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What are resonances?

Resonances: complex characteristic frequencies
associated to open or dissipative systems

real part = rate of oscillation, imaginary part = rate of decay
For an observable u(t), the resonance expansion is

u(t)= > e ™+ 0(e ), t—foo

w; resonance

J
Imwjz—u

which is analogous to eigenvalue expansions for closed systems

A
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Classical (Pollicott—Ruelle) resonances

Motivation: statistics for billiards

One billiard ball in a Sinai billiard with finite horizon



Classical (Pollicott—Ruelle) resonances

10000 billiard balls in a Sinai billiard with finite horizon
#(balls in the box) —  volume of the box

velocity angles distribution —  uniform measure
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Classical (Pollicott—Ruelle) resonances

10000 billiard balls in a three-disk system
#(balls in the box) — 0 exponentially
velocity angles distribution —  some fractal measure
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Classical (Pollicott—Ruelle) resonances

Dynamical systems

U phase space of the dynamical system

o' U — U flow of the system

Correlations: f,g € C>®(U)

prg(t) = /(f o g dxdv
u

Examples
o Billiard ball flow on U = {(y,v) |y € M, |v| =1}, M C R?

@ Geodesic flow on U = {(y,v) | y € M, |v|g =1},
(M, g) a negatively curved Riemannian manifold
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Classical (Pollicott—Ruelle) resonances

Pollicott—Ruelle resonances

pre(t) = /(fow‘t)g dxdv
u

Pollicott—Ruelle resonances would appear in resonance expansions of pf ¢
for smooth hyperbolic systems and are independent of f, g:

pre(t)= > e ™ig(f,g)+O(e™), t— +oo

wj PR resonance
Im wjz—u

A

v

They are defined as poles of meromorphic continuations of

o
N _ itw
pra@) = [ o)t
0
—



Classical (Pollicott—Ruelle) resonances

Pollicott—Ruelle resonances

pre(t) = /(fow‘t)g dxdv
u

Pollicott—Ruelle resonances would appear in resonance expansions of pf g
for smooth hyperbolic systems and are independent of f, g:

pre(t)= Y e ™ig(f,g)+0(e™), t— -+

wj PR resonance
Im wjzfu

Closed system: pr ¢(t) = c(fu f dxdv) (fug dxdv) + o(1)
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Classical (Pollicott—Ruelle) resonances

Pollicott—Ruelle resonances

pre(t) = /M(fw *)g dxdv

Pollicott—Ruelle resonances would appear in resonance expansions of pf g
for smooth hyperbolic systems and are independent of f, g:

pre(t)= Y e ™ig(f,g)+0(e™), t— -+

wj PR resonance

Imwjzfu
Open system: pr g(t) = <fu fdu_ )(fugdu+> + o(e7%)
! .
e o« o« O o « .

Semyon Dyatlov Resonances, classical and quantum March 30, 2015 7/ 18



Classical (Pollicott—Ruelle) resonances

Pollicott—Ruelle resonances

pre(t) = /(fow‘t)g dxdv
u

Pollicott—Ruelle resonances would appear in resonance expansions of pf 4
for smooth hyperbolic systems and are independent of f, g:

pre(t) = > e ™ig(f,g)+0(e™), t— +oo

wj PR resonance

Imwjz—y

Ruelle '76,'86,'87, Pollicott '85,'86, Parry—Pollicott '90, Rugh '92,
Fried '95, Kitaev '99, Blank—Keller—Liverani '02, Liverani '04,'05,
Gouézel-Liverani '06, Baladi—Tsujii '07, Butterley—Liverani '07,

Faure—Roy-Sjostrand '08, Faure-Sjostrand '11, D—Guillarmou '14

Climate models: Chekroun—Neelin—Kondrashov—McWilliams—Ghil '14

Inverse problems: Guillarmou '14
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Classical (Pollicott—Ruelle) resonances

Ruelle zeta function

Cr(w) =[J(1=€e“T), Imw>1
gl
where T, are periods of primitive closed trajectories

Theorem [Giulietti-Liverani—Pollicott '12,D—Zworski "13,D-Guillarmou '14]

For a hyperbolic dynamical system (open or closed)*, the Ruelle zeta
function continues meromorphically to w € C.
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Classical (Pollicott—Ruelle) resonances

Ruelle zeta function

Cr(w) =[J(1=€e“T), Imw>1
gl
where T, are periods of primitive closed trajectories

Theorem [Giulietti-Liverani—Pollicott '12,D—Zworski "13,D-Guillarmou '14]

For a hyperbolic dynamical system (open or closed)*, the Ruelle zeta
function continues meromorphically to w € C.

Prime orbit theorem (POT): #{~ | T, < T} = i::";(l + o(1))

Margulis, Parry—Pollicott "'90

Semyon Dyatlov Resonances, classical and quantum March 30, 2015 8 /18



Spectral gaps

Essential spectral gap of size 5 > 0:
there are finitely many resonances in {Imw > Imwy — 5},
where wg is the top resonance

4 > 4 >
R Woo o __ e g o wWol -
_/_BI___. ____________ . ° ° L] L] ° °

gap no gap

Spectral gap®* == resonance expansion:

pre(t)= Y e ™ig(f.g)+0(e™), vi=Imuw—p

wj PR resonance
Im wj-zfu
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Classical (Pollicott—Ruelle) resonances

Spectral gaps

Essential spectral gap of size 5 > 0:
there are finitely many resonances in {Imw > Imwy — 5},
where wyg is the top resonance

* > * >
e Yo . g e “WoL - -
_/_BI___. ____________ . ® o L] L ° °
gap no gap

Spectral gap for (, = exponential remainder in POT:

ehtop T i
# | Ty <Th= (1+0(e™"7))
heop T
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Spectral gaps

Essential spectral gap of size 8 > 0:
there are finitely many resonances in {Imw > Imwy — 5},
where wy is the top resonance

4 > 4 >
_________ WoU o __ ..
_/_BI___. ____________ . ° ° L[] L] ° °
gap no gap

Gaps known for geodesic flows on compact negatively curved manifolds:
Dolgopyat '98, Liverani '04, Tsujii '12, Giulietti-Liverani—Pollicott '12,
Nonnenmacher—Zworski '13, Faure—Tsujii '13
and some special noncompact cases: Naud '05, Petkov—Stoyanov '10,
Stoyanov '11,'13
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Quantum resonances

We now switch to a different case of quantum resonances, featured in
expansions of solutions to wave equations rather than classical correlations
Examples

e Potential scattering (Schrddinger operators)

@ Obstacle scattering

@ Black hole ringdown
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Quantum resonances

We now switch to a different case of quantum resonances, featured in
expansions of solutions to wave equations rather than classical correlations
Examples

e Potential scattering (Schrddinger operators)

@ Obstacle scattering

@ Black hole ringdown

Questions
@ Can resonances be defined?
@ Is there a spectral gap?

@ How fast does the number of resonances grow?
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Quantum resonances
Example: scattering on the line

(02 —02)u = f € C§°((0,00); x Ry)

Wave equation:
Ult<o =0

Question: how does u(t, x) behave for t — oo and |x| < R?

tﬂ

Semyon Dyatlov Resonances, classical and quantum March 30, 2015 11 / 18



Quantum resonances

Example: scattering on the line

PRy =feC R,
Wave equation: (0F — 85)u € C5°((0,00): x Ry)
Ult<o =0

Fourier—Laplace transform in time:

i(w)(x) = /000 twy(t,x)dt € L2(R), Imw >0

(=82 — w?)i(w) = f(w), Imw>0

Resolvent: (w) = R(w)f(w), where

R(w) == (=92 —w?) 71 [2(R) — [3(R),

Fourier inversion formula:

u(t) = % /.mw—l &1t R(w)F(w) duw
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Quantum resonances

Example: scattering on the line

Ujt<o =0

2 _ g2 _ o
Wave equation: {(at O;)u f e C5°((0,00)e x Ry)
R(w) := (—3)% — w2)_1 ([2(R) = [3(R), Imw >0
= 1 —itw 7
u(t) = /m,:l e ™ R(w)f (W) dw

Meromorphically continue R(w) : L2, (R) — L2 _(R)

loc
i iw|x—
REE() = 5 [ &g dy, wee

and deform the contour, with the integral being O(e™"?) in L2(—R, R):

1 . ~
u(t) =cr + — e "R(w)f(w) dw
2m Imw=—v
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Quantum resonances

Potential scattering on the line

Introduce a potential V € L*°(R)
R(w) = (=02 4V —w?) 1 [2(R) = L*(R), Imw >0
continues meromorphically to a family of operators
R(@) : Lomp(R) = L2 (R), weC

The poles of R(w), called resonances, are featured in resonance expansions
for the wave equation (02 — 92 + V)u = f, and sound like this:
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Quantum resonances

Potential scattering on the line

Introduce a potential V € L*°(R)

Rw) = (=& +V — w1 [3(R) = [2(R), Imw >0

continues meromorphically to a family of operators

R( ) Lgomp( )_>Lloc( )

Potential

weC

100

L L L L L L L
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Computed using codes by
Pole locatior . .
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Quantum resonances

Obstacle scattering

Ag: the Laplacian on & = R3\ & with Dirichlet boundary conditions,
where @ C R3 is an obstacle

R(w) = (—As —w?)™ 1 LA(R3) — L3(R3), Imw >0
continues meromorphically to a family of operators
R(w) : Lgomp(R?’) - Lﬁ)c(R?’), weC

and the poles of R(w) are called resonances

A rich mathematical theory dating back to Lax—Phillips '69, Vainberg '73,

Melrose, Sjéstrand

D—-Zworski, Mathematical theory of scattering resonances, available online
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Quantum resonances

A real experimental example

Microwave experiments:
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Potzuweit—Weich—Barkhofen—Kuh|-Stockmann—Zworski '12
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Quantum resonances

Essential spectral gap for obstacles

Essential spectral gap: R(w) has finitely many poles in {Imw > —3}

Implies* exponential decay of local energy of waves modulo a finite
dimensional space

Is there a gap? Depends on the structure of trapped billiard ball trajectories
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Quantum resonances

Essential spectral gap for obstacles
Is there a gap? Depends on the structure of trapped billiard ball trajectories

One convex obstacle:

No trapping = gap of any size

Lax—Phillips '69, Morawetz—Ralston—Strauss '77, Vainberg '89,
Melrose—Sjéstrand '82, Sjéstrand—Zworski '91. ..
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Quantum resonances

Essential spectral gap for obstacles

Is there a gap? Depends on the structure of trapped billiard ball trajectories

Two convex obstacles:

O

One trapped trajectory — a lattice of resonances and gap of fixed size

Ikawa '82, Gérard—Sjdstrand '87, Christianson '06

Related case of black holes: Wunsch—Zworski '10,
Nonnenmacher—Zworski '13, Dyatlov '13,'14
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Quantum resonances

Essential spectral gap for obstacles

Is there a gap? Depends on the structure of trapped billiard ball trajectories

Three convex obstacles:

Fractal set of trapped trajectories = gap under a pressure condition

Ikawa '88, Gaspard—Rice '89, Naud '04, Nonnenmacher—Zworski '09,
Petkov—Stoyanov '10. ..



Quantum resonances

Experimental observation of the gap

Three-disk system:

00 -0.5 -1.0 -1.5 -2.0
Im (k) [1/m]

Barkhofen—Weich—Potzuweit—-Stockmann—Kuhl-Zworski 13
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Fractal Weyl laws

Weyl law for —Au; = )\fuj- on a compact manifold M of dimension n:
#{\j < R} = s VoI(M)R"(1+ o(1)), R— o0

On a noncompact manifold with a hyperbolic trapped set, for each v > 0
#{w; € Res : |[Rewj| < R, Imw; > —v} < CRM,

where 20 + 2 is the upper Minkowski dimension of the trapped set
Melrose '83, Sjostrand '90, Zworski '99, Wunsch—Zworski '00,
Guillopé-Lin—Zworski '04, Sjoéstrand—Zworski '07,
Nonnenmacher-Sjéstrand—Zworski '11, Datchev—Dyatlov '12,
Datchev—D—-Zworski '12
Weyl laws and band structure for some cases with smooth trapped sets:
e Black holes (Kerr—de Sitter): Dyatlov '13
@ Closed hyperbolic systems (contact Anosov): Faure-Tsujii '11,'13
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Thank you for your attention!
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