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Mathematics of Communication Research, Bell Labs, Lucent Technologies,
600 Mountain Avenue, Murray Hill, New Jersey 07974

E-mail: v.goyal@ieee.org, jelena@bell-labs.com

and

Jonathan A. Kelner 2

Harvard University, 38 Leverett Mail Center, Cambridge, Massachusetts 02138
E-mail: kelner@fas.harvard.edu

Communicated by Henrique S. Malvar

Frames have been used to capture significant signal characteristics, provide
numerical stability of reconstruction, and enhance resilience to additive noise. This
paper places frames in a new setting, where some of the elements are deleted.
Since proper subsets of frames are sometimes themselves frames, a quantized frame
expansion can be a useful representation even when some transform coefficients are
lost in transmission. This yields robustness to losses in packet networks such as the
Internet. With a simple model for quantization error, it is shown that a normalized
frame minimizes mean-squared error if and only if it is tight. With one coefficient
erased, a tight frame is again optimal among normalized frames, both in average
and worst-case scenarios. For more erasures, a general analysis indicates some
optimal designs. Being left with a tight frame after erasures minimizes distortion,
but considering also the transmission rate and possible erasure events complicates
optimizations greatly.  2001 Academic Press

1. INTRODUCTION

Signal representations using frames—redundant sets of vectors in contrast to bases—
are used for a variety of reasons, including resilience to additive noise [6], resilience to
quantization [14], numerical stability of reconstruction [6], and greater freedom to capture
significant signal characteristics [1, 2, 28]. The redundancy of a frame can also mitigate
the effect of losses in packet-based communication systems [10, 12, 13]. This paper details

1 Some of the results in this paper were reported at the IEEE Data Compression Conference (Snowbird, UT,
March 1999).

2 J. A. Kelner contributed this work as an intern with Bell Labs, Lucent Technologies.
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this relatively new application of frames and related results pertaining to finite-dimensional
frames.

A modern communication network, be it the public Internet or a private network,
provides a means to transport packets of data from one device to another. These packets are
sequences of information bits of a certain length surrounded by error-control, addressing,
and timing information that assure that the packet is delivered without errors to the intended
recipient with the identity or sequencing of the packet intact. Packets are either delivered
without error or not delivered at all, with failures due primarily to buffer overflows at
intermediate nodes in the network. We may abstract the behavior of the network as
delivering a packet with some probability of failure and some random, though relatively
predictable, delivery time.

To most users, the behavior of a packet network is characterized not by random
losses, but by unpredictable transport time. This is due to a protocol, invisible to the
user, that retransmits lost packets. The detection of a missing packet and the subsequent
retransmission of the packet generally takes much longer than a successful packet
transmission, generating the highly variable delay. In many applications, large delay in
unacceptable. Thus retransmission of lost packets is not feasible; instead, one must make
due with whatever is received.

If a lost packet is independent of all other transmitted data, then the information in
the lost packet is indeed unrecoverable at the receiver. On the other hand, dependencies
between transmitted packets facilitate complete or partial recovery in the face of losses.
Deterministic dependencies lead to conventional channel coding [19], while statistical
dependencies give the techniques proposed in [30] and generalized in [11].

The encoding structure considered in this paper combines elements of deterministic
and statistical redundancy. Refer to Fig. 1. We denote the R

N -valued information to be
communicated by x . The source vector is represented through a frame expansion with
frame operator F , yielding y = Fx ∈ RM . The scalar quantization of the frame expansion
coefficients gives ŷ lying in a discrete subset of RM . We abstract the effect of the network
to be the erasure of some components of ŷ . This implies that the components of ŷ are
placed in more than one packet, for otherwise all of ŷ would be lost at once. If they are
placed in M separate packets, then any subset of the components of ŷ may be received;
otherwise only certain subsets will be possible. The reconstruction process is unspecified
for now. Neglecting quantization, the redundancy is completely deterministic; modeling
the quantization error as random additive noise or using randomized quantization makes
the redundancy statistical.

To contrast this with a classical approach, consider the system shown in Fig. 2. The
source vector x is quantized in its original basis representation. Then a block channel
code C adds redundant (parity) symbols to aid in reconstruction in the case of transmission

FIG. 1. Abstraction of a communication system using a quantized frame expansion. The signal vec-
tor x ∈ RN is expanded with a frame operator F to give the frame coefficient vector y ∈ RM . The scalar quanti-
zation of y gives ŷ, which is transmitted over a network that erases some components. A reconstruction x̂ ∈ RN

is computed from the received vector z.
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FIG. 2. A communication system using a block channel-coded basis representation, to contrast with Fig. 1.
Instead of introducing redundancy with a frame in R

N , a parity symbol in IM−N is appended to the message
symbol w. Up to M −N erasures can be completely corrected, but beyond this number the performance drops
sharply, as shown in Fig. 3.

losses. Such a system works well when there are at most M −N lost symbols because the
quantized representation w can be recovered. With more erasures, the performance sharply
deteriorates because many quantized values are compatible with the received vector.
There is no benefit from very few erasures because the parity information is completely
redundant. Qualitatively, the classical approach is good when there are approximately
M −N erasures, as shown in Fig. 3.

EXAMPLE 1.1. Suppose we have vectors {x(i)}Ki=1 ⊂ RN to communicate to a receiver
using M packets sent over a network. Suppose further that N = 2 and each vector
is independent and has independent, zero-mean, unit-variance Gaussian components.
A typical packet size for a network using Internet Protocol, Version 6 (IPv6) is 576 bytes,
since packets of this length must be handled without fragmentation [7]. With 40 bytes
allocated to headers, each packet has a payload of 536 bytes. We will send K = 536 vectors
in M = 3 packets.

The classical approach would be to apply an eight-bit quantizer to each component of
each vector, yielding two-tuples of eight-bit strings {w(i)}Ki=1. Reconstruction R (inverse
quantization) yields mean-square error (MSE) E|x(i)j − R(w

(i)
j )|2 ≈ 8.8 · 10−5 for all i

and j . To provide robustness against the loss of a packet, three packets are produced

FIG. 3. Qualitative comparison of encoding and transmission using a quantized frame expansion (see Fig. 1)
versus a block channel-coded basis representation (see Fig. 2). The distortion of the basis representation jumps
sharply with more than M −N lost symbols. This paper considers only zero to M −N erasures.
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in the following manner: Packet 1 contains {w(i)
1 }Ki=1, Packet 2 contains {w(i)

2 }Ki=1, and
Packet 3 contains {w(i)

1 ⊕w
(i)
2 }Ki=1, where ⊕ denotes bitwise exclusive-or or Z2 addition.

The sequences {w(i)
1 }Ki=1 and {w(i)

2 }Ki=1 can be recovered from any two of the three packets.
However, receiving all the packets is no better than receiving two, and receiving only
Packet 3 is essentially useless.

A typical use of a quantized frame expansion would first use

F =



1 0

−1/2
√

3/2

−1/2
√

3/2




to compute y(i) = Fx(i), i = 1,2, . . . ,K . (We will see that this choice of F is optimal in
several ways.) Then each component of each y(i) is quantized with an eight-bit quantizer
to obtain {ŷ(i)}Ki=1. Three packets are formed with Packet j containing {ŷ(i)j }Ki=1. The
advantages of this representation are the symmetry of the three packets and the fact that
each packet contains information that cannot be inferred completely from the other two.

The per component MSE distortions for all of the possible combinations of received
packets are given in the following table:

Packets received {1,2,3} Any two {1} or {2} {3} ∅
Classical 8.8 · 10−5 8.8 · 10−5 0.5 1 1

Quantized frame 5.8 · 10−5 1.2 · 10−4 0.5 0.5 1

The quantized frame system is worse in one situation and better in two others; the best
choice depends on the likelihoods of these events and/or other design criteria. Note that K
is immaterial, so our analysis is based simply on components of ŷ being erased.

In this paper we consider only what happens when there are at most M − N lost
components. This allows us, under a very mild condition, to show that the received vector
z specifies the source vector x to within a bounded set. Then by using a statistical model
for the quantization error ŷ − y , the reconstruction error does not depend on the source
vector x , but instead only on properties of the frame operator F . To analyze cases with
more than M −N lost components requires a statistical model for the source vector [13].

The structure of the paper is to add one block at a time: First, in Section 2, we
consider just expanding with a frame and reconstructing. In this case, most matrices F

allow the signal vector x to be reconstructed exactly, so unlike in other sections, the
reconstruction error is not an issue. In Section 3 we add a quantization block and
analyze the reconstruction error with different noise models and reconstruction methods. In
Section 4 we introduce the possibility of lost coefficients, and thus address the full system
of Fig. 1.

2. FRAME EXPANSIONS

To begin our study of quantized frame expansions with erasures, let us look at only
the first ingredient: the frame expansion, as depicted in Fig. 4. As long as F has full rank,
the signal vector x can be recovered exactly from the expansion vector y; the accuracy of
the reconstruction x̂ is not an issue. Nevertheless, many interesting properties of F may
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FIG. 4. The frame system. F stands for the frame operator.

be characterized. In this section we introduce notation and terminology and establish basic
properties of frames.

2.1. Frame Fundamentals

This introduction to frames is adapted from [6, Chap. 3]. Since our application is the
communication of real vectors, we consider only frames in RN , though we retain notation
that makes extensions to CN obvious. All of the concepts apply in any Hilbert space,
though, e.g., minima and maxima may have to be replaced by infima and suprema.

Let �= {ϕk}Mk=1 ⊂ RN . � is called a frame if there exist A> 0 and B <∞ such that

A‖x‖2 ≤
M∑
k=1

|〈x,ϕk〉|2 ≤ B‖x‖2, for all x ∈ R
N . (1)

A and B are called the frame bounds. The lower bound in (1) is equivalent to requiring
that � spans RN , so a frame will always have M ≥ N . Also, notice that one can choose
B = ∑M

k=1 |ϕk|2 whenever M <∞; thus, any finite set of vectors that spans RN is a frame.
We will refer to r =M/N as the redundancy of the frame. We will encode exclusively with
uniform frames, that is, frames with ‖ϕk‖ = 1 for k = 1, . . . ,M .

Given a frame �= {ϕk}Mk=1 in R
N , the associated frame operator F is the linear operator

from RN to RM defined by

(Fx)k = 〈x,ϕk〉, for k = 1,2, . . . ,M. (2)

Denoting vectors as columns, this operation is a left matrix multiplication where F is an
M × N matrix with the kth row equal to ϕ∗

k . 3 Using the frame operator F , (1) can be
rewritten as

AIN ≤ F ∗F ≤ BIN, (3)

where IN is the N ×N identity matrix and the matrix inequality means

x∗AINx ≤ x∗F ∗Fx ≤ x∗BINx, for all x ∈ R
N. (4)

Considering x as an eigenvector of F ∗F in (4) gives the following property:

PROPERTY 2.1. For any frame, the eigenvalues of F ∗F lie in the interval [A,B].

3 The superscript ∗ denotes a transpose; as suggested by the notation, the Hermitian transpose should be used
in CN .
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Another elementary condition on the eigenvalues is the following:

PROPERTY 2.2. For any frame, the sum of the eigenvalues of F ∗F equals the sum of the
lengths of the frame vectors. In particular, for a uniform frame the sum of the eigenvalues
equals M .

Proof. Denote the eigenvalues by {λi}Ni=1. Using elementary properties of the trace and
the definition of F ,

N∑
i=1

λi = tr(F ∗F)= tr(FF ∗)=
M∑
i=1

ϕ∗
i ϕi =

M∑
i=1

‖ϕi‖2.

It follows from Property 2.1 that F ∗F is invertible (all of its eigenvalues are nonzero),
and furthermore

B−1IN ≤ (F ∗F)−1 ≤A−1IN . (5)

The dual frame of � is a frame defined as �̃= {ϕ̃k}Mk=1, where

ϕ̃k = (F ∗F)−1ϕk, for k = 1,2, . . . ,M. (6)

Noting that ϕ̃∗
k = ϕ∗

k (F
∗F)−1 and stacking ϕ̃∗

1 , ϕ̃
∗
2 , . . . , ϕ̃

∗
M in a matrix, the frame operator

associated with �̃ is

F̃ = F(F ∗F)−1. (7)

Since F̃ ∗F̃ = (F ∗F)−1, (5) shows that B−1 and A−1 are frame bounds for �̃.

2.2. Tight Frames

A frame � is called a tight frame if the frame bounds in (1) can be taken to be equal.
Tight frames constitute an important class of frames. Since they are self-dual, they have
some desirable reconstruction properties that also extend to frames with B/A close to
one. In the context of this work, optimality properties of tight frames are established in
Subsections 3.2 and 4.2.1.

For a tight frame, (1) reduces to something similar to Parseval’s equality: a tight frame
operator scales the energy of an input by a constant factor A. Looking at (3), we can say
that F ∗F =AIN if and only if � is a tight frame. Moreover, Property 2.1 simplifies to the
following, where the value of A follows from Property 2.2:

PROPERTY 2.3. For a tight frame, F ∗F has eigenvalue A with multiplicity N . If the
frame is also uniform, A=M/N = r .

The fact that F ∗F is diagonal means that the columns of F are orthogonal. (Recall that it
is the rows of F that constitute the frame; these are not orthogonal unless r = 1.) Viewing
the columns of F as vectors in RM , it is obvious that F can be extended to an orthogonal
basis:

PROPERTY 2.4. For a tight frame, F is the first N columns of an M ×M matrix with
orthogonal columns.
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Reversing our point of view to start from the higher-dimensional space, a tight frame is
a projection of an orthogonal basis for RM to an N -dimensional subspace. With a uniform
tight frame, we have a more specific characterization:

PROPERTY 2.5. For a uniform tight frame, F is the first N columns of
√
M/N ·U for

some orthogonal matrix U .

Proof. Since F ∗F = (M/N)IN , each column of F has Euclidean norm
√
M/N . Using

the Gram–Schmidt process, append M − N columns to F such that the columns are
orthogonal and have norm

√
M/N ; call the resulting matrix V . Now U = √

N/M · V
is an orthogonal matrix.

2.2.1. Classifying Uniform Tight Frames. As they form a useful subset of the set of
frames, it is of interest to classify the uniform tight frames that exist for a given N and M .
This can be useful in designing a tight frame for a particular application.

Define an equivalence relation for frames by bundling a frame with all frames that can
result from rigid rotations or reflections of the entire frame, as well as the negation of
some individual vectors (see Fig. 5). Of course, since the equivalence is between sets, the
numbering or permutation of elements is irrelevant. Along with preserving tightness, this
equivalence relation preserves the geometric arrangement of lines obtained by extension
of the frame vectors. For example, suppose we rotate, reflect, and negate the frame � to
obtain the frame �. Then the new frame vectors are

γk = σkUϕk, for k = 1,2, . . . ,M,

where σk =±1 and U is some unitary matrix. The new frame operator G can be written as

G=#FU∗, where # = diag(σ1, σ2, . . . , σM).

It is now easy to see that the tightness of � implies the tightness of � since

G∗G=UF ∗#∗#︸ ︷︷ ︸
IM

FU∗ =U F ∗F︸︷︷︸
AIN

U∗ =AIN .

Furthermore, the uniformity of � implies the uniformity of �.

FIG. 5. Examples of the equivalence relation for tight frames. � = {ϕ1, ϕ2, ϕ3} is a frame with M = 3
elements in R2. The other frames are in the same equivalence class. (a) Original tight frame. (b) Rotation of the
frame by 45 degrees. (c) Reflection of the frame around the vertical axis. (d) Negation of a single vector ϕ1.
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With this concept of equivalence, tight frames with M =N + 1 are essentially unique:

THEOREM 2.6. There is exactly one equivalence class of uniform tight frames for
M =N + 1.

Proof. See Appendix A.1.

For example, the tight frame shown in Fig. 5a and used in Example 1.1 describes all
possible tight frames with N = 2 and M = 3.

Unfortunately, when M exceeds N + 1, there are uncountably many equivalence classes
of the type described above; thus, we cannot systematically obtain all uniform tight frames.
However, at least for N = 2, the uniform tight frames still have a simple characterization:

THEOREM 2.7. The following are equivalent:

(1) {ϕk = (cosαk, sinαk)}Mk=1 is a uniform tight frame.
(2)

∑M
k=1 zk = 0, where zk = ej2αk for k = 1,2, . . . ,M .

Proof. See Appendix A.2.

With this characterization, one set of solutions has zk’s equal to the Mth roots of
unity. These give examples of the harmonic frames that are defined in Subsection 2.2.2.
A uniform tight frame that is the union of L smaller uniform tight frames is obtained when
not only

∑M
k=1 zk = 0, but also there is a partition of {1,2, . . . ,M} into S1, S2, . . . , SL such

that
∑

k∈Si zk = 0 for i = 1,2, . . . ,L.
For example, the only solution for M = 3 is the “Mercedes-Benz” frame (see Fig. 5). For

M = 4, the only possibility is that the frame is a union of two orthonormal bases. However,
there are infinitely many solutions parameterized by the angle between the two bases. For
M = 5, the solutions include the harmonic tight frame and frames obtained as the union of
an orthonormal basis and a Mercedez-Benz tight frame.

Notice that all frames built as unions of smaller frames must have redundancy at least 2.
Our final attempt to classify uniform tight frames relates the possibility of repeated vectors
to the redundancy. Repeated vectors are undesirable for encoding because they lead to
transform coefficients (inner products) carrying no new information.

THEOREM 2.8. Let {ϕj }Mj=1 be a uniform tight frame for RN or CN and let r =M/N .
Then at most K = �r� elements of the frame can be equal. If K =M/N , these elements are
orthogonal to the rest. There can be N such K-tuples of equal elements and each K-tuple
is orthogonal to the span of the rest.

Proof. See Appendix A.3.

2.2.2. Construction of Uniform Tight Frames. For the encoding applications developed
in this paper, we would like to be able to construct a uniform tight frame for any given N

and M . Citing Property 2.5, it is tempting to claim that taking the first N columns of any
M ×M orthogonal matrix does the trick. While doing so will give a tight frame, it will
generally not give a uniform tight frame. For example, the first N columns of IM are the
frame operator associated with a tight frame, but it is clearly not uniform since M − N

vectors in the frame are zero. For some orthogonal matrices, taking the first N columns
works; however, we have no useful parameterization of these matrices.

One very useful family of frames in CN—harmonic frames—can be obtained starting
with an M × M discrete Fourier transform (DFT) basis by projecting it onto an
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N -dimensional space. This family is given by

(ϕk+1)i+1 = 1√
N
Wki

M , i = 0, . . . ,N − 1, k = 0, . . . ,M − 1, (8)

where WM = ej2π/M is the Mth root of unity. Computing an expansion with this frame is
like computing a DFT; it can be done with a fast Fourier transform-like algorithm, which
can be a great savings over a general matrix multiplication.

Real harmonic tight frames can be defined similarly: if N is even, let

ϕk+1 =
√

2

N

[
cos

kπ

M
, cos

3kπ

M
, . . . , cos

(N − 1)kπ

M
,

sin
kπ

M
, sin

3kπ

M
, . . . , cos

(N − 1)kπ

M

]T
(9)

for k = 0,1, . . . ,M − 1; if N is odd, let

ϕk+1 =
√

2

N

[
1√
2
, cos

2kπ

M
, cos

4kπ

M
, . . . , cos

(N − 1)kπ

M
,

sin
2kπ

M
, sin

4kπ

M
, . . . , cos

(N − 1)kπ

M

]T
(10)

for k = 0,1, . . . ,M − 1. Exhibiting this specific family of tight frames gives the following
application of Theorem 2.6:

COROLLARY 2.9. Any uniform tight frame with M = N + 1 is equivalent to a
harmonic tight frame.

Despite the difficulty of computing many distinct uniform tight frames, almost all
uniform frames with high redundancy are approximately tight. More precisely, a sequence
of random uniform frames with increasing redundancy will asymptotically approach a tight
frame:

THEOREM 2.10 (Tightness of Random Frames [14]). Let {�M}∞M=N be a sequence
of frames in RN such that �M is generated by choosing M vectors independently with a
uniform distribution on the unit sphere in RN . Let FM be the frame operator associated
with �M . Then, in the mean squared sense,

1

M
FM

∗FM → 1

N
IN elementwise as M →∞.

2.3. Reconstruction from Frame Coefficients

The frame representation y , as applied in this paper, is a tool for communication of the
information signal x; thus, the reconstruction or estimation of x from y is of fundamental
interest.

One possibility is to use the Moore–Penrose generalized inverse or pseudoinverse
of F [17],

F † = (F ∗F)−1F ∗, (11)

where the frame condition ensures that the inverse in (11) exists. It is easy to check that
F †F = IN , so F †(Fx) = x for all x ∈ RN . The pseudoinverse is not the only linear
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reconstruction operator with this property. Suppose we wish to find all G ∈ RN×M such
that G(Fx) = x for all x ∈ RN . Since Fx lies in a particular N -dimensional subspace,
it does not matter what G does to vectors orthogonal to this subspace; this gives many
additional degrees of freedom. Denote the singular value decomposition of F by

F = U︸︷︷︸
M×M

# V ∗︸︷︷︸
N×N

, where # =
[

diag(σ1, σ2, . . . , σN )

0(M−N)×N

]
,

and U and V are unitary. Then the pseudoinverse is given by

F † = V ∗#†U, where #† = [diag(σ−1
1 , σ−1

2 , . . . , σ−1
N ), 0N×(M−N)].

However, with any W ∈ RN×(M−N) ,

G= V ∗[diag(σ−1
1 , σ−1

2 , . . . , σ−1
N ), W ]U

satisfies GF = IN . There is something special about the pseudoinverse, though: when
y = Fx is not known exactly, it eliminates the influence of errors that are orthogonal to the
range of F . Specifically, if instead of having access to y = Fx we have ŷ = y + η, then
F †ŷ will be equivalent to the reconstruction from the orthogonal projection of ŷ onto the
range of F .

The pseudoinverse is precisely the transpose of the frame operator associated with the
dual frame (7), that is,

F † = F̃ ∗. (12)

Thus reconstructing with the pseudoinverse is equivalent to using the frame expansion
coefficients as weights in a linear combination of dual frame elements:

x = F †Fx = F̃ ∗Fx =
M∑
k=1

〈x,ϕk〉ϕ̃k. (13)

As in the previous matrix-oriented formulation, other reconstruction formulas are possible,
but using the dual frame minimizes reconstruction errors; for details the reader is referred
to [6, Sect. 3.2].

If M is much larger than N , computing the dual frame may be prohibitively expensive.
An iterative procedure for approximating the dual frame while avoiding matrix inversion
is given in [6, Sect. 3.2].

3. QUANTIZED FRAME EXPANSIONS

Quantization is to approximate a signal varying continuously in amplitude by one whose
amplitude is restricted to a prescribed set of discrete values. Since digital communication
systems transmit only discrete values, any digital communication of continuous-valued
information includes quantization. Introducing a quantization block gives us the system
shown in Fig. 6 and brings us one step closer to the overall system depicted in Fig. 1.

To understand this and the following sections, it suffices to consider uniform quantiza-
tion: rounding to the nearest multiple of a fixed quantization step size ,. When a vector is
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FIG. 6. Schematic representation of a quantized frame expansion with reconstruction.

quantized, the rounding is done separately for each component of the vector. Decreasing
, makes the quantized representation more accurate, but increases the amount of data that
must be transmitted. The choice of , is arbitrary; we will consider optimizing performance
by varying the frame and the reconstruction method.

Here the details of quantization are unimportant because we make strong assumptions
about the quantization error ŷ − y; this is described in Subsection 3.1. For readers
wishing to learn more about quantization, Gray and Neuhoff have written an excellent,
comprehensive introduction to quantization with many historical details [15].

3.1. Quantization Models

One can always consider quantization to be the addition of a noise signal η= ŷ − y , but
η is not just any noise. “Noise” connotes unpredictability and perhaps a mysterious origin;
here the origin is not at all mysterious and the noise signal itself is usually a deterministic
function of the input. Nevertheless, modeling quantization noise stochastically leads to
tractable analyses and useful results.

The calculations in Subsections 3.2 and 4.2 are based on the following assumptions:

(a) Each noise component ηi has mean zero and variance σ 2.
(b) The noise components are uncorrelated; i.e., ηi and ηj are uncorrelated for i �= j .

These can be expressed as

E[ηi ] = 0 and E[ηiηj ] = δij σ
2 for all i, j. (14)

In Subsection 3.3, assumption (a) is replaced by the following stronger assumption:

(a′) Each noise component ηi is uniformly distributed on [−,/2,,/2].
Assumption (a) follows from (a′) with σ 2 =,2/12.

In typical deterministic quantization, these assumptions do not hold, but they may be
approximately true. Consider uniform quantization of a random vector x . If the probability
density of x is smooth and, is small, then each marginal density can be well-approximated
by a piecewise constant function that is constant on every interval ((k − 1

2 ),, (k + 1
2 ),),

k ∈ Z. Under this approximate density, each noise component is uniformly distributed as
in (a′). Furthermore, if a multidimensional analog of this holds for the density itself—
instead of marginals—assumption (b) also holds.

Note that despite the digression to justify the model, in subsequent analyses a stochastic
model is used for the noise only—not for the source; all expectations are with respect to η.
If the source is random, we must assume η is independent of x .

Assumptions (a′) and (b) are strictly accurate if uniform subtractive dithered quantiza-
tion is used. Denote a uniform scalar quantizer (rounding operation) with step size , by
Quniform,,. A subtractive dithered version is then defined by

Qdither,,(y)=Quniform,,(y + z)− z,
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where z is uniformly distributed on [,/2,,/2)M and is generated independently each
time the quantizer is applied. With this quantizer, assumptions (a′) and (b) hold [16, 20]. 4

Since the output of Qdither,, is not discrete, this quantizer can actually be used only if z is
pseudorandom and known at the decoder. In this case Quniform,,(y + z) is transmitted and
the subtraction of z is done only at the decoder.

3.2. Linear Reconstruction

In Subsection 2.3, we saw that there are linear operators that recover the original signal x
from the frame expansion y . In this section we find the reconstruction error in using such a
linear operator to reconstruct from the quantized representation ŷ, under the quantization
noise model (14). We will find that given a frame, the dual frame operator should be used
in reconstruction, and that among frames of any given dimension, tight frames are best.

Suppose we wish to approximate x ∈ RN given ŷ = Fx + η, where F ∈ RM×N is
a frame operator and η ∈ RM satisfies (14). With no further information about η, it
makes sense to choose x̂ to minimize the residual ‖F x̂ − ŷ‖2. It is well known that the
pseudoinverse provides the solution to this problem [17],

x̂ = F †ŷ, (15)

with F † as in (11). We refer to (15) as a linear reconstruction because a linear operator F †

is used. This reconstruction is equivalent to the identity (13), except the exact expansion
coefficients are replaced by noisy ones,

x̂ = F †ŷ = F †(Fx + η)= F̃ ∗(Fx + η)=
M∑
k=1

(〈x,ϕk〉 + ηk)ϕ̃k, (16)

where we used (12).
Let us now calculate the error of a linear reconstruction:

x − x̂ =
M∑
k=1

〈x,ϕk〉ϕ̃k −
M∑
k=1

(〈x,ϕk〉 + ηk)ϕ̃k =−
M∑
k=1

ηkϕ̃k.

The expected squared-/2 error per component (mean-squared error) is

MSE = 1

N
E‖x − x̂‖2 = 1

N
E

∥∥∥∥∥
M∑
k=1

ηkϕ̃k

∥∥∥∥∥
2

= 1

N
E

[
M∑
i=1

M∑
k=1

ηiηkϕ̃
∗
i ϕ̃k

]
= 1

N

M∑
i=1

M∑
k=1

δikσ
2ϕ̃∗

i ϕ̃k (17)

= 1

N
σ 2

M∑
k=1

‖ϕ̃k‖2, (18)

where (17) results from evaluating expectations using the model (14) for η. Further
simplifications can be made using (7) and basic properties of the trace,

4 Furthermore, the noise components are mutually independent and independent of y.
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MSE = 1

N
σ 2

M∑
k=1

‖ϕ̃k‖2 =N−1σ 2 tr(F̃ F̃ ∗)=N−1σ 2 tr((F ∗F)−1)

=N−1σ 2 tr(V0−1V ∗)=N−1σ 2 tr(0−1),

where F ∗F = V0V ∗ is the spectral decomposition of F ∗F . With the {λi}Ni=1 denoting the
eigenvalues of F ∗F , we have

MSE = 1

N
σ 2

N∑
i=1

1

λi
. (19)

The characterization of the MSE in terms of the spectrum of F ∗F allows us to consider
the choice of a frame to minimize the MSE, leading to the following theorem:

THEOREM 3.1. When encoding with a uniform frame and decoding with linear
reconstruction (16), under the noise model (14), the MSE is minimum if and only if the
frame is tight.

Proof. Recall that the sum of the eigenvalues of F ∗F is constant and equal to M

(Property 2.2). Thus, we are attempting to minimize the MSE given in (19) by the sum∑M
i=1 λ

−1
i subject to the constraint that the sum of the λi ’s is constant. This occurs when

all of the eigenvalues are equal, which, in turn, is true if and only if the frame is tight.

These computations and a couple of simple consequences are summarized by the
following theorem:

THEOREM 3.2. Consider linear reconstruction (16) with noise η satisfying (14) and
define the mean-squared error (MSE) by N−1E‖x − x̂‖2. For any frame, the MSE is
given by (19) and satisfies

B−1σ 2 ≤ MSE ≤A−1σ 2. (20)

For a uniform frame,

Nσ 2

M
≤ MSE ≤A−1σ 2. (21)

For a uniform tight frame,

MSE = N

M
σ 2 = r−1σ 2. (22)

Proof. See Appendix A.4.

3.2.1. Gaussian Case. In the beginning of this section, linear reconstruction was
justified by the minimization of a residual. This merely intuitive appeal can be replaced
by an optimality claim if the signal x and received vector ŷ are jointly Gaussian. This
occurs if x and η are independent Gaussian vectors.

Denote an estimation function x̂ = R(ŷ). This estimator minimizes the mean-squared
error E‖x − x̂‖2 if it is the conditional expectation [22]: R(ŷ) = E[x|ŷ]. If x and ŷ are
jointly Gaussian, the conditional expectation is a linear function [22]. Specifically, the best
estimator is the dual frame reconstruction (16).

As the reader might suspect, the Gaussian case would not be singled out if linear
reconstruction were more generally optimal. Since quantization error is almost always
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far from Gaussian, x and ŷ are usually not jointly Gaussian, and we would be remiss
to not mention ways to improve upon the performance of linear reconstruction. The next
subsection discusses this.

3.3. Consistent Reconstruction

3.3.1. Deterministic Quantization. A deterministic scalar quantizer is a partitioning of
the real numbers into intervals along with a labeling of the intervals. Knowing a quantized
value ŵ = Q(w) gives a hard constraint on the value of unknown scalar variable w;
w must lie in the interval Q−1(ŵ). 5 The quantized value of the vector of frame expansion
coefficients ŷ =Q(y) gives M of these constraints, which can be written as

αk ≤ yk < βk, k = 1,2, . . . ,M.

Recalling that yk = 〈x,ϕk〉, each of the 2M inequalities corresponds to an (N − 1)-
dimensional hyperplane that x must lie above or below. Together, these hyperplanes
demarcate a convex consistent set. An estimate x̂ in the consistent set computed from ŷ

is called a consistent estimate [25].
Consistent estimates can be obtained by alternating projections onto convex sets

(POCS) [31] or by linear programming. Both of these techniques are described in [14].
An efficient algorithm that works for some frames and gives similar performance is given
in [3].

When F is a frame and the quantization intervals are finite (the αk’s and βk’s are finite),
the consistent set is bounded. Intuitively, this boundedness means that we know more about
the value of x than is revealed by a noise model like (14), since the noise model allows
unbounded η. This intuition is supported by various results from [4, 5, 14, 23, 25–27]. With
a variety of analysis techniques and considering various families of frames, these papers
establish that consistent reconstruction techniques give MSE that can be asymptotically
approximated as cr−2, where c is a constant that depends on the source and quantization
and the redundancy r is approaching infinity. This is the best possible asymptotic decay
of the MSE as a function of the redundancy, so consistency is a sufficient condition for
performance within a constant factor of the best possible reconstruction algorithm.

Comparing cr−2 to the O(r−1) expression (22) suggests that using a consistent
reconstruction algorithm can greatly reduce the MSE when the redundancy of the frame
is high. This is indeed true, but naturally many caveats have been omitted to permit this
simple comparison.

3.3.2. Randomized Quantization. With subtractive dithered quantization, assumption
(a′) of Subsection 3.1 holds. As in case of deterministic quantization, there are hard bounds
on the quantization error:

ŷk − ,

2
≤ yk < ŷk + ,

2
, k = 1,2, . . . ,M.

5 Q−1(ŵ) is an interval for any regular quantizer [15]. This interval will usually have finite extent. If it is
infinite at one end, subsequent references to “two hyperplanes” should be taken as a single hyperplane. The
interval will be infinite at both ends only in the degenerate case of a zero-bit quantizer, which we implicitly
disallow.
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Consistent reconstruction for this case is discussed in [23]. A simple recursive algorithm
is given that attains optimal O(r−2) MSE. This is again within a constant factor of the
performance of an optimal algorithm.

3.3.3. Notes. A disappointing aspect of the aforementioned O(r−2) MSE results for
consistent reconstruction algorithms is that they do not indicate how to compute the
constant factors in the MSE; thus, they provide no guidance on how to design the frame.
Fortunately, (19) proves to be predictive of the performance of consistent reconstruction,
with an additional multiplicative factor. This statement is made clear by Fig. 7.

Three MSE calculations were made for each of 500 random frames with N = 4 and
M = 32: the MSE predicted by (19), the average MSE of linear reconstruction (15) for
1000 random source vectors, and the average MSE of a consistent reconstruction algorithm
based on linear programming for the same random source vectors. A quantization step size
of ,= 1/10 is used. The observed MSEs are plotted against the predicted MSE. For linear
reconstruction, a line through the origin with unit slope fits the data very well; this reaffirms
the MSE expression (19).

There are no theoretical results to indicate any relationship between the MSE (19) and
the performance of consistent reconstruction. However, we find that a line through the
origin with slope 0.607 provides a good fit to the data. While we have no analytical
mechanism for determining the constant factor 0.607, we can infer that (19) provides a
reasonable design criterion independent of the reconstruction method. For the remainder
of the paper, we return to the noise model (14) and linear reconstruction (15).

FIG. 7. Results of experiment to assess the predictive value of (19). For each of 500 random frames with
M = 32 elements, 1000 random unit-norm source vectors in R4 were expanded with the frame and quantized
with , = 1/10. The MSE of linear reconstruction (15) and a consistent reconstruction computed with a linear
program are compared to the predicted MSE (19). The solid lines are linear fits. The experiment indicates that
(19) is a useful design criterion even if consistent reconstruction is used.
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FIG. 8. The full system, as considered in Section 4. A signal expansion is computed with frame operator F .
The expansion coefficients are quantized, which is modeled as the addition of a vector η satisfying (14). The
deletion of some quantized expansion coefficients in the transmission is represented by operator LE . An estimate
of the original vector is computed using the linear MMSE estimator.

4. INTRODUCING ERASURES

We are now prepared to consider the overall system shown in Fig. 8. As in the previous
section, the signal vector x is expanded with a quantized frame expansion to get ŷ. Now we
introduce the transmission to the mix, which we abstract as the erasure of some components
of ŷ. The received vector is denoted z. Quantization is indicated by the addition of the
noise term η, which we assume satisfies (14). The signal is estimated using the linear
reconstruction method of Subsection 3.2. With linear reconstruction, the MSE can be
computed using the noise model without incorporating any information about the source.

Denote the index set of erasures by E; i.e., {ŷk}k∈E are lost. To the decoder it is as if a
quantized frame expansion were computed with the frame �E = {ϕk}k/∈E , assuming �E is
a frame. (To emphasize properties that depend only on the number of erasures e= |E|, the
notation �e is also used.) The effective frame operator is FE = LEF , where LE captures
the losses; LE is the (M − e)×M matrix obtained by deleting the E-numbered rows from
an M ×M identity matrix.

For any particular set of erased components E, the results of Subsection 3.2 can be used
to compute the MSE of the estimate x̂—provided �E is a frame. Thus the first order of
business is to study conditions on � that maximize the number of erasures that can be
withstood before �E fails to span RN ; this follows in Subsection 4.1. In Subsection 4.2
the effect of the erasures on the MSE is studied.

4.1. Effect of Erasures on the Structure of a Frame

To effectively reconstruct after e erasures using the techniques described in Subsec-
tion 3.2 or 3.3, it is necessary that �E be a frame. If not, the dual frame linear reconstruc-
tion is not well-defined because the inverse in (6) does not exist. Moreover, hard bounds
on the quantization error fail to give a bounded consistent set, so a consistent estimate may
have very high error. 6

After the deletion of several of the vectors, is what was originally a frame still a frame?
Clearly the deletion of more than M − N vectors leaves too few to span the space. This
applies to all frames and gives no insight into the selection of a good frame.

With a bad choice of a frame, the situation can be even worse. For example, for any N

and M one can construct a frame such that there is a particular deletion that leaves a set that
is no longer a frame; all it takes is for one vector to be orthogonal to all of the rest. Thus
we can be left with much more than N elements, but still not have a frame. We obviously

6 Reconstruction when �E is not a frame is discussed in [13].
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want to avoid such situations to have robustness to as many combinations of erasures as
possible.

Since uniform tight frames optimize robustness to quantization noise, as shown by
Theorem 3.1, we might hope that they also have special properties with respect to erasures.
Uniform tight frames do indeed have some special properties, but are not all created equal.

One erasure from a uniform tight frame with M > N cannot destroy the property of
being a frame, as shown by the following theorem:

THEOREM 4.1. Let � = {ϕk}Mk=1 ⊂ R
N be a uniform tight frame, with M > N . For

any k, �1 =�{k} =�\ϕk is a frame. �1 has a lower frame bound A1 =M/N − 1 and an
upper frame bound B1 =M/N .

Proof. See Appendix A.5.

Extending the proof given in Appendix A.5, it is easy to check that e erasures can
decrease the lower frame bound of a uniform frame by at most e. Thus, e erasures will
leave a frame when M/N > e. This is a far cry from being able to guarantee that M −N

erasures leaves a basis for RN . In fact, even a uniform tight frame can fail to remain a
frame after M −N erasures. An example is given by

F =




0
√

1
3

√
1
3

0 −
√

1
3

√
2
3

0 1 0√
5
6 0

√
1
6

−
√

5
6 0

√
1
6




.

One can verify that the rows of F (the frame elements) have unit length and that the
columns of F are orthogonal. Deleting the last two rows of F leaves a rank-deficient
matrix; thus, �{4,5} is not a frame.

Though all uniform tight frames do not have the desirable property that �M−N is
a frame, there do exist such frames for any N and M . We have not found a useful
parameterization of these frames, but we can demonstrate their existence by proving that
harmonic frames suffice.

THEOREM 4.2. Let �= {ϕk}Mk=1 be a complex harmonic frame in C
N given by (8) or

a real harmonic frame in R
N given by (9) or (10). Then any subset of N or more vectors

from � forms a frame, i.e., �M−N is a frame.

Proof. See Appendix A.6.

4.2. Effect of Erasures on the MSE

For the source-independent reconstruction techniques used in this paper, �E must be a
frame. Since, as argued in the previous section, it is possible to find uniform frames � such
that �E is a frame for any erasures of up to M −N components, we assume such frames
� for the remainder of the paper. We ultimately want to design frames that give good MSE
performance, for which the first step is to compute the effect of erasures on the MSE.



220 GOYAL, KOVAČEVIĆ, AND KELNER

Recall the quantization noise model (14) and linear reconstruction (16). The optimal
reconstruction uses the dual �̃E of the frame �E , not the dual of the original frame �.
Denote the MSE with erasure set E by MSEE . Using the frame operator FE = LEF

associated with �E , the MSE has been determined in (19),

MSEE = σ 2

N

N∑
i=1

1

λi(F
∗
EFE)

, (23)

where {λi(F ∗
EFE)}Ni=1 is the set of eigenvalues of F ∗

EFE . A useful equivalent form is

MSEE =N−1σ 2 tr((F ∗
EFE)

−1). (24)

Can the MSE be expressed simply in terms of the original frame? Better yet: Are there
expressions that depend only on the number of erasures e = |E|? Which frames minimize
the average MSEE over different erasure patterns E, and which minimize the worst-case
MSEE?

The best case scenario for MSEE is clear: �E is a uniform frame with M − e elements
so, by Theorem 3.1, the minimum MSE is (M − e)−1Nσ 2, attained if and only if �E is
tight. It is certainly possible for �E to be tight, but for any original frame �, few erasure
patterns will leave a frame �E that is tight:

THEOREM 4.3. Let � be a uniform frame in RN with N > 1, and let e ∈ Z+. It is not
possible for every �E with |E| = e to be tight.

Proof. See Appendix A.7.

Since all the �E ’s are not tight, the average of MSEE (and, of course, the maximum) is
greater than (M − e)−1Nσ 2.

We will address the problem of determining general expressions for MSEE only for tight
frames; this appears in Subsection 4.2.2. First, we consider the effect of a single erasure. As
shown in Subsection 4.2.1, the average and worst-case MSE1 are minimized if and only
if a tight frame is used. Combined with the zero-erasure optimality of tight frames, this
provides further justification for the later focus on tight frames.

4.2.1. MSE with One Erasure. Rather then starting immediately with the general case,
we first compute the MSE when there is one erasure from a tight frame. The calculations
are simple with one erasure, and the MSE has a rather remarkable property that it depends
not on the particular tight frame nor on the position of the erasures—just on the size of the
frame.

Let � be a uniform tight frame with M >N . Since the numbering of the frame elements
is arbitrary, we can assume that the erased component is 〈x,ϕ1〉. Denote the frame operator
associated with �{1} =�\ϕ1 by F1. By Theorem 4.1, we know that �{1} is a frame.

The MSE can be determined from the trace of (F ∗
1 F1)

−1, which has a simple form.
Since F ∗F = ∑M

k=1 ϕkϕ
∗
k = (M/N)IN and F ∗

1 F1 = ∑M
k=2 ϕkϕ

∗
k ,

F ∗
1 F1 = M

N
IN − ϕ1ϕ

∗
1 . (25)
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The identity

(A−BCD)−1 =A−1 +A−1B(C−1 −DA−1B)−1DA−1 (26)

yields

(F ∗
1 F1)

−1 =
(
M

N
I − ϕ1ϕ

∗
1

)−1

= N

M
I + N2

M(M −N)
ϕ1ϕ

∗
1 .

The trace is now easy to compute using linearity:

tr(F ∗
1 F1)

−1 = tr

(
N

M
I + N2

M(M −N)
ϕ1ϕ

∗
1

)

= N

M
tr(IN)︸ ︷︷ ︸

N

+ N2

M(M −N)
tr(ϕ1ϕ

∗
1 )︸ ︷︷ ︸

1

= N2

M

(
1 + 1

M −N

)
.

Substituting in (24) and comparing to (22) gives

MSE1 =
(

1 + 1

M −N

)
N

M
σ 2 =

(
1 + 1

M −N

)
MSE0. (27)

This result is remarkably simple, both in its form and in its independence from ϕ1.
Note that deleting one element from a uniform tight frame fails to leave a frame if and

only if the original frame is a basis, i.e., the redundancy ratio is one. In this case M = N

and (27) breaks down, but this should be expected because the analysis using the dual
frame does not apply.

The MSE (27) obtained when the original frame is tight is both average-case and
minimax optimal, formalized by the following theorem:

THEOREM 4.4. Consider encoding with a uniform frame and decoding with linear
reconstruction (16), under noise model (14). The MSE averaged over all possible erasures
of one frame element,

MSE1 = 1

M

M∑
k=1

MSE{k},

is minimum if and only if the original frame is tight. Also, a tight frame minimizes the
maximum distortion caused by one erasure

max
k=1,2,...,M

MSE{k}.

Proof. See Appendix A.8.

EXAMPLE 4.1. Consider the uniform frames � = {ϕk}3
k=1 and 5 = {ψk}3

k=1 in R2

given by

ϕ1 =ψ1 =
[

1
0

]
, ϕ2 =

[−1/2√
3/2

]
, ϕ3 =

[ −1/2
−√

3/2

]
,

ψ2 =
[

0
1

]
, ψ3 =

[√
2/2√
2/2

]
.

� is the tight frame from Example 1.1 and 5 is not tight.
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Each single erasure from � gives a nontight frame with λ(F ∗
1 F1)= { 3

2 ,
1
2 }. The sum of

the reciprocals of these eigenvalues is 8
3 .

The erasure of ψ3 from 5 leaves a tight frame with λ(F ∗{3}F{3}) = {1,1}. The sum of
reciprocals is 2, which is better than what was obtained for �. However, the erasure of ψ1

or ψ2 is much worse. One can compute λ(F ∗{1}F{1})= λ(F ∗{2}F{2})= {1+
√

1
2 ,1−

√
1
2 }, so

the sum of reciprocals is 4. One of the single-element erasure events is better for 5 , but 5
is worse in the average- and worst-case.

4.2.2. MSE with e Erasures. It is not possible to extend Theorem 4.4 to more than one
erasure; e.g., all tight frames do not minimize the two-erasure MSE. However, because of
the importance of tight frames in the zero- and one-erasure cases, we limit our attention to
tight frames for the remainder of the paper. We now turn to the computation of the MSE
when a tight frame is subject to an arbitrary number of erasures.

Consider that erasures have occurred at positions in the index set E. Assume that �E is
a frame and denote the associated frame operator by FE . The MSE is now proportional to
the trace of (F ∗

EFE)
−1. The matrix inversion is more difficult to compute because instead

of having a rank-1 perturbation to a scaled identity as in (25), we have

F ∗
EFE = M

N
IN − ϕϕ∗,

where ϕ is an N × e matrix with columns {ϕk}k∈E .
Using (26) we can write

(F ∗
EFE)

−1 = N

M
IN + N

M
INϕ

(
Ie − ϕ∗ N

M
INϕ

)−1

ϕ∗ N
M

IN

= N

M
IN + N2

M2
ϕ

(
Ie − N

M
ϕ∗ϕ

)−1

ϕ∗. (28)

This form is simpler because it involves the inverse of an e× e matrix instead of an N ×N

matrix. (With one erasure—as in Subsection 4.2.1—we are left with only a scalar to invert,
so the ensuing analysis is very easy.) Employing a series expansion of the matrix inversion
in (28), (

Ie − N

M
ϕ∗ϕ

)−1

=
∞∑
k=0

(
N

M
ϕ∗ϕ

)k

,

leads to the calculation

tr

[
ϕ

(
Ie − N

M
ϕ∗ϕ

)−1

ϕ∗
]
= tr

[(
Ie − N

M
ϕ∗ϕ

)−1

ϕ∗ϕ
]

= tr

[ ∞∑
k=0

(
N

M
ϕ∗ϕ

)k

ϕ∗ϕ
]

=
∞∑
k=0

(
N

M

)k

tr
(
(ϕ∗ϕ)k+1). (29)
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Substituting (28) and (29) in (24) yields

MSEE = σ 2

N

(
N2

M
+ N2

M2

∞∑
k=0

(
N

M

)k

tr
(
(ϕ∗ϕ)k+1))

= Nσ 2

M

(
1 + 1

M

∞∑
k=0

(
N

M

)k

tr
(
(ϕ∗ϕ)k+1))

=
(

1 + 1

M

∞∑
k=0

(
N

M

)k

tr
(
(ϕ∗ϕ)k+1))MSE0. (30)

Note that with one erasure ϕ∗ϕ = 1; the series in (30) is geometric and the MSE
simplifies to (27). When there are more erasures, (30) simplifies not to a geometric series,
but to a sum of geometric series.

Denote the eigenvalues of ϕ∗ϕ by {µi}ei=1. Then tr(ϕ∗ϕ)k+1 = ∑e
i=1 µ

k+1
i

(see [17, p. 43]). Thus, the series in (30) becomes a sum of geometric series: 7

∞∑
k=0

(
N

M

)k

tr
(
(ϕ∗ϕ)k+1)= ∞∑

k=0

(
N

M

)k e∑
i=1

µk+1
i =

e∑
i=1

µi

∞∑
k=0

(
N

M
µi

)k

=
e∑

i=1

µi

1 − (N/M)µi

. (31)

Substituting (31) in (30) gives

MSEE =
(

1 +
e∑

i=1

µi

M −Nµi

)
MSE0. (32)

4.3. Frame Designs Issues

We would like to use the results of Subsection 4.2 to deduce optimal frame designs. We
have already found that any tight frame is optimal for zero or one erasure (see Theorems 3.1
and 4.4). For more than one erasure, computations are significantly simplified if the original
frame is tight, so we have limited attention to this case.

How can we minimize the distortion with e erasures from a tight frame, as given in (32)?
The expression (32) is similar to the zero-erasure expression (19) in that the sum can be
written as

∑e
i=1 f (µi) where f (·) is convex and

∑e
i=1 µi is constrained to a constant. 8 In

this case,
∑e

i=1 µi = tr(ϕ∗ϕ)= tr(ϕϕ∗)= e. The minimum of (32) is obtained when each
µi is equal to 1—provided this is feasible.

If e ≤N , it is indeed possible to have µi = 1, i = 1,2, . . . , e. This occurs if and only if
the erased vectors are pairwise orthogonal. Then ϕ∗ϕ = Ie and (32) gives

MSEe orthogonal erasures =
(

1 + e

M −N

)
MSE0.

7 Whenever �E is a frame, the common ratio |(N/M)µi | is less than 1 and the last equality holds; a proof is
given in Appendix A.9.

8 See also the proof of Theorem 4.4 in Appendix A.8 for another analogous minimization.
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If e > N , it is not possible to have e eigenvalues equal to 1 because there will be at most
N nonzero eigenvalues. Denoting the nonzero eigenvalues {µi}Ni=1,

MSEE =
(

1 +
N∑
i=1

µi

M −Nµi

)
MSE0.

This MSE is minimized when µi = e/N , i = 1,2, . . . ,N , which occurs when the erased
elements form a tight frame. 9

When arbitrary erasure events (subsets E ⊂ {1,2, . . . ,M}) are allowed, it is not possible
to design a frame that will always achieve the minimum MSE (see Theorem 4.3).
However, the packetization may be designed so that all erasure patterns are not possible, in
which case optimal performance (minimum MSE distortion given the number of received
coefficients) is possible. Specifically, if each packet contains coefficients corresponding to
a tight frame, then—since the union of tight frames is a tight frame—any set of received
packets gives the minimum MSE possible for that number of received coefficients. This
solution requires each packet to carry at least N coefficients.

EXAMPLE 4.2. Suppose we wish to design a uniform frame with N = 3 and M = 7 for
the situation in which {ŷk}3

k=1 is sent in Packet 1 and {ŷk}7
k=4 is sent in Packet 2. Because

each packet carries at least N components, the design is very easy. One can choose {ϕk}3
k=1

to be any orthonormal basis and {ϕk}7
k=4 to be any uniform tight frame. Then whether

Packet 1, Packet 2, or both are received, the effective frame is tight and the MSE is as low
as possible for the number of received components.

EXAMPLE 4.3. Again with N = 3 and M = 7, suppose the packetization has {ŷk}3
k=1,

{ŷk}5
k=4, and {ŷk}7

k=6 in Packets 1, 2, and 3, respectively. The theory developed here
indicates that {ϕk}3

k=1 should be an orthonormal basis and that we should have ϕ4⊥ϕ5

and ϕ6⊥ϕ7. The remaining degrees of freedom affect the performance, but can only
be resolved with a numerical optimization. The result of the optimization depends on
the weights (relative importance) assigned to each possible combination of received
packets.

Theorem 2.10 indicates that asymptotically as M →∞, optimal performance is possible
for any small erasure event, independent of the packetization. Suppose a frame is generated
with M unit vectors selected independently according to a uniform distribution, with M

large. If after e erasures M − e is large, the remaining frame is approximately tight, so the
MSE is nearly minimum.

5. CONCLUDING COMMENTS

This paper has demonstrated a new application for frame expansions: providing
robustness to losses in packet-based network communication. Only finite-dimensional
frames have been considered. This is consistent with the intended application, where each
packet carries a finite amount of data, as outlined in Example 1.1. However, when the

9 If the original frame and the erased elements are both tight frames, the remaining elements are also a tight
frame. This is the optimality condition mentioned at the beginning of Subsection 4.2.
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dimension of a data set is large (but still finite), it is a practical necessity to use structured
signal expansions.

As noted earlier, real and complex harmonic frames are available for any size and
dimension. Expansions with respect to these frames can be computed efficiently with
FFT-like algorithms. Just as discrete wavelet transforms (DWTs) asymptotically require
less operations than discrete Fourier transforms, oversampled filter banks provide efficient
implementations of frame expansions [29]. More importantly, one can expect that these
expansions would have advantages over Fourier techniques for many types of practical
signals [8]. In particular, wavelet and wavelet-like bases have proven very effective in
image compression.

Given the machinery of the DWT and its implementation through iterated filter banks,
a simple way to obtain a frame expansion is to remove all the downsampling. However,
such undecimated DWTs have large redundancies; an N sample vector is expanded to
N logL samples for a depth-L tree. Design techniques for wavelet frames with lower
redundancy, especially redundancy 2, have received recent attention [9, 18, 24]. The
applicability of these techniques to multiple description coding is studied in [9]. Numerical
optimization of finite-dimensional frames for multiple description coding was considered
in [21]. We continue to investigate the analytical design of good frames for small redun-
dancies M/N .

APPENDIX

A.1. Proof of Theorem 2.6

Let F be the operator associated with a uniform tight frame, with M =N + 1. We will
show that the tightness condition and normalization make F essentially unique, i.e., unique
up to the equivalence relation described in the text.

By Property 2.5, F consists of the first N columns of a scaled M × M orthogonal
matrix F . The normalization of each row of F to

√
M/N implies that

N+1∑
j=1

F
2
ij =

N + 1

N
, for i = 1,2, . . . ,N + 1. (A.1)

Furthermore, since our tight frame is normalized so that ‖ϕk‖ = 1, k = 1, . . . ,N + 1, we
have that

N∑
j=1

F
2
ij = 1, for i = 1,2, . . . ,N + 1. (A.2)

Subtracting (A.2) from (A.1) gives

F
2
i,N+1 =

1

N
, for i = 1,2, . . . ,N + 1, (A.3)

that is, the last column of F is (±N−1/2, ±N−1/2, . . . , ±N−1/2) for some choice
of signs. From this it follows that the span of the first N columns is the orthogonal
complement of the vector σ = (±1, ±1, . . . , ±1) for some choice of signs.
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Any given choice of signs in σ determines an N -dimensional subspace. Since
orthonormal bases for a subspace are unitarily equivalent, the possible tight frames
corresponding to a single choice of σ are in the same equivalence class. Flipping a sign in
σ reflects the subspace, and hence also yields tight frames in the same equivalence class.
Thus, we have shown that all uniform tight frames belong to the same equivalence class.
The existence of harmonic frames establishes that the class is nonempty.

A.2. Proof of Theorem 2.7

Form the frame operator matrix

F =




cosα1 sinα1

cosα2 sinα2
...

...

cosαM sinαM


 . (A.4)

For the frame to be tight is to have F ∗F = (M/2)I2, which leads to

M∑
k=1

(cosαk)2 = M

2
, (A.5)

M∑
k=1

(sinαk)2 = M

2
, (A.6)

M∑
k=1

cosαk sinαk = 0. (A.7)

Subtracting (A.6) from (A.5) gives

M∑
k=1

cos 2αk = 0, (A.8)

while multiplying (A.7) by 2 yields

M∑
k=1

sin 2αk = 0. (A.9)

Finally, adding (A.8) to j times (A.9) gives

M∑
k=1

zk = 0, where zk = ej2αk . (A.10)
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A.3. Proof of Theorem 2.8

Suppose the hypothesis is not true, that is, there are (K + 1) elements which are equal,
ϕ1 = ϕ2 = · · · = ϕK+1. For any frame

F ∗F =
M∑
k=1

ϕkϕ
∗
k , (A.11)

while for a uniform tight frame

F ∗F = AIN = (M/N)IN . (A.12)

Thus, using (A.12),

ϕ∗
1F

∗Fϕ1 =Aϕ∗
1ϕ1 =A‖ϕ1‖2. (A.13)

On the other hand, using (A.11),

ϕ∗
1F

∗Fϕ1 = ϕ∗
1

(
M∑
i=1

ϕiϕ
∗
i

)
ϕ1 = (K + 1)‖ϕi‖4 +

M∑
i=K+2

|ϕ∗
1ϕi |2 (A.14)

≥ (K + 1)‖ϕ1‖4. (A.15)

Equating (A.13) and (A.15) implies that

A‖ϕ1‖2 − (K + 1)‖ϕ1‖4 ≥ 0.

Since A=M/N and ‖ϕ1‖ = 1, this implies

M

N
≥

⌊
M

N

⌋
+ 1, (A.16)

which is a contradiction.
Assuming now that K elements are equal and K =M/N , repeat the above derivation of

(A.14) with K replacing (K + 1). This leads to

M

N
‖ϕ1‖4 +

M∑
i=K+1

|ϕ∗
1ϕi |2 =

M

M
‖ϕ1‖2,

which in turn yields

M∑
i=K+1

|ϕ∗
1ϕi |2 = 0.

This means that ϕ1 (and thus ϕ2, . . . , ϕK ) is orthogonal to the span of {ϕj }Mj=K+1.

A.4. Proof of Theorem 3.2

The calculations yielding (19) are given in the text. The bound (20) is a consequence of
Property 2.1.



228 GOYAL, KOVAČEVIĆ, AND KELNER

For a uniform frame, Theorem 3.1 implies that the MSE cannot be lower than that
achieved by a uniform tight frame; this yields the lower bound of (21).

For a uniform tight frame, A = B =M/N ; thus, (20) simplifies to (22). Alternatively,
one can note that by Property 2.3, every λi = M/N , i = 1, . . . ,N . Substituting in (19)
gives the desired result.

It is shown in [14] that, for any uniform frame,

Mσ 2

NB2 ≤ MSE ≤ Mσ 2

NA2 .

But since A≤M/N ≤ B for any uniform frame, this bound is weaker than (20).

A.5. Proof of Theorem 4.1

For a tight frame, we know that

M∑
k=1

|〈x,ϕk〉|2 =A for all x such that ‖x‖ = 1.

Suppose ϕi is deleted from the frame, and thus |〈x,ϕi〉|2 is subtracted from the sum. Then
since 0 ≤ |〈x,ϕi〉| ≤ 1,

A− 1 ≤
M∑
k=1
k �=i

|〈x,ϕk〉|2 ≤A for all x such that ‖x‖ = 1. (A.17)

For a uniform tight frame with M >N , A=M/N > 1. Therefore, (A.17) shows that �1

is a frame with frame bounds A− 1 and A.

A.6. Proof of Theorem 4.2

First note that if a finite set of vectors has a subset that is a frame, then the original set is
also a frame. Thus it suffices to consider subsets with N vectors; since all of these will be
shown to be frames, larger subsets are also frames.

Consider first the complex harmonic frame given by (8). Pick an arbitrary subset
{k1, k2, . . . , kN } of {1,2, . . . ,M} and denote the operator associated with this subset by
FM,N . By inspection of (8),

FM,N = 1√
N




1 W
k1−1
M . . . W

(N−1)(k1−1)
M

1 W
k2−1
M . . . W

(N−1)(k2−1)
M

...
...

...

1 W
kN−1
M . . . W

(N−1)(kN−1)
M


 .

We can recognize FM,N as a scaled Vandermonde matrix with determinant (see [17, p. 29])

detFM,N =N−N/2
N∏

i,j=1
i>j

(W
ki−1
M −W

kj−1
M ).
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The above determinant is nonzero if and only if all the values W
ki
M are distinct. Since

these are distinct roots of unity, det FM,N is nonzero, and the chosen set of N vectors is a
frame.

The real case is similar, but messier; we consider here only the case of N even and
frames given by (9). Pick any subset {k1, k2, . . . , kN } of {0,1, . . . ,M − 1} and define F by
choosing ϕ∗

k1+1, ϕ
∗
k2+1, . . . , ϕ

∗
kN+1 as the rows. We would like to show det F �= 0, which

will be clear after a sequence of elementary operations on F . Rather than writing the entire
matrix F , the operations will be demonstrated with the j th row of F . The scale factor√

2/N is omitted.
First note that, using Euler’s formula, the j th row is[

1

2
(W

kj
2M +W

−kj
2M ),

1

2
(W

3kj
2M +W

−3kj
2M ), . . . ,

1

2
(W

(N−1)kj
2M +W

−(N−1)kj
2M ),

1

2i
(W

kj
2M −W

−kj
2M ),

1

2i
(W

3kj
2M −W

−3kj
2M ), . . . ,

1

2i
(W

(N−1)kj
2M −W

−(N−1)kj
2M )

]
.

Multiply the last N/2 columns by i; add the last N/2 columns to the corresponding first
N/2 columns; add − 1

2 times the first N/2 columns to the last N/2 columns; and multiply
the last N/2 columns by −2; the resulting j th row is

[
W

kj
2M, W

3kj
2M , . . . , W

(N−1)kj
2M , W

−kj
2M , W

−3kj
2M , . . . , W

−(N−1)kj
2M

]
.

Now factoring W
−(N−1)kj
2M from row j gives

[
W

Nkj
2M , W

(N+2)kj
2M , . . . , W

2(N−1)kj
2M , W

(N−2)kj
2M , W

(N−4)kj
2M , . . . , W 0

2M

]
.

After reordering columns—with (N/2) + �N/4� exchanges—we have a Vandermonde
matrix. Accounting for the scaling and elementary operations,

detF = (−1)((N/2)+�N/4�)
(

2

N

)N/2

i−N/2(−2)−N/2

×
N∏
/=1

W
−(N−1)k/
2M

N∏
i,j=1
i>j

(W
2ki
2M −W

2kj
2M )

= (−1)((N/2)+�N/4�)N−N/2iN/2W
−(N−1)

∑
/ k/

2M

N∏
i,j=1
i>j

(W
2ki
2M −W

2kj
2M ).

This determinant is nonzero, so the selected vectors form a frame.

A.7. Proof of Theorem 4.3

Consider first the case e = 1. Denote the frame operator associated with �\{ϕk} by Fk .
By hypothesis, �\{ϕk} is tight for any k, so

F ∗
k Fk =N−1(M − 1)IN , k = 1,2, . . . ,M.
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These matrices are also related by F ∗
k Fk = F ∗F − ϕkϕ

∗
k . Therefore, picking any pair of

indices i and j and subtracting gives

0 = F ∗
i Fi − F ∗

j Fj = ϕjϕ
∗
j − ϕiϕ

∗
i . (A.18)

This implies ϕi and ϕj are collinear, and by extension that all the frame elements are
collinear. This contradicts the assumption that � is a frame. Therefore it is not possible for
every single erasure from a uniform frame to leave a tight frame.

For the case of general e, Eq. (A.18) is obtained by considering any pair of erasure
events that differ only in that one includes ϕj in place of ϕi . Thus the same contradiction
as before is obtained.

A.8. Proof of Theorem 4.4

Let � be a uniform frame. Consider first the optimization of � for average-case MSE;
the minimax optimization will follow easily.

We need to consider simultaneously each of the M possible erasures of one element
of �. Define

Hi =
M∑
k=1
k �=i

ϕkϕ
∗
k = F ∗F − ϕiϕ

∗
i .

Since MSE{i} =N−1σ 2 tr(H−1
i ), the average MSE with one erasure is

MSE1 = 1

M

M∑
i=1

σ 2

N
tr
(
H−1

i

)
. (A.19)

Using (26),

H−1
i = (F ∗F)−1 + (F ∗F)−1ϕil[1 − ϕ∗

i (F
∗F)−1ϕi]−1ϕ∗

i (F
∗F)−1.

Now noting that [1 − ϕ∗
i (F

∗F)−1ϕi] is a scalar and using the invariance of a trace of a
product to the cyclic permutation of factors,

tr(H−1
i )= tr

(
(F ∗F)−1)+ [1 − ϕ∗

i (F
∗F)−1ϕi ]−1 tr

(
ϕ∗
i (F

∗F)−2ϕi
)

= tr
(
(F ∗F)−1)+ ϕ∗

i (F
∗F)−2ϕi

1 − ϕ∗
i (F

∗F)−1ϕi
.

Substituting in (A.19) gives

MSE1 = σ 2

MN

M∑
i=1

(
tr
(
(F ∗F)−1) ϕ∗

i (F
∗F)−2ϕi

1 − ϕ∗
i (F

∗F)−1ϕi

)

= σ 2

N
tr
(
(F ∗F)−1)+ σ 2

MN

M∑
i=1

ϕ∗
i (F

∗F)−2ϕi

1 − ϕ∗
i (F

∗F)−1ϕi
. (A.20)

We know from Theorem 3.1 that the first term of (A.20) is minimized if and only if � is
tight; it thus suffices to consider the minimization of the second term.



QUANTIZED FRAME EXPANSIONS 231

We can use a technique similar to that used in the proof of Theorem 3.1. Recall that in the
earlier proof we had a constraint

∑N
i=1 λi = N and we wanted to minimize

∑N
i=1 f (λi),

where f (z)= z−1. Since f (·) is a convex function, the minimum occurs when each term
contributes equally, provided this is feasible—which is in fact the case. In the present proof,
vi = ϕ∗

i (F
∗F)−1ϕi plays the role of λi .

First note that the sum of vi ’s is constrained:

M∑
i=1

vi =
M∑
i=1

ϕ∗
i (F

∗F)−1ϕi =
M∑
i=1

tr
(
ϕ∗
i (F

∗F)−1ϕi
)= M∑

i=1

tr
(
(F ∗F)−1ϕiϕ

∗
i

)

= tr

(
M∑
i=1

(F ∗F)−1ϕiϕ
∗
i

)
= tr

(
(F ∗F)−1

M∑
i=1

ϕiϕ
∗
i

︸ ︷︷ ︸
F ∗F

)
= tr(IN)=N.

The remainder of the proof relies on the following simple lemma:

LEMMA A.1. Let M be a square matrix and let w be a compatibly dimensioned unit
vector. Then w∗M∗Mw ≥ (w∗Mw)2, with equality if and only if w is an eigenvector of M .

Proof. The matrix I−ww∗ is positive semidefinite. Thus (Mw)∗(I−ww∗)(Mw)≥ 0.
Expanding the left-hand side and rearranging gives w∗M∗Mw ≥ (w∗Mw)2. Furthermore,
w is an eigenvector of I −ww∗ corresponding to eigenvalue 0. The remaining eigenvalues
are all 1. Therefore equality holds if and only if Mw is parallel to w, or w is an eigenvector
of M.

Now we wish to express the summation in (A.20) in terms of the vi ’s. Applying
Lemma A.1 gives

ϕ∗
i (F

∗F)−2ϕi ≥
(
ϕ∗
i (F

∗F)−1ϕi
)2 = v2

i .

Thus we can bound the critical term of (A.20) as

M∑
i=1

ϕ∗
i (F

∗F)−2ϕi

1 − ϕ∗
i (F

∗F)−1ϕi
≥

M∑
i=1

v2
i

1 − vi
. (A.21)

Since z2/(1 − z) is a convex function, the right-hand side of (A.21) is minimized when
each term contributes equally, provided this is feasible; i.e., vi =N/M , i = 1,2, . . . ,M .

Making each vi equal N/M is indeed feasible; it is easy to verify that it occurs
whenever � is a tight frame. At the same time, equality holds in (A.21), so the average
MSE is minimized and tightness is sufficient for optimally of the frame. To complete the
proof, we will show that tightness is necessary for optimality. Specifically, vi = N/M ,
i = 1,2, . . . ,M , and equality in (A.21) together imply that � is tight.

Equality in (A.21) implies that ϕi is an eigenvector of (F ∗F)−1. Denote the corre-
sponding eigenvalue by νi . The eigenvalue–eigenvector property gives ϕ∗

i (F
∗F)−1ϕi = νi ,

which means νi and vi are identical! Since the ϕi ’s span RN , all the eigenvalues are ob-
tained in this manner, and since all the eigenvalues are equal, � is tight.

The minimax optimality is clear because the average-case MSE is minimized while
keeping every term in (A.19) equal. Obviously, the maximum term of (A.19) cannot be
smaller than the mean.
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A.9. Notes on the Convergence of (31)

In the final equality of (31), we have used the formula for the sum of a convergent
geometric series. The geometric series is convergent if and only if |(N/M)µi | < 1. We
establish here that this inequality holds whenever �E is a frame. In particular, we show
that |(N/M)µi | ≤ 1, with equality if and only if �E fails to be a frame.

Recall that the eigenvalues of ϕ∗ϕ are denoted {µi}ei=1 and note that the nonzero
eigenvalues of ϕ∗ϕ equal the nonzero eigenvalues of ϕϕ∗. The matrices F ∗F and ϕϕ∗
are closely related; each can be written as a sum of outer products of frame elements, but
F ∗F contains more terms:

F ∗F =
M∑
k=1

ϕkϕ
∗
k and ϕϕ∗ =

e∑
k=1

ϕkϕ
∗
k .

If v is the normalized eigenvector of ϕϕ∗ associated with eigenvalue µi , then

v∗F ∗Fv = v∗
(

M∑
k=1

ϕkϕ
∗
k

)
v = v∗ϕϕ∗v+ v∗

(
M∑

k=e+1

ϕkϕ
∗
k

)
v

=µi +
M∑

k=e+1

|v∗ϕk|2 ≥ µi. (A.22)

Since v∗F ∗Fv is bounded from above by the largest eigenvalue of F ∗F , we have
µi ≤M/N .

Equality holds in (A.22) if and only if the eigenvector v is orthogonal to {ϕk}Mk=e+1, i.e.,
all of the vectors remaining in �E . If v is orthogonal to all of the vectors in �E , then �E

does not span R
N and is not a frame. The analysis of Subsection 4.2 is not intended to

apply to this case.
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