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SEMYON DYATLOV

Abstract. These are very schematic notes for lectures given at Tsinghua in July

2016.

Setting : convex co-compact hyperbolic surfaces. I have chosen this setting because it

appears in so many different areas of mathematics and gives rise to interesting problems

for resonances, many of which still have not been answered. I will not talk about

Pollicott–Ruelle resonances since covering both kinds of resonances in four lectures is

likely to seriously confuse the audience. However, Pollicott–Ruelle resonances will be

discussed in upcoming lectures of Long Jin.

Plan:

(1) Convex co-compact hyperbolic surfaces: the geometric approach.

(2) Spectral theory of −∆g.

(3) Meromorphic continuation of (−∆g − 1
4
− λ2)−1 and resonances.

(4) Applications to wave equation. A teaser of the results: spectral gaps and

counting.

(5) The geodesic flow: hyperbolicity and the trapped set.

(6) Convex co-compact hyperbolic surfaces: the algebraic approach. Example: a

three-funnel surface.

(7) The limit set, its fractal structure, and relation to the trapped set.

(8) Spectral gap: the standard Patterson–Sullivan result.

(9) A semiclassical study of resonances. An explanation of the spectral gap using

uncertainty principle.

(10) Resonance counting and an explanation via the uncertainty principle.

References : I mostly restrict myself to one reference per topic, usually coauthored by

myself, to avoid overloading the listeners by a long list of papers. Many of these papers

are quite technical, which explains the reference to the upcoming paper with Long Jin.

Obviously, these problems have a long history of study by many mathematicians and

I refer the listeners to the books and introductions to the papers below for overviews

of the history of the subject.

• [Bo07] on hyperbolic surfaces, with focus on resonances for the infinite area

case;
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• [Bo14, BoWe] for some beautiful pictures of resonances and a numerical study;

• [DyZa] for the latest result on spectral gaps via the uncertainty principle;

• [Dy] for the latest result on Weyl laws;

• [No] for an overview of open quantum chaos;

• an upcoming paper with Long Jin on uncertainty principles/Weyl laws in a

simpler to absorb setting of open quantum maps;

• the book in progress [DyZw] for an extensive introduction to the mathematical

theory of scattering resonances.

1. Geometry of hyperbolic surfaces

I consider a hyperbolic surface, that is a complete connected oriented Riemannian

surface

(M, g), dimM = 2,

whose Gaussian curvature is equal to −1 everywhere.

There are plenty of compact hyperbolic surfaces but in these lectures I focus on

the non-compact case. All noncompact geometrically finite hyperbolic surfaces can be

broken into a compact part and finitely many infinite ends, and the infinite ends (with

two minor exceptions) can be broken into two types: funnels and cusps.

To explain what funnels and cusps are, we consider the stretched product model (a

manifold with boundary)

M = [0,∞)r × S1
θ, S1 = R/2πZ, g = dr2 + f(r)2 dθ2. (1.1)

Then M has curvature −1 if and only if f ′′ = f . We can now define funnels and cusps:

• a funnel of neck length ` > 0 is given by (1.1) with the metric

g = dr2 +
( `

2π

)2

cosh2 r dθ2.

• a cusp is given by (1.1) with the metric (for some a > 0)

g = dr2 + a2e−2r dθ2.

Thus funnels are very wide and cusps are very narrow; in particular, a cusp has a

finite area while a funnel does not. Historically, the first setting studied is finite area

surfaces, which have only cusps but no funnels. We will henceforth only study the

opposite case convex co-compact hyperbolic surfaces, defined as follows:

Definition 1.1. A convex co-compact hyperbolic surface is a noncompact hyperbolic

surface with no cusps, i.e. only funnel ends.

We note that each funnel is bordered by a closed geodesic {r = 0} of length `, which

we call its neck. In general a convex co-compact hyperbolic surface can be obtained as
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follows: one starts with a compact hyperbolic surface with totally geodesic boundary

(which is called the convex core of the resulting noncompact surface) and attaching a

funnel end along each boundary geodesic. See for instance [Bo07, Section 2.4].

A basic example of a convex co-compact hyperbolic surface is given by the hyperbolic

cylinder with neck of length 2π`:

M = Rr × S1
θ, g = dr2 + `2 cosh2 r dθ2, (1.2)

which has two funnels and a degenerate convex core.

2. Spectral theory of the Laplacian

Let (M, g) be a convex co-compact hyperbolic surface. Denote by ∆g the Laplace–

Beltrami operator on M . We know that −∆g admits a nonnegative self-adjoint exten-

sion to an operator on L2(M), and we are interested in the corresponding spectrum,

that is the set of points z ∈ C where the L2 resolvent

(−∆g − z)−1 : L2(M)→ H2(M)

is not well-defined.

For a compact manifold, the operator −∆g has discrete spectrum given by eigenval-

ues. Thus to understand the nature of the spectrum for the noncompact case we need

to see what happens in a funnel. We use the example of the hyperbolic cylinder (1.2)

with ` = 2π, where

−∆g = −∂2
r − tanh r ∂r − cosh2 r ∂2

θ .

Every u ∈ L2(M) can be expanded in Fourier series

u(r, θ) =
∑
k∈Z

uk(r)e
ikθ,

and the operator −∆g acts on Fourier coefficients as follows:

−∆gu =
∑
j∈Z

Pkuk(r)e
ikθ,

where the differential operators Pk on Rr are given by

Pk = −∂2
r − tanh r ∂r + k2 cosh−2 r.

The spectrum of −∆g is the union of the spectra of all the operators Pk.

To understand the spectrum of each Pk, we need to analyse the asymptotic behavior

as r → ±∞ of solutions to the equation (Pk − z)v = 0, for z ∈ C. Looking at the

expansions of the coefficients as r → ±∞, we see that this equation becomes{
(−∂2

r − ∂r − z)v = O(e−2|r|v), r � 1,

(−∂2
r + ∂r − z)v = O(e−2|r|v), −r � 1.
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On the left-hand side are constant coefficient ordinary differential operators, whose

solutions are given by eλ±r for r � 1 and by e−λ±r for −r � 1 where λ± are the roots

of the quadratic equation (the indicial equation)

−λ2 − λ− z = 0.

We compute the roots λ± (the indicial roots):

λ± = −1

2
±
√

1

4
− z. (2.1)

Except at a discrete set of values of z (that we are not going to worry about here) the

equation (Pk − z)v = 0 has two solutions vk± with asymptotic behavior

vk±(r) = eλ±r(1 +O(e−2r)), r → +∞. (2.2)

To see this, one can write v± as a series

vk±(r) = eλ±r
∞∑
j=0

aj,±e
−2jr, a0,± = 1,

solve for the coefficients1 aj,±, and show that the series converges for large positive r.

We see also that vk±(−r) are solutions to the equation (Pk − z)v = 0 with prescribed

asymptotic behavior as r → −∞.

The volume form on the hyperbolic cylinder is given by d volg = cosh r drdθ. This

means that

eλr ∈ L2(M+) ⇐⇒ Reλ < −1

2
, where M+ := {r ≥ 0} ⊂M.

From (2.1) we see that at least one of the functions vk± does not lie in L2(M+). Then

there are two cases:

(1) z ∈ [1/4,∞), when Reλ± = −1/2 and neither vk+ nor vk− lies in L2(M+);

(2) z /∈ [1/4,∞), when exactly one of the solutions vk± lies in L2(M+).

In case (1), we see that the equation (Pk − z)v = f does not have a solution in L2 for

a generic f ∈ C∞0 (R). Thus z lies in the spectrum. On the other hand, the equation

(Pk − z)v = 0 does not have any L2 solutions. Thus z is not an eigenvalue. We see

that [1/4,∞) lies in the purely continuous spectrum of −∆g.

In case (2), to fix notation assume that vk+ ∈ L2(M+), vk− /∈ L2(M+). Then there are

two subcases:

(1) vk+(r) and vk+(−r) are multiples of each other for some k. Then vk+(r)eikθ is an

L2 eigenfunction for −∆g at z.

1It is here that the exceptional values of z come up – for some values one ends up with division by

zero when trying to solve for the coefficients. The problem can be resolved by replacing the leading

term in (2.2) by eλ±re−2λJr for an appropriately chosen J ∈ N.
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(2) vk+(r) and vk+(−r) are not multiples of each other for all k. Then for each

f ∈ L2(M,d volg) there is a unique L2 solution to the equation (−∆g−z)u = f ,

so z does not lie in the spectrum.

Moreover, subcase (1) can only happen for z ∈ (0, 1/4) since the operator −∆g is

self-adjoint and nonnegative, and 1 /∈ L2(M). Since the resulting eigenfunctions have

exponential decay, one can use elliptic regularity to show that there are only finitely

many L2 eigenvalues in (0, 1/4). We summarize the discussion of this section in the

following result:

Theorem 1. [Bo07, Theorem 7.1] Let (M, g) be a convex co-compact hyperbolic sur-

face. Then the L2 spectrum of −∆g consists of:

(1) the continuous spectrum [1/4,∞); and

(2) finitely many (possibly none) eigenvalues in (0, 1/4).

3. Meromorphic continuation and resonances

We now introduce the main object of study in these lectures, namely resonances.

There are many different ways to view these (in particular, they appear as zeroes of

the Selberg zeta function, see [Bo07, Chapter 10] and are related to Pollicott–Ruelle

resonances of the geodesic flow, see [GHW]) but here we will take the spectral approach,

building on the previous section. Namely we explain the following

Theorem 2. [Bo07, Theorem 6.2] Let (M, g) be a convex co-compact hyperbolic sur-

face. Consider the L2 resolvent

R(λ) =
(
−∆g −

1

4
− λ2

)−1

: L2(M)→ L2(M), Imλ > 0. (3.1)

Then R(λ) admits a meromorphic continuation with poles of finite rank to an operator

R(λ) : L2
comp(M)→ L2

loc(M), λ ∈ C,

where L2
comp denotes the space of compactly supported L2 functions and L2

loc denotes

the space of functions which are locally in L2.

The poles of the meromorphic continuation R(λ) are called resonances. In the

upper half-plane, resonances correspond to the eigenvalues of −∆g in (0, 1/4). In the

lower half-plane, the situation is more complicated as we will see later.

Note that the parametrization (3.1) of the L2 resolvent corresponds well to the infor-

mation we have about the L2 spectrum: the complement to the continuous spectrum,

C \ [1/4,∞), is mapped onto the upper half-plane and the meromorphic continuation

takes place across the continuous spectrum, corresponding to λ ∈ R.
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To explain why meromorphic continuation holds, we go back to the example of the

hyperbolic cylinder (1.2). We construct the restriction Rk(λ) of the meromorphic con-

tinuation of R(λ) to the k-th Fourier mode in θ. The full resolvent can be obtained as

the direct sum of different Rk(λ), though to actually prove meromorphic continuation

one needs to analyse the asymptotics as k →∞, for instance using special functions.

Given z = 1
4

+ λ2, we choose the roots in (2.1) as follows:

λ± = −1

2
± iλ.

Fix f ∈ C∞0 (R) and consider v = Rk(λ)f . We know that for r � 1 v is equal to a

linear combination of the functions vk±(r), which behave like eiλ±r as r → +∞, and for

−r � 1 it is equal to a linear combination of the functions vk±(−r), which behave like

e−iλ±r as r → −∞.

For Imλ > 0, we have eiλ+r ∈ L2(M+) and eiλ−r /∈ L2(M+). Therefore, we should

define v = Rk(λ)f , for all λ, by the following conditions:(
Pk −

1

4
− λ2

)
v = f, (3.2)

v(r) = c±v
k
+(±r), ±r � 1, for some c± ∈ C. (3.3)

Note that vk+(r) depends holomorphically on λ. There are then two cases:

• For a discrete set of values of λ, the functions vk+(r) and vk+(−r) are multiples

of each other. Such λ form the set of resonances.

• For all other values of λ, there exists a unique solution to (3.2), (3.3). This

gives a solution operator Rk(λ) : L2
comp(R)→ L2

loc(R), holomorphic at λ.

We remark that for the hyperbolic cylinder example with ` = 2π used here, resonances

can be computed explicitly: they are given by [Bo07, Proposition 5.2]

λjk = k −
(
j +

1

2

)
i, j ∈ N0, k ∈ N. (3.4)

For the case of general convex co-compact hyperbolic surfaces, one way to obtain

meromorphic continuation is as follows: we construct a model resolvent for each funnel,

using for instance the hyperbolic cylinder model, and then piece these together with an

elliptic parametrix near the convex core to obtain an inverse to ∆g − 1
4
− λ2 modulo a

compact remainder. Then meromorphic continuation of R(λ) is obtained via analytic

Fredholm theory. See for instance [Bo07, §§6.2, 6.3].

Another way to obtain the meromorphic continuation, developed in recent work of

András Vasy, is as follows: for f ∈ C∞0 (M), we define u = R(λ)f by the following

conditions (
−∆g −

1

4
− λ2

)
u = f,

e(1/2−iλ)ru(r, θ) = ũ(e−2r), ũ is smooth at 0.
(3.5)



NOTES FOR LECTURES AT TSINGHUA, V2 7

where the last condition, called the outgoing condition, is imposed at each funnel.

One can use microlocal analysis to show that the above problem has a unique solu-

tion everywhere except resonances, and the solution operator gives the meromorphic

continuation. See for instance [DyZw, Chapter 5] for details.

4. Connection to the wave equation

Let me now briefly explain one motivation for the study of resonances. (See [DyZw,

§2.1] for a more basic example of wave equation in one dimension.) Take F ∈
C∞0 ((0,∞)t ×Mx) and consider the forward solution to the shifted wave equation(

∂2
t −∆g −

1

4

)
U = F,

U |t<0 = 0.
(4.1)

We are interested in what happens to U(t, x) when t → ∞, but only for bounded

values of x.

Define the Fourier transform in time of U(t, x):

Û(λ, x) =

∫ ∞
0

eitλU(t, x) dt ∈ L2(M), Imλ� 1,

and the integral converges for Imλ large enough because U(t, x) is at most exponen-

tially growing (without the 1/4 factor it would just be bounded and the integral would

converge for Imλ > 0). Taking the Fourier transform of the wave equation, we get(
−∆g −

1

4
− λ2

)
Û(λ) = F̂ (λ).

This implies that

Û(λ) = R(λ)F̂ (λ), Imλ� 1.

Now, the right-hand side admits a meromorphic continuation to λ ∈ C as an element

of L2
loc(M). Indeed, F̂ (λ) ∈ L2

comp(M) is entire since F is compactly supported, and

R(λ) : L2
comp(M)→ L2

loc(M) admits a meromorphic continuation by Theorem 2.

Now, the decay properties of Û(λ) are connected to the behavior of its Fourier

transform as follows:

• if U(t) is exponentially decaying on compact sets, that is χU(t) = O(e−νt) for

all χ ∈ C∞0 (M) and some ν > 0, then Û(λ) is holomorphic on Imλ > −ν. In

particular, resonances in Imλ > −ν are obstructions to O(e−νt) exponential

decay.

• if R(λ) has a spectral gap of size ν > 0, that is there are no resonances in the

strip Imλ > −ν and R(λ) has a reasonable (polynomial in λ) norm bound as
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λ → ∞ in this strip, then deforming the contour to Imλ = −ν in the Fourier

inversion formula (valid for large enough C > 0)

U(t) =
1

2π

∫
Imλ=C

e−iλR(λ)F̂ (λ) dλ

we see that U(t) = O(e−νt) on compact sets.

• if R(λ) has an essential spectral gap of size ν > 0, that is there are finitely many

resonances in the strip Imλ > −ν and R(λ) still obeys a reasonable bound as

λ → ∞ in the strip, then the above contour deformation argument together

with the residue theorem gives a resonance expansion (written here in the case

when R(λ) has simple poles)

U(t) =
∑

Imλ≥−ν
λ resonance

e−itλvλ(x) +O(e−νt), t→ +∞, (4.2)

for some functions vλ(x) related to the residues of R(λ).

Of course, the specific wave equation (4.1) does not have a clear physical interpreta-

tion. However, in the closely related case of Euclidean scattering by several obstacles

resonances can be observed experimentally (see e.g. [BWPSKZ]). The existence of

spectral gap/exponential decay of waves is often a crucial component in results on

linear and nonlinear wave equations in various situations ranging from Euclidean scat-

tering to the recent proof of full nonlinear stability of the Kerr–de Sitter black hole

under Einstein equations [HV].

We now move on to better understanding the distribution of resonances. We will be

interested in the high frequency, bounded decay régime

|Reλ| → ∞, Imλ > −ν.

We will study the following two questions:

• Essential spectral gap: is there ν > 0 such that there are only finitely many

resonances in Imλ > −ν? A positive answer to this question gives a resonance

expansion (4.2), and combined with analysis of bounded frequency resonances

(which is often available) it may give exponential decay of waves.

• How many resonances are there in the region [R,R+1]+i[−ν, 0], when R→∞?

The best answer would be the analogue of Weyl law for compact manifolds.

It is believed that for large ν, the number of resonances should grow like Rδ

where δ ∈ (0, 1) is the dimension of the limit set (see below). An upper bound

of this form is available however no matching lower bounds exist so far.

The answers to both of these questions depend on the structure of the geodesic flow

of M , more precisely on the set of all of its trapped trajectories. In particular, if the
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Hausdorff dimension of the trapped set is equal to 2δ + 1 then essential gap is known

to exist when δ ≤ 1/2 and δ is also the exponent expected in the Weyl law.

5. An algebraic approach to hyperbolic surfaces. Geodesic flow

We now want to understand the dynamics of the geodesic flow on a convex co-

compact hyperbolic surface (M, g). For that it is convenient to introduce a different,

algebraic, point of view on these surfaces. Namely, M can be viewed as a quotient

M = Γ\H2

where

• (H2, g) is the hyperbolic plane:

H2 = {z = x+ iy ∈ C | y > 0}, g =
dx2 + dy2

y2
;

• Γ ⊂ SL(2,R) is a discrete subgroup, where SL(2,R) is the group of 2 × 2 real

matrices with determinant 1;

• SL(2,R) acts isometrically on (H2, g) by Möbius transformations:

γ.z =
az + b

cz + d
, γ =

(
a b

c d

)
∈ SL(2,R), z ∈ H2.

Note that H2 is the universal cover of M . For convex co-compact surfaces, all non-

identity elements of Γ are hyperbolic, that is they satisfy a + d > 2. These elements

have no fixed points on H2 and two distinct fixed points on the boundary at infinity,

∂H2 = R ∪ {∞}.

A basic example is the hyperbolic cylinder (1.2):

M = Γ\H2, Γ = {γj | j ∈ Z}, γ =

(
e`/2 0

0 e−`/2

)
.

We next consider the geodesic flow

ϕt = etX : S∗M → S∗M (5.1)

where S∗M is the unit cotangent bundle and X is the generator of the flow, which is

a vector field on S∗M . Of course, S∗M is identified canonically with the unit tangent

bundle, however the cotangent bundle T ∗M is the natural phase space for microlocal

analysis, which will play an important role later.

Each geodesic on M lifts to a geodesic on H2. We recall that the geodesics on H2 are

just half-circles with centers on R, as well as vertical half-lines. To each (x, ξ) ∈ S∗H2

correspond the two endpoints at infinity

B±(x, ξ) = lim
t→±∞

ϕt(x, ξ) ∈ ∂H2. (5.2)
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One particularly nice property of the geodesic flow on hyperbolic surfaces is its hy-

perbolicity. In fact, there exist two horocyclic vector fields U± on S∗H2 such that

X,U+, U− are linearly independent at every point and

[X,U±] = ±U±.

These vector fields are invariant under the action of the group SL(2,R) so they descend

to S∗M for any hyperbolic surface M . We can define a natural metric (the Sasaki

metric) on S∗M by making X,U+, U− into an orthonormal frame. Then we have the

stable/unstable decomposition

T (S∗M) = E0 ⊕ Es ⊕ Eu, E0 = RX, Es = RU+, Eu = RU−,

and

|dϕt · v| =


|v|, v ∈ E0,

e−t|v|, v ∈ Es,
et|v|, v ∈ Eu.

We will not provide the formulas for U± here but will instead use a special case,

from which the general formula can be recovered by isometry invariance. Specifically,

consider the point (i, i) ∈ S∗H2. Then

esU+(i, i) = (i+ s, i).

We remark that the corresponding geodesics are

etX(esU+(i, i)) = (eti+ s, e−ti).

Thus

detX(i, i) · U+(i, i) = (1, 0),

and the Sasaki length of the vector (1, 0) tangent to S∗H2 at (eti, e−ti) can be computed

using the isometry (x, ξ) 7→ (e−tx, etξ) and it is equal to e−t.

We also note that flowing along X and U+ does not change the value of B+ (see (5.2))

and flowing along X and U− does not change the value of B−. In particular B+ takes

the value ∞ on the example esU+(i, i) considered above.

6. The limit set. Three-funnel surfaces.

We now give a basic example of a hyperbolic surface: a three funnel surface. A

similar construction with a larger number of disks produces Schottky surfaces, and

every convex co-compact surface can be obtained in this way – see [Bo07, §15.1].

Consider four nonoverlapping closed upper half-disks D1, D2, D3, D4 in H2 with cen-

ters on the real line, with centers ordered as follows: D1, D3, D4, D2. There exist

hyperbolic transformations

γ1, γ3 ∈ SL(2,R),
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such that γ1 maps the complement of D2 onto the interior of D1, and γ3 maps the

complement of D4 onto the interior of D3. We may choose γ1 to preserve the geodesic

G1 orthogonal to the boundaries of D1, D2, and similarly for γ3 to preserve the geodesic

G3 orthogonal to the boundaries of D3, D4. Then γ1, γ3 generate a free group Γ ⊂
SL(2,R) and the quotient

M = Γ\H2

is a convex co-compact hyperbolic surface. To see that M is a surface with three

funnels, we note that a fundamental domain for Γ is given by

F = H2 \
4⋃
j=1

D◦j .

The geodesics G1, G2 give rise to two of the necks of M and the third neck is obtained

from two pieces, one orthogonal to D1, D3 and the other to D2, D4.

We now use this example to define the limit set corresponding to a quotient M =

Γ\H2,

Λ ⊂ R ⊂ ∂H2.

Let F be the closure of the fundamental domain F in the compactification H2 =

H2t∂H2. The images of the fundamental domain F under Γ give a tessellation of H2:

H2 =
⋃
γ∈Γ

γ.F .

We define the limit set

Λ = ΛΓ ⊂ ∂H2

as follows:

∂H2 \ Γ =
⋃
γ∈Γ

(γ.F) ∩ ∂H2.

That is, to obtain Γ we remove from the boundary at infinity the infinite ends of each

tessellating fundamental domain.

For the hyperbolic cylinder, the limit set simply consists of two points (in the model

used, at 0 and at ∞). For the Schottky model of a three-funnel surface, the limit set

is much more complicated, having a fractal structure. Indeed, it can be written out as

follows:

Γ =
⋂
L≥1

⋃
w∈WL

(Dw ∩ ∂H2)

where:

• WL is the set of admissible words of length L, that is sequences w = w1 . . . wL
such that wj ∈ {1, 2, 3, 4} and {wj, wj+1} cannot be equal to {1, 2} or {3, 4};
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• we define the upper half-disk Dw for w ∈ WL as follows:

Dw = γw1 . . . γwL−1
(DwL)

where γ2 := γ−1
1 , γ4 := γ−1

3 .

The disks Dw form a tree-like structure, in particular

Dw1...wL b Dw1...wL−1
,

so the limit set Λ is a ‘Cantor-like’ set.

We define the Hausdorff dimension

δ := dimH(Λ). (6.1)

It is known that for any convex co-compact surface except the hyperbolic cylinder

which has δ = 0, we have

δ ∈ (0, 1).

We finally explain how the limit set determines the trapping structure of the hyperbolic

surface, which is crucial for the following sections. Recall the geodesic flow (5.1). Define

the sets

Γ± = {(x, ξ) ∈ S∗M | ϕt(x, ξ) 6→ ∞ as t→ ∓∞}, K := Γ+ ∩ Γ−.

We call Γ+ the outgoing tail, Γ− the incoming tail, and K the trapped set. The lifts of

Γ± by the projection map π : S∗H2 → S∗M can be expressed in terms of Λ as follows:

π−1(Γ±) = {(x, ξ) ∈ S∗H2 | B∓(x, ξ) ∈ Λ}. (6.2)

Any point (x, ξ) ∈ S∗H2 is determined by B+(x, ξ), B−(x, ξ), and one real parameter

varying along the geodesic flow. It follows that the Hausdorff dimensions of Γ± and K

are given by

dimH Γ+ = dimH Γ− = δ + 2, dimH K = 2δ + 1.

7. Results: spectral gap and resonance counting

We are now ready to present the main results, discussing some ideas behind the

proofs in the next section.

The first one is the spectral gap result, relying on the following theorem of Patterson

and Sullivan [Bo07, §14.4]:

Theorem 3. Let δ be defined in (6.1). Then the resolvent R(λ) has a simple pole at

i(δ− 1/2) and no other poles on {Imλ ≥ δ− 1/2} (unless M is the hyperbolic cylinder

which has other poles on {Imλ = δ − 1/2}).

For δ < 1/2, this gives a spectral gap of size 1/2 − δ; note that for the hyperbolic

cylinder the size of the gap is sharp by (3.4), since δ = 0. In all other cases with

δ ≤ 1/2 an improved essential spectral gap is available:
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Theorem 4. [Na] Assume that 0 < δ ≤ 1/2. Then there exists

ν >
1

2
− δ

such that M has an essential spectral gap of size ν, in particular there are only

finitely many resonances in {Imλ > −ν}.

There are however many open questions left. In particular, it is not known what is

the best possible size of the essential spectral gap when δ ≤ 1/2 and which surfaces

with δ ≥ 1/2 have an essential spectral gap (though there are examples of surfaces

with δ ≥ 1/2 which do have a gap, see [DyZa]).

We next discuss counting resonances. For ν,R > 0 define

N(R, ν) = #{λ resonance, Reλ ∈ [R,R + 1], Imλ > −ν}.

The following upper bound was proved by Guillopé–Lin–Zworski:

Theorem 5. [Bo07, Corollary 15.11] For all ν > 0 we have N(R, ν) = O(Rδ).

We see that again the dimension of the limit set plays a crucial role.

However, no matching lower bounds are known. Moreover, the bound N(R, ν)

cannot be sharp for all ν because of the possibility of the spectral gap. A better bound

for small ν has been proved in [Dy] (following previous work of Frédéric Naud):

Theorem 6. For all ν > 0, ε > 0 we have N(R, ν) = O(Rm(δ,ν)+ε) where m(δ, ν) =

min(δ, 2δ + 2ν − 1).

Note that m(δ, ν) = δ for ν ≥ (1 − δ)/2 and m(δ, ν) < 0 for ν < 1
2
− δ, the latter

statement corresponding to the spectral gap.

8. Uncertainty principle

We finally provide a (very sketchy) explanation of the results stated in the previ-

ous section, using the methods developed in [DyZa]. For that we use semiclassical

quantization, which associates to a function

a ∈ C∞0 (T ∗M)

an h-dependent family of operators

Oph(a) : L2(M)→ L2(M).

We first explain the reasoning behind essential spectral gap of size 1
2
− δ of Theorem 3.

(Note that Theorem 3 actually gives a full spectral gap, which includes low frequencies,

but this phenomenon is very special to constant curvature and we will not explain it

here.) To show an essential spectral gap of size ν, we need to show there are only
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finitely resonances with Imλ > −ν. Since resonances form a discrete set and they are

symmetric with respect to the map λ 7→ −λ̄, we need to disprove the existence of a

sequence of resonances

λj, Reλj →∞, Imλj ≥ −ν.

We define hj := λ−1
j , and assume for simplicity that Imλj = −ν. Since λj is a

resonance, there exists a resonant state uj ∈ C∞(M) such that(
−∆g −

1

4
− λ2

j

)
uj = 0, uj is outgoing,

where the outgoing condition is given in (3.5). The equation above can be rewritten

in the semiclassical form (
− h2∆g −

h2

4
− (1− ihν)2

)
u = 0,

where we make uj = u(hj) an h-dependent family of functions and h goes to 0 along

the sequence hj. We normalize uj to have ‖uj‖L2(N) = 1 where N is a large compact

subset of M .

By the elliptic estimate we know that u is O(h∞) microlocally away from the sphere

bundle S∗M . Next, a combination of Egorov’s Theorem with the equation for u gives

us the following result (modulo lower order terms which we blatantly ignore here):

‖Oph(a)u‖L2 = eνt‖Oph(a ◦ ϕt)u‖L2 +O(h∞)

where ϕt : T ∗M → T ∗M is the homogeneous geodesic flow.

The work of Vasy (see [DyZw, Chapters 5 and 6]) implies that the wavefront set of

u lies inside the outgoing tail Γ+ ⊂ S∗M :

Oph(a)u = O(h∞) if supp a ∩ Γ+ = ∅.

Moreover, u must have positive mass on the trapped set:

‖Oph(a)u‖L2 ≥ C−1 > 0 if a 6= 0 on K.

The key idea now is to extend these statements to h-dependent symbols, by propagating

for time t = log(1/h) and using the hyperbolicity of the flow. We then get the following

estimates (where we use symbols which are not compactly supported but in practice

there would be cutoffs to a fixed neighborhood of K)

u = Oph(χ+)u+O(h∞),

‖Oph(χ−)u‖L2 ≥ C−1e−νt = C−1hν .

Here χ± are cutoffs to h-neighborhoods of Γ± ∩ S∗M .

Now, to get a gap of size ν we need to reach a contradiction, and it is enough to

show the following estimate, which I call the fractal uncertainty principle:

‖Oph(χ−) Oph(χ+)‖L2→L2 � hν .
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Here Oph(χ−) and Oph(χ+) are localizations to h-neighborhoods in two incompatible

directions, thus it may be impossible for a quantum state to concentrate so narrowly

in both directions; this explains the name ‘uncertainty principle’.

One non-rigorous way to establish the uncertainty principle (which can be converted

to an easy to prove estimate) is to say that a quantum state should occupy volume at

least hn = h2 in the phase space T ∗M where n = 2 is the dimension of M . (A basic

example is a Gaussian of width h1/2, which occupies a ball of size h1/2 in both position

and frequency.) If we show that the total volume of the intersection of supports of

χ+ and χ− is smaller than h, then we see that no quantum state can concentrate

perfectly both on suppχ and suppχ−. However, the volume can be computed from

the dimension and (6.2):

vol(suppχ+ ∩ suppχ−) ∼ h · h1−δ · h1−δ = h2 · h1−2δ (8.1)

and this gives us a gap for δ < 1/2; one can also deduce that the size of the gap will be

equal to 1/2−δ. An improved spectral gap, Theorem 4, can be explained as follows (at

least when δ ≈ 1/2): the fractal nature of the set Λ causes extra cancellations which

give a better uncertainty principle. (This is quite difficult to show – the original work

of Naud relied on a rather subtle and deep set of ideas due to Dolgopyat.)

To get a bound on the number of resonances, Theorem 5, we again use a volume

bound. All resonant states should be microlocalized on suppχ+, whose volume is

vol(suppχ+) ∼ h · h1−δ = h2 · h−δ.

Since each quantum state occupies volume at least h2, there can be at most h−δ linearly

independent quantum states microlocalized on suppχ+, which gives the bound on the

number of resonances in Theorem 5. Finally, for Theorem 6 we have to combine the

two arguments above, using that resonant states have a lower bound microlocally on

suppχ− together with (8.1).

The above are of course very brief explanations. The reader is referred to the

introductions to [DyZa, Dy] for more detailed explanations of the method, and to

the upcoming work with Long Jin for a presentation of these arguments in a much

technically simpler setting of open quantum baker’s maps.
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