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Overview

These notes describe a recently developed approach to several problems in quantum

chaos based on fractal uncertainty principle (henceforth called FUP). The current

version is rough in many places and should be substantially updated before October

2017.

The notes are structured as follows:

• We first present some applications of FUP in quantum chaos:

– in §1.1, to control of Laplacian eigenfunctions on compact hyperbolic

surfaces (we also provide a brief overview of semiclassical analysis and its

applications in quantum chaos);

– in §1.2, to spectral gaps/wave decay for resonances on noncompact hy-

perbolic surfaces;

– in §2 we explain informally the strategy of the proofs based on FUP.

• We next describe the FUP itself:

– in §2.1 we state FUP of [BD16, DJ17a] and the needed definitions such

as δ-regularity;

– in §2.2 we introduce quantization of rough symbols and relate it to FUP.

• In §3 we describe how FUP gives control of eigenfunctions:

– in 3.1 we review local properties of the geodesic flow, in particular intro-

ducing horocyclic vector fields U± and explaining how to extend Egorov’s

Theorem to large times (this section is also used in §4);

– in §3.2 we sketch a proof of eigenfunction control (Theorem 1.1.3);

– in §3.3 we sketch a proof of the fractal property needed for the FUP and

finish the proof of Theorem 1.1.3.

• In §4 we describe how FUP gives a spectral gap:

– in §4.1 we use propagation of singularities to obtain microlocalization

statements for resonant states;

– in §4.2 we discuss the fractal nature of the trapped set and finish the

proof of Theorem 1.2.1.

• In §5 we present a complete proof of FUP in the special case of discrete Cantor

sets:
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4 OVERVIEW

– in §5.1 we give the definition and basic properties of uncertainty principle

in the discrete setting;

– in §5.2 we show FUP for Cantor sets.

These notes contain some Exercises which (I hope) are solvable. There are also some

Problems which (as far as I know) are open.

Here are some useful reading materials:

• [Zw12] for semiclassical/microlocal analysis, in particular semiclassical quan-

tization, Egorov’s Theorem, and semiclassical defect measures;

• [DZB] for scattering theory, in particular meromorphic continuation of scatter-

ing resolvent in the Euclidean and hyperbolic cases and resonance expansions;

• [Bo16] for an introduction to the theory of convex co-compact hyperbolic sur-

faces, in particular their geometry, meromorphic continuation of the resolvent,

and numerics concerning resonances;

• [Ma06, Sa11, Ze09] for closed quantum chaos, in particular the QUE con-

jecture;

• [No11a, Zw16b] for open quantum chaos, specifically spectral gaps and res-

onance counting.

Acknowledgements. This article originated as lecture notes for the minicourse on

fractal uncertainty principle at the Third Symposium on Scattering and Spectral The-

ory in Florianopolis, Brazil, July 2017. These notes were written during the period

the author served as a Clay Research Fellow.



CHAPTER 1

Overview

1.1. Control of eigenfunctions

We first present applications of FUP to closed quantum chaotic systems. We start

with a simple-to-state theorem which preserves the spirit of more advanced results

to follow. For us a hyperbolic surface is a connected two-dimensional complete ori-

ented Riemannian manifold of constant Gauss curvature −1. Denote by −∆ ≥ 0 the

corresponding Laplace–Beltrami operator.

Theorem 1.1.1. [DJ17b] Assume that (M, g) is a compact hyperbolic surface.

Fix a nonempty open set Ω ⊂ M . Then there exists a constant CΩ such that for each

eigenfunction

u ∈ C∞(M), (−∆− λ2)u = 0 for some λ ≥ 0 (1.1.1)

we have the control estimate

‖u‖L2(Ω) ≥
1

CΩ

‖u‖L2(M). (1.1.2)

Remark. For fixed λ the estimate (1.1.2) follows immediately from the unique con-

tinuation principle for elliptic operators [HöIII, §17.2]. The novelty of the result is

that CΩ does not depend on λ. Therefore Theorem 1.1.1 is a statement about the high

frequency limit λ→∞.

Exercise 1.1.1. Show that if M = S2 is the round sphere, then there exist Ω such

that (1.1.2) does not hold. (Hint: use spherical harmonics concentrated on closed

geodesics.)

We do not explain the strategy of the proof of Theorem 1.1.1 yet. It will be

presented in §??, and many ideas come from the spectral gap theorem whose proof is

outlined at the end of §1.2.3. In the rest of this section we instead put Theorem 1.1.1

into the context of microlocal analysis and quantum chaos.

1.1.1. Semiclassical analysis of Laplacian eigenfunctions. Theorem 1.1.1

is a result in quantum chaos, which aims to understand the behavior of quantum

objects (here: eigenfunctions of the Laplacian) in the high frequency limit when the

underlying classical system (here: geodesic flow on M) has chaotic behavior. The

setting of hyperbolic surfaces appears naturally because they are standard examples
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6 1. OVERVIEW

of manifolds with strongly chaotic (hyperbolic) geodesic flows. Here we explain some

standard tools used in quantum chaos, which will be used throughout these lecture

notes.

To explain the classical/quantum correspondence between the Laplacian and the

geodesic flow, we introduce a semiclassical quantization Oph (which works on an ar-

bitrary manifold M). It maps each symbol a(x, ξ) on the cotangent bundle T ∗M to a

pseudodifferential operator Oph(a). The latter depends on the semiclassical parameter

h > 0 which is the effective wavelength, and the high frequency limit corresponds

to taking h → 0. We can formally write Oph(a) = a(x, h
i
∂x). We refer the reader

to [Zw12, §§4 and 14.2] and [DZB, §E.1] for the definition of the quantization proce-

dure, listing here only a few properties:

• if a ∈ C∞0 (T ∗M) (or more generally a is a bounded function and satisfies

certain derivative bounds), then Oph(a) : L2(M) → L2(M) is bounded in

norm uniformly in h;

• if a(x, ξ) = a(x), then Oph(a) is the multiplication operator by a;

• if M = Rn and a(x, ξ) = ξj, then Oph(a) = h
i
∂xj ;

• Oph(a) is independent of the choice of local coordinates on M modulo an O(h)

remainder;

• the product rule:

Oph(a) Oph(b) = Oph(ab) +O(h); (1.1.3)

• the adjoint rule:

Oph(a)∗ = Oph(a) +O(h); (1.1.4)

• the commutator rule:

[Oph(a),Oph(b)] = −ihOph({a, b}) +O(h2) (1.1.5)

where {•, •} is the Poisson bracket: {a, b} = Hab where Ha =
∑

j(∂ξja)∂xj −
(∂xja)∂ξj is the Hamiltonian vector field of a.

• the elliptic estimate: if a ∈ C∞0 (T ∗M) and b are symbols and supp a ⊂ {b 6=
0}, then for all u ∈ L2(M) and h ∈ (0, 1)

‖Oph(a)u‖L2 ≤ C‖Oph(b)u‖L2 +O(h∞)‖u‖L2 . (1.1.6)

Here O(h∞) denotes a function which decays faster than any power of h. To

prove (1.1.6) with O(h) remainder, we use the symbol a/b ∈ C∞0 (T ∗M) and

the product rule to write

Oph(a)u = Oph(a/b) Oph(b)u+O(h)‖u‖L2 .

The O(h∞) remainder is obtained by iteration, see [DZB, §E.2.2].
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We now explore basic applications of semiclassical quantization to analysis of high

frequency eigenfunctions. Let M be a compact Riemannian manifold and −∆ ≥ 0 be

the Laplace–Beltrami operator. We semiclassically rescale the latter:

−h2∆ = Oph(p
2) +O(h); p(x, ξ) = |ξ|g.

If u solves the eigenfunction equation (1.1.1) and λ is large, then

(−h2∆− 1)u = 0 (1.1.7)

where h := λ−1 is small. Then the elliptic estimate (1.1.6) with b := p2 − 1 gives the

following statement, roughly saying that solutions to (1.1.7) oscillate at frequency h−1:

Proposition 1.1.2 (Energy localization). Assume that supp a ∩ S∗M = ∅ where

S∗M := {(x, ξ) ∈ T ∗M : |ξ|g = 1}

is the cosphere bundle. Then for any solution u to (1.1.7) we have

‖Oph(a)u‖L2 = O(h∞)‖u‖L2 . (1.1.8)

To relate solutions of (1.1.7) to the geodesic flow we use Egorov’s Theorem. It

relates the homogeneous geodesic flow of g, viewed as the Hamiltonian flow

ϕt = exp(tHp) : T ∗M \ 0→ T ∗M \ 0, T ∗M \ 0 := {(x, ξ) ∈ T ∗M | ξ 6= 0} (1.1.9)

to the unitary (half-)wave group

U(t) = e−it
√
−∆ = e−it

√
−h2∆/h : L2(M)→ L2(M).

Proposition 1.1.3 (Egorov’s Theorem). Let a ∈ C∞0 (T ∗M \ 0) and t be bounded

independently of h. Then

U(−t) Oph(a)U(t) = Oph(a ◦ ϕt) +O(h)L2→L2 . (1.1.10)

Remark. One often needs a more advanced version, which can be proved iteratively:

there exists an h-dependent symbol bt(x, ξ;h) having an asymptotic expansion in nat-

ural powers of h, such that bt = a◦ϕt+O(h), supp b ⊂ ϕ−t(supp a), and (1.1.10) holds

with remainder O(h∞)L2→L2 and a ◦ ϕt replaced by bt. See [DG17, Lemma 2.3].

Proof. Denote at := a ◦ ϕt. Since U(t) is unitary it suffices to show that

U(t) Oph(at)U(−t) = Oph(a) +O(h)L2→L2 .

This is obviously true for t = 0. We then differentiate the left-hand side in t and get by

the commutator rule (using that
√
−h2∆ = Oph(p) +O(h) microlocally on T ∗M \ 0)

∂t
(
U(t) Oph(at)U(−t)

)
= U(t)

(
Oph(∂tat)− i[

√
−∆,Oph(at)]

)
U(−t)

= U(t) Oph
(
∂tat − {p, at}

)
U(−t) +O(h)L2→L2

(1.1.11)

which is O(h) since ∂tat = Hpat = {p, at}. �
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As an application of the techniques discussed above we give a proof of Theorem 1.1.1

in the simple case when Ω satisfies an additional condition:

Theorem 1.1.2. Let (M, g) be any Riemannian manifold and let Ω ⊂ M be an

open set satisfying the geometric control condition:

there exists T > 0 such that each geodesic segment of length T intersects Ω. (1.1.12)

Then there exists a constant CΩ such that we have

‖u‖L2(M) ≤ CΩ‖u‖L2(Ω) when (−h2∆− 1)u = 0. (1.1.13)

Proof. 1. We henceforth assume that (−h2∆−1)u = 0. We first prove the follow-

ing microlocal control statement: for each (x0, ξ0) ∈ S∗M there exists a neighborhood

U ⊂ T ∗M of (x0, ξ0) such that

‖Oph(a)u‖L2 ≤ C‖u‖L2(Ω) +O(h)‖u‖L2(M) when supp a ⊂ U (1.1.14)

where the constant C depends on a but not on h.

By the geometric control condition, there exists t such that ϕ−t(x0, ξ0) ∈ Ω. If U

is sufficiently small, then there exists b(x) ∈ C∞(M) such that

• supp b ⊂ Ω, and

• supp(a ◦ ϕt) ⊂ ϕ−t(U) ⊂ {b 6= 0}.

We then have
‖Oph(a)u‖L2 = ‖U(−t) Oph(a)U(t)u‖L2

= ‖Oph(a ◦ ϕt)u‖L2 +O(h)‖u‖L2

≤ C‖Oph(b)u‖L2 +O(h)‖u‖L2

≤ C‖u‖L2(Ω) +O(h)‖u‖L2 .

Here the first equality holds since U(t)u = e−it/hu, a consequence of the equation

(−h2∆− 1)u = 0. The second equality uses Egorov’s Theorem (1.1.10), and the next

inequality follows from the elliptic estimate (1.1.6). The last inequality uses the fact

that Oph(b)u = bu.

2. Taking a partition of unity subordinate to the covering of S∗M by the sets U(x0, ξ0),

we see that (1.1.14) holds for some a ∈ C∞0 (T ∗M) such that a ≡ 1 near S∗M . Recalling

that u = Oph(a)u + Oph(1 − a)u and estimating ‖Oph(1 − a)u‖ by the localization

bound (1.1.8), we get

‖u‖L2(M) ≤ C‖u‖L2(Ω) +O(h)‖u‖L2(M).

This gives (1.1.13) for sufficiently small h. The case of bounded h follows from the

unique continuation principle. �
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Of course the geometric control condition is not satisfied for many choices of Ω

(for instance a set which misses one closed geodesic), explaining the need for the more

advanced technology developed in the rest of these notes. In particular we will need

to take propagation time t which grows as h→ 0.

1.1.2. More precise control and application to Schrödinger equation.

Armed with semiclassical quantization, we state a more advanced version of Theo-

rem 1.1.1:

Theorem 1.1.3. [DJ17b] Let M be a compact hyperbolic surface and fix a ∈
C∞0 (T ∗M) such that a|S∗M 6≡ 0. Then there exist C, h0 > 0 depending on a such that

for all u ∈ H2(M) and 0 < h < h0

‖u‖L2 ≤ C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2∆− 1)u‖L2 . (1.1.15)

Remarks. 1. Theorem 1.1.3 is stronger than Theorem 1.1.1 in two ways: the operator

Oph(a) allows for localization in frequency in addition to position, and the equation

(−h2∆− 1)u = 0 only needs to hold approximately.

2. The condition a|S∗M 6≡ 0 is sharp; indeed, if a|S∗M ≡ 0 and u solves (1.1.7), then

‖Oph(a)u‖L2 = O(h)‖u‖L2 similarly to (1.1.8).

Exercise 1.1.4. Show that Theorem 1.1.3 implies Theorem 1.1.1.

Exercise 1.1.5. Assume that the set {a 6= 0} satisfies the natural generalization of

the geometric control condition (1.1.12). Show that Theorem 1.1.3 holds, in fact one

can remove the log(1/h) factor in (1.1.15).

Problem 1.1.6. Show that Theorem 1.1.3 holds when M is a Riemannian surface

of variable negative curvature.

Theorem 1.1.3 has a natural application to the time-dependent Schrödinger equa-

tion:

Theorem 1.1.4. [Ji17] Let M be a compact hyperbolic surface and Ω ⊂ M be a

nonempty open set. Fix T > 0. Then there exists a constant C such that the following

observability estimate holds for all u ∈ L2(M):

‖u‖2
L2(M) ≤ C

∫ T

0

‖eit∆u‖2
L2(Ω) dt. (1.1.16)

The only other manifolds for which observability estimate is known to hold for any

nonempty open set are flat tori; see [Ji17] for the history of the subject.
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1.1.3. Semiclassical defect measures. We finally apply Theorem 1.1.3 to semi-

classical defect measures, defined as follows:

Definition 1.1.7. Assume (M, g) is a compact Riemannian manifold and we are

given a high frequency sequence of L2-normalized eigenfunctions:

uj ∈ C∞(M), (−h2
j∆− 1)uj = 0, ‖uj‖L2 = 1, hj → 0. (1.1.17)

We say that uj converges weakly to a measure µ on T ∗M , if

〈Ophj(a)uj, uj〉L2 →
∫
T ∗M

a dµ for all a ∈ C∞0 (T ∗M). (1.1.18)

We call µ a semiclassical (defect) measure if it arises as the weak limit of a

sequence of eigenfunctions.

We list a few standard properties of semiclassical measures, see [Zw12, Chapter 5]:

• each sequence satisfying (1.1.17) has a subsequence converging weakly to some

measure;

• each semiclassical measure µ is a probability measure and suppµ ⊂ S∗M ;

• each semiclassical measure µ is invariant under the geodesic flow (1.1.9), i.e.

µ(ϕt(A)) = µ(A) for all A ⊂ S∗M .

There are plenty of ϕt-invariant measures on S∗M . The extreme possibilities are:

• µ = µL, the Liouville measure, which has a smooth density and is naturally

induced by the metric g [Zw12, §15.1]. If a sequence uj converges to µL, then

we say that it equidistributes ;

• µ = δγ, the delta measure supported on a closed geodesic γ. If uj converges

to δγ, then we say that it scars.

The application of Theorem 1.1.3 to semiclassical measures is

Theorem 1.1.5. [DJ17b] Let µ be a semiclassical defect measure on a hyperbolic

surface M . Then the support of µ is equal to S∗M , that is µ(A) > 0 for any nonempty

open subset A ⊂ S∗M .

Exercise 1.1.8. Show that Theorem 1.1.5 follows from Theorem 1.1.3. (Hint: use

that ‖Ophj(a)uj‖2
L2 converges to

∫
|a|2 dµ for all a ∈ C∞0 (T ∗M).)

Exercise 1.1.9. Construct examples of eigenfunctions convering to measures sup-

ported on proper submanifolds of S∗M in the case when M is the round sphere or the

flat torus.

The study of semiclassical measures on Riemannian manifolds with chaotic geodesic

flows has a rich history:
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• Quantum ergodicity [Sh74, Ze87, CdV85, HMR87, ZZ96]: if ϕt is ergodic

(mildly chaotic) with respect to µL, then there is a density 1 sequence of uj
converging to µL (i.e. most eigenfunctions equidistribute). The proof is not

long and based on Egorov’s Theorem, the L2 ergodic theorem, and a trace

formula (relating averaged behavior of the expressions 〈Oph(a)uj, uj〉 over

many eigenfunctions to the integral of a), see [Zw12, Chapter 15].

• [Ha10] (see also [Do03]) gives examples of manifolds with ergodic geodesic

flows which have sequences of eigenfunctions that do not equidistribute.

• Quantum unique ergodicity (QUE) conjecture [RS94]: if M is strongly chaotic

(e.g. has negative curvature) then µL is the only semiclassical defect measure,

i.e. the entire sequence of eigenfunctions equidistributes.

• QUE has been proved for the special case of Hecke forms on arithmetic hyper-

bolic surfaces in [Li06], see also [So10]. The proofs use strongly the additional

infinite family of symmetries given by the Hecke operators.

• Entropy bounds [An08, AN07, Ri10a, Ri10b, AS13]: if ϕt is Anosov (e.g.

M is negatively curved), then there is a lower bound on the Kolmogorov–Sinai

entropy HKS of every semiclassical measure. In particular if M is a hyperbolic

surface as in Theorem 1.1.5, then the entropy bound is [AN07]

HKS(µ) ≥ 1/2. (1.1.19)

Here we have HKS(µL) = 1 and HKS(δγ) = 0.

• In (1.1.17) we may replace the equality (−h2
j∆ − 1)uj = 0 with the bound

‖(−h2
j∆ − 1)uj‖L2 = o(hj/ log(1/hj)), i.e. uj needs to be an o(h/ log(1/h))

quasimode. The entropy bounds discussed above also apply to quasimodes

of this strength. On the other hand [Br15, EN15, ES16] construct exam-

ples of O(h/ log(1/h)) quasimodes with anomalous concentration. In particu-

lar [EN15, Proposition 1.9] gives such quasimodes with the limiting measure

equal to δγ for any given closed geodesic γ.

The support property of Theorem 1.1.5 is in some sense orthogonal to the entropy

bound (1.1.19):

• Both results exclude the case µ = δγ;

• The bound (1.1.19) excludes convex combinations µ = αµL + (1− α)δγ with

0 < α < 1/2, which however have full support;

• On the other hand, one can construct invariant probability measures µ on S∗M

such that suppµ is a (typically fractal) proper closed subset of S∗M and the

entropy of µ is arbitrarily close to 1. For instance, if we fix a geodesic γ0

on M , then the set of geodesics on M which never cross γ0 has a natural

invariant measure µ of entropy δ ∈ (0, 1). Indeed, this set is the trapped

set of the convex co-compact surface obtained from M by cutting along γ0
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`

`1 `2

`3

(a) (b)

Figure 1. Examples of convex co-compact hyperbolic surfaces: (a) hy-

perbolic cylinder with neck length `, obtained by gluing together two

funnels, (b) three-funnel surface with neck lengths `1, `2, `3, obtained by

gluing funnels to a pair of pants.

and attaching two funnel ends, and the Patterson–Sullivan measure induces a

natural ϕt-invariant measure on this trapped set, see [Bo16, §14.2]. We may

choose M and γ0 so that the entropy δ is arbitrarily close to 1.

1.2. Spectral gaps

We next present applications of fractal uncertainty principle to the spectral gap

problem in open quantum chaos. We still work on hyperbolic surfaces, but now they

will be noncompact, which allows for energy of solutions to the wave equation to escape

to spatial infinity. Resonances, defined below, in some sense describe the part of the

wave that does not escape.

1.2.1. Resonances. Let (M, g) be a convex co-compact hyperbolic surface, that

is a noncompact hyperbolic surface with infinite ends which are funnels of the form

[0,∞)r × S1
θ, S1

θ = R/(`Z), ` > 0; g = dr2 + cosh2 rdθ2.

The complement of all infinite ends, called the convex core, is a compact hyperbolic

surface with geodesic boundary. See the book [Bo16] for the geometry and scattering

theory on such surfaces. A couple of examples are shown on Figure 1. As before, denote

by −∆ ≥ 0 the Laplace–Beltrami operator on M , which has a natural extension to

a self-adjoint operator on L2(M). This operator has essential spectrum [1
4
,∞) as

opposed to the Euclidean Laplacian which has essential spectrum [0,∞). This shift

by 1
4
, due to the exponential growth of volumes of large balls, explains the shift of the

spectral parameter below.

The scattering resolvent R(λ) is a left inverse to −∆− 1
4
− λ2 defined as follows:
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• for Imλ > 0, R(λ) is the L2 resolvent given by spectral theory;

• for general λ, R(λ) is obtained by meromorphic continuation and maps L2
comp

(the space of compactly supported L2 functions) to H2
loc (the space of lo-

cally H2 functions). Such continuations were proved in [MM87, GuZw95a,

Gu05, Va13a, Va13b]. See [Bo16, Theorem 6.8] for a direct proof of mero-

morphic continuation in the constant curvature case and [Zw16a] and [DZB,

Chapter 5] for the more general case of even asymptotically hyperbolic mani-

folds using the recent approach of [Va13a, Va13b].

Resonances are defined as the poles of R(λ). They are natural generalizations of

the discrete spectrum of the Laplacian to noncompact manifolds. Resonances are

intimately related to decay properties of solutions to the wave equation(
∂2
t −∆− 1

4

)
u(t, x) = 0, t ≥ 0, x ∈M ;

u|t=0 = f0 ∈ C∞0 (M), ∂tu|t=0 = f1 ∈ C∞0 (M)
(1.2.1)

in particular to resonance expansions (presented here in the case when there is no

algebraic multiplicity)

u(t, x) =
∑

λj resonance

Imλj≥−ν

e−itλjvj(x) +O(e−νt). (1.2.2)

Here ν > 0 is some number and the remainder is in the space Hs
loc(M) for all s

(i.e. the remainder bound is only valid on compact subsets of M). The functions

vj(x) ∈ C∞(M) depend on f0, f1 but the resonances λj do not. We refer the reader

to [DZB, §3.2] for a detailed presentation of meromorphic continuation and resonance

expansion in the simpler case of Euclidean potential scattering.

The real part of a resonance λj corresponds to the rate of oscillation of the corre-

sponding term e−itλjvj(x), and its (negative) imaginary part gives the rate of exponen-

tial decay. In particular, the leading part of (1.2.2) is generically given by resonances

with the largest imaginary parts.

To explain why resonances, defined as the poles of the scattering resolvent, appear

in the resonance expansion (1.2.2), we Fourier transform the solution u:

û(λ) :=

∫ ∞
0

eiλtu(t) dt ∈ H2(M), Imλ� 1. (1.2.3)

Here the integral converges exponentially. The wave equation (1.2.1) gives(
−∆− 1

4
− λ2

)
û(λ) = f1 − iλf0. (1.2.4)

This gives the formula for û,

û(λ) = R(λ)(f1 − iλf0) (1.2.5)
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where the right-hand side makes sense when λ ∈ C as a meromorphic family of func-

tions in H2
loc(M), even though the integral (1.2.3) may diverge when Imλ ≤ 0.

Imagine that u did satisfy the resonance expansion (1.2.2) for some discrete set

of frequencies λj, and there were only finitely many terms in the expansion. If u =

O(e−νt), then the integral (1.2.3) converges when Imλ > −ν and gives a holomorphic

function of λ. Using the formula∫ ∞
0

e−iλjteiλt dt =
i

λ− λj
we see that û extends meromorphically to {Imλ > −ν} with poles which are exactly

given by λj. Thus by (1.2.5) we see that the frequencies λj in the resonance expansion

have to be poles of the scattering resolvent.

We next indicate how to prove the resonance expansion (1.2.2) from meromorphic

continuation of R(λ). By Fourier inversion formula (applied to e−ν0tu(t)) we have for

some large constant ν0

u(t, x) =
1

2π

∫
Imλ=ν0

e−itλR(λ)(f1 − iλf0)(x) dλ. (1.2.6)

We then deform the contour of integration to {Imλ = −ν} using the residue theorem

in the strip {−ν ≤ Imλ ≤ ν0}. The residues give the terms in the resonance expansion

and the integral over {Imλ = −ν} is O(e−νt).

1.2.2. Essential spectral gaps. There is a very important caveat in the above

‘proof’ of the resonance expansion: the strip {−ν ≤ Imλ ≤ ν0} is not compact.

Therefore to justify the residue theorem and to show decay of the remainder, we need

to bound û(λ) in this strip when |Reλ| → ∞. Such bound is given by

Definition 1.2.1. We say that M has an essential spectral gap of size β ≥ 0

if:

(1) the half-plane {Imλ ≥ −β} contains only finitely many resonances, and

(2) the cutoff resolvent χR(λ)χ, where χ ∈ C∞0 (M) is arbitrary, is bounded in

L2 → L2 norm in this half-plane away from resonances by some power of |λ|.

If M has an essential spectral gap of size β, then the contour deformation argu-

ment sketched following (1.2.6) gives the resonance expansion (1.2.2) for any ν ≤ β.

In particular if ν > 0 and there are no resonances with Imλ ≥ −ν, this gives expo-

nential local energy decay of waves O(e−νt). Such local energy decay statements (on

more general manifolds) have plenty of applications to linear and nonlinear differential

equations, in particular

• local smoothing estimates [Da09];

• Strichartz estimates [BGH10, Wa17];
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(a) (b) (c)

Figure 2. (a) An example of an open classical chaotic system, the

billiard ball flow on the exterior of three disks. The trapped trajectories

form a fractal set. (b) Experimental setup for microwave scattering on

three disks [B+13]. (c) Experimental data [B+13, Figure 4(b)] for the

latter system. The vertical direction is the parameter of the system and

the horizontal direction is the density plot of decay rates of resonances.

The dotted line is the pressure gap. The solid line is half the classical

escape rate, see [TODO].

• asymptotic stability of nonlinear wave equations, see in particular the recent

proof of the full nonlinear stability of the Kerr–de Sitter black hole space-

time [HV16] which uses meromorphic continuation of the resolvent and an

essential spectral gap.

At this point the reader may wonder why we care about waves and resonances in the

particular setting of convex co-compact hyperbolic surfaces. Here are several reasons:

• Hyperbolic surfaces (compact and noncompact) are classical examples of man-

ifolds with strongly chaotic geodesic flows. Thus eigenvalues (in the compact

case) and resonances (in the noncompact case) of these surfaces are an impor-

tant model the more general closed and open quantum chaotic systems. An

example of a ‘real-world’ open quantum chaotic system, scattering by several

obstacles, is presented on Figure 2.

Compared to more general chaotic systems, hyperbolic surfaces have sev-

eral features that make the dynamics less technically complicated to handle. In

particular, they have no boundary, the stable/unstable spaces vary smoothly

with the base point, and the expansion rate of the flow is constant.

• Resonances for hyperbolic surfaces are related to zeroes of the Selberg zeta

function [Bo16, Chapter 10]. As such they give information about the asymp-

totics of the counting function of lengths of closed geodesics on M (similarly

to how zeroes of the Riemann zeta function tell us about distribution of prime
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numbers). A modified version of the essential spectral gap implies exponential

remainders in the prime geodesic theorem, see [Na05] and [Bo16, §14.6].

• Any hyperbolic surface M is the quotient of the hyperbolic plane by a discrete

group of Möbius transformations Γ ⊂ SL(2,R). For specific choices of Γ

(typically as a subgroup of SL(2,Z)), resonances give information on counting

solutions to diophantine equations, with deep applications in number theory.

See the review [Sa13].

To each hyperbolic surface is associated a parameter δ ∈ [0, 1]. This parameter has

many interpretations, in particular the set of all trapped geodesics in S∗M has Haus-

dorff dimension 2δ + 1. That is, surfaces with smaller δ are more open and have less

trapping, and surfaces with larger δ are more closed and have more trapping. Com-

pact hyperbolic surfaces have δ = 1. For all (noncompact) convex co-compact surfaces

which are nonelementary (i.e. M is not the hyperbolic plane or a hyperbolic cylinder)

we have 0 < δ < 1.

The parameter δ is related to the spectral gap question by Patterson–Sullivan

theory : the topmost resonance is given by i(δ − 1
2
), see [Bo16, Chapter 14]. On the

other hand the self-adjointness of the Laplacian implies that the upper half-plane has

only finitely many resonances, corresponding to L2 eigenvalues in [0, 1/4). Therefore

M has an essential spectral gap of size

β = max
(

0,
1

2
− δ
)

(1.2.7)

which we call the standard gap.

We now present an application of the fractal uncertainty principle to the spectral

gap question:

Theorem 1.2.1. Let M be a convex co-compact hyperbolic surface with 0 < δ < 1.

Then M has an essential spectral gap of size:

[DZ16, BD16] β = β(M) > 0;

[DZ16, BD17] β > 1
2
− δ which depends only on δ.

Remarks. 1. The first statement of Theorem 1.2.1 is only interesting (i.e. improves

over the standard gap (1.2.7)) when δ ≥ 1/2 and the second one, when δ ≤ 1/2. A

gap of size β > 1
2
− δ with β which depends on the surface (not just on δ) was proved

in [Na05] and recently quantitatively revisited from the fractal uncertainty principle

point of view in [DJ17a]. Both of these papers use the method developed in [Do98].

2. For more general hyperbolic systems, the Patterson–Sullivan gap β = 1
2
− δ is

replaced by the pressure gap β = −P (1
2
), which is nontrivial under the pressure con-

dition P (1
2
) < 0. The pressure gap was established for various hyperbolic systems

in [Ik88, GR89, NZ09], and an improved gap β > −P (1
2
) is proved under additional
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assumptions in [Na05, PS10, St11, St12]. See [No11a, §1.2] and [Zw16b, §3.2] for

more information. The papers [DJ16, BD16] explained in this note give the first cases

where the dynamics is chaotic, the trapped set is fractal, and the gap holds without

any pressure condition. This provides evidence in favor of the conjecture that essential

spectral gaps are present for any open hyperbolic system [Zw16b, Conjecture 3].

1.2.3. Discussion. We now explain the intuition behind the Patterson–Sullivan

gap (which also applies to the pressure gap mentioned below) and behind the gap

proved in [DZ16, BD16]:

(1) An essential spectral gap of size β can be interpreted as exponential decay

O(e−βt) of local L2 norm of solutions to the wave equation for initial data

which is compactly supported and localized to high frequency ∼ h−1.

(2) Geometric optics approximation implies that at high frequency, solutions to

the wave equation propagate along geodesics of M (just like light in vacuum

propagates along straight lines). A mathematical formulation of this uses

microlocal analysis, for instance it can be deduced from Egorov’s Theorem

(Proposition 1.1.3). Note that we need to define localization of a function in

both position and momentum (namely, the microsupport/semiclassical wave-

front set – see [Zw12, §8.4.2] or [DZB, §E.2.3]), which can be done using

semiclassical pseudodifferential operators.

(3) Localization in phase space is limited by the (standard) uncertainty principle

which implies that no function can localize precisely on a single trajectory. The

geodesic flow on M is hyperbolic, i.e. it has a stable/unstable decomposition,

see §??. Therefore, even if a wave is initially localized very close to one

trapped geodesic, after time t its microsupport will spread out by a factor

of et in the unstable direction. If M had only one trapped geodesic (as for

the hyperbolic cylinder), then after a long time most of the energy of the

wave would spread out to nontrapped geodesics and eventually escape. More

precisely, the portion of the energy that stays in a compact set would be

bounded by e−t/2, just like the constant function on an interval of size et has

only e−t/2 of its L2 norm on any interval of size 1, and we obtain a gap of size

β = 1
2
.

(4) The situation becomes more difficult if there are multiple trapped geodesics,

since a wave initially localized near a single geodesic can over time spread to

neighboring trapped geodesics. One way to handle this problem is to split the

wave into a linear combination of many pieces using a dynamical partition of

unity. Each piece corresponds to a single combinatorial way of being trapped;

say, for the three-funnel surface on Figure 1(b) this fixes the order in which the

geodesic winds around the three funnels, and for the three-obstacle scattering

on Figure 2(a) this fixes the order in which the billiard ball trajectory bounces



18 1. OVERVIEW

off the obstacles. Each piece of the wave lives near a single trapped trajectory,

and similarly to the previous paragraph its local L2 norm decays like e−t/2.

However, the number of pieces grows exponentially like eδt. The triangle

inequality then gives the bound e(δ−1/2)t on the local L2 norm of the whole

wave which explains the Patterson–Sullivan gap.

(5) The above use of triangle inequality can give an answer which is very far

from the real size of the gap. For instance, when δ > 1/2 it gives a growing

exponential bound on the local L2 norm of the wave, while in fact the global

L2 norm is bounded as t → ∞. One can get a gap of size β > 1
2
− δ by

exploiting on many intermediate scales the fact that triangle inequality in L2

is rarely sharp; this is the strategy taken in [Na05, DJ17a]. In other terms,

one takes advantage of the cancellations (or as a physicist would say, negative

interferences) between different components of the wave.

(6) To show there is a gap for any δ > 1/2, [DZ16, BD16] avoids the triangle

inequality altogether. Instead we treat the wave as a whole and study its

localization. Denote by U(t) the wave propagator and fix a compactly sup-

ported cutoff χ ∈ C∞0 (M). We make the following two observations which

take the geometric optics approximation to the limit of its validity:

(a) U(T )χ = Oph(χ+)U(T )χ+O(h∞) where T = log(1/h), Oph is a quanti-

zation procedure, and the symbol χ+ lives distance h = e−T close to the

outgoing tail Γ+, consisting of geodesics trapped backwards in time. In

other words, if the initial data is in a compact set, then after time T the

solution lives very close to the outgoing tail.

(b) similarly χU(T ) = χU(T ) Oph(χ−) + O(h∞) where χ− lives distance h

close to the incoming tail Γ−, consisting of geodesics trapped forward in

time. In other words, if we only need to know U(T )f in a compact set,

then it suffices to know f very close to the incoming tail.

Combining these observations, we get

χU(2T )χ = χU(T )
(

Oph(χ−) Oph(χ+)
)
U(−T )χ+O(h∞). (1.2.8)

This is where the fractal uncertainty principle comes in, giving the estimate

‖Oph(χ−) Oph(χ+)‖L2→L2 = O(hβ) for some β > 0. (1.2.9)

The bound (1.2.9), discussed in [TODO] below, exploits the fractal nature of??
the supports of χ± and is proved using tools from harmonic analysis which are

very different from the microlocal ideas presented so far. Combining (1.2.8)

and (1.2.9), we see that ‖χU(2T )χ‖L2→L2 = O(hβ) decays exponentially in T ,

which implies existence of an essential spectral gap.

There are many holes in the above rough presentation of [DZ16, BD16], which we

need to fill in later. For instance, one needs to understand why a bound on χU(2T )χ
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implies the bound on χU(t)χ for t ≥ 2T , i.e. why the wave cannot ‘bounce back

from infinity’ after a long time. For that we use [Va13a]; in fact it is convenient on a

technical level to bypass the wave propagator and use the scattering resolvent directly.

Another issue is how to quantize χ± since they have a very rough behavior; in fact to

make this quantization work we take T = ρ log(1/h) where ρ < 1 is very close to 1.





CHAPTER 2

Fractal uncertainty principle

We now introduce the central component of these notes, the fractal uncertainty

principle (FUP). Roughly speaking it states that no function can be localized close to

a fractal set in both position and frequency, with a precise statement given in Defini-

tion 2.1.2 below and in the question following Exercise 2.1.4. The currently known

results are in dimension 1, with extension to higher dimensions an important open

problem.

2.1. Statement and basic properties

2.1.1. Uncertainty principle. Before going fractal, we briefly review the stan-

dard uncertainty principle. Let 0 < h� 1 be the semiclassical parameter and consider

the unitary semiclassical Fourier transform

Fh : L2(R)→ L2(R), Fhf(ξ) = (2πh)−1/2

∫
R
e−ixξ/hf(x) dx.

The version of the uncertainty principle we use is the following: for any f ∈ L2(R),

either f or its Fourier transform Fhf have little mass on the interval [0, h].1 Specifically

we have

‖ 1l[0,h]Fh 1l[0,h] ‖L2(R)→L2(R) ≤ h1/2. (2.1.1)

Here for X ⊂ R, the operator 1lX : L2(R) → L2(R) is multiplication by the indicator

function of X. One way to prove (2.1.1) is via Hölder’s inequality:

‖ 1l[0,h]Fh 1l[0,h] ‖L2→L2 ≤ ‖ 1l[0,h] ‖L∞→L2 · ‖Fh‖L1→L∞ · ‖ 1l[0,h] ‖L2→L1

= h1/2 · (2πh)−1/2 · h1/2 ≤ h1/2.
(2.1.2)

A useful way to think about the norm bound (2.1.1) is as follows: if a function f is

supported in [0, h], then the interval [0, h] contains at most h1/2 of the L2 mass of Fhf .

Exercise 2.1.1. Show that the norm bound (2.1.1) is sharp up to constants, by

finding a function f supported in [0, h] such that ‖f‖L2 = 1 and ‖Fhf‖L2([0,h]) ∼ h1/2.

1This is consistent with the uncertainty principle in quantum mechanics. Indeed, if both f and

Fhf are large on [0, h] then we know the wave function f is at position and momentum 0 with

certainty h, but h · h� h.

21
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The fractal uncertainty principle studied below concerns localization in position

and frequency on more general sets:

Definition 2.1.2. Let X, Y ⊂ R be h-dependent families of sets. We say that

X, Y satisfy uncertainty principle with exponent β ≥ 0, if

‖ 1lX Fh 1lY ‖L2(R)→L2(R) = O(hβ) as h→ 0. (2.1.3)

2.1.2. Ahlfors–David regular sets. To make the uncertainty principle a fractal

one, we apply it when X, Y are fractal sets. In these lectures, the word ‘fractal’ will

usually mean Ahlfors–David regularity, defined as follows:

Definition 2.1.3. Assume that X ⊂ R is a nonempty closed set and 0 ≤ δ ≤ 1,

CR ≥ 1, 0 ≤ αmin ≤ αmax ≤ ∞. We say that X is δ-regular with constant CR on

scales αmin to αmax if there exists a finite measure µX supported on X such that:

• for each interval I ⊂ R of size |I| satisfying αmin ≤ |I| ≤ αmax, we have the

upper bound

µX(I) ≤ CR|I|δ; (2.1.4)

• if the interval I is as above and additionally the center of I lies in X, then

we have the lower bound

µX(I) ≥ C−1
R |I|

δ. (2.1.5)

Remark. We will typically consider an h-dependent family of sets X, taking αmin = h,

αmax = 1, and requiring that the regularity constant CR be independent of h.

One should think of a δ-regular set on scales αmin to αmax as an αmin-neighborhood

of a fractal set of dimension δ. The dimension is required to be the same at each point

and each scale. Some examples are given by

Exercise 2.1.4. Show that for some h-independent regularity constant CR,

(1) {0} is 0-regular on scales 0 to ∞;

(2) [0, h] is 0-regular on scales h to ∞;

(3) [0, 1] is 1-regular on scales 0 to 1;

(4) the mid-third Cantor set C ⊂ [0, 1] is log 2
log 3

-regular on scales 0 to 1 (see also

Exercise 5.2.1);

(5) the h-neighborhood of the Cantor set C is log 2
log 3

-regular on scales h to 1.

On the other hand, show that no matter what h-independent CR and δ we take,

(6) [0, 1] ∪ {2} cannot be δ-regular on scales 0 to 1;

(7) [0, h1/2] cannot be δ-regular on scales h to 1.
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2.1.3. Statement of fractal uncertainty principle. We now state the main

question of this section:

Fix δ ∈ [0, 1] and CR ≥ 1. What is the best value of β such that (2.1.3) holds

for all h-dependent families of sets X, Y ⊂ [0, 1]

which are δ-regular with constant CR on scales h to 1?

One way to establish (2.1.3) is to use the following volume (Lebesgue measure) bound:

if X ⊂ [0, 1] is δ-regular on scales h to 1 with some constant CR, then for some

C = C(δ, CR)

vol(X) ≤ Ch1−δ. (2.1.6)

Exercise 2.1.5. Show (2.1.6). (Hint: cover X by some number N of h-sized

intervals centered on X and with little overlap. Then use regularity to show that N =

O(h−δ).)

Using (2.1.6) and arguing as in (2.1.2), we see that (2.1.3) holds for β = 1
2
− δ. It

also holds for β = 0 since Fh is unitary. Therefore, we get the basic FUP exponent

(which is the same as the standard size of the spectral gap (1.2.7) – this is not a

coincidence)

β0 = max
(

0,
1

2
− δ
)
. (2.1.7)

Exercise 2.1.6 (Brick). Show that for 0 ≤ δ ≤ 1, we have as h→ 0

‖ 1l[0,h1−δ]Fh 1l[0,h1−δ] ‖L2→L2 ∼ hmax(0,1/2−δ).

This example shows that (2.1.7) cannot be improved if we only use the volumes of X, Y .

Using examples (2) and (3) from Exercise 2.1.4, we see that (2.1.7) cannot be im-

proved if δ = 0 or δ = 1. It turns out that in every other case there is an improvement,

which is the central statement of these notes:

Theorem 2.1.1. [BD16, DJ17a] Fix δ ∈ (0, 1) and CR ≥ 1. Then there exists

β = β(δ, CR) > max
(

0,
1

2
− δ
)

(2.1.8)

such that (2.1.3) holds for all h-dependent families of sets X, Y ⊂ [0, 1] which are

δ-regular with constant CR on scales h to 1.

Remark. There exist estimates on the size of the improvement β −max(0, 1
2
− δ) in

terms of δ, CR, see [DJ17a] for improvement over 1
2
− δ and [JZ17] for improvement

over 0.

The proof of Theorem 2.1.1 is not given in the notes (at least not yet). However,

a complete proof in the special case of Cantor sets is given in §5.3 below.
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2.1.4. Relation to Fourier decay and additive energy. This section explains

how a fractal uncertainty principle can be proved if we have a Fourier decay bound or

an additive energy bound on one of the sets X, Y . It not used in the rest of this notes

and thus is strictly optional. Instead it provides some perspective from the point of

view of fractal harmonic analysis and combinatorics.

Let X, Y ⊂ [0, 1] be two h-dependent closed sets. We assume that they are both δ-

regular on scales h to 1 with some h-independent regularity constant CR. In particular,

the volumes of X and Y are O(h1−δ) by (2.1.6).

To estimate the norm on the left-hand side of the uncertainty principle (2.1.3), we

use the T ∗T argument:

‖ 1lX Fh 1lY ‖2
L2→L2 = ‖ 1lY F∗h 1lX Fh 1lY ‖L2→L2 .

We write F∗h 1lX Fh as an integral operator:

F∗h 1lX Fhf(y) =

∫
R
K(y − y′)f(y′) dy′

where

K(y) = (2πh)−1

∫
X

eixy/h dx.

Note that K(y) is just the rescaled Fourier transform of the indicator function of X.

By Schur’s inequality applied to K(y − y′) we see that

‖ 1lX Fh 1lY ‖2
L2→L2 ≤ sup

y′∈Y

∫
Y

|K(y − y′)| dy. (2.1.9)

In particular by Hölder inequality using the volume bound on Y we get for all p ∈ [1,∞]

‖ 1lX Fh 1lY ‖L2→L2 ≤ Ch
(1−δ)(1−1/p)

2 ‖K‖1/2
Lp([−2,2]). (2.1.10)

The estimates (2.1.9),(2.1.10) can give the uncertainty principle (2.1.3) with exponent

β > max(0, 1
2
− δ) if we make additional assumptions about X.

Exercise 2.1.7. Assume that X is a union of ∼ h−δ intervals of size h each. Show

that ‖K‖L2([−2,2]) ∼ h−δ/2. (Hint: for the lower bound, estimate instead ‖χK‖L2(R)

where χ ∈ C∞0 ((−2, 2)) has nonnegative Fourier transform.) Deduce that (2.1.10)

never improves over the standard bound (2.1.7) if we take p = 2.

We now explore two possible assumptions on X where (2.1.9) improves over (2.1.7).

Fourier decay. From the volume bound on X we know that sup |K| = O(h−δ).

Assume that we have a better Fourier decay bound, for some βF > 0:

|K(y)| = O(hβF−δ|y|−βF ) for h ≤ |y| ≤ 2. (2.1.11)
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From δ-regularity of Y (similarly to Exercise 2.1.5) we see that for any interval I with

h ≤ |I| ≤ 2

vol(Y ∩ I) ≤ Ch1−δ|I|δ.
Breaking the integral below into dyadic pieces centered at y′, we see that (2.1.11)

implies (assuming βF < δ)

sup
y′∈Y

∫
Y

|K(y − y′)| dy ≤ Ch1−2δ+βF ,

thus by (2.1.9) the uncertainty principle (2.1.3) holds with

β =
1

2
− δ +

βF
2
. (2.1.12)

Exercise 2.1.8. Under the assumptions of Exercise 2.1.7 show that if (2.1.11)

holds and δ < 1, then βF ≤ δ/2. Deduce that the exponent β in (2.1.12) always

satisfies β ≤ 1
2
− 3δ

4
, in particular it can only improve over (2.1.7) when 0 < δ < 2/3.

Exercise 2.1.9. Assume that h = 3−k for some k ∈ N and let X be the h-

neighborhood of the mid-third Cantor set. Show that (2.1.11) cannot hold with any

βF > 0.

Exercise 2.1.9 is discouraging as it shows that even for simple fractal sets there may

be no Fourier decay. However, for more complicated (in some sense, nonlinear) fractal

sets a Fourier decay bound holds. In particular, [BD17] establishes such bound for

limit sets of convex co-compact hyperbolic surfaces.

Additive energy. Instead of a pointwise decay bound on K(y), we can try to use a

bound on its Lp norm together with (2.1.10). The case p = 4 is related to the additive

energy

EA(X) = vol{(a, b, c, d) ∈ X4 | a+ b = c+ d}
where we use the volume form on the hypersurface {a + b = c + d} ⊂ R4 induced by

the standard volume form in the (a, b, c) variables. More precisely we have

‖K‖L4(R) = (2πh)−3/4EA(X)1/4.

It follows immediately from the volume bound on X that

EA(X) ≤ vol(X)3 ≤ Ch3(1−δ).

Using δ-regularity of X, one can show that this bound can always be improved:

Theorem 2.1.2. [DZ16, Theorem 6] Assume that X ⊂ [0, 1] is δ-regular on scales

h to 1 with constant CR, and 0 < δ < 1. Then there exists βA = βA(δ, CR) > 0 such

that

EA(X) ≤ Ch3(1−δ)+βA . (2.1.13)
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Exercise 2.1.10. Show (2.1.13) when X is the h-neighborhood of the mid-third

Cantor set. (Hint: look at the equation a+ b = c+ d written base 3.)

From (2.1.13) and (2.1.10) we see that the fractal uncertainty principle (2.1.3) holds

with

β =
3

4

(1

2
− δ
)

+
βA
8
. (2.1.14)

This improves over the standard bound (2.1.7) when δ = 1/2.

Exercise 2.1.11. Under the assumptions of Exercise 2.1.7 show that if (2.1.13)

holds, then βA ≤ min(δ, 1 − δ). Deduce that (2.1.14) can possibly improve over the

standard bound (2.1.7) only when 1/3 < δ < 4/7.

Exercise 2.1.12. Obtain the bound (2.1.14) for more general additive energies

corresponding to the cases p = 2k, k ∈ N, k > 2. For which values of δ does im-

provement in these generalized additive energies guarantee an FUP exponent improving

over (2.1.7)?

We remark that the bound (2.1.14) uses structure of X and the volume bound on Y

(so for instance it would work for Y = [0, h1−δ]). This is in contrast to the proof of

Theorem 2.1.1 which uses the structure of both X and Y .

2.2. A semiclassical interpretation of FUP

We now give an interpretation of fractal uncertainty principle in terms of semiclas-

sical quantization.

2.2.1. Quantization of rough symbols. We first discuss quantization of sym-

bols which depend on h, in particular their derivatives may grow as h→ 0. This will

be important later as it shows the limit to which the classical/quantum correspondence

still applies, and determines the maximal time for which Egorov’s theorem still holds.

We use the standard quantization procedure on R defined by (see [Zw12, (4.1.2)])

Oph(a)f(x) = (2πh)−1

∫
R2

e
i
h

(x−y)ξa(x, ξ)f(y) dydξ. (2.2.1)

For this quantization procedure to be useful, we in particular need to have an asymp-

totic expansion for products of operators, which for the standard quantization is as

follows [Zw12, Theorem 4.14]: Oph(a) Oph(b) = Oph(a#b) where

a#b(x, ξ;h) ∼
∞∑
j=0

(−ih)j∂jξa(x, ξ;h)∂jxb(x, ξ;h) as h→ 0. (2.2.2)

If a, b are smooth and h-independent, then the j-th term in the asymptotic sum is

O(hj). (Note that by looking at terms with j = 0, 1 we get the product rule (1.1.3)

and the commutator rule (1.1.5).)
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For h-dependent a, b a bound on growth of derivatives is needed to make sure each

next term decays faster than the previous one and the expansion (2.2.1) is still valid. A

typical condition to impose is ∂αa = O(h−ρ|α|) for some ρ ∈ [0, 1/2), see [Zw12, §4.4.1];

then the j-th term in (2.2.2) is O(h(1−2ρ)j). However, in our case it is convenient to

impose one of the following anisotropic bounds for some ρ ∈ [0, 1) (which in practice

is taken very close to 1):

|∂jx∂kξ a(x, ξ;h)| = O(h−ρj), denoted a ∈ SL0,ρ; (2.2.3)

|∂jx∂kξ a(x, ξ;h)| = O(h−ρk), denoted a ∈ SL1,ρ. (2.2.4)

That is, symbols in SL0,ρ are smooth in the ξ direction but rough in the x direction;

same is true for SL1,ρ but with the roles of x, ξ reversed.

If a, b ∈ SL0,ρ or a, b ∈ SL1,ρ, then the j-th term in (2.2.2) is O(h(1−ρ)j), so the

asymptotic expansion still converges. In addition the SL0,ρ calculus and SL1,ρ calculus

have asymptotic expansions for adjoints. This makes it possible to prove the norm

bounds

‖Oph(a)‖L2→L2 = sup |a|+ o(1) as h→ 0 if a ∈ SL0,ρ or a ∈ SL1,ρ. (2.2.5)

2.2.2. FUP via products of pseudodifferential operators. We now study

the product Oph(b) Oph(a) when a ∈ SL0,ρ and b ∈ SL1,ρ. The j-th term in (2.2.2) is

O(h(1−2ρ)j); when ρ > 1/2 the asymptotic expansion no longer makes sense. Thus the

product Oph(b) Oph(a) can no longer be described by semiclassical analysis. However

the fractal uncertainty principle (Theorem 2.1.1) can be interpreted as an estimate on

its norm when the supports of a, b have fractal structure:

Proposition 2.2.1. Assume that δ, ρ ∈ (0, 1) and (with X(hρ) denoting the hρ-

neighborhood of X)

• X, Y ⊂ [0, 1] are δ-regular with constant CR on scales 0 to 1;

• a0 ∈ SL0,ρ and supp a0 ⊂ {(x, ξ) : x ∈ Y (hρ)};
• a1 ∈ SL1,ρ and supp a1 ⊂ {(x, ξ) : ξ ∈ X(hρ)}.

Then there exists β = β(δ, CR) > max(0, 1
2
− δ) such that we have the norm bound

‖Oph(a1) Oph(a0)‖L2(R)→L2(R) = O(hβ−2(1−ρ)) as h→ 0. (2.2.6)

Proof. Assume first that a0 depends only on x, while a1 depends only on ξ.

Then Oph(a0) = a0 is a multiplication operator, while Oph(a1) = F∗ha1Fh is a Fourier

multiplier. Since sup |aj| are bounded uniformly in h, we have

‖Oph(a1) Oph(a0)‖L2→L2 = ‖a1Fh a0‖L2→L2 ≤ C‖ 1lX(hρ)Fh 1lY (hρ) ‖.

Writing X(hρ) as a union of no more than 10hρ−1 shifts of X(h) and same for Y (hρ),

using triangle inequality and the fact that the norm ‖ 1lX Fh 1lY ‖L2→L2 does not change
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when shifting X, Y , we bound

‖ 1lX(hρ)Fh 1lY (hρ) ‖ ≤ 100h2(ρ−1)‖ 1lX(h)Fh 1lY (h) ‖L2→L2 .

The sets X(h), Y (h) are δ-regular with constant 100CR on scales h to 1, so Theo-

rem 2.1.1 gives the required bound.

We now consider the general case. From the support property of a0 we see that

there exists ã0(x) ∈ SL0,ρ such that

supp a0 ∩ supp(1− ã0) = ∅, supp ã0 ⊂ X(2hρ).

Similarly we can find ã1(ξ) ∈ SL1,ρ such that

supp a1 ∩ supp(1− ã1) = ∅, supp ã1 ⊂ Y (2hρ).

By the product formula (2.2.2) we have

Oph(a0) = Oph(ã0) Oph(a0)+O(h∞)L2→L2 , Oph(a1) = Oph(a1) Oph(ã1)+O(h∞)L2→L2 .

Since Oph(a0),Oph(a1) are bounded L2 → L2 uniformly in h, we have

‖Oph(a1) Oph(a0)‖L2→L2 ≤ C‖Oph(ã1) Oph(ã0)‖L2→L2 +O(h∞),

reducing to the previously considered special case. �

2.2.3. FUP with general amplitude. As an application of Proposition 2.2.1 we

give a version of the fractal uncertainty principle (Theorem 2.1.1) with the semiclassical

Fourier transform Fh replaced by an integral operator

Bhf(x) = (2πh)−1/2

∫
R
e−ixξ/hb(x, ξ;h)f(ξ) dξ, f ∈ L2(R). (2.2.7)

The following statement (more precisely, its weaker version with β > 0 rather than

β > max(0, 1
2
− δ)) comes from [BD16, Proposition 4.1].

Proposition 2.2.2. Assume that δ, ρ ∈ (0, 1) and

• X, Y ⊂ R are δ-regular with constant CR on scales 0 to 1;

• the h-dependent family of functions b(x, ξ;h) has all derivatives bounded uni-

formly in h and is supported in an h-indepedent compact subset of R2.

Let Bh be defined by (2.2.7). Then there exists β = β(δ, CR) > max(0, 1
2
− δ) such that

we have the norm bound

‖ 1lX(hρ) Bh 1lY (hρ) ‖L2→L2 = O(hβ−2(1−ρ)) as h→ 0. (2.2.8)

Proof. First of all, we may assume that X, Y ⊂ [0, 1]. Indeed, using a partition

of unity we reduce to the case when supp b ⊂ I × J where I, J ⊂ R are small h-

independent intervals. We choose I, J such that |I|, |J | ≤ 1 and X ∩ I, Y ∩ J are
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δ-regular with some constant C ′R(δ, CR).2 Then it is enough to establish (2.2.8) with

X, Y replaced by X ∩ I, Y ∩ J . (Alternatively, the proof of Theorem 2.1.1 applies to

an intersection of a δ-regular set with an interval.)

Take cutoffs a0(x), a1(ξ) with aj ∈ SLj ,ρ and such that supp a0 ⊂ Y (2hρ), a0 = 1 on

Y (hρ), and similarly for a1 and X. Recall that Oph(a1) is the multiplication operator

by a0 and Fh Oph(a1)F∗h is the multiplication operator by a1. Then it suffices to prove

the estimate

‖Fh Oph(a1)F∗hBh Oph(a0)‖L2→L2 = O(hβ−2(1−ρ)).

We have

F∗hBh = Oph(b1)∗ where b1(x, ξ;h) = b(ξ, x;h).

Thus it is enough to show that

‖Oph(a1) Oph(b1)∗Oph(a0)‖L2→L2 = O(hβ−2(1−ρ)). (2.2.9)

By the product and adjoint rules in the SL1,ρ calculus we have Oph(a1) Oph(b1)∗ =

Oph(ã1) + O(h∞)L2→L2 where ã1 ∈ SL1,ρ satisfies supp ã1 ⊂ supp a1. Now Proposi-

tion 2.2.1 gives a bound on the norm of Oph(ã1) Oph(a0) which implies (2.2.9). �

2.3. Generalized FUP

In this section we further generalize the fractal uncertainty principle to obtain a

microlocal statement which is the one used in applications.

2.3.1. FUP with general phase. In §2.2.3 we generalized the fractal uncertainty

principle (Theorem 2.1.1) replacing the Fourier transform Fh by an integral operator

Bh with a general amplitude. We now further generalize it by allowing a general phase.

More precisely we consider an operator Bh of the form

Bhf(x) = (2πh)−1/2

∫
R
eiΦ(x,y)/hb(x, y;h)f(y) dy, f ∈ L2(R), (2.3.1)

where:

(1) Φ ∈ C∞(U ;R) where U ⊂ R2 is an open set;

(2) Φ satisfies the nondegeneracy condition on mixed derivative

∂2
xyΦ 6= 0 on U ; (2.3.2)

(3) the h-dependent family of functions b(x, y;h) has all derivatives bounded uni-

formly in h and is supported in an h-independent compact subset of U .

The operator Bh previously defined in (2.2.7) is a special case with Φ(x, y) = −xy.

2One has to take care in choosing I, J since it can happen that X ∩ I is not δ-regular – for

example, consider the intersection of the mid-third Cantor set with the interval [0, 2/3].
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Exercise 2.3.1. Show that ‖Bh‖L2→L2 is bounded uniformly as h→ 0. (Hint: apply

Schur’s inequality to the operator B∗hBh, using that its integral kernel K(x, x′) satisfies

|K(x, x′)| = O(h−1(1+h−1|x−x′|)−N) for all N . The nondegeneracy condition (2.3.2)

is crucial for the latter point.)

The generalization of Theorem 2.1.1 and Proposition 2.2.2 is the following

Proposition 2.3.2. Assume that δ, ρ ∈ (0, 1) and X, Y ⊂ R are δ-regular with

constant CR on scales 0 to 1. Let Bh be defined by (2.3.1) where Φ, b satisfy proper-

ties (1)–(3) above. Then there exists β = β(δ, CR) > max(0, 1
2
− δ) such that we have

the norm bound

‖ 1lX(hρ) Bh 1lY (hρ) ‖L2→L2 = O(hβ−2(1−ρ)) as h→ 0. (2.3.3)

Remark. We only give here the proof of β > 0, reducing to FUP for the Fourier

transform (specifically to Proposition 2.2.2) following [BD16, Proposition 4.3]. This

reduction is useful because the case β > 0 in Theorem 2.1.1 is proved in [BD16] using

harmonic analysis methods which are very specific to the Fourier transform and do

not apply directly to the case of a general phase. On the other hand, the argument

below effectively replaces β by β/2, which makes it useless for showing the inequality

β > 1
2
−δ. Luckily, the proof of the case β > 1

2
−δ in Theorem 2.1.1, given in [DJ17a],

applies to general phases, so no reduction to the Fourier transform is needed there.

Proof. As remarked above we only show that β > 0. We moreover allow β to de-

pend on Φ and the support of b; see the first step of the proof of [BD16, Proposition 4.3]

for how to get rid of this dependence. Similarly to the proof of Proposition 2.2.1 we

could reduce to the case ρ = 1 but it would be useful for the argument below to keep

ρ < 1. We henceforth assume that ρ is very close to 1. We also assume that U is a

rectangle, the general case following by a partition of unity.

We first fatten the set X by hρ/2. This seems like a huge loss of information

in (2.3.3) but will ultimately be crucial in making the linearization argument work.

More precisely, take a smooth h-dependent function ψ such that

0 ≤ ψ ≤ 1, supp(1− ψ) ∩X(hρ) = ∅, suppψ ⊂ X(hρ/2),

and ψ satisfies the derivative bounds

sup |∂kxψ| ≤ Ckh
−ρk/2. (2.3.4)

Then it suffices to show the bound

‖ψBh 1lY (hρ) ‖L2→L2 = O(hβ−2(1−ρ)) as h→ 0. (2.3.5)
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Let J1, . . . , JN , N = N(h) = O(h−1), be the ordered list of all the intervals of the form

h1/2[j, j + 1] which intersect Y (hρ). We split the operator in (2.3.5) into pieces:

ψBh 1lY (hρ) =
N∑
n=1

An, An := ψBh 1lY (hρ)∩Jn .

We will establish almost orthogonality of the operators An. We immediately have

AnA
∗
m = 0 if n 6= m. (2.3.6)

We next write

A∗nAm = 1lY (hρ)∩Jn B∗hψ2Bh 1lY (hρ)∩Jm

and the operator B∗hψ2Bh has the integral kernel

K(y, y′) = (2πh)−1

∫
R
e
i
h

(Φ(x,y′)−Φ(x,y))b(x, y;h)b(x, y′;h)ψ(x)2 dx. (2.3.7)

Due to the nondegeneracy condition (2.3.2) we have

|∂x
(
Φ(x, y′)− Φ(x, y)

)
| ∼ |y − y′|.

We integrate (2.3.7) by parts L times. Each time the phase produces a factor of

h/|y − y′| and the amplitude gives h−ρ/2 due to (2.3.4). Thus we get

|K(y, y′)| ≤ CL

( h1−ρ/2

|y − y′|

)L
for all L.

Since the intervals Jn have size h1/2 and are nonoverlapping and ρ < 1, this implies

‖A∗nAm‖L2→L2 = O(h∞) if |n−m| > 1. (2.3.8)

By Cotlar–Stein Theorem [Zw12, Theorem C.5] and (2.3.6), (2.3.8) we reduce (2.3.5)

to the bound on each individual An, which in light of the support property of ψ reduces

to

sup
n
‖ 1lX(hρ/2) Bh 1lY (hρ)∩Jn ‖L2→L2 = O(hβ−2(1−ρ)) as h→ 0. (2.3.9)

Without loss of generality we assume that Jn = [0, h1/2]. Subtracting Φ(x, 0) from

Φ(x, y), we may assume that Φ(x, 0) = 0. For y = h1/2ỹ ∈ [0, h1/2], we take the Taylor

expansion of the phase Φ(x, y) at the point (x, 0):

Φ(x, h1/2ỹ) = −h1/2ỹϕ(x) + hΨ(x, ỹ;h), ϕ(x) := −∂yΦ(x, 0)

where Ψ(x, ỹ;h) is smooth in x and ỹ ∈ [0, 1], uniformly in h. In the integral for-

mula (2.3.1) for Bh, the term hΨ(x, ỹ) becomes eiΨ(x,ỹ), thus it can be put into the

amplitude. The term h1/2ỹϕ(x) is linear in ỹ, thus after a change of variables in x and

appropriate rescaling we reduce the operator Bh to Fourier transform with a general

amplitude, in the form (2.2.7).
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More precisely, composing Bh on the right with the unitary rescaling operator

T1f(y) = h−1/4f(h−1/2y), we get the operator

B′hf(x) = (2πh̃)−1/2

∫
R
e−iỹϕ(x)/h̃eiΨ(x,ỹ;h)b(x, h̃ỹ;h)f(ỹ) dỹ, h̃ := h1/2.

Note that ∂xϕ 6= 0 by the nondegeneracy condition (2.3.2). Composing B′h on the left

with the change of variable operator T2f(x̃) = f(ϕ−1(x̃)) we get the operator

B′′hf(x̃) = (2πh̃)−1/2

∫
R
e−ix̃ỹ/h̃eiΨ(ϕ−1(x̃),ỹ;h)b(ϕ−1(x̃), h̃ỹ;h)f(ỹ) dỹ.

The operator B′′h is of the form (2.2.7) which is covered by Proposition 2.2.2. The

needed estimate (2.3.9) reduces to

‖ 1lX̃(Ch̃ρ) B
′′
h 1lỸ (h̃2ρ−1)∩[0,1] ‖L2→L2 ≤ Chβ−2(1−ρ), X̃ := ϕ(X), Ỹ := h−1/2Y. (2.3.10)

The sets X̃, Ỹ are δ-regular on scales 0 to 1. Applying FUP with general amplitude,

Proposition 2.2.2, with h replaced by h̃, we see that the left-hand side of (2.3.10) is

O(h̃β̃−3(1−ρ)) for some β̃ > 0. Putting β := β̃/2 we get (2.3.10) which finishes the

proof.

The above argument explains why the intervals Jn were chosen of size h1/2: we

needed the second derivative term in the Taylor expansion of the phase to be O(h) so

that it could be put into the amplitude. On the other hand, in order for the almost

orthogonality estimate (2.3.8) to hold the function ψ has to oscillate at a scale� h1/2,

explaining the need for fattening X in the beginning of the proof. �

2.3.2. Fourier integral operators. Semiclassical pseudodifferential operators,

introduced in §1.1.1, are a microlocal generalization of differentiation operators. In

particular they preserve the microsupport of a function, just like differential operators

preserve support. In this section we introduce Fourier integral operators (FIOs) which

instead move microsupport by an exact symplectomorphism. They can be viewed as

generalization of pullback operators. Here we only briefly review the theory of FIOs;

for details the reader is referred to [DZ16, §2.2] and the references there.

We first give the definition of an exact symplectomorphism. Let M1,M2 be man-

ifolds of the same dimension and Uj ⊂ T ∗Mj be open sets. Denote by ξ dx and η dy

the canonical 1-forms on T ∗M1 and T ∗M2, then ω1 = d(ξ dx) and ω2 = d(η dy) are the

standard symplectic forms.

Definition 2.3.3. An exact symplectomorphism is a pair (κ, F ) where:

• κ : U2 → U1 is a symplectomorphism, i.e. κ∗(ω1) = ω2;

• F ∈ C∞(Gr(κ)) where Gr(κ) denotes the graph of κ,

Gr(κ) :=
{

(x, ξ, y, η) | (y, η) ∈ U2, (x, ξ) = κ(y, η)
}
⊂ T ∗(M1 ×M2);
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• dF is equal to the restriction (ξ dx − η dy)|Gr(κ). Note that the latter 1-form

is always closed when κ is a symplectomorphism.

We will often suppress the antiderivative F below, just denoting an exact symplecto-

morphism by κ. Natural operations with exact symplectomorphisms (e.g. composition)

induce a natural choice of antiderivative.

A Fourier integral operator is an operator B : D′(M2) → C∞0 (M1) which can be

locally written in an oscillatory integral form

Bf(x) = (2πh)−
n+m

2

∫
M2×Rm

e
i
h

Φ(x,y,ζ)b(x, y, ζ;h)f(y) dydζ (2.3.11)

where n = dimMj and

• Φ ∈ C∞(UΦ;R) where UΦ ⊂ M1 ×M2 × Rm is an open set, for some choice

of m;

• the phase function Φ is nondegenerate in the sense that the differentials

d(∂ζ1Φ), . . . , d(∂ζmΦ) are linearly independent on the critical set

CΦ := {(x, y, ζ) ∈ ∂ζΦ(x, y, ζ) = 0}.

It follows that CΦ is a smooth 2n-dimensional submanifold of UΦ;

• the symbol b is smooth in (x, y, ζ, h) ∈ UΦ × [0, h0) for some h0 > 0, and its

support in the (x, y, ζ) variables is contained in an h-independent compact

subset of UΦ. In particular this implies that b has an asymptotic expansion in

nonnegative integer powers of h as h→ 0.

The symplectomorphism quantized by B is determined from the phase function using

Definition 2.3.4. We say that a nondegenerate phase function Φ generates an

exact symplectomorphism (κ, F ) if the map

jΦ : CΦ → T ∗(M1 ×M2), jΦ(x, y, ζ) = (x, ∂xΦ(x, y, ζ), y,−∂yΦ(x, y, ζ))

is a diffeomorphism onto the graph Gr(κ) and F ◦ jΦ = Φ|CΦ. We say that Φ locally

generates κ if it generates the restriction of κ to some open subset of U2.

Exercise 2.3.5. Let Φ be a nondegenerate phase function.

(i) Show that jΦ has injective differential.

(ii) Assume that jΦ is injective and assume that jΦ(CΦ) is the graph of some map

κ : U2 → U1, Uj ⊂ T ∗Mj. Show that κ is a symplectomorphism.

(iii) Under the assumptions of part (ii), show that d(Φ◦ j−1
Φ ) = (ξ dx−η dy)|Gr(κ), that

is there is a choice of antiderivative F for which Φ generates (κ, F ).
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The key fact of (local) theory of Fourier integral operators is the following change

of parametrization: if two phase functions Φ and Φ′ generate the same exact symplec-

tomorphism, and B is defined by (2.3.11) using Φ and some symbol b, then B is also

defined by (2.3.11) using Φ′ and some other symbol b′, modulo an O(h∞) remainder.

Because of this we associate Fourier integral operators to a symplectomorphism rather

than to a particular phase function:

Definition 2.3.6. Let κ be an exact symplectomorphism. We say that B : D′(M2)→
C∞0 (M1) is a (compactly microlocalized) Fourier integral operator associated

to κ, denoted

B ∈ Icomp
h (κ),

if B is the sum of finitely many operators of the form (2.3.11) for some phase functions

Φ locally generating κ, and a remainder with integral kernel in O(h∞)C∞0 (M1×M2).

Fourier integral operators enjoy many natural properties, in particular:

(1) Every B ∈ Icomp
h (κ) is microlocalized on the graph of κ in the following sense:

Oph(a1)BOph(a2) = O(h∞) if κ(U2 ∩ supp a2) ∩ supp a1 = ∅. (2.3.12)

(2) If κ : T ∗M → T ∗M is the identity map (with the 0 antiderivative) then B ∈
Icomp
h (κ) if and only if B is a pseudodifferential operator, more precisely B =

Oph(b) for some symbol b(x, ξ;h) compactly supported in (x, ξ). On Rn this

is immediate from the standard quantization formula (2.2.1), as the function

Φ(x, y, ζ) = 〈x− y, ζ〉 generates κ.

(3) The following version of Egorov’s Theorem holds: if aj ∈ C∞0 (T ∗Mj) satisfy

a2 = a1 ◦ κ on U2, then

Oph(a1)B = BOph(a2) +O(h)Icomp
h (κ) for all B ∈ Icomp

h (κ). (2.3.13)

Note that (2.3.13) implies (2.3.12) with an O(h) remainder.

(4) If Bj ∈ Icomp
h (κj), j = 1, 2, then the composition B1B2 lies in Icomp

h (κ1 ◦ κ2).

(5) If B ∈ Icomp
h (κ), then the adjoint B∗ lies in Icomp

h (κ−1).

(6) Every B ∈ Icomp
h (κ) is bounded L2(M2) → L2(M1) uniformly in h. This fol-

lows immediately from the last two properties, as B∗B is a pseudodifferential

operator.

To finish this subsection we give a few examples of Fourier integral operators (this list

is by no means extensive – we merely include the examples which will be used later):

(1) Assume that (M, g) is a Riemannian manifold and U(t) = exp(−it
√
−∆g) is

the wave propagator. Then

Oph(b)U(t), U(t) Oph(b) ∈ I
comp
h (ϕt) for all b ∈ C∞0 (T ∗M \ 0) (2.3.14)
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where ϕt = exp(tHp) : T ∗M \ 0→ T ∗M \ 0 is the homogeneous geodesic flow,

see (1.1.9), and the antiderivative is identically 0. This together with (2.3.13)

gives another way of proving Egorov’s Theorem for the wave propagator,

Proposition 1.1.3.

To prove (2.3.14) we need to provide an oscillatory integral representation

of the form (2.3.11) for Oph(b)U(t), at least for small t (the case of arbitrary t

will then follow by the composition property). This is done by the hyperbolic

parametrix construction, see for instance [Zw12, Theorem 10.4]. (A curious

reader can try to prove this for M = Rn using the Fourier multiplier formula

for U(t).)

(2) Let Fh be the semiclassical Fourier transform. Then for each b ∈ C∞0 (T ∗Rn)

the operator Oph(b)F∗h has the form (2.3.11):

Oph(b)F∗hf(x) = (2πh)−n/2
∫
Rn
e
i
h
〈x,y〉b(x, y) f(y) dy.

Therefore Oph(b)F∗h ∈ I
comp
h (κ) where κ(y, η) = (−η, y) is rotation by π/2.

Same is true for F∗h Oph(b).

(3) Assume that κ : U2 → U1 is a symplectomorphism where Uj are neighbor-

hoods of some (xj, ξj) ∈ T ∗Mj such that κ(x2, ξ2) = (x1, ξ1). Shrinking Uj we

may assume that κ is exact; fix an arbitrary antiderivative. Then there exist

B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1)

which quantize κ microlocally near (xj, ξj) in the following sense:

BB′ = I +O(h∞) microlocally near (x1, ξ1),

B′B = I +O(h∞) microlocally near (x2, ξ2).
(2.3.15)

More precisely, the first statement in (2.3.15) means that BB′ = Oph(b) +

O(h∞) for some b ∈ C∞0 (T ∗M1) such that b = 1 in a neighborhood of (x1, ξ1).

If p is a symbol on T ∗M1 and P = Oph(p) is the corresponding pseudodif-

ferential operator, then Egorov’s Theorem (2.3.13) implies that

B′PB = Oph(p ◦ κ) +O(h) microlocally near (x2, ξ2). (2.3.16)

This gives rise to the following powerful technique in microlocal analysis:

choose κ such that p◦κ is in some normal form. Then the microlocal behavior

of P near (x1, ξ1) is conjugated by B,B′ to the behavior of the conjugated

operator Oph(p ◦ κ), which may be easier to analyze.

2.3.3. Semiclassical interpretation of generalized FUP. We now present a

semiclassical interpretation of Proposition 2.3.2, similarly to how Proposition 2.2.1 is

a semiclassical interpretation of Theorem 2.1.1. Let B = Bh be given by (2.3.1) where
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Φ, b satisfy conditions (1)–(3) in §2.3.1. We moreover assume that b(x, y;h) is smooth

in h ∈ [0, h0).

Assume that there exists a symplectomorphism κ : U2 → U1, where Uj ⊂ T ∗R,

(x, ξ) = κ(y, η) ⇐⇒ ξ = ∂xΦ(x, y), η = −∂yΦ(x, y). (2.3.17)

This can always be achieved if we shrink the domain U of Φ. Indeed, the right-

hand side of (2.3.17) is a two-dimensional submanifold of T ∗R2 which (as follows from

the nondegeneracy condition (2.3.2)) locally projects diffeomorphically onto the (x, ξ)

variables; the resulting κ is automatically a symplectomorphism.

Comparing the oscillatory integral expressions (2.3.1) and (2.3.11), we see that B
is a Fourier integral operator associated to κ. Take some B′ ∈ Icomp

h (κ−1), then for

each X, Y ⊂ R we have

‖ 1lX(hρ) B 1lY (hρ) B′‖L2→L2 ≤ C‖ 1lX(hρ) B 1lY (hρ) ‖L2→L2 . (2.3.18)

The right-hand side of (2.3.18) is estimated by the generalized FUP, Proposition 2.3.2,

when X, Y are δ-regular. On the left-hand side, the operator 1lX(hρ) is a quantization

of the symbol 1X(hρ)(x) (ignoring that the latter is not smooth). Using Egorov’s

Theorem (2.3.13), we see that B 1lY (hρ) B′ formally is a quantization of the symbol(
1Y (hρ) ◦ πx ◦ κ−1

)
σh(BB′), πx(x, ξ) = x. (2.3.19)

We thus introduce a quantization procedure which applies to (smoothened out) symbols

of the form (2.3.19). This procedure (more precisely, its more general version in §2.3.4

below) is crucial for the applications of FUP, since it will let us quantize classical

observables propagated for a long time under the geodesic flow.

Symbols of the type (2.3.19) lie in an anisotropic class similar to (2.2.3) and (2.2.4)

except instead of horizontal/vertical direction, they are smooth in the direction given

by the vector field dκ · ∂ξ. This motivates the following

Definition 2.3.7. Assume that U ⊂ T ∗R is an open set and L ⊂ TU is a smooth

one-dimensional foliation, i.e. to each (x, ξ) ∈ U corresponds a one-dimensional

subspace

L(x,ξ) ⊂ T(x,ξ)(T
∗R) ' R2.

Fix ρ ∈ [0, 1). We say that a function a(x, ξ;h) lies in the class Scomp
L,ρ (U) if the (x, ξ)-

support of a is contained in an h-independent compact subset of U and the following

derivative bounds hold:

|V1 . . . VjW1 . . .Wka| = O(h−ρj)

for all vector fields V1, . . . , Vj,W1, . . . ,Wk on U such that

W1, . . . ,Wk are tangent to L.

In other words, we do not lose any power of h when differentiating along L and lose

h−ρ when differentiating in other directions.
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Note that the symbol classes SL0,ρ and SL1,ρ previously introduced in (2.2.3) and (2.2.4)

correspond to the foliations

L0 = span(∂ξ), L1 = span(∂x).

Let L be some foliation on U ⊂ T ∗R and a ∈ Scomp
L,ρ (U). We define the quantization

OpLh (a) : L2(R)→ L2(R) following the steps below:

(1) If L = L0 = span(∂ξ), that is a satisfies the derivative bounds (2.2.3), then

we use the standard quantization OpL0
h (a) := Oph(a) as in §2.2.1.

(2) Assume that U is small. Then we can find an exact symplectomorphism

onto its image κ : U → T ∗R which straightens out the foliation L, so that

κ∗(L) = L0. The function a ◦ κ−1 lies in Scomp
L0

(T ∗R), so it can be quantized

using standard quantization, giving Oph(a ◦ κ−1).

If supp a is small enough then we can find Fourier integral operators

B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1) which quantize κ near supp a in the sense

of (2.3.15). We define

OpLh (a) := B′Oph(a ◦ κ−1)B. (2.3.20)

Note that if a is a nice symbol, i.e. its derivatives are bounded uniformly in h,

then by Egorov’s Theorem (2.3.16) we have OpLh (a) = Oph(a) +O(h).

(3) For the case of general a, we use a partition of unity to split it into pieces

which can be quantized using step (2).

Of course the resulting quantization is non-canonical. However the corresponding class

of operators (and the support of the corresponding full symbols) does not depend on

the specific quantization procedure used; the principal symbol is canonically defined

modulo O(h1−ρ). The constructed calculus satisfies the standard properties (1.1.3)–

(1.1.5), with powers of h in the remainders replaced by powers of h1−ρ. We refer the

reader to [DZ16, §3] and [DJ17b, Appendix] for the proofs.

The following version of Egorov’s Theorem holds: if L ⊂ TU , L′ ⊂ TU ′ are

foliations and κ : U → U ′ is an exact symplectomorphism such that κ∗(L) = L′, then

for each B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1) and a ∈ Scomp
L,ρ (U), we have

BOpLh (a)B′ = OpL
′

h (aκ) +O(h∞)L2→L2

for some aκ ∈ Scomp
L′,ρ (U ′), supp aκ ⊂ κ(supp a).

(2.3.21)

We are now ready to give the semiclassical formulation of Proposition 2.3.2:

Proposition 2.3.8. Assume that δ, ρ ∈ (0, 1) and

• U ⊂ T ∗R is an open set, ψX , ψY : U → R are smooth functions, and

{ψX , ψY } 6= 0 on U ; (2.3.22)

• LX = ker dψX , LY = ker dψY are the foliations corresponding to ψX , ψY ;
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• X, Y ⊂ R are δ-regular with constant CR on scales 0 to 1;

• aX ∈ Scomp
LX ,ρ

(U), aY ∈ Scomp
LY ,ρ

(U) and ψX(supp aX) ⊂ X(hρ), ψY (supp aY ) ⊂
Y (hρ).

Then there exists β = β(δ, CR) > max(0, 1
2
− δ) such that

‖OpLXh (aX) OpLYh (aY )‖L2(R)→L2(R) = O(hβ−2(1−ρ)) as h→ 0. (2.3.23)

Remark. Proposition 2.2.1 (for compactly supported a0, a1) is the special case when

U = T ∗R, ψX(x, ξ) = ξ, ψY (x, ξ) = x.

Proof. By a partition of unity we may reduce to the case when aX , aY are sup-

ported in a small h-independent set. There exists an exact symplectomorphism which

maps ψX to x and thus LX to the vertical foliation L0 = span(∂ξ). Conjugating by

Fourier integral operators quantizing this symplectomorphism according to (2.3.15),

and using Egorov’s Theorem 2.3.21, we reduce to the case

ψX(x, ξ) = x.

Shrinking U if necessary, we fix an exact symplectomorphism κ : U → T ∗R such that

ψY ◦ κ−1 = x and thus (ψY )∗LY = L0. Then the conjugation procedure (2.3.20) gives

OpLYh (aY ) = B′Oph(ãY )B where B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1), ãY = aY ◦ κ−1.

The symbols aX , ãY have the support property

supp aX ⊂ {x ∈ X(hρ)}, supp ãY ⊂ {x ∈ Y (hρ)}. (2.3.24)

Arguing as in the proof of Proposition 2.2.1, we estimate

‖OpLXh (aX) OpLYh (aY )‖L2→L2 = ‖Oph(aX)B′Oph(ãY )B‖L2→L2

≤ C‖Oph(aX)B′Oph(ãY )‖L2→L2

≤ C‖ 1lX(2hρ) B
′ 1lY (2hρ) ‖L2→L2 +O(h∞).

(2.3.25)

The condition {ψX , ψY } 6= 0 can be rewritten as ∂ξ(x◦κ) 6= 0. Shrinking U if necessary,

we see that the graph

{(x, y, ξ, η) ∈ T ∗R2 | (y, η) = κ(x, ξ)}

projects diffeomorphically onto the x, y variables. Therefore we can write this graph

as

{ξ = Fx(x, y), η = −Fy(x, y)}. (2.3.26)

Since κ is a symplectomorphism, the 1-form Fx dx + Fy dy is exact, that is Fx = ∂xΦ

and Fy = ∂yΦ for some function Φ(x, y). Then Φ and κ−1 are related by (2.3.17),

meaning that B′ ∈ Icomp
h (κ−1) can be written in the form (2.3.1):

B′ = Bh for some choice of the symbol b.
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The function Φ satisfies the nondegeneracy condition ∂2
xyΦ 6= 0 since (2.3.26) projects

diffeomorphically onto the (x, ξ) variables (being a graph).

Now the generalized FUP, Proposition 2.3.2, gives

‖ 1lX(2hρ) B
′ 1lY (2hρ) ‖L2→L2 = O(hβ−2(1−ρ))

which together with (2.3.25) shows (2.3.23). �

2.3.4. General microlocal FUP. We finally extend the semiclassically inter-

preted generalized FUP (Proposition 2.3.8) to higher dimensional manifolds. The

fractal directions are still one-dimensional (so Theorem 2.1.1 is still used), but we add

extra directions in which essentially nothing happens. This needs to be done for the

applications, since Proposition 2.3.8 concerns operators on R and the surfaces are two-

dimensional. The main result of this section, Theorem 2.3.1, is the version of FUP

which is used in later sections in applications.

We first discuss quantization of rough symbols in higher dimensions, generalizing

the constructions of §§2.2.1,2.3.3. Fix ρ ∈ [0, 1). We start with the following general-

ization of (2.2.3): we say that

a(x, ξ;h) ∈ SL0,ρ if |∂αx∂
β
ξ a| = O(h−ρ|α|). (2.3.27)

The standard quantization Oph(a) of symbols in SL0,ρ enjoys similar properties to the

ones in §2.2.1 and will be used as a model for quantizing more general anisotropically

bounded symbols.

For the general case, we consider pullbacks of compactly supported symbols in SL0,ρ

by some symplectomorphism κ. Such symbols are regular along the foliation κ−1
∗ L0

where L0 is the vertical foliation on T ∗Rn:

L0 = ker(dx) = span(∂ξ1 , . . . , ∂ξn).

This leads to the following

Definition 2.3.9. Let U ⊂ T ∗M be an open set. A Lagrangian foliation L is

a smooth map

(x, ξ) ∈ U 7→ L(x,ξ) ⊂ T(x,ξ)(T
∗M)

such that:

• L is integrable, i.e. the Lie bracket of any two vector fields tangent to L is

also tangent to L;

• each subspace L(x,ξ) is Lagrangian.

Remark. Any Lagrangian foliation can be locally mapped by a symplectomorphism

to L0. In particular, one can always locally write

L = ker d(ψ1, . . . , ψn) := ker(dψ1) ∩ · · · ∩ ker(dψn)
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where ψ1, . . . , ψn : U → R have linearly independent differentials and {ψj, ψk} = 0.

To each Lagrangian foliation L corresponds the symbol class Scomp
L,ρ (U) similarly to

Definition 2.3.7. Following the procedure described in §2.3.3, we define a quantization

procedure

a ∈ Scomp
L,ρ (U) 7→ OpLh (a) : L2(M)→ L2(M).

The general microlocal FUP we use is

Theorem 2.3.1. Assume that ρ, δ ∈ (0, 1), M is an n-dimensional manifold, and

• U ⊂ T ∗M is an open set, ψX , ψY , ψ2, . . . , ψn : U → R are smooth functions

with linearly independent differentials, and

{ψX , ψY } 6= 0; {ψX , ψj} = {ψY , ψj} = {ψj, ψk} = 0 on U ; (2.3.28)

• LX = ker d(ψX , ψ2, . . . , ψn), LY = ker d(ψY , ψ2, . . . , ψn) are the corresponding

Lagrangian foliations;

• X, Y ⊂ R are δ-regular with constant CR on scales 0 to 1;

• aX ∈ Scomp
LX ,ρ

(U), aY ∈ Scomp
LY ,ρ

(U) and ψX(supp aX) ⊂ X(hρ), ψY (supp aY ) ⊂
Y (hρ).

Then there exists β = β(δ, CR) > max(0, 1
2
− δ) such that

‖OpLXh (aX) OpLYh (aY )‖L2(M)→L2(M) = O(hβ−2(1−ρ)) as h→ 0. (2.3.29)

Proof. We follow the proof of Proposition 2.3.8. First of all, using a partition of

unity and conjugating by appropriately chosen Fourier integral operators, we reduce

to the case when M = Rn and

ψX(x, ξ) = x1, ψj(x, ξ) = xj.

Fix an exact symplectomorphism κ : U → T ∗Rn such that

ψY = x1 ◦ κ; xj = xj ◦ κ, j = 2, . . . , n.

We write vectors in Rn as (x1, x
′) where x′ ∈ Rn−1. Since κ is a symplectomorphism,

we have

∂ξ′(x1 ◦ κ) = ∂ξ′(ξ1 ◦ κ) = 0, ∂ξ′(ξ
′ ◦ κ) = I.

Similarly to (2.3.25), we estimate for any B′ ∈ Icomp
h (κ−1) which is elliptic near supp aY

‖OpLXh (aX) OpLYh (aY )‖L2→L2 ≤ C‖ 1lX(2hρ)(x1)B′ 1lY (2hρ)(x1)‖L2→L2 +O(h∞). (2.3.30)

Shrinking U if necessary and using the condition {ψX , ψY } 6= 0, we see that the graph

{(x, y, ξ, η) ∈ T ∗R2n | (y, η) = κ(x, ξ)} (2.3.31)

projects diffeomorphically onto the x, y1, η
′ variables. Thus we write this graph as

{ξ1 = Fx(x, y1), ξ′ = η′ +G(x, y1), y′ = x′, η1 = −Fy(x, y1)}. (2.3.32)
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Since κ is an exact symplectomorphism, the restriction to (2.3.32) of the 1-form ξ1 dx1+

ξ′ dx′ − η1 dy1 + y′ dη′ is exact. That is, we have for some function Φ(x, y1)

Fx = ∂x1Φ, Fy = ∂y1Φ, G = ∂x′Φ.

Moreover, since κ is a symplectomorphism, we have ∂2
x1y1

Φ 6= 0. The phase function

Ψ(x, y, θ) = Φ(x, y1) + 〈x′ − y′, θ〉, θ ∈ Rn−1

parametrizes the symplectomorphism κ−1. Assuming without loss of generality that

the symbol of B′ depends only on x, y1, we write

B′f(x) = (2πh)−(n−1/2)

∫
R2n−1

e
i
h

Ψ(x,y,θ)b(x, y1;h)f(y) dydθ,

that is, using Fourier inversion formula,

B′f(x1, x
′) = (2πh)−1/2

∫
R
e
i
h

Φ(x,y1)b(x, y1; θ)f(y1, x
′) dy1.

For each x′, denote by Bx′ the operator on L2(R) given by

Bx′f(x1) = (2πh)−1/2

∫
R
e
i
h

Φ(x1,x′,y1)b(x1, x
′, y1; θ)f(y1) dy1.

Then

(B′f)(•, x′) = Bx′(f(•, x′)).
Now, the generalized uncertainty principle (Proposition 2.3.2) gives uniformly in x′

‖ 1lX(2hρ) Bx′ 1lY (2hρ) ‖L2(R)→L2(R) = O(hβ−2(1−ρ)).

It follows that

‖ 1lX(2hρ)(x1)B′ 1lY (2hρ)(x1)‖L2(Rn)→L2(Rn) = O(hβ−2(1−ρ))

and combining this with (2.3.30) we get (2.3.29). �

Exercise 2.3.10. Let Φ(x1, y1;x′) be the function constructed in the proof of The-

orem 2.3.1. Show that for all (x, ξ) ∈ U we have

∂2
x1y1

Φ(ψX(x, ξ), ψY (x, ξ);ψ2(x, ξ), . . . , ψn(x, ξ)) = − 1

{ψX , ψY }(x, ξ)
.

Deduce from here that for any x1, y1, x̃1, ỹ1, x
′, we have

Φ(x1, y1;x′)− Φ(x̃1, y1;x′)− Φ(x1, ỹ1;x′) + Φ(x̃1, ỹ1;x′) =

∫
γ

ω

where ω is the symplectic form and γ is any simple embedded rectangle in T ∗M whose

4 sides lie on the submanifolds

{ψX = x1}, {ψY = y1}, {ψX = x̃1}, {ψY = ỹ1}

intersected with {(ψ2, . . . , ψn) = x′}.





CHAPTER 3

From FUP to eigenfunction control

3.1. Local dynamics of the geodesic flow

To prove Proposition 3.2.2, we first need to understand microlocal properties of

the operators A1(t) when |t| ≤ ρ log(1/h). Recall that by Egorov’s Theorem A1(t) =

Oph(a1 ◦ ϕt) +O(h) as long as t is bounded independently of h. However we need to

take t growing with h and this merits a separate discussion. The proof of Egorov’s

Theorem, sketched in (1.1.11), uses only basic properties of the quantization procedure,

specifically the commutator formula. Thus the main difficulty with extending it to

larger times is the ability to quantize the propagated symbol a1 ◦ϕt. It turns out that

this symbol lies in an anisotropic class similar to (2.2.3), (2.2.4).

We use the stable/unstable decomposition, which here is given by the frame

Hp, D, U−, U+ ∈ C∞(T ∗M \ 0;T (T ∗M \0))

where

• Hp is the generator of the homogeneous geodesic flow ϕt;

• D = ξ ·∂ξ is the generator of dilations on the fibers of T ∗M , which is preserved

by the flow ϕt;

• U− is the unstable horocyclic vector field, having the property

dϕt(x, ξ) · U−(x, ξ) = et U−(ϕt(x, ξ)), (3.1.1)

that is U− grows exponentially along the geodesic flow;

• U+ is the stable horocyclic vector field, having the property

dϕt(x, ξ) · U+(x, ξ) = e−t U+(ϕt(x, ξ)), (3.1.2)

that is U− decays exponentially along the geodesic flow.

See for instance [TODO] for the definition of the vector fields U±.1

Using (3.1.1) and (3.1.2), we get the derivative bounds

|Hk0
p D

k1U
k−
− U

k+

+ (a ◦ ϕt)| = O(e(k−−k+)t). (3.1.3)

1For hyperbolic surfaces the vector fields U± are given by explicit formulas and are smooth. For

general negatively curved surfaces the analogues of U± are merely Hölder continuous. This lack of

regularity is the main reason we carry out the arguments in constant curvature.

43
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So if for instance t → ∞, then the unstable derivatives of the propagated symbol

grow exponentially but the rest of the derivatives stay bounded. This means that as

long as t ≥ 0 is bounded by the Ehrenfest time2 ρ log(1/h), the symbol a ◦ ϕt satisfies

derivative bounds

|Hk0
p D

k1U
k−
− U

k+

+ (a ◦ ϕt)| = O(h−ρ(k−+k1)). (3.1.4)

We denote by SLs,ρ the class of symbols (compactly supported on T ∗M \ 0) which

satisfy bounds (3.1.4). Here Ls and Lu denote the weak stable and unstable foliations:

Ls := span(Hp, U+), Lu := span(Hp, U−).

Symbols in the class SLs,ρ do not grow when differentiated along the leaves of Ls and

are allowed to grow by h−ρ when differentiated in other directions. It may be useful

to think of the support of such a symbol as a union of hρ-neighborhoods of local weak

stable leaves. Similarly for negative times, if −ρ log(1/h) ≤ t ≤ 0 then a ◦ ϕt lies in

the class SLu,ρ defined by replacing k− by k+ in (3.1.4).

There exist quantization procedures for symbols in the classes SLs,ρ and SLu,ρ:

a ∈ SL,ρ 7→ OpLh (a) : L2(M)→ L2(M), L ∈ {Ls, Lu}.

This quantization procedure is constructed in [DZ16, §3]. Roughly speaking it works

as follows. Take L ∈ {Lu, Ls}. Then the family of subspaces L gives rise to a foliation

of T ∗M with Lagrangian leaves, which means that near each point of T ∗M \ 0 we can

find a symplectomorphism κL : T ∗M → T ∗R2 which sends L to the vertical foliation:

(κL)∗(L) = L0 = span(∂ξ1 , ∂ξ2). (3.1.5)

The symplectomorphism κL can be quantized by a Fourier integral operator (see [Zw12,

§11.2]), which we denote by

BL : L2(M)→ L2(R2). (3.1.6)

We then define for a ∈ SL,ρ

OpLh (a) := B−1
L Oph(a ◦ κ−1

L )BL : L2(M)→ L2(M)

where a ◦ κ−1
L is a symbol on T ∗R2 satisfying the anisotropic bound (2.2.3), and it is

quantized using the standard procedure from (2.2.1).

The quantization procedure OpLh satisfies asymptotic expansions for products and

adjoints if both symbols a, b lie in SL,ρ for the same choice of L. However, if one

multiplies OpLsh (a) OpLuh (b) for some a ∈ SLs,ρ, b ∈ SLu,ρ, the resulting symbol does

not lie in a pseudodifferential calculus. In fact, the norm bound on such products is

where the fractal uncertainty principle comes in the game – see [TODO] below.

2TODO regarding the Ehrenfest time
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If a ∈ SL,ρ and p is as above [TODO], then Hpa is bounded owing to (3.1.3). This

makes it possible to show the commutation rule

[h
√
−∆,OpLh (a)] = −ihOpLh ({p, a}) +O(h2−ρ).

Arguing as in (1.1.11) we obtain the following version of Egorov’s theorem:

A1(t) = OpLsh (a1 ◦ ϕt) +O(h1−ρ)L2→L2 for 0 ≤ t ≤ ρ log(1/h), (3.1.7)

A1(t) = OpLuh (a1 ◦ ϕt) +O(h1−ρ)L2→L2 for − ρ log(1/h) ≤ t ≤ 0. (3.1.8)

TODO remark about cheating with the remainder here.

3.2. The proof

We now give some ideas for how the fractal uncertainty principle (Theorem 2.1.1)

can be used to obtain the results advertised in the preceding sections (Theorems 1.1.3

and 1.2.1).

We start with Theorem 1.1.3. Let M be a compact hyperbolic surface and fix

a ∈ C∞0 (T ∗M) such that a|S∗M 6≡ 0. For simplicity we assume that 0 ≤ a ≤ 1 and

a ≡ 1 on some open nonempty set U ⊂ S∗M.

The general case can be reduced to this one via the following consequence of the

semiclassical elliptic estimate:

a, b ∈ C∞0 (T ∗M), supp a ⊂ {b 6= 0} =⇒ ‖Oph(a)u‖L2 ≤ ‖Oph(b)u‖L2 +O(h∞)‖u‖L2 .

We now introduce a pseudodifferential partition of unity induced by the partition

1 = a+ (1− a). To simplify the notation below, denote

a1 := a, a2 := 1− a,

and take the operators

Aj := Oph(aj), A1 + A2 = I.

For simplicity we will assume that u is an eigenfunction. Then the statement of

Theorem 1.1.3 takes the form

‖u‖L2 ≤ C‖A1u‖L2 when 0 < h� 1, (−h2∆− 1)u = 0. (3.2.1)

Recall the wave group U(t) = e−it
√
−∆. Since u is an eigenfunction, we have U(t)u =

e−it/hu. Denote

Aj(t) := U(−t)AjU(t).

Then we control A1(t)u as follows:

‖A1(t)u‖L2 = ‖A1U(t)u‖L2 = ‖A1u‖L2 . (3.2.2)
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The proof of Theorem 1.1.3 uses the operators A1(t) with |t| ≤ log(1/h), that is time

will grow as logarithm of the frequency. More specifically, define

N1 := bρ log(1/h)c,

and consider the partition of unity I = AX + AY where

AX := A2(N1) · · ·A2(1)A2(0)A2(−1) · · ·A2(−N1),

AY :=

N1∑
`=−N1

A2(N1) · · ·A2(`+ 1)A1(`).
(3.2.3)

The function AYu is controlled as follows (here we use the norm bound ‖A2‖L2→L2 =

1 +O(h1/2), see [Zw12, Theorem 5.1]):

‖AYu‖L2 ≤
N1∑

`=−N1

‖A1(`)u‖L2 ≤ C log(1/h)‖A1u‖L2 . (3.2.4)

The right-hand side here is almost what we want except for the extra log(1/h) factor

which would have to be put into the right-hand side of (1.1.15). This would have

disastrous effects for some applications, for instance Theorem 1.1.5 would no longer

follow. To remove the logarithmic factor, we need to revise the definition of the oper-

ators AX , AY in a way inspired by [An08], by fixing small α > 0 and putting into AX
products of the form

Aw = AwN1
(N1) · · ·Aw−N1

(−N1)

for words w = wN1 . . . w−N1 such that at most αN1 of the letters wN1 , . . . , w−N1 are

equal to 1. (This definition has to be further modified, see [DJ17b, TODO].) Then

AYu will be the sum over words which have at least αN1 letters equal to 1, and this

can be estimated by just ‖A1u‖L2 , without the log factor. As for AXu, the number of

words featured in AX is at most h−4
√
α by Stirling’s formula, so for small enough α > 0

depending on the fractal uncertainty exponent β, the estimate (3.2.6) below still gives

decay with h. We do not provide a detailed argument for removing the log factor here,

instead referring the reader to [DJ17b].

Exercise 3.2.1. For general u (i.e. not an eigenfunction) revisit (3.2.2) and (3.2.4)

to obtain

‖AYu‖L2 ≤ C log(1/h)‖A1u‖L2 + C
log(1/h)2

h
‖(−h2∆− 1)u‖L2 .

This explains (modulo the extra log(1/h) factor discussed above) the second term on

the right-hand side of (1.1.15).

It remains to estimate AXu. This is done by the following proposition, whose proof

based on fractal uncertainty principle is sketched in §??. Note that this proposition

never uses that u is an eigenfunction.
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Proposition 3.2.2. There exists β > 0 depending only on M and the set U
from [TODO] such that

‖AX‖L2→L2 ≤ Chβ−2(1−ρ) + Ch1−ρ. (3.2.5)

Choosing ρ < 1 sufficiently close to 1 (it is enough to take 1 − ρ = β/3), we see

that

‖AXu‖L2 ≤ Ch1−ρ‖u‖L2 . (3.2.6)

Together with the version of (3.2.4) which does not have the log(1/h) factor this gives

‖u‖L2 ≤ ‖AXu‖L2 + ‖AYu‖L2 ≤ C‖A1u‖L2 + Ch1−ρ‖u‖L2 .

The last term on the right-hand side can be removed for small h, giving Theorem 1.1.3.

3.3. Global dynamics and end of the proof

We now sketch the proof of Proposition 3.2.2 using the fractal uncertainty principle.

By (3.1.7), (3.1.8), different directions of propagation lead to operators in different

calculi. We thus write AX as a product:

AX = A−A+, A− = A1(N1) · · ·A1(1)A1(0), A+ = A1(1) · · ·A1(−N1).

Combining (3.1.7), (3.1.8), and the product rule for the SL,ρ calculus, we have

A− = OpLsh (a−) +O(h1−ρ)L2→L2 , a− :=

N1∏
`=0

(a1 ◦ ϕ`);

A+ = OpLuh (a+) +O(h1−ρ)L2→L2 , a+ :=

N1∏
`=1

(a1 ◦ ϕ−`).

Therefore to prove Proposition 3.2.2 it suffices to show that

‖OpLsh (a−) OpLuh (a+)‖L2→L2 ≤ Chβ−2(1−ρ). (3.3.1)

We are finally ready to explain where the fractal structure appears, by establishing a

porosity property for the supports of a−, a+. We use the following definition:

Definition 3.3.1. Let ν, h > 0. A set Ω ⊂ R is called ν-porous up to scale h if

for each interval I ⊂ R such that h ≤ |I| ≤ 1, there exists an interval J ⊂ I such that

|J | = ν|I| and J ∩ Ω = ∅.

Porous sets need not be δ-regular, however they can be embedded into δ-regular

sets for some δ > 1:

Lemma 3.3.2. Let Ω ⊂ [0, 1] be ν-porous up to scale h. Then we have Ω is contained

in the h-neighborhood X(h) of some set X ⊂ [0, 1] which is δ-regular with constant CR
on scales 0 to 1, where δ = δ(ν) < 1 and CR = CR(ν).
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Proof. TODO

�

Therefore, the fractal uncertainty principle holds with some β = β(ν) > 0 for sets

X, Y which are ν-porous up to scale h.

For small τ > 0 and (x, ξ) ∈ S∗M , denote

W τ
±(x, ξ) := {es1Hp+s2U±+s3D(x, ξ) : |s1|+ |s2|+ |s3| ≤ τ}.

We use the microlocal version of FUP from Proposition 2.2.1, which holds for X, Y

which are ν-porous up to scale hρ. This crucial porosity property for supp a± is given

by

Lemma 3.3.3. There exist ν = ν(U) > 0 and τ = τ(U) > 0 such that for each

(x, ξ) ∈ S∗M , the sets

Ω±(x, ξ) := {s ∈ R | W τ
∓(esU±(x, ξ)) ∩ supp a± 6= ∅}

are ν-porous up to scale hρ.

Proof. We just consider the case τ = 0 where

Ω±(x, ξ) = {s ∈ R | esU±(x, ξ) ∈ supp a±}

TODO the rest �

Lemma 3.3.3 shows that by a partition of unity we may assume that for some

(x0, ξ0) ∈ S∗M
supp a± ⊂

⋃
s∈X±

W τ
∓(esU±(x0, ξ0))

where X± ⊂ [0, 1] are ν-porous up to scale hρ. In other words, supp a± have the

following structure:

• supp a+ is contained in a union of homogeneous weak unstable leaves indexed

by a ν-porous set;

• supp a− is contained in a union of homogeneous weak stable leaves indexed

by a ν-porous set.

Now we can reduce (3.3.1), and thus Proposition 3.2.2, to Proposition 2.2.1, or rather

its version with a different phase.
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Application to spectral gaps

4.1. Localization of resonant states

We now explain how the fractal uncertainty principle is used to prove the spectral

gap in Theorem 1.2.1. Let M be a convex co-compact hyperbolic surface. To show

that it has an essential spectral gap of some size β, one needs to exclude existence

of resonances λ with Imλ ≥ −β and large Reλ. (One also needs the polynomial

resolvent bound, which follows from the proof of resonance free region, but is not

presented here.) To each resonance corresponds a resonant state u ∈ C∞(M), which

solves the equation (
−∆− 1

4
− λ2

)
u = 0 (4.1.1)

and satisfies the outgoing condition in each funnel end. [TODO say a bit more about

this condition and about normalization of u, and why we can apply the wave group.

Use a basic 1D case as an example.] Thus to show that λ cannot be a resonance it

suffices to prove that the only outgoing solution to (4.1.1) is u ≡ 0.

Writing

h := (Reλ)−1, ν := − Imλ,

and using semiclassical rescaling, we see that u solves the equation

(−h2∆− ω2)u = 0, ω :=

√
(1− ihν)2 +

h2

4
= 1− ihν +O(h2). (4.1.2)

We will assume from now on that ω = 1− ihν.

By elliptic estimate, we see that u is concentrated on S∗M in the following sense:

supp a ∩ S∗M = ∅ =⇒ ‖Oph(a)u‖ = O(h∞)‖u‖.

As before, we use the wave group U(t) = e−it
√
−∆ : L2(M)→ L2(M). Then

U(t)u = e−itω/hu. (4.1.3)

This gives the following version of propagation of singularities:

Lemma 4.1.1. Assume that a, b ∈ C∞0 (T ∗M \ 0) and for some t ≥ 0

ϕ−t(supp a) ⊂ {b 6= 0}.
49
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Then

‖Oph(a)u‖ ≤ Ceνt‖Oph(b)u‖+O(h∞)‖u‖.
Here eνt can be absorbed into the constant but we would like to keep it since we will

later take t depending on h.

Proof. We will only do the O(h) remainder. We write

‖U(−t) Oph(a)U(t)u‖ = ‖Oph(a)U(t)u‖ = ‖e−itω/h Oph(a)u‖ = e−νt‖Oph(a)u‖.

Therefore

‖Oph(a)u‖ = eνt‖U(−t) Oph(a)U(t)u‖.
Now by Egorov’s Theorem we have U(−t) Oph(a)U(t) = Oph(a ◦ ϕt) + O(h) and

supp(a ◦ ϕt) ⊂ {b 6= 0}. Thus by ellipticity

‖U(−t) Oph(a)U(t)u‖ ≤ C‖Oph(b)u‖+O(h)‖u‖.

Combining these formulas, we get the needed bound. �

We now introduce the incoming/outgoing tails Γ± ⊂ T ∗M \ 0 and the trapped

set K:

Γ± := {(x, ξ) ∈ T ∗M \ 0 | ϕt(x, ξ) 6→ ∞ as t→ ∓∞}, K := Γ+ ∩ Γ−.

Note that Γ± are closed and K ∩ S∗M is compact, in fact it lies inside the convex

core (the region outside of all the funnels). The outgoing condition on u is used in the

following lemma which reduces analysis to a compact set:

Proposition 4.1.2. Let u be an outgoing solution to (4.1.2). Then:

(1) Assume that a ∈ C∞0 (T ∗M) is h-independent and supp a ∩ Γ+ ∩ S∗M = ∅.
Then

‖Oph(a)u‖ = O(h∞)‖u‖. (4.1.4)

(2) Assume that b ∈ C∞0 (T ∗M) is h-independent and K ∩ S∗M ⊂ {b 6= 0}. Then

for h� 1

‖u‖ ≤ C‖Oph(b)u‖. (4.1.5)

Proof. Complicated, using Vasy [Va13a, Va13b]. Define the backwards directly

escaping set E− ⊂ T ∗M \ 0 as follows: (x, ξ) ∈ E− if

• x lies in some funnel end of M , and

• Hpr(x, ξ) ≤ 0 where r is a funnel coordinate.

We have the following dynamical statements:

(1) if (x, ξ) ∈ E−, then the geodesic ray ϕt(x, ξ), t ≤ 0, escapes to infinity while

staying inside E−;
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(2) if (x, ξ) ∈ T ∗M \ 0 and (x, ξ) /∈ Γ+, then ϕt(x, ξ) ∈ E− for sufficiently large

negative t;

(3) if (x, ξ) ∈ Γ+, then ϕt(x, ξ)→ K as t→ −∞.

The basic input from the outgoing condition is the following statement:

‖Oph(a)u‖ = O(h∞)‖u‖ if supp a ⊂ E−. (4.1.6)

[TODO basic 1D case]

Now we prove (4.1.4) and (4.1.5) as follows:

• Assume first that supp a ∩ S∗M ∩ Γ+ = ∅. By the elliptic estimate and a

partition of unity we may assume that supp a∩Γ+ = ∅. Then, since supp a is

compact, there exists t and ã such that

ϕ−t(supp a) ⊂ {ã 6= 0}, supp ã ⊂ E−.

Then

‖Oph(a)u‖ ≤ C‖Oph(ã)u‖+O(h∞)‖u‖ = O(h∞)‖u‖.

• Assume now that K ∩ S∗M ⊂ {b 6= 0}. First take arbitrary a = a(x) ∈
C∞0 (M). Then we can break a into two pieces: a = a1 + a2 where supp a ∩
Γ+ ∩ S∗M = ∅ and ϕ−t(supp a2) ⊂ {b 6= 0} for some t ≥ 0. Estimating

Oph(a1)u as before and Oph(a2)u by propagation of singularities, we see that

‖Oph(a)u‖L2 ≤ Ceνt‖Oph(b)u‖+O(h∞)‖u‖.

Now, the entire u can be estimated by Oph(a)u if the support of a is large

enough (using the outgoing condition again). �

We now take h-dependent cutoffs. Fix χ ∈ C∞0 (T ∗M \ 0) such that χ = 1 near

K ∩ S∗M and put

χ± := χ(χ ◦ ϕ∓T ), T := ρ log(1/h).

Then χ+ ∈ SLu,ρ and χ− ∈ SLs,ρ. Moreover, suppχ± ⊂ Γ±(hρ). Then Proposition 4.1.2

can be upgraded to the following statements:

Oph(χ)u = OpLuh (χ+)u+O(h∞)‖u‖, (4.1.7)

‖u‖ ≤ CeνT‖OpLsh (χ−) Oph(χ)u‖. (4.1.8)

To see (4.1.7), (4.1.8), we argue as in the proofs (4.1.4), (4.1.5), using propagation of

singularities for time T and the following two statements:

• for any (x, ξ) ∈ supp(χ− χ+), ϕ−T (x, ξ) lies in some fixed compact set which

does not intersect Γ+ ∩ S∗M ;

• for any (x, ξ) in a small enough h-independent neighborhood of K, ϕ−T (x, ξ)

lies in {χ− 6= 0} ∩ {χ 6= 0}.
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Combining (4.1.7) and (4.1.8), we get

‖u‖ ≤ Ch−ν‖OpLsh (χ−) OpLuh (χ+)u‖.

We use the fractal uncertainty principle to estimate OpLsh (χ−) OpLuh (χ+). It shows that

there exists β > max(0, 1
2
− δ) such that

‖OpLsh (χ−) OpLuh (χ+)‖L2→L2 ≤ Chβ−2(1−ρ).

But then

‖u‖ ≤ Ch−ν+β−2(1−ρ)‖u‖
and if ν < β, then we can take ρ close enough to 1 to get a contradiction.

4.2. The limit set and end of proof

To get the fractal structure for suppχ±, we lift M to the covering space H2 and

use the maps

B± : T ∗(H2 \ 0)→ S1

which map (x, ξ) to the initial and terminal point of the geodesic ϕt(x, ξ) on H2. Take

the limit set ΛΓ ⊂ S1. Then

B∓(suppχ±) ⊂ ΛΓ(hρ).

The set ΛΓ is δ-regular as proved by Sullivan.



CHAPTER 5

A simple model: FUP for discrete Cantor sets

In this section we study discrete fractal uncertainty principle for Cantor sets, fol-

lowing [DJ16]. The proofs in this section are short and only use elementary tools

which makes it a nice introduction to the subject. However, many phenomena seen in

the case of Cantor sets are also present for more general fractal uncertainty principles,

and the proofs in this special case can be thought of as a ‘baby case’ of the general

proofs.

We next give an application of FUP for Cantor sets to spectral gaps for open

quantum baker’s maps, which are a simple model of quantum chaos that can be studied

using elementary harmonic analysis and are also easy to model numerically.

5.1. Definition and basic properties

We use the following notation from discrete harmonic analysis:

• Take large N ∈ N. This is the size of the matrices studied and it is also

the frequency of oscillation. The relation to the semiclassical parameter h is

N = (2πh)−1. We are interested in the limit N →∞.

• Denote ZN := {0, . . . , N − 1} = Z/(NZ), we use the ring structure of ZN .

• Denote `2
N := `2(ZN) = CN , we use the inner product

〈u, v〉`2N =
∑
j∈ZN

u(j)v(j).

• Define the discrete Fourier transform

FN : `2
N → `2

N , FNu(j) =
1√
N

∑
`∈ZN

exp
(
− 2πij`

N

)
u(`),

it is a unitary operator.

• For a subset X ⊂ ZN , denote by 1lX : `2
N → `2

N the multiplication operator by

the indicator function of X, that is

(1lX u)(j) =

{
u(j), j ∈ X;

0, j /∈ X.
53
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• For u ∈ `2
N , define its support by

suppu := {j ∈ ZN | u(j) 6= 0}.

• For X ⊂ ZN , denote by |X| the number of elements in X.

• For X ⊂ ZN and ` ∈ ZN , denote

X + ` := {j + ` | j ∈ X}

where addition is in the group ZN .

We are now ready to define the uncertainty principle:

Definition 5.1.1. Assume that X = X(N), Y = Y (N) are families of subsets of

ZN . We say that X, Y satisfy the uncertainty principle with exponent β if

‖ 1lX FN 1lY ‖`2N→`2N = O(N−β) as N →∞. (5.1.1)

Remarks. 1. More generally one can consider a sequence of values of N tending to

infinity. This is what we will do for Cantor sets later, putting N = Mk where M is

fixed and k →∞.

2. In terms of linear algebra, ‖ 1lX FN 1lY ‖ is the norm of the matrix obtained from

the matrix of FN by only keeping rows in X and columns in Y .

3. Another interpretation of (5.1.1) is the following:

‖ 1lX u‖`2N = O(N−β)‖u‖`2N for all u ∈ `2
N , supp(F∗Nu) ⊂ Y. (5.1.2)

Here are some basic properties of the norm in (5.1.1):

• Trivial bound:

‖ 1lX FN 1lY ‖`2N→`2N ≤ 1. (5.1.3)

• Volume bound:

‖ 1lX FN 1lY ‖`2N→`2N ≤ ‖ 1lX FN 1lY ‖HS =

√
|X| · |Y |

N
. (5.1.4)

Here ‖A‖HS is the Hilbert–Schmidt norm of the matrix A = (aj`) : `2
N → `2

N ,

defined by

‖A‖2
HS =

∑
j,`

|aj`|2.

In particular, if |X| = |Y | = 1 then X, Y satisfy the uncertainty principle

with β = 1/2.

• Lower bound: if X, Y 6= ∅ then

‖ 1lX FN 1lY ‖`2N→`2N ≥
√

max(|X|, |Y |)
N

. (5.1.5)

To see this, it suffices to compute the `2 norms of rows and columns of the

corresponding matrix.
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• Symmetry: ‖ 1lX FN 1lY ‖`2N→`2N = ‖ 1lY FN 1lX ‖`2N→`2N .

• Invariance under circular shifts : for any j, ` ∈ ZN

‖ 1lX+j FN 1lY+` ‖`2N→`2N = ‖ 1lX FN 1lY ‖`2N→`2N . (5.1.6)

To see this, we use that the shift operator by ` is conjugated by the Fourier

transform to the multiplication operator by the character e`(j) = e−2πij`/N .

• Monotonicity : if X ⊂ X ′, Y ⊂ Y ′ then

‖ 1lX FN 1lY ‖`2N→`2N ≤ ‖ 1lX′ FN 1lY ′ ‖`2N→`2N .

• Triangle inequality : if X ⊂ X1 ∪X2 then

‖ 1lX FN 1lY ‖`2N→`2N ≤ ‖ 1lX1 FN 1lY ‖`2N→`2N + ‖ 1lX2 FN 1lY ‖`2N→`2N
and similarly if we take Y ⊂ Y1 ∪ Y2.

We finish this section with two examples of sets whose uncertainty exponents β do

not improve over the trivial bound and the volume bound:

Exercise 5.1.2 (Brick; see also Exercise 2.1.6). Fix 0 ≤ δ ≤ 1 and consider the

sets

X = Y = {0, 1, . . . , L− 1}, L := bN δc.
Show that as N →∞

‖ 1lX FN 1lY ‖`2N→`2N ∼

{
N δ−1/2, 0 ≤ δ ≤ 1/2;

1, 1/2 ≤ δ ≤ 1.

Exercise 5.1.3 (Subgroup). Assume that N = N1 · N2 and let X, Y be additive

subgroups of ZN with |X| = N1, |Y | = N2. Show that ‖ 1lX FN 1lY ‖`2N→`2N = 1.

5.2. Cantor sets and fractal uncertainty principle

We now state an uncertainty principle for the special class of discrete Cantor sets,

which are basic examples of (discretized) fractal sets. To define these, fix

• an integer M ≥ 3, called the base, and

• a nonempty subset A ⊂ {0, . . . ,M − 1}, called the alphabet.

For an integer k ≥ 1, called the order, put

N := Mk, Ck :=
{
a0 + a1M + · · ·+ ak−1M

k−1 | a0, . . . , ak−1 ∈ A} ⊂ ZN . (5.2.1)

In other words, Ck is the set of numbers of length k base M with digits in A. Note

that |Ck| = |A|k = N δ where the dimension δ is defined by

δ :=
log |A|
logM

∈ [0, 1].
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We have 0 < δ < 1 except in the trivial cases |A| = 1 and |A| = M . The number δ is

the Hausdorff dimension of the limiting Cantor set

C∞ :=
⋂
k≥1

⋃
j∈Ck

[ j

Mk
,
j + 1

Mk

]
⊂ [0, 1].

The standard (mid-third) Cantor set corresponds to M = 3, A = {0, 2}.

Exercise 5.2.1. Show that there exists some constant CR = CR(M) such that:

• for each k, the set Ck, considered as a subset of Z, is δ-regular (in the sense

of Definition 2.1.3) with constant CR on scales 1 to Mk;

• the set C∞ is δ-regular with constant CR on scales 0 to 1.

Find a sequence of pairs (M,A) with M → ∞, δ = 1/2, such that the best regularity

constant CR goes to infinity.

We now study the uncertainty principle in the sense of Definition 5.1.1 with X =

Y = Ck. The upper bounds (5.1.3), (5.1.4) give

‖ 1lCk FN 1lCk ‖`2N→`2N ≤ N−βmin where βmin := max
(

0,
1

2
− δ
)

while the lower bound (5.1.5) gives

‖ 1lCk FN 1lCk ‖`2N→`2N ≥ N−βmax where βmax :=
1− δ

2
.

Our uncertainty principle improves over βmin in the entire region 0 < δ < 1:

Theorem 5.2.1. Assume that 0 < δ < 1. Then there exists

β = β(M,A) > max
(

0,
1

2
− δ
)

such that

‖ 1lCk FN 1lCk ‖`2N→`2N = O(N−β) as k →∞. (5.2.2)

Remarks. 1. One could also consider X, Y to be Cantor sets with same base M and

two different alphabets A,A′, assuming |A| = |A′|, and the proof of Theorem 5.2.1

still applies.

2. Exercises 5.1.2 and 5.1.3 show that the exponent βmin cannot be improved if we

only use the size of Ck. The proof of Theorem 5.2.1 uses the fractal structure of the

Cantor set on every scale.

3. The best exponent β for which (5.2.2) holds (more precisely, the supremum of all β

for which (5.2.2) holds) can be approximated numerically due to the submultiplicativity

property discussed in the next section, see (5.3.2). The dependence of β on the alphabet

can be quite complicated, see Figure 1. There exist various lower and upper bounds

on β depending on M, δ, see [DJ16, §3].
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Figure 1. Numerically approximated fractal uncertainty exponents for

all possible alphabets with M ≤ 10 and 0 < δ < 1. Here the x axis

represents δ and the y axis represents β. The solid black line is β =

max(0, 1
2
− δ) and the dashed line is β = 1−δ

2
. See [DJ16, Figure 3] for

details.

Exercise 5.2.2. Show that (5.2.2) holds with β = βmax = 1−δ
2

in the following

cases:
M = 6, A = {1, 4};
M = 8, A = {2, 4};
M = 8, A = {1, 2, 5, 6}.

The alphabets with this property are so-called spectral sets and classifying them is

closely related to Fuglede’s conjecture – see [DJ16, §3.5].

We finish this section with two open problems:

Problem 5.2.3. Fix δ∞ ∈ (1/2, 1). Find a sequence of pairs (Mj,Aj) such that

δ(Mj,Aj)→ δ∞, β(Mj,Aj)→ 0.

(For δ∞ ∈ (0, 1/2], such a sequence with β(Mj,Aj)→ 1
2
− δ is constructed in [DJ16,

Proposition 3.17].)

Problem 5.2.4. Fix M,A with 0 < δ < 1, fix α ∈ [1,M), and put

N := bαMkc.

Show that there exists β > max(0, 1
2
− δ) depending only on δ such that for a

generic choice of α we have ‖ 1lCk FN 1lCk ‖`2N→`2N = O(N−β) as k →∞. (Existence of
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β depending on M,A follows from general fractal uncertainty principles, see [DJ17a,

§5]. One expects the statement to be false for α = 1, see Problem 5.2.3.)

5.3. Proof of fractal uncertainty principle

We now give a proof of Theorem 5.2.1, following [DJ16, §3]. This proof is greatly

simplified by the following property which uses the special structure of Cantor sets:

Lemma 5.3.1 (Submultiplicativity). Put

rk := ‖ 1lCk FN 1lCk ‖`2N→`2N .

Then for all k1, k2 we have

rk1+k2 ≤ rk1 · rk2 .

Proof. Denote

k := k1 + k2, Nj := Mkj , N := Mk.

We define the space

`2(Ck) = {u ∈ `2
N | suppu ⊂ Ck}.

Then rk is the norm of the operator

Gk : `2(Ck)→ `2(Ck), Gku = 1lCk FNu.

We now write Gk in terms of Gk1 ,Gk2 using a procedure similar to the one used in the

Fast Fourier Transform (FFT) algorithm. Take

u ∈ `2(Ck), v := Gku.

We associate to u, v the |A|k1 × |A|k2 matrices U, V defined as follows:

Uab = u(N1 · b+ a)

Vab = v(N2 · a+ b)

for all a ∈ Ck1 and b ∈ Ck2 . Here we use the fact that

Ck = N2 · Ck1 + Ck2 = N1 · Ck2 + Ck1 .

Note that the `2
N norms of u, v are equal to the Hilbert–Schmidt norms of U, V :

‖u‖2
`2 =

∑
a,b

|Uab|2, ‖v‖2
`2 =

∑
a,b

|Vab|2.

We now write the identity v = Gku in terms of the matrices U, V :

Vab =
1√
N

∑
p∈Ck1
q∈Ck2

exp
(
− 2πi(N2 · a+ b)(N1 · q + p)

N

)
Upq.
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Here is where a small miracle happens: the product of N2 · a and N1 · q is divisible

by N , so it can be removed from the exponential. That is,

Vab =
1√
N

∑
p,q

exp
(
− 2πiap

N1

)
exp

(
− 2πibp

N

)
exp

(
− 2πibq

N2

)
Upq.

It follows that the matrix V can be obtained from U in the following three steps:

(1) Replace each row of U by its Fourier transform Gk2 , obtaining the matrix

U ′pb =
1√
N2

∑
q

exp
(
− 2πibq

N2

)
Upq.

(2) Multiply the entries of U ′ by twist factors, obtaining the matrix

V ′pb = exp
(
− 2πibp

N

)
U ′pb.

(3) Replace each column of V ′ by its Fourier transform Gk1 , obtaining the matrix

Vab =
1√
N1

∑
p

exp
(
− 2πiap

N1

)
V ′pb.

Now, we have

‖U ′‖HS ≤ rk2‖U‖HS, ‖V ′‖HS = ‖U ′‖HS, ‖V ‖HS ≤ rk1‖V ′‖HS,

giving

‖v‖`2N ≤ rk1 · rk2 · ‖u‖`2N
which finishes the proof. �

Given Lemma 5.3.1, we see that it suffices to obtain the strict inequality

rk := ‖ 1lCk FN 1lCk ‖`2N→`2N < min(1, N δ−1/2) (5.3.1)

for just one value of k. Indeed, by Fekete’s Lemma there exists a limit

β0 = − lim
k→∞

log rk
k logM

= − inf
k≥1

log rk
k logM

. (5.3.2)

Then the uncertainty bound (5.2.2) holds with any β < β0, and (5.3.1) shows that

β0 > max(0, 1
2
− δ), implying Theorem 5.2.1.

The inequality (5.3.1) is really two inequalities, proved below:

Lemma 5.3.2. There exists k such that rk < 1.

Proof. By the trivial bound (5.1.3) we have rk ≤ 1. We argue by contradiction.

Assume that rk = 1. Then there exists

u ∈ `2
N \ {0}, ‖ 1lCk FN 1lCk u‖`2N = ‖u‖`2N .
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Since FN is unitary, this implies that

suppu ⊂ Ck, (5.3.3)

supp(FNu) ⊂ Ck. (5.3.4)

We now use the fact that discrete Fourier transform evaluates polynomials at roots of

unity. Define the polynomial

p(z) :=
∑
`∈ZN

u(`)z`.

Then

FNu(j) =
1√
N
p(e−2πij/N).

By (5.3.4) for each j ∈ ZN \ Ck we have FNu(j) = 0. It follows that the number of

roots of p is bounded below by (here we use δ < 1)

N − |Ck| ≥Mk − (M − 1)k.

On the other hand, the set ZN \ Ck contains Mk−1 consecutive numbers (specifically

aMk−1, . . . , (a + 1)Mk−1 − 1 where a ∈ ZM \ A). We shift Ck circularly (which does

not change the norm rk) to map these numbers to (M − 1)Mk−1, . . . ,Mk − 1. Then

the degree of p is smaller than (M − 1)Mk−1.

Now, for k large enough we have

Mk − (M − 1)k ≥ (M − 1)Mk−1.

Then the number of roots of p is higher than its degree, giving a contradiction. �

Lemma 5.3.3. For k ≥ 2 we have rk < N δ−1/2.

Proof. Recall from (5.1.4) that N δ−1/2 is the Hilbert–Schmidt norm of 1lCk FN 1lCk ,

while rk is its operator norm. We again arguing by contradiction, assuming that

rk = N δ−1/2. Then 1lCk FN 1lCk is a rank 1 operator; indeed, the sum of the squares of

its singular values is equal to the square of the maximal singular value. It follows that

each rank 2 minor of 1lCk FN 1lCk is equal to zero, namely

det

(
e−2πij`/N e−2πij`′/N

e−2πij′`/N e−2πij′`′/N

)
= 0 for all j, j′, `, `′ ∈ Ck.

Computing the determinant we see that

(j − j′)(`− `′) ∈ NZ for all j, j′, `, `′ ∈ Ck.

However, if k ≥ 2 we may take j = `, j′ = `′ ∈ Ck such that (here we use that δ > 0)

0 < |j − j′| < M ≤
√
N,

giving a contradiction. �
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5.4. Application to open quantum maps

TODO
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[HMR87] Bernard Helffer, André Martinez, and Didier Robert, Ergodicité en limite semi-classique,

Comm. Math. Phys. 109(1987), 313–326.

[HV16] Peter Hintz and András Vasy, The global non-linear stability of the Kerr–de Sitter family of

black holes, preprint, arXiv:1606.04014.
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[No11b] Stéphane Nonnenmacher, Spectral theory of damped quantum chaotic systems, preprint,

arXiv:1109.0930.
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[NSZ14] Stéphane Nonnenmacher, Johannes Sjöstrand, and Maciej Zworski, Fractal Weyl law for

open quantum chaotic maps, Ann. of Math.(2) 179(2014), 179–251.
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