ∈ R

+ be strictly
positive constants such that E[

∑
i wiai] = 0. Let a = (a1, . . . , an), and let wmax =

maxi wi. Further let

b =

(
1∑
i wi

∑
i

wiai

)
1 and c = a− b.

Then

E

[∑
i

wic
2
i

]
≥

(
1 − wmax∑

i wi

)
E

[∑
i

wia
2
i

]
.
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Proof. This follows by direct calculation:

E

[∑
i

wic
2
i

]
= E

⎡⎢⎣∑
i

wi

⎛⎝ai −
1∑
j wj

⎛⎝∑
j

wjaj

⎞⎠⎞⎠2
⎤⎥⎦

= E

[∑
i

wia
2
i

]
+

1

(
∑

i wi)
2 E

⎡⎢⎣∑
i

wi

⎛⎝∑
j

wjaj

⎞⎠2
⎤⎥⎦

− 2∑
i wi

E

⎡⎣∑
i

wiai

⎛⎝∑
j

wjaj

⎞⎠⎤⎦
= E

[∑
i

wia
2
i

]
+

1∑
i wi

E

⎡⎢⎣
⎛⎝∑

j

wjaj

⎞⎠2
⎤⎥⎦− 2∑

i wi
E

⎡⎢⎣
⎛⎝∑

j

wjaj

⎞⎠2
⎤⎥⎦

= E

[∑
i

wia
2
i

]
− 1∑

i wi
E

⎡⎢⎣
⎛⎝∑

j

wjaj

⎞⎠2
⎤⎥⎦

≥ E

[∑
i

wia
2
i

]
− 1∑

i wi
E

⎡⎣∑
j

w2
ja

2
j

⎤⎦
= E

[∑
i

(
1 − wi∑

j wj

)
wia

2
i

]

≥
(

1 − wmax∑
i wi

)
E

[∑
i

wia
2
i

]
,

where second-to-last inequality follows from Lemma 6.2.
We are now prepared to prove Lemma 5.2.
Proof of Lemma 5.2. Let G = (VG, EG) be the original graph, and let G′ =

(VG′ , EG′) be the graph that results from performing k successive hexagonal refine-
ments on G. The embeddings into surfaces endow both G and G′ with triangulations;
let TG and TG′ be the respective sets of triangles in these triangulations. There is a
natural inclusion ι : VG ↪→ VG′ , since the subdivision procedure only adds vertices to
the original set. There is also a map η : TG′ → TG that takes a triangle from the
subdivided graph to the one in the original graph from which it arose. For a vertex v
in either graph, let N(v) be the set of triangles containing it. For a vertex w ∈ VG, let
P (w) = η−1(N(w)) be the set of triangles in T (G′) taken by η to elements of N(w).
(See Figure 6.1.)

Our proof will proceed by producing a randomized construction of a subgraph H
of G′. Given a vector that assigns a value to every vertex of G′, we can obtain such
a vector on H by restriction. We shall also show how to use such a vector on H to
construct such a vector on G. The vectors on the different graphs will give rise to
Rayleigh quotients on the graphs (some of which will be weighted), where the Rayleigh
quotients for G and H will depend on the random choices made in the construction of
H. By relating the terms in the different Rayleigh quotients, we shall then provide a
probabilistic proof that there exists an H that gives rise to a small Rayleigh quotient
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Fig. 6.1. A subdivided graph, with P (w) and N(w) shaded for a vertex w.

on G, which will suffice to prove our desired bound.
H will be produced by randomly choosing a representative in VG′ for each vertex

in VG and representing every edge in EG by a randomly chosen path in G′ between
the representatives of its endpoints.

We first construct the map πV : VG → VG′ that chooses the representatives of
the vertices. For each v ∈ VG we choose πV (v) uniformly at random from the vertices
contained in P (v) that are at least as close to ι(v) as to ι(w) for any other w ∈ VG.
Vertices in P (v) that are equally close to ι(v) and ι(w) should be arbitrarily assigned
to either v or w, but not both.

We now construct πE , which maps edges in EG to paths in G′. Let e = (v1, v2)
be an edge in G, and let w1 and w2 equal πV (v1) and πV (v2), respectively. The two
neighborhoods in G, N(v1) and N(v2), share exactly two triangles, t1 and t2. Let x
be a vertex randomly chosen from the vertices in η−1(t1 ∪ t2). We shall construct a
path from each wi (i = 1, 2) to x, so that their composition gives a path from w1 to
w2. We shall use the same construction for each, so, without loss of generality, we
shall just construct the path from w1 to x.

Both w1 and x are in P (v1), and we give a general procedure for constructing a
path between any two such vertices. The images under the inclusion ι of the triangles
in N(v1) encircle ι(v1). Suppose w1 is contained in T1, and x is contained in T2.
Traversing the triangles in a clockwise order from T1 to T2 gives one list of triangles,
and traversing in a counterclockwise order gives another. Let T1, Q1, . . . , Q�, T2 be
the shorter of these two lists, with a random choice made if the two lists are the same
length. Choose a random vertex ai in each Qi, and let a0 = w1 and a�+1 = x. We
thus have a vertex representing each triangle in the list. Our path will consist of a
sequence of segments from each representative to the next.

Note that all of the triangles are distinct, except if T1 = T2 and the list is of
length 2. We suppose for now that we have two vertices ai and ai+1 in distinct
triangles, and we deal with the degenerate case later. The two triangles in question
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Fig. 6.2. An illustration of how the grid graph exists as a subgraph of the union of two adjacent
subdivided triangles.

Fig. 6.3. The entire construction illustrated for a given edge of the original graph.

are adjacent, and their union contains a grid graph as a subgraph. (See Figure 6.2.)
Given two vertices in a grid, there is a unique path between them that one obtains by
first moving horizontally and then vertically, and another that one obtains by moving
vertically and then horizontally. (These two coincide if there is a line connecting the
two points.) Randomly choose one of these two paths. This is the path connecting
ai to ai+1. If ai and ai+1 lie in the same triangle, randomly choose one of the two
adjacent triangles to form a grid, and then use the above construction. Composing
the paths between each ai and ai+1 completes the construction of πE . The entire
construction is illustrated in Figure 6.3.

We now consider the Rayleigh quotients for the three graphs that we have con-
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structed. After k hexagonal refinements, every edge in G is split into r = 2k pieces,
every triangle gets replaced with r2 smaller triangles, and the number of vertices
grows quadratically in r. A vector y ∈ R

|VG′ | that assigns a value to each vertex in
G′ gives the Rayleigh quotient

R(G′) =

∑
(i,j)∈EG′ (yi − yj)

2

yT y
.

This induces a vector on the vertices of H by restriction. The probability, taken
over the random choices in the construction of πV and πE , that a given edge of G′

appears on the path representing a given edge e of G is zero if it is not in P (α)
with α equal to one of the endpoints of e, and at most O(1/r) otherwise. Since the
maximum degree of a vertex in G is assumed constant, the expected number of times
that a given edge of G′ occurs in H is O(1/r). Every vertex in G′ is selected as a
representative of a vertex in G with probability Θ(1/r2). It thus follows that

E

⎡⎣ ∑
(i,j)∈EH

(yi − yj)
2

⎤⎦ ≤ O

(
1

r

) ∑
(i,j)∈EG′

(yi − yj)
2(6.2)

and

E

[∑
i∈VG

wiy
2
πV (i)

]
= Θ

(
1

r2

) ∑
i∈VG′

y2
i ,(6.3)

where the expectations are taken over the random choices in the construction of
(πV , πE), and the wi are any weights that are bounded above and below by positive
constants.

Let y be the vector in R
|VG| whose ith coordinate is yπV (i). Each coordinate yi

of y is chosen independently from a distinct set Si of the coordinates of y, and every
coordinate is contained in one of these sets. Let si = |Si|, let smin = mini si, and
take W to be the diagonal matrix whose ith diagonal entry wi equals si/smin. The
probability that a given vertex in Si is selected equals 1/si, so we have that

E

⎡⎣ ∑
j∈VG

wjyj

⎤⎦ =
∑

k∈VG′

yk = 0.

(The need to weight the terms on the left-hand side of this expression by the wi is
what will necessitate the use of the weighted Laplacian in our proof.) The size of
each Si is approximately proportional to the degree of the ith vertex of G, so the wi

are all bounded above by a constant, and they are all at least one by definition. The
eigenvalue λ̃W

2 (G) of the weighted Laplacian is thus within a constant factor of the
standard Fiedler value λ2(G).

Let z be the vector

z = y −
(∑

i wiyi∑
i wi

)
1,

so that z differs from y by a multiple of the all-ones vector and is orthogonal to W1.
By applying Lemma 6.3 to (6.3), we obtain

E

[∑
i∈VG

wiz
2
i

]
≥

(
1 − wmax∑

i wi

)
E

[∑
i∈VG

wiy
2
i

]
= Θ

(
1

r2

) ∑
i∈VG′

y2
i .(6.4)
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Multiplying the inequalities in (6.2) and (6.4) by the appropriate factors and combin-
ing them yields

O(r)

⎛⎝ ∑
(i,j)∈EG′

(yi − yj)
2

⎞⎠ · E
[∑
i∈VG

wiz
2
i

]
≥

⎛⎝ ∑
i∈VG′

y2
i

⎞⎠ · E

⎡⎣ ∑
(i,j)∈EH

(yi − yj)
2

⎤⎦ .

(6.5)

This implies that there exists some choice of (πV , πE) for which the left-hand side
of (6.5) is greater than or equal to the right-hand side, in which case we would have∑

(i,j)∈EH
(yi − yj)

2∑
i∈VG

wiz2
i

≤ O(r)

∑
(i,j)∈EG′ (yi − yj)

2∑
i∈VG′ y

2
i

= O(r)R(G′).(6.6)

Now suppose that we assign to each vertex v ∈ VG the value assumed by y at
πV (v). Using the fact that the maximum degree of a vertex is bounded, so that there
are O(1) triangles surrounding any vertex in G, we see that every path representing
an edge is of length O(r). We note that if i1, . . . , is is a sequence of vertices,

(yis − yi1)
2 ≤ s

s−1∑
a=1

(yia+1 − yia)2.

As such, we have ∑
(i,j)∈EG

(yπV (i) − yπV (j))
2 ≤ O(r)

∑
(i,j)∈EH

(yi − yj)
2.(6.7)

Since z is obtained from y by subtracting a multiple of the all-ones vector,

zi − zj = yπV (i) − yπV (j)

for any i and j. Plugging this into (6.7) gives∑
(i,j)∈EG

(zi − zj)
2 ≤ O(r)

∑
(i,j)∈EH

(yi − yj)
2,

and applying this to the inequality in (6.6) yields∑
(i,j)∈EG

(zi − zj)
2∑

i∈VG
wiz2

i

≤ O(r2)R(G′).

We have thus constructed an assignment of values to the vertices of G that is or-
thogonal to the vector W1 and produces a weighted Rayleigh quotient of O(r2)R(G′).
If we choose the yi to be the values that give the Fiedler value of G′, we thus obtain,
by (6.1) and the fact that the wi are Θ(1),

λ2(G) = Θ(1)λ̃W
2 (G) ≤ O(r2)λ2(G

′).

Since the number of vertices in G′ grows as r2 times the number of vertices in G, this
completes the proof of Lemma 5.2.
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