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Global well-posedness of dispersive equations

In the past few years two methods have been developed and applied to study
the global in time existence of dispersive equations at regularities which are
right below or in between those corresponding to conserved quantities:

High-low method by J. Bourgain.
I-method (or method of almost conservation laws) by J. Colliander, M.
Keel, G. S., H. Takaoka and T. Tao

For many dispersive equations and systems there still remains a gap
between the local in time results and those that could be globally achieved.

When these two methods fail, return to one of Bourgain’s early approaches for
periodic dispersive equations (NLS, KdV, mKdV, Zakharov system) through

the introduction and use of the Gibbs measure derived from the PDE
viewed as an infinite dimension Hamiltonian system.

where global in time existence was studied in the almost sure sense via the
existence and invariance of the associated Gibbs measure (cf. Lebowitz,
Rose and Speer’s and Zhidkov’s works).
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Why is this last method effective?

There are two fundamental reasons:
I Because failure to show global existence by Bourgain’s high-low method or

the I-method might come from certain ‘exceptional’ initial data set, and the
virtue of the Gibbs measure is that it does not see that exceptional set.

I The invariance of the Gibbs measure, just like the usual conserved
quantities, can be used to control the growth in time of those solutions in its
support and extend the local in time solutions to global ones almost surely.

The difficulty in this approach lies in the actual construction of the associated
Gibbs measure and in showing its invariance under the flow.

This approach has recently successfully been used by:

• T. Oh (2007- PhD thesis) for the periodic KdV-type coupled systems.
• Tzevkov (2007) for subquintic radial NLW on 2d disc.
• Burq-Tzevtkov (2007-2008) for subcubic & subquartic radial NLW on 3d ball.
• T. Oh (2008-2009) Schrödinger-Benjamin-Ono, KdV on T.
• Thomann -Tzevtkov (2010) for DNLS (only formal construction of the
measure).
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In this talk we describe this approach for the 1D periodic DNLS.

Goal 1: Construct an associated invariant weighted Wiener measure and
establish GWP for data living in its support. In particular almost surely for
data living in a Fourier-Lebesgue space (defined later) scaling like
H

1
2−ε(T), for small ε > 0. Joint with:

Andrea Nahmod (UMass Amherst)

Tadahiro Oh (Princeton U)

Luc Rey Bellet (UMass Amherst).

Goal 2: Show that the ungauged invariant Wiener measure associated to
the periodic derivative NLS obtained above is absolutely continuous with
respect to the weighted Wiener measure constructed by Thomann and
Tzvetkov. We prove a general result on absolute continuity of Gaussian
measures under certain gauge transformations. Joint with:

Andrea Nahmod (UMass Amherst)

Luc Rey Bellet (UMass Amherst)

Scott Sheffield (MIT)
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Derivative NLS Equation

(DNLS)

{
ut − i uxx = λ(|u|2u)x

u
∣∣
t=0 = u0

where either (x , t) ∈ R× (−T ,T ) or (x , t) ∈ T× (−T ,T ) and λ is real.

We take λ = 1 for convenience and note DNLS is a Hamiltonian PDE with
conservation of mass and ‘energy’. In fact, it is completely integrable.

The first three conserved quantities of time are:

• Mass: m(u) = 1
2π

∫
T |u(x , t)|2 dx

• ‘Energy’: E(u) =
∫

T |ux |2 dx + 3
2 Im

∫
T u2uux dx + 1

2

∫
T |u|

6 dx

• Hamiltonian: H(u) = Im
∫

T uux dx + 1
2

∫
T |u|

4 dx (at Ḣ
1
2 level).
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More about the DNLS

The equation is scale invariant for data in L2: if u(x , t) is a solution then
ua(x , t) = aαu(ax ,a2t) is also a solution iff α = 1

2 . Thus a priori one
expects some form of existence and uniqueness for data in Hσ, σ ≥ 0.

Many results are known for the Cauchy problem with smooth data,
including data in H1 (Tsutsumi-Fukada 80’s; N.Hayashi, N. Hayashi- T.
Ozawa and T. Ozawa 90’s )

In looking for solutions to (DNLS) we face a derivative loss arising from the
nonlinear term and hence for low regularity data the key is to somehow make
up for this loss.
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The non-periodic case (x ∈ R)

Takaoka (1999) proved sharp local well-posedness (LWP) in H
1
2 (R) via a

gauge transformation (Hayashi and Ozawa) + sharp multilinear estimates
for the gauged equivalent equation in the Fourier restriction norm spaces
X s,b.

Colliander, Keel, S., Takaoka and Tao (2001-2002) established global
well-posedness (GWP) in Hσ(R), σ > 1

2 of small L2 norm using the
so-called I-Method on the gauge equivalent equation. ( Small in L2 means

.
√

2π
λ : ‘energy’ to be positive via Gagliardo-Nirenberg inequality.).

Miao, Wu and Xu recently extended GWP to Hσ(R), σ ≥ 1
2 .

The Cauchy initial value problem is ill-posed for data in Hσ(R) and
σ < 1/2; i.e. data map fails to be C3 or uniformly C0. ( Takaoka,
Biagioni-Linares)
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Periodic (DNLS)

S. Herr (2006) showed that the Cauchy problem associated to periodic
DNLS is locally well-posed for initial data u(0) ∈ Hσ(T), if σ ≥ 1

2 .

Proof based on an adaptation of the gauge transformation above to the
periodic setting + sharp multilinear estimates for the gauged equivalent
equation in periodic Fourier restriction norm spaces X s,b.
By use of conservation laws, the problem is also shown to be globally
well-posed for σ ≥ 1 and data which is small in L2-as in [CKSTT].

Y. Y. Su Win ( 2009- PhD thesis) applied the I-Method to prove GWP in
Hσ(T) for σ > 1/2.
Also in the periodic case the problem is believed to be ill-posed in Hσ(T)
for σ < 1/2 in the sense that fixed point theorem cannot be used with
Sobolev spaces.

Gigliola Staffilani (MIT) a.s. GWP, Gibbs measures and gauge transforms December, 2010 9 / 63



Periodic Gauged Derivative NLS Equation
Why do we need to gauge? Because the nonlinearity:

(|u|2u)x = u2 ux + 2 |u|2 ux hard to control.

Periodic Gauge Transformation (S. Herr, 2006): For f ∈ L2(T)

G(f )(x) := exp(−iJ(f )) f (x)

where

J(f )(x) :=
1

2π

∫ 2π

0

∫ x

θ

(
|f (y)|2 − 1

2π
‖f‖2

L2(T)

)
dy dθ

is the unique 2π-periodic mean zero primitive of the map

x −→ |f (x)|2 − 1
2π
‖f‖2

L2(T).

Then, for u ∈ C([−T ,T ]; L2(T)) the adapted periodic gauge is defined as

G(u)(t , x) := G(u(t))(x − 2 t m(u))

We have that

G : C([−T ,T ]; Hσ(T)) → C([−T ,T ]; Hσ(T))

is a homeomorphism for any σ ≥ 0. Moreover,
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G is locally bi-Lipschitz on subsets of functions in C([−T ,T ]; Hσ(T)) with
prescribed L2-norm. The same is true if we replace Hσ(T) by FLs,r , the
Fourier-Lebesgue spaces (later).

• Local well-posedness for (GDNLS) in Hσ implies local existence and
uniqueness for (DNLS) in Hσ; but don’t necessarily have all the auxiliary
estimates coming from the LWP result on (GDNLS).

If u is a solution to (DNLS) and v := G(u) we have that v solves:

(GDNLS) vt − ivxx = −v2vx +
i
2
|v |4v−iψ(v)v − im(v)|v |2v

with initial data v(0) = G(u(0)) and where

m(u) = m(v) :=
1

2π

∫
T
|v |2(x , t)dx =

1
2π

∫
T
|v(x ,0)|2(x)dx

ψ(v)(t) := −1
π

∫
T

Im(vvx) dx +
1

4π

∫
T
|v |4dx −m(v)2

Note both m(v) and ψ(v)(t) are real.
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What’s the energy for GDNLS?

For v the solution to the periodic (GDNLS) define

E(v) :=

∫
T
|vx |2 dx − 1

2
Im

∫
T

v2v vx dx +
1

4π

(∫
T
|v(t)|2 dx

)(∫
T
|v(t)|4 dx

)
.

H(v) := Im
∫

T
vvx −

1
2

∫
T
|v |4 dx + 2πm(v)2

Ẽ(v) := E(v) + 2m(v)H(v)− 2πm(v)3

We prove:
d Ẽ(v)

dt
= 0.

In fact one can show that E(u) = Ẽ(v).

We refer to Ẽ(v) from now on as the energy of (GDNLS).
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A. Grünrock and S. Herr (2008) showed that the Cauchy problem
associated to DNLS is locally well-posed for initial data u0 ∈ FLs,r (T) and
2 ≤ r < 4, s ≥ 1/2.

‖u0‖FLs,r (T) := ‖ 〈n 〉s û0 ‖`r
n
(Z) r ≥ 2

These spaces scale like the Sobolev Hσ(T) ones where σ = s + 1/r − 1/2 .

For example for s = 2/3− and r = 3 σ < 1/2.

Proof based on Herr’s adapted periodic gauge transformation and new sharp
multilinear estimates for the gauged equivalent equation in an appropriate
variant of Fourier restriction norm spaces X s,b

r ,q introduced by Grünrock-Herr.

‖u‖X s,b
r,q

:= ‖〈n〉s 〈τ − n2〉bû(n, τ)‖`r
nLq

τ

where first take the Lq
τ norm and then the `r

n one.
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For δ > 0 fixed, the restriction space X s,b
r ,q (δ) is defined as usual

‖v‖X s,b
r,q (δ)

:= inf{‖u‖X s,b
r,q

: u ∈ X s,b
r ,q and v = u

∣∣
[−δ,δ] }.

For q = 2 we simply write X s,b
r ,2 = X s,b

r . Note X s,b
2,2 = X s,b.

Later we will also use the space

Z s
r (δ) := X s, 1

2
r ,2 (δ) ∩ X s,0

r ,1 (δ).

In particular,
Z s

r (δ) ⊂ C([−δ, δ],FLs,r ).
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Invariant Gibbs measures for Hamiltonian PDEs

Hamilton’s equations of motion have the antisymmetric form

(HE) q̇i =
∂H(p,q)

∂pi
, ṗi = −∂H(p,q)

∂qi

the Hamiltonian H(p,q) being a first integral:

dH
dt

:=
∑

i

∂H
∂qi

q̇i +
∂H
∂pi

ṗi =
∑

i

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0

And by defining y := (q1, . . . ,qk ,p1, . . . ,pk )T ∈ R2k (2k = d) we can rewrite

dy
dt

= J∇H(y), J =

[
0 I
−I 0

]
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Liouville’s Theorem: Let a vector field f : Rd → Rd be divergence free then
the if the flow map Φt satisfies:

d
dt

Φt(y) = f (Φt(y)),

then it is a volume preserving map (for all t).

In particular if f is associated to a Hamiltonian system then automatically
div f = 0. Indeed

div f =
∂

∂q1

∂H
∂p1

+
∂

∂q2

∂H
∂p2

+. . .
∂

∂qk

∂H
∂pk

− ∂

∂p1

∂H
∂q1

− ∂

∂p2

∂H
∂q2

−. . . ∂

∂pk

∂H
∂qk

= 0

by equality of mixed partial derivatives.
The Lebesgue measure on R2k is invariant under the Hamiltonian flow (HE).
Consequently from conservation of Hamiltonian H the Gibbs measures,

dµ := e−βH(p,q)
d∏

i=1

dpi dqi

with β > 0 are invariant under the flow of (HE); ie. for A ⊂ Rd ,

µ(Φt(A)) = µ(A)
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Infinite Dimension Hamiltonian PDEs

In the context of semilinear NLS iut + uxx ± |u|p−2u = 0 on T (think of u as
the infinite dimension vector given by its Fourier coefficients) we have:

• Lebowitz, Rose and Speer (1988) considered the Gibbs measure formally
given by

‘dµ = Z−1 exp (−βH(u))
∏
x∈T

du(x)′

where H(u) := 1
2

∫
|ux |2 ∓ 1

p

∫
|u|p and showed that µ is a well-defined

probability measure on Hs(T) for any s < 1
2 but not (we will see this later) for

s = 1
2 .

• In the focusing case the result only holds for p ≤ 6 with the L2-cutoff
χ‖u‖L2≤B for any B > 0 if p < 6 and with small B for p = 6
(recall the L2 norm is conserved for these equations.)

• Bourgain (94’) proved the invariance of this measure and a.s. gwp.
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Bourgain’s Method

We review Bourgain’s idea in a general framework, and discuss how to prove
almost surely GWP and the invariance of a measure from LWP.
Consider a dispersive nonlinear Hamiltonian PDE with a k -linear nonlinearity
possibly with derivative.

(PDE)

{
ut = Lu +N (u)

u|t=0 = u0

where L is a (spatial) differential operator like i∂xx , ∂xxx , etc. (systems). Let
H(u) denote the Hamiltonian of (PDE). Then, (PDE) can also be written as

ut = J
dH
du

if u is real-valued, ut = J
∂H
∂u

if u is complex-valued.
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Let µ denote a measure on the distributions on T, whose invariance we’d like
to establish. We assume that µ is a weighted Gaussian measure (formally)
given by

” dµ = Z−1e−F (u)
∏
x∈T

du(x) ”

where F (u) is conserved1 under the flow of (PDE) and the leading term of
F (u) is quadratic and nonnegative.

Now, suppose that there is a good local well-posedness theory:

There exists a Banach space B of distributions on T and a space
Xδ ⊂ C([−δ, δ];B) of space-time distributions in which to prove local
well-posedness by a fixed point argument with a time of existence δ
depending on ‖u0‖B, say δ ∼ ‖u0‖−α

B for some α > 0.

1F (u) could be the Hamiltonian, but not necessarily!
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In addition, suppose that the Dirichlet projections PN – the projection onto the
spatial frequencies ≤ N – act boundedly on these spaces, uniformly in N.

Consider the finite dimensional approximation to (PDE)

(FDA)

{
uN

t = LuN + PN
(
N (uN)

)
uN |t=0 = uN

0 := PNu0(x) =
∑

|n|≤N û0(n)einx .

Then, for ‖u0‖B ≤ K one can see (FDA) is LWP on [−δ, δ] with δ ∼ K−α,
independent of N.
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Two more important assumptions on (FDA):

(1) (FDA) is Hamiltonian with H(uN) i.e.

uN
t = J

dH(uN)

duN

(2) F (uN) is still conserved under the flow of (FDA)

Note: (1) holds for example when the symplectic form J commutes with the
projection PN . (e.g. J = i or ∂x .).

In general however (1) and (2) are not guaranteed and may not necessarily
hold! (more later).
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From this point on the argument goes through the following steps:

By Liouville’s theorem and (1) above the Lebesgue measure∏
|n|≤N

dandbn,

where ûN(n) = an + ibn, is invariant under the flow of (FDA).
Then, using (2) - the conservation of F (uN)- we have that the finite
dimensional version µN of µ:

dµN = Z−1
N e−F (uN )

∏
|n|≤N

dandbn

is also invariant under the flow of (FDA)!
One then needs to prove that µN converges weakly to µ. Assume it for
now.
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One also needs the following:

Lemma [Fernique-type tail estimate]
For K suff. large, we have

µN
(
{‖uN

0 ‖B > K}) < e−cK 2
, indep of N.

This lemma + invariance of µN imply the following estimate controlling the
growth of solution uN to (FDA).

Main Proposition: Bourgain ’94

Given T <∞, ε > 0, there exists ΩN ⊂ B s.t.
I µN(Ωc

N) < ε

I for uN
0 ∈ ΩN , (FDA) is well-posed on [−T , T ] with the growth estimate:

‖uN(t)‖B .
“

log
T
ε

” 1
2
, for |t | ≤ T .
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Proof.
Let ΦN(t) = flow map of (FDA), and define

ΩN = ∩[T/δ]
j=−[T/δ]ΦN(jδ)({‖uN

0 ‖B ≤ K}).

By invariance of µN ,

µ(Ωc
N) =

[T/δ]∑
j=−[T/δ]

µNΦN(jδ)({‖uN
0 ‖B > K}) = 2[T/δ]µN({‖uN

0 ‖B > K})

This implies µ(Ωc
N) . T

δ µN({‖uN
0 ‖B > K}) ∼ TK θe−cK 2

, and by choosing

K ∼
(

log T
ε

) 1
2 , we have µ(Ωc

N) < ε.

By its construction, ‖uN(jδ)‖B ≤ K for j = 0, · · · ,±[T/δ] and by local
theory,

‖uN(t)‖B ≤ 2K ∼
(

log
T
ε

) 1
2

for |t | ≤ T .
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Going back to PDE
Essentially as a corollary of the Main Proposition one can then prove:

Corollary
(a) Given ε > 0, there exists Ωε ⊂ B with µ(Ωc

ε) < ε such that for u0 ∈ Ωε,
(PDE) is globally well-posed with the growth estimate:

‖u(t)‖B .

(
log

1 + |t |
ε

) 1
2

, for all t ∈ R.

(b) The uniform convergence lemma: ‖u − uN‖C([−T ,T ];B′) → 0 as N →∞
uniformly for u0 ∈ Ωε, where B′ ⊃ B.

Note (a) implies that (PDE) is a.s. GWP, since Ω̃ :=
⋃

ε>0 Ωε has probability 1.

One can prove (a) and (b) by estimating the difference u − uN using the LWP
theory + an Approximation Lemma and applying the Main Proposition above
to uN .

Finally, putting all the ingredients together, we obtain the invariance of µ.
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A.S. Global well-posedness for DNLS
Our Goal 1:

Establish the a.s GWP for the periodic DNLS in a Fourier Lebesgue
space FLs,r scaling below H1/2(T). and the invariance of the associate
Gibbs measure µ.

Invariance µ: if Φ(t) is the flow map associated to the nonlinear equation;
then for reasonable F∫

F (Φ(t)(φ))µ(dφ) =

∫
F (φ)µ(dφ)

Method:
Construct µ so that LWP of periodic DNLS in some space B containing
supp(µ) holds. Then show a.s. GWP as well as the invariance of µ via
Bourgain’s argument (and Zhidkov’s) (for the Gibbs meas of NLS, KdV, mKdV,
Bourgain ‘94) + some new ingredients !.
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Finite dimensional approximation of (GDNLS)
Recall

(GDNLS) vt = ivxx − v2v̄x +
i
2
|v |4v − iψ(v)v − im(v)|v |2v

where

ψ(v) = −1
π

∫
Imvv̄x +

1
4π

∫
|v |4 dx −m(v)2

and m(v) = 1
2π

∫
|v |2 dx .

Our finite dimensional approximation is (FGDNLS):

vN
t = ivN

xx − PN((vN)2vN
x ) +

i
2

PN(|vN |4vN)− iψ(vN)vN − im(vN)PN(|vN |2vN)

with initial data vN
0 = PN v0.

Note m(vN)(t) := 1
2π

∫
T |v

N(x , t)|2dx is also conserved under the flow of
(FGDNLS).
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Lemma [Local well-posedness]
Let 2 < r < 4 and s ≥ 1

2 . Then for every

vN
0 ∈ BR := {vN

0 ∈ FLs,r (T)/‖vN
0 ‖FLs,r (T) < R}

and δ . R−γ , for some γ > 0, there exists a unique solution

vN ∈ Z s
r (δ) ⊂ C([−δ, δ];FLs,r (T))

of (FGDNLS) with initial data vN
0 . Moreover the map(

BR , ‖ · ‖FLs,r (T)

)
−→ C([−δ, δ];FLs,r (T)) : vN

0 → vN

is real analytic.

The proof essentially follows from Grünrock-Herr’s LWP estimates.
I PN acts on a multilinear nonlinearity and it is a bounded operator on Lp(T)

commuting with Ds.
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Lemma [Approximation lemma]
Let v0 ∈ FLs,r (T), s ≥ 1

2 , r ∈ (2,4) be such that ‖v0‖FLs,r (T) < A, for some
A > 0, and let N be a large integer. Assume the solution vN of (FGDNLS) with
initial data vN

0 (x) = PNv0 satisfies the bound

‖vN(t)‖FLs,r (T) ≤ A, for all t ∈ [−T ,T ],

for some given T > 0. Then the IVP (GDNLS) with initial data v0 is
well-posed on [−T ,T ] and there exists C0,C1 > 0, such that its solution v(t)
satisfies the following estimate:

‖v(t)− vN(t)‖FLs1,r (T) . exp[C0(1 + A)C1T ]Ns1−s,

for all t ∈ [−T ,T ],0 < s1 < s.
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Construction of the Weighted Wiener Measure

We need to construct probability spaces on which we establish
well-posedness.

To construct these measures we will make use of the conserved quantity:
Ẽ(v) as well as the L2-norm, hence weighted Wiener rather than Gibbs.

To construct the measures on infinite dimensional spaces we consider
conserved quantities of the form exp(−β

2 Ẽ(v)). But can’t construct a finite
measure directly! using this quantity since:

(a) the nonlinear part of Ẽ(v) is not bounded below

(b) the linear part is only non-negative but not positive definite.

To resolve this issue we proceed as follows.
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First we use the conservation of L2-norm and consider instead the quantity

χ{‖v‖L2≤B}e−
β
2 N (v)e−

β
2

R
(|v |2+|vx |2)dx

where N (v) is the nonlinear part of the energy Ẽ(v), i.e.

N (v) = −1
2

Im
∫

T
v2vvx dx − 1

4π

(∫
T
|v |2 dx

)(∫
T
|v |4 dx

)
+

+
1
π

(∫
T
|v |2 dx

)(
Im

∫
T

vvx dx
)

+
1

4π2

(∫
T
|v |2 dx

)3

.

and B is a (suitably small) constant.

Then we would like to construct the measure (with v(x) = u(x) + iw(x))

“ dµβ = Z−1χ{‖v‖L2≤B}e−
β
2 N (v)e−

β
2

R
(|v |2+|vx |2)dx

∏
x∈T

du(x)dw(x) ”

This is a purely formal, although suggestive, expression since it is impossible
to define the Lebesgue measure on an infinite-dimensional space as
countably additive measure. Moreover as it will turn out that

∫
|ux |2 = ∞, µ

almost surely.
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One uses instead a Gaussian measure as reference measure and the
weighted measure µ is constructed in two steps:

First one constructs a Gaussian measure ρ as the limit of the
finite-dimensional measures on R4N+2 given by

dρN = Z−1
0,N exp

(
− β

2

∑
|n|≤N

(1 + |n|2)|v̂n|2
) ∏
|n|≤N

dandbn

where v̂n = an + ibn.

The construction of such Gaussian measures on Hilbert spaces is a
classical subject. As we will see below we need to realize this measure
as a measure supported on a suitable Banach space. This needs some
extra work but it is possible by relying on L. Gross 65’ and H. Kuo 75’
theory of abstract Wiener spaces.

Once this measure ρ has been constructed one constructs the measure
µ as a measure which is absolutely continuous with respect to ρ and
whose Radon-Nikodym derivative

dµ
dρ

= R(v) := Z̃−1χ{‖v‖2
L≤B}e

− β
2 N (v)

For this measure to be normalizable one needs B to be sufficiently small
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More about our Gaussian measure
As mentioned above our Gaussian measure ρ is the weak limit of the finite
dimensional Gaussian measures

dρN = Z−1
0,N exp

(
− 1

2

∑
|n|≤N

(1 + |n|2)|v̂n|2
) ∏
|n|≤N

dandbn .

Note that the measure ρN above can be regarded as the induced probability
measure on R4N+2 under the map

ω 7−→
{

gn(ω)√
1 + |n|2

}
|n|≤N

and v̂n =
gn√

1 + |n|2
,

where {gn(ω)}|n|≤N are independent standard complex Gaussian random
variables on a probability space (Ω,F ,P).

In a similar manner, we can view ρ as the induced probability measure under

the map ω 7→
{

gn(ω)√
1+|n|2

}
n∈Z

.
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Gaussian Measure in which space?
Consider the operator Js = (1−∆)s−1 then∑

n

(1 + |n|2)
∣∣v̂n

∣∣2
= 〈v , v〉H1 = 〈J−1

s v , v〉Hs .

The operator Js : Hs → Hs has the set of eigenvalues {(1 + |n|2)(s−1)}n∈Z and
the corresponding eigenvectors {(1 + |n|2)−s/2einx}n∈Z form an orthonormal
basis of Hs.

For ρ to be countable additive we need Js to be of trace class which is
true if and only if s < 1

2 .
Then ρ is a countably additive measure on Hs for any s < 1/2 (but not for
s ≥ 1/2 !)

Unfortunately, (GDNLS) is locally well-posed in Hs(T) only for s ≥ 1
2 .

Instead, we propose to work in the Fourier-Lebesgue space FLs,r (T) in view
of the local well-posedness result by Grünrock-Herr . Since FLs,r is not a
Hilbert space, we need to construct ρ as a measure supported on a Banach
space. This can be done thanks to the theory of abstract Wiener spaces
(Gross and Kuo).
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In particular, we prove that for 2 ≤ r <∞ and (s − 1)r < −1:

(1) (i ,H1,FLs,r ) is an abstract Wiener space. ( i=inclusion map)

(2) The Wiener measure ρ can be realized as a countably additive measure
supported on FLs,r and

(3) Have an exponential tail estimate : there exists c > 0 (with c = c(s, r))
such that

ρ(‖v‖FLs,r > K ) ≤ e−cK 2
.

Note: For (r , s) as above s +
1
r
− 1

2︸ ︷︷ ︸
=:σ

< 1
2 (recall FLs,r scales as Hσ)

Here we assume again that v is of the form

v(x) =
∑

n

gn(ω)√
1 + |n|2

einx ,

where {gn(ω)} are independent standard complex Gaussian random variables
as above
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More about the weighted measure
After a nontrivial amount of work, and using also some estimates in Thomann
and Tzvetkov we finally obtain the weighted Wiener measure µ. Let

R(v) := χ{‖v‖L2≤B}e−
1
2N (v) , RN(v) := R(vN)

where N (v) is the nonlinear part of the energy Ẽ . Here vN = PN(v) for some
generic function v in our F-L spaces.
We obtain

dµ = Z−1R(v)dρ ,

for sufficiently small B, as is the weak limit of the finite dimensional weighted
Wiener measures µN on R4N+2 given by

dµN = Z−1
N RN(v)dρN

= Ẑ−1
N χ{‖bvN‖L2≤B}e

− 1
2 (Ẽ(v̂N )+‖v̂N‖L2 )

∏
|n|≤N

dandbn

for suitable normalizations ZN , ẐN . More precisely we have:
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Lemma [Convergence]
RN(v) converges in measure to R(v).

Moreover we have

Proposition [Existence of weighted Wiener measure]
(a) For sufficiently small B > 0, we have R(v) ∈ L2(dρ). In particular, the
weighted Wiener measure µ is a probability measure, absolutely continuous
with respect to the Wiener measure ρ.

(b) We have the following tail estimate. Let 2 ≤ r <∞ and (s − 1)r < −1;
then there exists a constant c such that

µ(‖v‖FLs,r > K ) ≤ e−cK 2

for sufficiently large K > 0.
(c) The finite dim. weighted Wiener measure µN converges weakly to µ.
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Example of an estimate

Recall that
RN(v) := χ{‖vN‖L2≤B}e

− 1
2N (vN ),

and

N (v) = −1
2

Im
∫

T
v2vvx dx − 1

4π

(∫
T
|v |2 dx

)(∫
T
|v |4 dx

)
+

+
1
π

(∫
T
|v |2 dx

)(
Im

∫
T

vvx dx
)

+
1

4π2

(∫
T
|v |2 dx

)3

.

Here we concentrate on the term XN(v) :=
∫

T vNvN
x . We have the following

Lemma
For any N ≤ M and ε > 0 we have

‖XM(v)− XN(v)‖L4 .
1

N 1
2
.
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Proof of the lemma
We start by recalling that vN(ω, x) :=

∑
|n|≤N

gn(ω)
〈n〉 einx . Then by Plancherel

XN(v) = −i
∑
|n|≤N

n
|gn(ω)|2

〈n〉2
and XM(v)− XN(v) = −i

∑
N≤|n|≤M

n
|gn(ω)|2

〈n〉2
,

and

|XM(v)− XN(v)|2 =
∑

N≤|n1|,|n2|≤M

n1n2
|gn1(ω)|2|gn2(ω)|2

〈n1〉2〈n2〉2
=: Y 1

N,M + Y 2
N,M + Y 3

N,M ,

Y 1
N,M :=

∑
N≤|n2|,|n1|≤M

n1n2
(|gn1(ω)|2 − 1)(|gn2(ω)|2 − 1)

〈n1〉2〈n2〉2

Y 2
N,M :=

∑
N≤|n2|,|n1|≤M

n1n2
(|gn1(ω)|2 − 1) + (|gn2(ω)|2 − 1)

〈n1〉2〈n2〉2

Y 3
N,M :=

∑
N≤|n2|,|n1|≤M

n1n2

〈n1〉2〈n2〉2
.
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By symmetry
Y 3

N,M =
∑

N≤|n2|,|n1|≤M

n1n2

〈n1〉2〈n2〉2
= 0,

hence
‖XM(v)− XN(v)‖4

L4 . ‖Y 1
N,M‖2

L2 + ‖Y 2
N,M‖2

L2 .

We now proceed as in Thomann and Tzvetkov: denote by

Gn(ω) := |gn(ω)|2 − 1

and note that by the definition of gn(ω)

E[Gn(ω)Gm(ω)] = 0 for n 6= m.

Since

|Y 1
N,M |2 =

∑
N≤|n1|,|n2|,|n3|,|n4|,≤M

n1n2n3n4
Gn1Gn2Gn3Gn4

〈n1〉2〈n2〉2〈n3〉2〈n4〉2
,

when we compute E[|Y 1
N,M |2] the only contributions come from (n1 = n3 and

n2 = n4), (n1 = n2 and n3 = n4) or (n2 = n3 and n1 = n4).
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Hence by symmetry we have:

‖Y 1
N,M‖2

L2 = E [|Y 1
N,M |2] ≤ C

∑
N≤|n1|,|n2|≤M

n2
1n2

2
〈n1〉4〈n2〉4

.
1

N2 .

On the other hand, since

|Y 2
N,M |2 =

∑
N≤|n1|,|n2|,|n3|,|n4|,≤M

n1n2n3n4
(Gn1 + Gn2)(Gn3 + Gn4)

〈n1〉2〈n2〉2〈n3〉2〈n4〉2
,

by symmetry it is enough to consider a single term of the form∑
N≤|n1|,|n2|,|n3|,|n4|,≤M

n1n2n3n4
Gnj Gnk

〈n1〉2〈n2〉2〈n3〉2〈n4〉2
,

with 1 ≤ j 6= k ≤ 4, which we set without any loss of generality to be
j = 1, k = 3. We then have

‖Y 2
N,M‖2

L2 = E [|Y 2
N,M |2] ≤ C

∑
N≤|n1|,|n2|,|n4|≤M

n2
1n2n4

〈n1〉4〈n2〉2〈n4〉2
= 0.
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Analysis of the (FGDNLS): necessary estimates

The key step now is to prove the analogue of Bourgain’s Main Proposition
above controlling the growth of solutions vN to (FGDNLS).

Obstacles we have to face:

The symplectic form associated to the periodic gauged derivative
nonlinear Schrödinger equation GDNLS does not commute with Fourier
modes truncation and so the truncated finite-dimensional systems are not
necessarily Hamiltonian. This entails two problems:

I (1) A mild one: need to show the invariance of Lebesgue measure
associated to (FGDNLS) (‘Liouville’s theorem’) by hand directly .

I (2) A more serious one and at the heart of this work. The energy Ẽ(vN) is
no longer conserved. In other words, the finite dimensional weighted Wiener
measure µN is not invariant any longer.
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Almost conserved energy

Zhidkov faced a similar problem but unlike Zhidkovs work on KdV we do
not have a priori knowledge of global well posedness.

We show however that it is almost invariant in the sense that we can
control the growth in time of Ẽ(vN)(t).

I This idea is reminiscent of the I-method. However:

In the I-method one needs to estimate the variation of the energy of
solutions to the infinite dimensional equation at time t smoothly projected
onto frequencies of size up to N.

Here one needs to control the variation of the energy Ẽ of the solution vN to
the finite dimensional approximation equation.

More precisely we have the following estimate controlling the growth of
Ẽ(vN)(t)
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Theorem [Energy Growth Estimate]
Let vN(t) be a solution to (FGDNLS) in [−δ, δ], and let K > 0 be such that
‖vN‖

X
2
3−, 1

2
3 (δ)

≤ K . Then there exists β > 0 such that

|E(vN(δ))− E(vN(0))| =
∣∣∣ ∫ δ

0

d
dt
E(vN)(t)dt

∣∣∣ . C(δ)N−β max(K 6,K 8).

Remark This estimate may still hold for a different choice of X s, 1
2

r (δ) norm,
with s ≥ 1

2 , 2 < r < 4 so that the local well-posedness holds.

On the other hand the pair (s, r) should also be such that (s−1) · r < −1 since
this regularity is low enough to contain the support of the Wiener measure.

Our choice of s = 2
3− and r = 3 allows us to prove the energy growth

estimate while satisfying both the conditions for local well-posedness and the
support of the measure.
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On the energy estimate

We start by writing

d Ẽ
dt

(vN) =−2Im
∫

vNvNvN
x P⊥

N ((vN)2vN
x ) + Re

∫
vNvNvN

x P⊥
N (|vN |4vN)

− 2m(vN)Re
∫

vNvNvN
x P⊥

N (|vN |2vN)

+ 2m(vN)Re
∫

vNvN
2
P⊥

N ((vN)2vN
x )

+ m(vN)Im
∫

vNvN
2
P⊥

N (|vN |4vN)

− 2m(vN)2Im
∫

vNvN
2
P⊥

N (|vN |2vN) + . . . . . . ,

The first term is the worst term since it has two derivatives. Also it looks like
the unfavorable structure of the nonlinearity (vN)2vN

x ) is back!
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The dangerous term

Let’s now concentrate on the first term coming from the expression above. It is
essentially:

I1 =

∫ δ

0

∫
T

vNvNvN
x P⊥

N ((vN)2vN
x ) dx dt .

We start by discussing how to absorb the rough time cut-off. Assume φ is any
function in X

2
3−, 1

2
3 such that

φ|[−δ,δ] = vN ;

then we write

I1 =

∫
T×R

χ[0,δ](t) P⊥
N ((vN)2∂xvN) vNvNvN

x dxdt

=

∫
T×R

P⊥
N ((χ[0,δ]φ)2 χ[0,δ]φx) χ[0,δ]φχ[0,δ]φχ[0,δ]φxdxdt .
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By denoting
w := χ[0,δ]φ, hence w = PN(w),

we will in fact show that

|I1| =
∣∣∣∣∫

T×R
P⊥

N ((w)2∂xw) wwwxdxdt
∣∣∣∣

≤ C(δ)N−β‖w1‖
X

2
3−, 1

2−
3

‖w2‖
X

2
3−, 1

2−
3

‖w3‖
X

2
3−, 1

2−
3

×‖w4‖
X

2
3−, 1

2−
3

‖w5‖
X

2
3−, 1

2−
3

‖w6‖
X

2
3−, 1

2−
3

where w1 = w2 = w4 = w and w3 = w5 = w6 = w .

To go back to vN then one uses the fact that for b < b1 < 1/2, there exists
C′(δ) > 0 such that

‖w‖
X

2
3−,b

3

≤ C′(δ) ‖φ‖
X

2
3−,b1

3

≤ C′(δ) ‖vN‖
X

2
3−, 1

2
3 (δ)

where w , φ and vN are as above.
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Ingredients for the proof

We now list some of the ingredients for the proof of the estimate:
A trilinear refinement of Bourgain’s L6(T) Strichartz estimate:

Let u, v ,w ∈ X ε, 1
2− for some ε > 0. Then

‖uvw‖L2
xt

. ‖u‖
Xε, 1

2−
‖v‖

Xε, 1
2−
‖w‖

X 0, 1
2−

Certain arithmetic identities that relate frequencies to the distance to the
parabola

P = {(n, τ) : τ = n2}

where the solution of the linear problem lives.

These estimates are important since one would like to trade derivatives,
e.i. powers of frequencies like |n|α, with powers of |τ − n2|.
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Ingredient for the proof

We notice that we can write

I1 =

∫
T×R

P⊥
N (w2∂xw) w wwxdxdt

=

∫ ∑
|n|>N

( ∫
τ=τ1+τ2−τ3

∑
n=n1+n2−n3

ŵ(n1, τ1)ŵ(n2, τ2)(−in3)ŵ(n3, τ3)dτ1dτ2

)

×
( ∫

−τ=τ4−τ5−τ6

∑
−n=n4−n5−n6

ŵ(n4, τ4)ŵ(n5, τ5)(−in6)ŵ(n6, τ6)dτ4dτ5

)
dτ

and from here one has

τ − n2 − (τ1 − n2
1)− (τ2 − n2

2)− (τ3 + n2
3) = −2(n − n1)(n − n2),

τ − n2 + (τ4 − n2
4) + (τ5 + n2

5) + (τ6 + n2
6) = −2(n + n5)(n + n6).

This is the kind of relationships that we want to exploit!
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Ingredient for the proof
More precisely, if we let σ̃j := τj ± n2

j we have

6∑
j=1

σ̃j = −2 ( n (n1 + n2 + n5 + n6)− n1n2 + n5n6 )

This in turn can also be rewritten using n1 + n2 + n3 + n4 + n5 + n6 = 0 or
n = n1 + n2 + n3 and −n = n4 + n5 + n6 as:

6∑
j=1

σ̃j = 2( n (n3 + n4) + n1n2 − n5n6 ).

In addition, since τ1 + τ2 + τ3 + τ4 + τ5 + τ6 = 0, adding and subtracting
n2

j , j = 1, . . . ,6 in the appropriate fashion, we obtain:

6∑
j=1

σ̃j = (n2
3 + n2

5 + n2
6)− (n2

1 + n2
2 + n2

4)
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Ingredient of the proof
It is fundamental the following lemma

Lemma
If 0 < β < 2, then

‖JβwM‖X 0,ρ . CT A(β,M)
1
6 Mρβ+‖wM‖

X
0, 1

6
3

,

where

(i) supp wM(·, x) ⊂ [−T ,T ] (x ∈ T).

(ii) ĴβwM(τ,n) = χ{|n|∼M}χ{|τ−n2|≤Mβ}|ŵM(τ,n)|.

Here, if

S(τ,M, β) := {n ∈ Z : |n| ∼ M and |τ − n2| ≤ Mβ}

and |S| represents the counting measure of the set S, then one can
show that

A(M, β) := sup
τ

|S(τ,M, β)| ≤ 1 + Mβ−1

.
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The estimate of A(M, β)
If S := S(τ,M, β) 6= ∅, then there exists n0 ∈ S and hence

|S| ≤ 1 + |{l ∈ Z/|n0 + l | ∼ M, |τ − (n0 + l)2| ≤ Mβ}|
≤ 1 + |{l ∈ Z / |l | ≤ M, |2n0l + l2| . Mβ}|.

Now we note that |2n0l + l2| = |(l + n0)
2 − n2

0| . Nβ if and only if

−CMβ + n2
0 ≤ (l + n0)

2 ≤ n2
0 + CMβ .

Hence we need | l | ≤ M to satisfy

−
√

n2
0 + CMβ ≤ (l + n0) ≤

√
n2

0 + CMβ ,

(l + n0) ≥
√

n2
0 − CMβ and (l + n0) ≤ −

√
n2

0 − CMβ .

In other words we need to know the size of

[−
√

n2
0 + CMβ , −

√
n2

0 − CMβ] ∪ [
√

n2
0 − CMβ ,

√
n2

0 + CMβ]

which is of the order of Mβ

|n0| . Hence since |n0| ∼ M, we have that
|S| ≤ 1 + Mβ−1 as claimed.
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Growth of solutions to (FGDNLS)

Armed with the Energy Growth Estimate we count on the almost invariance of
the finite-dimensional measure µN under the flow of (FGDNLS) to control the
growth of its solutions (our analogue of Bourgain’s Main Proposition)

Proposition [Growth of solutions to FGDNLS]
For any given T > 0 and ε > 0 there exists an integer N0 = N0(T , ε) and sets
Ω̃N = Ω̃N(ε,T ) ⊂ R2N+2 such that for N > N0

(a) µN

(
Ω̃N

)
≥ 1− ε .

(b) For any initial condition vN
0 ∈ Ω̃N , (FGDNLS) is well-posed on [−T ,T ] and

its solution vN(t) satisfies the bound

sup
|t|≤T

‖vN(t)‖
FL

2
3−,3 .

(
log

T
ε

) 1
2

.
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A.S GWP of solution to (GDNLS)

Combining the Approximation Lemma of v by vN with the previous Proposition
on the growth of solutions to (FGDNLS) we can prove a similar result for
solutions v to (GDNLS):

Proposition [‘Almost almost ’ sure GWP for (GDNLS)]
For any given T > 0 and ε > 0 there exists a set Ω(ε,T ) such that
(a) µ (Ω(ε,T )) ≥ 1− ε .

(b) For any initial condition v0 ∈ Ω(ε,T ) the IVP (GDNLS) is well-posed on
[−T ,T ] with the bound

sup
|t|≤T

‖v(t)‖
FL

2
3−,3 .

(
log

T
ε

) 1
2

.
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All in all we now have:

Theorem 1 [Almost sure global well-posedness of (GDNLS)]
There exists a set Ω, µ(Ωc) = 0 such that for every v0 ∈ Ω the IVP (GDNLS)
with initial data v0 is globally well-posed.

Theorem 2 [Invariance of µ]
The measure µ is invariant under the flow Φ(t) of (GDNLS)

Finally: The last step is going back to the ungauged (DNLS) equation. By
pulling back the gauge, it follows easily from Theorems 1 and 2 that we have:
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The ungauged DNLS equation

Theorem 3 [Almost sure global well-posedness of (DNLS)]

There exists a subset Σ of the space FL
2
3−,3 with ν(Σc) = 0 such that for

every u0 ∈ Σ the IVP (DNLS) with initial data u0 is globally well-posed.

Recall that for µ is a measure on Ω and G−1 : Ω → Ω measurable, the
measure ν = µ ◦ G is defined

ν(A) := µ(G(A)) = µ({v : G−1(v) ∈ A}) .

for all measurable sets A or equivalently - for integrable F - by∫
Fdν =

∫
F ◦ ϕ dµ

Finally we show that the measure ν is invariant under the flow map of DNLS.

Theorem 4 [Invariance of measure under (DNLS) flow]
The measure ν = µ ◦ G is invariant under the (DNLS) flow.
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Our Goal 2
What is ν = µ ◦ G really? Is this absolutely continuous with respect to the
measure that can be naturally constructed for DNLS by using its energy E ,

E(u) =

∫
T
|ux |2 dx +

3
2

Im
∫

T
u2uux dx +

1
2

∫
T
|u|6 dx

=:

∫
T
|ux |2 dx +K(u)

as done by Thomann-Tzevtkov?

We know ν is invariant and that the ungauged (DNLS) equation is GWP a.s
with respect to ν. Treating the weight is easy. The problem is ungauging the
Gaussian measure ρ.
Question: What is ρ̃ := ρ ◦ G? Is (its restriction to a sufficiently small ball in
L2) absolutely continuous with respect to ρ? If so, what is its Radon-Nikodym
derivative?

We would like to compute ρ̃ explicitly.

Gigliola Staffilani (MIT) a.s. GWP, Gibbs measures and gauge transforms December, 2010 57 / 63



The ungauged measure: absolute continuity
In order to finish this step one should stop thinking about the solution v as a
infinite dimension vector of Fourier modes and start thinking instead about v
as a (periodic) complex Brownian path in T (Brownian bridge) solving a
certain stochastic process.

We recall that to ungauge we need to define

G−1(v)(x) := exp(iJ(v)) v(x)

where

J(v)(x) :=
1

2π

∫ 2π

0

∫ x

θ

|v(y)|2 − 1
2π
‖v‖2

L2(T) dy dθ

It will be important later that J(v)(x) = J(|v |)(x). Then, if v satisfies

dv(x) = dB(x)︸ ︷︷ ︸
Brownian motion

+ b(x)dx︸ ︷︷ ︸
drift terms

by Ito’s calculus and since exp(iJ(v)) is differentiable we have:

dG−1v(x) = exp(iJ(v)) dv + iv exp(iJ(v))

(
|v(x)|2 − 1

2π
‖v‖2

L2

)
dx + . . .
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What one may think it saves the day...
Substituting above one has

dG−1v(x) = exp(iJ(v)) [dB(x) + a(v , x , ω)) dx ] + . . .

where

a(v , x , ω) = iv
(
|v(x)|2 − 1

2π
‖v‖2

L2

)
.

What could help?
The fact that exp(iJ(v)) is a unitary operator
The fact that one can prove Novikov’s condition:

E
[
exp

(
1
2

∫
a2(v , x , ω)dx

)]
<∞.

In fact this last condition looks exactly like what we need for the following
theorem:

“Theorem” [Girsanov]
If we change the drift coefficient of a given Ito process in an appropriate way,
then the law of the process will not change dramatically. In fact the new
process law will be absolutely continuous with respect to the law of the
original process and we can compute explicitly the Radon-Nikodym derivative.
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Why Girsanov’s theorem doesn’t save the day

If one reads the theorem carefully one realizes that an important condition is
that a(v , x , ω) is non anticipative; in the sense that it only depends on the BM
v up to “time” x and not further. This unfortunately is not true in our case! The
new drift term a(v , x , ω) involves the L2 norm of v(x) (periodic case!) and
hence it is anticipative. A different strategy is needed ...

Conformal invariance of complex BM comes to the rescue!

We use the well known fact that if W (t) = W1(t) + iW2(t) is a complex
Brownian motion, and φ is an analytic function then Z = φ(W ) is, after a
suitable time change, again a complex Brownian motion.

(In what follows one should think of Z (t) to play the role of our complex BM
v(x) )
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For Z (t) = exp(W (s)) the time change is given by

t = t(s) =

∫ s

0
|eW (r)|2dr ,

dt
ds

= |eW (s)|2,

equivalently

s(t) =

∫ t

0

dr
|Z (r)|2

,
ds
dt

=
1

|Z (t)|2
.

We are interested in Z (t) for the interval 0 ≤ t ≤ 1 and thus we introduce the
stopping time

S = inf
{

s ;

∫ s

0
|eW (r)|2dr = 1

}
and remark the important fact that the stopping time S depends only on the
real part W1(s) of W (s) (or equivalently only |Z |). If we write Z (t) in polar
coordinate Z (t) = |Z (t)|eiΘ(t) we have

W (s) = W1(s) + iW2(s) = log |Z (t(s)|+ iΘ(t(s))

and W1 and W2 are real independent Brownian motions.
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If we define

W̃ (s) := W1(s) + i

[
W2(s) +

∫ t(s)

0
h(|Z |)(r)dr

]

= W1(s) + i

[
W2(s) +

∫ t(s)

0
h(eW1)(r)dr ,

]

(in our case, essentially h(|Z |)(·) = |Z (·)|2 − ‖Z‖2
L2 )

we then have
eW̃ (s) = Z̃ (t(s)) = G−1(Z )(t(s)).

In terms of W , the gauge transformation is now easy to understand: it
gives a complex process such that:

I The real part is left unchanged.
I The imaginary part is translated by the function J(Z )(t(s)) which depends

only on the real part (ie. on |Z |, which has been fixed) and in that sense is
deterministic.

I It is now possible to use Cameron-Martin-Girsanov’s theorem only for the
law of the imaginary part and conclude the proof.
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Conclusion
Then if η denotes the probability distribution of W and η̃ the distribution of W̃
we have the absolute continuity of η̃ and η whence the absolute continuity
between ρ̃ and ρ follows with the same Radon-Nikodym derivative
(re-expressed back in terms of t).

All in all then we prove that our ungauged measure ν is in fact essentially (up
to normalizing constants) of the form

dν(u) = χ‖u‖L2≤Be−K(u)dρ,

the weighted Wiener measure associated to DNLS (constructed by
Thomann-Tzvetkov). In particular we prove its invariance.

The above needs to be done carefully for complex Brownian bridges
(periodic BM) by conditioning properly.

I W (s) is a BM conditioned to end up at the same place when the total
variation time t = t(s) reaches 2π. The time when this occurs is our S.

I Conditioned on ReW we have that ImW is just a regular real-valued BM
conditioned to end at the same place (up to multiple of 2π) where it started
at time S

I Conditioned on ReW and the total winding (multiple of 2π above) ImW is
regular real-valued BM bridge on [0,S].
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