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Discrete uncertainty principle

Discrete uncertainty principle

We use the discrete case for simplicity of presentation
Zn =Z/NZ={0,...,N —1}

Gy={u:Zy=>Ch ul =3 u()?
Fnu()) \/_Z e 2mIkIN (k)

The Fourier transform Fy : (2, — (3 is a unitary operator
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Discrete uncertainty principle

Discrete uncertainty principle

We use the discrete case for simplicity of presentation
Zn =Z/NZ={0,...,N —1}

2 = {u:Zy— (C}, Hu||§2 = Z ’U(J)|2
Fnu(f) \/_ Z e Mu(k)

The Fourier transform Fyy : €2 — E%\, is a unitary operator
Take X = X(N), Y = Y(N) C Zy. Want a bound for some 3 > 0
H].X;le”@v_%fv < CN_ﬁ, N — oo (1)

Here 1x,1y : K%V — 6%\, are multiplication operators
If (1) holds, say that X, Y satisfy uncertainty principle with exponent [
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Discrete uncertainty principle

Basic properties

I1xFalyla e < CNTF, N —o0; >0 (2)

Why uncertainty principle?
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Discrete uncertainty principle

Basic properties

IxFnly Fytlla e < CNTF, N —o0; 5>0 (2)

1x localizes to X in position, }"le}"ﬁl localizes to Y in frequency

(2) = these localizations are incompatible
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Discrete uncertainty principle

Basic properties

||1X‘FN1YH€%\/*}£$\/ < CN_’B, N—oo, B>0 (2)
1x localizes to X in position, ley}",\_/l localizes to Y in frequency
(2) == these localizations are incompatible

Volume bound using Hélder's inequality:

xFnlylle ez < [Axlleg e I Fnlla e llylle o
(X]-1Y]

- N
This norm is < 1 when | X] - Y| < N. Cannot be improved in general:

N=MK, X =MZ/NZ, ¥ = KL/NZ = [[1xFaly|g g =1
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Application: spectral gaps

Application: spectral gaps for hyperbolic surfaces

(M, g) = M\H? convex co-compact hyperbolic surface

Resonances: poles of the Selberg zeta function

HH e s+ s:%—i)\

leLy k=0
where L) is the set of lengths of primitive closed geodesics on M
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Application: spectral gaps

Application: spectral gaps for hyperbolic surfaces

(M, g) = M\H? convex co-compact hyperbolic surface

Resonances: poles of the scattering resolvent
L2(M) — L2(M), ImA>0
L2, (M) — L2 (M), ImA <0

comp

R(A):(—Ag—%—%)*l; |

Existence of meromorphic continuation: Patterson '75,'76, Perry '87,'89,
Mazzeo—Melrose '87, Guillopé—Zworski '95, Guillarmou '05, Vasy '13
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Plots of resonances

Three-funnel surface with ¢1 =¥l = ¥3 =7
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Application: spectral gaps

Plots of resonances

Three-funnel surface with {1 =6, {pb = (3 =7
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Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Application: spectral gaps

Plots of resonances

Torus-funnel surface with 1 =0, =7, ¢ = /2,
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Data courtesy of David Borthwick and Tobias Weich

See arXiv:1305.4850 and arXiv:1407.6134 for more
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The limit set and §

M = '\H? hyperbolic surface
Ar S the limit set
§ :=dimy(Ar) € (0,1)

Trapped geodesics: those with endpoints in Ar
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Spectral gaps

Essential spectral gap of size 5 > 0:
only finitely many resonances with Im A > —f

Application: exponential decay of waves (modulo finite dimensional space)
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Application: spectral gaps

Spectral gaps

Essential spectral gap of size 5 > 0:

only finitely many resonances with Im A > —f

Application: exponential decay of waves

Patterson—Sullivan theory: the topmost resonance is at A = i(§ — 1)
where § =dimyAr € (0,1) = gap of size § = max( % 0

~—
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Spectral gaps

Essential spectral gap of size 5 > 0:

only finitely many resonances with Im\ > —f

Application: exponential decay of waves

Patterson—Sullivan theory: the topmost resonance is at A = i(J — %)
where § = dimyAr € (0,1) = gap of size 8 = max (0,3 — )

Improved gap = 3 — 6+¢ for 6 < 1/2:
Dolgopyat '98, Naud '04, Stoyanov '11,'13, Petkov—Stoyanov '10

Bourgain—-Gamburd—-Sarnak '11, Oh—Winter '14: gaps for the case of
congruence quotients

However, the size of ¢ is hard to determine from these arguments
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Application: spectral gaps

Spectral gaps via uncertainty principle

M =T\H?, ArcCS! limit set, dimyAr =6 € (0,1)
Essential spectral gap of size 8 > 0:
only finitely many resonances with Im A > —f

Theorem [D-Zahl '15]

Assume that Ar satisfies hyperbolic uncertainty principle with exponent S.
Then M has an essential spectral gap of size S—.

Proof
@ Enough to show e At decay of waves at frequency ~ h™1, 0 < h < 1

@ Microlocal analysis + hyperbolicity of geodesic flow = description of
waves at times log(1/h) using stable/unstable Lagrangian states

@ Hyperbolic UP = a superposition of trapped unstable states has norm
O(h?) on trapped stable states

v
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Spectral gaps via uncertainty principle
M =T\H?, ArCS! limit set, dimyAr =46 € (0,1)

Essential spectral gap of size 5 > 0:

only finitely many resonances with Im A > —f

Theorem [D-Zahl '15]

Assume that Ar satisfies hyperbolic uncertainty principle with exponent S.
Then M has an essential spectral gap of size 5—.

The Patterson—Sullivan gap 8 = % — § corresponds to the volume bound:

X|-1Y
|X|N|Y|NN6 — ‘ ‘Nl ‘NN6—1/2

Discrete UP with 3 for discretizations of Ar

I
Hyperbolic UP with /3/2
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Regularity of limit sets

The sets X, Y coming from convex co-compact hyperbolic surfaces are
d-regular with some constant C > 0:

Cln’ <|Xnlj—nj+n|<Cn’ jeX,1<n<N

Conjecture 1

If X,Y are d-regular with constant C and § < 1, then

= 1
I1xFnlylla e < CN~F, 8= p(s,C) > max <0, = 5)

Implies that each convex co-compact M has essential spectral gap > 0

Conjecture holds for discrete Cantor sets with N = M*, k — oo
_ _ l
X=Y= {Zogkkagl\/l R eA}, Aci{o,....M—1)
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Proving uncertainty principles

Uncertainty principle for Cantor sets (numerics)
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Proving uncertainty principles

Uncertainty principle via additive energy

For X C Zy, its additive energy is (note |X|?> < Ea(X) < |X]3)
Ea(X) =|{(a,b,c,d) € X*|a+b=c+d mod N}|

Ea(X 1/8|y|3/8
[xFutylig g < 2V (3)J

In particular, if |X| ~ | Y| ~ N% and Ea(X) < C|X|3N~P¢, then X, Y
satisfy uncertainty principle with

3 Be
A= Z(E 5) 8
Proof of (3): use Schur's Lemma and a T*T argument to get

2
IxFnlyliz e < N%axg/\}",\, 1x)(j — k)|

The sum in the RHS is bounded using L* norm of Fn(1x)
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Proving uncertainty principles

Estimating additive energy

Theorem [D-Zahl '15]
If X C Zy is o-regular with constant Cg and § € (0, 1), then

Ea(X) < CIX]PNP6, Bg =dexp[— K(1—8) P log™(1+ Cg)]

Here K is a global constant

Proof

e X is d-regular = X cannot contain long arithmetic progressions

@ A version of Frefman's Theorem = X cannot have maximal
additive energy on a large enough intermediate scale

@ Induction on scale == a power improvement in E5(X)
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Additive portraits

For X C Zn, take fx : Z, — No, j — }{(a,b) € X%2:a—b=j mod N}‘
Sort fx(0),...,fx(N —1) in decreasing order = additive portrait of X
IXPP = £x(0) + -+ + fx(N = 1), Ea(X) = fx(0)*+ -+ fx(N — 1)
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Additive portraits
For X C Zn, take fx : Z, — No, j — }{(a,b) € X%2:a—b=j mod N}‘

Sort fx(0),...,fx(N —1) in decreasing order = additive portrait of X
(X2 =fx(0) + -+ fx(N = 1), Ea(X)=1x(0)%+ -+ fx(N — 1)
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Additive portraits
For X C Zp, take fx : Zp — No, j = |{(a,b) € X?: a— b=/ mod N}

Sort fx(0),...,fx(N —1) in decreasing order = additive portrait of X
(X2 =fx(0) + -+ fx(N = 1), Ea(X)=1x(0)%+ -+ fx(N — 1)

o N & o ® Bo nv & o o B
H T T T

28 points chosen at random with N = 216
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Additive portraits
For X C Zp, take fx : Zp — No, j = |{(a,b) € X?: a— b=/ mod N}

Sort fx(0),...,fx(N —1) in decreasing order = additive portrait of X
(X2 =fx(0) + -+ fx(N = 1), Ea(X)=1x(0)%+ -+ fx(N — 1)

x10*

Discretized limit set with § = 1/2, N = 216 (data by Arjun Khandelwal)
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Proving uncertainty principles

Additive portraits

For X C Zp, take fx : Zp — No, j = |{(a,b) € X?: a— b=/ mod N}

Sort fx(0), ..., fx(N —1) in decreasing order

IX]? = x(0) + - + fx (N — 1),

—
EA(X) = fx(0)2 + -4+ fx(N — 1)2
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Cantor set with M =4, A= {0,2}, k =8, N =21°
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Additive portraits

For X C Zn, take fx : Z, — No, j — }{(a,b) €X?:a—b=j mod N}’
Sort fx(0),...,fx(N — 1) in decreasing order = additive portrait of X
X% = fx(0) + -+ + fx(N = 1), Ea(X) = x(0)? + - - + fx(N — 1)2

Numerics for § = 1/2 indicate: j-th largest value of fx is ~ \/JE
This would give additive energy ~ Nlog N

Conjecture 2
Let X be a discretization on scale 1/N of a limit set Ar of a convex
co-compact surface with dimAr = § € (0,1). (Note |X| ~ N%.) Then

Ea(X) = O(N¥Pet) Bg :=min(8,1 — 0).
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Proving uncertainty principles

What does this give for hyperbolic surfaces?

Conjecture 2

Let X be a discretization on scale 1/N of a limit set Ar of a convex

co-compact surface with dimAr = & € (0,1). (Note |X| ~ N°.) Then
Ea(X) = O(N*=Pet) Bg := min(8,1 — 0)

(ST Y

Numerics by Borthwick—Weich '14  + gap under Conjecture 2
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Thank you for your attention!
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