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The Minkowski metric is gm = —dxg + >_7_; dx? on R™1.

Goal: understand long time behavior, including Fredholm and
invertibility theory, for wave equations on spacetimes
asymptotically like this. Moreover, do it microlocally, i.e. locally in
phase space: helps with more complicated phenomena elsewhere
(Kerr!) and QFT...

Question: what does ‘like’ mean?

While locally manifolds are just modelled on Euclidean space, and
one does not need to specify any structures, just talks of
‘differential operators’ or ‘tangent bundle’, near infinity one needs
to be more careful as one size does not fit all.

@ Two structures on a vector space: dilations and translations.

o A different way: compactifications with bundle structures.
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Case study: Riemannian version: g. = Z}’Zl dsz on R”. In the
polar decomposition one can see that this is asymptotically conic:
X =rw, weS" ! g.=dr?+ r’ge-1. Note that this emphasizes

the dilation structure on R".

If we want to ‘bring in infinity’, let p = 1/r, so the metric is

dp® | gen
=7t 3
p p
which is a ‘scattering metric’ in the sense of Melrose, and now the
cross section can be generalized. One can add p = 0 as a boundary,

with p as the boundary defining function, i.e. near p = 0 the space
is [0,1), x S, with interior identified with {r > 1} in R".

8e

This compactifies the space, hard coding the behavior near infinity.

One can also then consider metrics that are asymptotically like this
(coefficients smooth, or at least conormal on the compactification),
with the cross section generalized (full scattering metric class).
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One can also then consider metrics that are asymptotically like this
(coefficients smooth, or at least conormal on the
compactification), with the cross section generalized (full
scattering metric class). These are fiber inner products on the
corresponding tangent bundle ¢ TR", called the scattering tangent
bundle, corresponding to the dual vector fields p20, and pOy,.

@ Smooth sections of 5 TR” are of the form
a0(p,¥)P*0, + Y _ aj(p,¥)pdy;,
J

with all a; smooth on R”, i.e. down to p =0. (Same as the
span of dy; with C>°(R") coefficients, so ** TR"” = R" x R"!)
Conormal regularity would mean |(p8p)o‘°8§‘,a,-| < Cup-.

@ Dually, smooth sections of ¢ T*R" are of the form

dp dy;
bo(p:y) 5 + > bilp.y) 7’,
j

@ so inner products on ¢ TR" are indeed of the stated form.



Geometry, compactification, analysis
000e00000000000

Minkowski metric is similarly a ‘Lorentzian cone’ as it is
homogeneous of degree 2 under dilations. One suitable
generalization goes towards ‘Lorentzian scattering metrics’, which
basically would be Lorentzian signature fiber inner products on
SCTRNH1,

A key difference emerges immediately if one looks at the
associated PDE:

@ In the Riemannian setting they are elliptic in the standard
differential sense, so if one places them in an
pseudodifferential algebra in which they are elliptic at infinity
as well in a strong sense (‘fully elliptic'), one gets a Fredholm
theory easily.

@ In the pseudo-Riemannian setting on the other hand there are
propagation phenomena along bicharacteristics within the
characteristic set, and for a Fredholm theory one needs to
obtain control in some places so that one can propagate it.
Naturally this will be at infinity.
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A bit more concretely: for Az, g Riemannian scattering metric,
the ‘obvious’ Fredholm theory setting would be in the ‘scattering
category’, i.e. Vg (X), e.g. X = R".
@ This algebra is perhaps the most standard one, quantizing
symbols a € S™/(R? x R7) with

(DEDfa)(z,¢)| < Caplz)/~1ol()™ 17!

as, for instance,
(Op(a)u)(z) = (20) " [ ) <a(z, u() o' dc,

to obtain Op(a) € W™ = w2/ (X).
o Op(a) € L(H , HEZ™ 1), HE = (2)=THS(R™).
e ais elliptic if there is ¢ > 0 such that |(z,{)| > 1 implies that
la(z, Q)| > ¢(2)!()™
o If ais elliptic, then Op(a) is Fredholm in all the above senses:
symbol calculus using S™//S™=1/=1 and W 27> is

compact on all spaces.
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@ This actually works for Ag + 1, for its principal symbol is
€2 + 1, with 1 the same order as |¢|Z in the sense of spatial
decay, so this is fully elliptic at X, where finite £ also
matters.

@ However, this is not the case for A, for its principal symbol,
|£|§, has a quadratic degeneracy at the O-section.

@ Most conceptual way of handling this: blow up the singular
locus, i.e. the O-section at the boundary; this is
2-microlocalization.
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Figure: Left: scT*R” = R" x (R")*. The principal symbol of A vanishes
quadratically at the zero section at the boundary. Right: the blow up of
this, allowing refined, non-degenerate, estimates. It is simpler, however,
the work with the b-algebra, introduced by Melrose, which is a
blow-down of this.



Geometry, compactification, analysis
0000000 e0000000

Simpler version (closely related): think of Az € Wi’d(X). Totally
characteristic, or b-, vector fields are those tangent to the
boundary, i.e. in local coordinates pd,, 8”.. Then

Ag ~ Pz((PDp)2 + Dgyy)-

Then not only is A, elliptic in the differential sense, up to the
boundary (automatic as the dual metric function is
non-degenerate) but there is a Mellin-transformed normal operator
(factoring out the overall p?), roughly 02 + A, , and then
invertibility of this family on 9X with Imo = —/ gives rise to
Fredholm theory on b-Sobolev spaces with weight /.

Note that this works for Riemannian scattering metrics, i.e.
asymptotic cones, in general.
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Figure: Left: the fiber compactified b-cotangent bundle. The principal
symbol of A now lives only at fiber infinity, and is elliptic. A normal
operator captures the full Fredholm theory. Right: the blow up of the
corner creates the previous resolved scattering cotangent bundle. While
geometrically equivalent to the previous construction, this is the
analytically better approach.
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The complication in the pseudo-Riemannian setting is that
estimates propagate, so how does one start them?

@ In the Lorentzian setting one possibility is Cauchy
hypersurfaces, but then one needs to work between two
Cauchy hypersurfaces for Fredholm theory as the adjoint is
also needed.

@ In general (not even just in the geometric settings) the best
case scenario is a normal source/sink structure, i.e. there are
submanifolds so that all bicharacteristics start/end at them.

@ This is indeed the case for translation invariant metrics for
any non-Riemannian signature on a vector space once one
compactifies it, and then one can allow well-behaved
coefficients on this compactification: the sources/sinks lie
above the light cone at the boundary of the compactification.
(Also, Anosov flows!)
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@ More precisely, the dynamics takes place in bT*W\ o and
is homogeneous in the fibers, so (after a renormalization to
make it homogeneous of degree zero) it is even better to
consider it taking place in PS*Rnt+1 = (PT*Rn+1\ 0) /R, or
better yet as identified as ‘fiber infinity’ in 2 T*Rn+1
(boundary of the compactified fibers); the flow is tangent to
this boundary.

@ The b-conormal bundles of the light cones at the boundary
form the normal sources/sinks: in the Minkowski case there
are two components of the characteristic set, and in each over
future and past light cone at the boundary there is such a
normal source/sink.
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Figure: The compactification of R™ 1, and the light cone at infinity
S=Y=8""! inthecase n=1.
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@ More precisely, if we let p to be a (local) boundary defining
function, v define the light cone at the boundary, S, so for

instance p = (t +r)~ L, v = 57, the metric has the form

2
—vd%+<d—f®g+9®d—f)+%,
p P p PP p
where o = %dv at S, and k is positive definite on the
annihilator of Span(dp, dv). (This general class is the
Lorentzian scattering metric definition of Baskin-V-Wunsch; in
fact any metric with the same source/sink structure works.)

@ Then with (&,,n) the dual variables of (p, v, y) the source
sink at fiber infinity isat p=v =0, £ =0, n = 0, which is
the b-conormal bundle of p = v =0, i.e. the image of
(x) dp + (*) dv in the b-cotangent bundle.

@ To turn in this into global estimates, need to be able to trace
all bicharacteristics to (in both the forward and backward
directions: duality!) these sources/sinks: have non-trapping
bicharacteristic flow. (Upgrades with mild trapping.)
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@ The point from which propagation takes place is marked by
high regularity, to which is by low regularity. (Variable order,
or anisotropic, spaces.)

@ For the adjoint it is in the opposite direction relative to the
direct problem.

@ There are 22 Fredholm problems: in each component of the
characteristic set we can propagate estimates
forwards/backwards: two causal and Feynman/anti-Feynman.
(V, Baskin-V-Wunsch, Gell-Redman-Haber-V.)

@ For each a discrete set of weights, corresponding to the
indicial roots/resonances, i.e. poles of the Mellin-transformed
family's inverse, need to be avoided.

@ Note that the Mellin-transformed family is a glued together
version of the hyperbolic/de Sitter Laplace/d’Alembert
spectral families, corresponding to the projective
compactification (Klein model).
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So we have a microlocal understanding without dealing with null
infinity, what is missing?

The issue is that for nonlinear applications one needs to consider
coefficients that are produced by solutions of the (say, linearized)
equations. Unlike in the elliptic setting, where elliptic regularity
gives conormality to the boundary, i.e. being in an infinite
differential order weighted b-Sobolev space, the analogous
statement is false in the pseudo-Riemannian setting.

What do we get instead? A ‘b-conormal distribution associated to
the b-conormal bundle of the boundary of the light cone,
p=v =0, ie. the source/sink.

Simpler put, encoding it in the base, one blows up p=v =0 to
obtain [X; S] and the front face .#, and solutions are now
conormal to the boundary hypersurfaces on this space.
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Simpler put, encoding it in the base, one blows up p =v =0 to
obtain a front face .#, and solutions are now conormal to the
boundary hypersurfaces on this space.

We then allow coefficients that have exactly this behavior, with
orders that match that of Minkowski space in the sense we discuss,

and indeed decay (at any rate) at .#.

But if we do this, we lose the b-cotangent bundle analysis we relied
on! Can we salvage anything?

There are two potential ways.
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1.) This is a geometric 3-body type wave operator for which there
is a scattering pseudodifferential algebra (V.), and indeed we can
even salvage the b-behavior away from .# thanks to its 3-body-b
refinement (Hintz). The issue is that from this perspective one has
operator valued symbols, depending on some partial momenta, and
it is quite degenerate at some points.

Note that from this perspective one expects some interaction
between different parts of the b-flow, corresponding to diffractive
phenomena both in scattering theory and also for wave
propagation (V.).

In the Lorentzian setting this perspective turns out to be more
useful for allowing metric singularities in the time-like infinity, for
instance to deal with Kerr-like geometries (Hintz).
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2.) A more adventurous perspective, taking advantage of the
Lorentzian nature of the metric is to replace the defining function
of .# by its square root, so use

t—r 1
Xy = ,p+:i;}/7t_r>1~

r t
The metric is then an edge-b metric on [X; S]; /»: edge (Mazzeo!)
at .#, b (Melrose!) at the lifted boundary.

What does this mean? There is a blow down map, 3, so we can
talk about vector fields tangent to its fibers. Locally this means
that

p+8p+) Xjaxyv Xfayj
span these vector fields; cf. Klainerman's vector field method.

However, we want to work in phase space for instance to be able
to deal with microlocal issues elsewhere.
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Concretely,
2l0+ Xy ‘0= (xs0x, — (n—=1))(xs0x, —2p4+0,,) + 2X37Ak

shows that it fits into this structure. Note that this does rely on
the detailed metric behavior at S, i.e. is not true for a general
non-trapping Lorentzian metric in the scattering category (more
general than the BVW definition).

The Hamilton flow is complicated but well behaved at .7:

@ There is a global radial set at .# corresponding to the
radiation field; this is a source/sink.

@ There are two radial sets at .# N /%, and one at .# N IT; these
are saddle points, corresponding to flow through S.

@ All these are non-degenerate, so one can propagate estimates
to/from/through them, subject to restrictions on the orders.

@ Apart from one of saddle points in . N /9, these only use the
decay orders.
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Figure: Structure of the null-bicharacteristic flow near null infinity in

2 + 1 spacetime dimensions. The cross sections of the cylinder are cross
sections of the future light cones inside of each fiber of the eb-phase
space over .#+. The thick black sets are the radial sets (the two
antipodal points over .# N /® forming a connected radial set in higher
dimensions).
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For a Fredholm theory two more parts are needed: gaining decay at
the lift of the original boundary and at .#. These use the b-,
respectively edge, normal operators.

The b-normal operators are actually the hyperbolic space and de
Sitter ones, but here they are decoupled. The square root change
of the boundary defining function places both in the 0-world, i.e.
conformally compact spaces, as opposed to the projective
compactification.

Since it is more delicate than the elliptic setting of Mazzeo, we
treat the edge normal operator in a slightly more ad hoc fashion,
working with a sufficiently dense set of model fibers and estimating
the difference between the fiberwise and nearby models.

One could even upgrade the Fredholm theory to full invertibility, at
least near /*, by working on a sufficiently thin region near it (this
gives a small parameter).



The situation at .&
0000000000

Theorem (Global edge-b-regularity of waves, Hintz-V.)

Let Q = {t > 0}. Suppose ay + % < ay < min(—3, a0+ 3), and
let s> 0. Let f € H:;l’(a°+2’2aj+2’a++2)(Q). Then the forward
solution u of the wave equation Ug,u = f on asymptotically
Minkowski space (with coefficients well-behaved on [X; S]) satisfies
ue H:’(QO’MJ’O‘*)(Q). If f enjoys additional k orders of
b-regularity, then u enjoys additional k degrees of b-regularity as
well.

Remark: Well-behaved=conormal, with leading term at /™, 10
decay to the model at .#, with globally non-trapping flow, and if
no decay at /T, /° to the model (just the same class) then a
Mellin-transformed normal operator invertibility condition, satisfied
for small perturbation of hyperbolic and de Sitter spaces.
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@ One can also look at the Klein-Gordon equation, which is
much like A — 1 in being less degenerate (works in the
scattering pseudodifferential algebra, rather than
2-microlocalization, or b-).

@ In particular, one can use a fully symbolic algebra:
scattering/double edge.

@ This was treated by Sussman in his 2023 MIT PhD thesis for
the forward problem, under somewhat more restrictive
assumptions. The fiber-infinity behavior is the same, but there
are some additional flow complexities at finite scattering
frequencies (but is symbolic, not operator valued!).

@ Work in progress: Mikhail Molodyk is extending to the full
Feynman framework. For K-G essentially in place; for the
wave equation much more delicate.
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Many happy returns, Richard!
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