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Overview

Resonances: complex characteristic frequencies
describing exponential decay of waves in open systems

Re \; = rate of oscillation, —Im\; = rate of decay

Our setting: convex co-compact hyperbolic surfaces

The high frequency régime |[ImA| < C, |Re )| > 1
is governed by the set of trapped trajectories,

which in our case is determined by the limit set Ar

We give a new spectral gap and fractal Weyl bound
for resonances using a “fractal uncertainty principle”
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Hyperbolic surfaces

(M, g) = M\H? convex co-compact hyperbolic surface

An example: three-funnel surface with neck lengths ¢1, (5, (3
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Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
A, Laplace-Beltrami operator on L2(M)
The L2 spectrum of —A, consists of

e eigenvalues in (0, 1)

@ continuous spectrum [%,oo)

[ 3
0 1/4
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Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
A, Laplace-Beltrami operator on L2(M)
The L2 spectrum of —A, consists of

e eigenvalues in (0, 1)

@ continuous spectrum [%,oo)

[ 3
0 1/4

Resonances are poles of the meromorphic continuation

N1 (L2 K2, Im\ >0
RO = (-8g-2-7) 4, )
4 Leomp = Hisey ImA <0
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Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
A, Laplace-Beltrami operator on L2(M)
The L2 spectrum of —A, consists of

e eigenvalues in (0, 1)

@ continuous spectrum [%,oo)

[ 3
0 1/4

Existence of meromorphic continuation:
Patterson '75,'76, Perry '87,'89, Mazzeo—Melrose '87,

Guillopé—Zworski '95, Guillarmou '05, Vasy '13 ____.l_- _i____
Resonances can be defined in many other situations, R
such as Euclidean scattering or black hole scattering . . .
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(M, g) convex co-compact hyperbolic surface

Resonances: poles of the meromorphic continuation

IN-1 [L%2— H? ImA >0
R(A):(_Ag_A2_1> N2 S HE . ImA<o0
comp loc? —

@ As poles of the resolvent, resonances participate in resonance
expansions of waves
Xefit\/ng71/4Xf — Z efit)\juj(x) + O(efut)

)xjrssonancs
Im Aj >—v
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(M, g) convex co-compact hyperbolic surface

Resonances: poles of the meromorphic continuation

IN-1 [L%2— H? ImA >0
R(A):(_Ag_ﬁ_Z) N2 S HE . ImA<o0
comp loc? —

@ As poles of the resolvent, resonances participate in resonance
expansions of waves
Xeflt\/ng71/4Xf — § : eflt)\juj(x) + O(efut)
Ajrssonancs
ImX\;>—v
=
@ As poles of the Selberg zeta function, resonances play a role in
counting closed geodesics on M
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(M, g) convex co-compact hyperbolic surface

Resonances: poles of the meromorphic continuation

IN-1 [L%2— H? ImA >0
R(A):(_Ag_v_i) :{L2 SH2, ImA<O0
comp loc? —

@ As poles of the resolvent, resonances participate in resonance
expansions of waves

Xefit\/ng71/4Xf — Z efit)\juj(x) + O(efut)
X\ ;resonance
J
Im\;>—v
@ As poles of the Selberg zeta function, resonances play a role in
counting closed geodesics on M

@ As poles of the scattering operator, resonances can be computed from
experimental data, see for instance
Potzuweit—Weich—Barkhofen—Kuhl-Stéckmann—Zworski '12,
Barkhofen—Weich—Potzuweit-Stéckmann—Kuhl-Zworski '13
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Plots of resonances

Three-funnel surface with ¢1 =¥l = ¥3 =7
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Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Plots of resonances

Three-funnel surface with {1 =6, {pb = (3 =7

OD 500 1000 1500 2000 2500 3000 3500 4000
T T T T T T T 1

' M s el
Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
January 21, 2016 6 / 18



Plots of resonances

Torus-funnel surface with 1 =0, =7, ¢ = /2,

OO 1000 2000 3000 4000 5000 6000 7000 8000 9000
T T T

10000

] i . { B
Data courtesy of David Borthwick and Tobias Weich

See arXiv:1305.4850 and arXiv:1407.6134 for more
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High frequency asymptotics and geometric optics

e We will study resonances in the high frequency limit
Re \j — oo, |Im)\j|§C

They correspond to waves with bounded rate of exponential decay
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High frequency asymptotics and geometric optics

@ We will study resonances in the high frequency limit
ReAj =00, [Im)j|<C

They correspond to waves with bounded rate of exponential decay

@ At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
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High frequency asymptotics and geometric optics

@ We will study resonances in the high frequency limit
Re)\j%oo, ||m)\j|§C

They correspond to waves with bounded rate of exponential decay

@ At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence

e Long living waves have to localize on geodesics which do not escape
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High frequency asymptotics and geometric optics

@ We will study resonances in the high frequency limit
Re)\j%oo, |Im)\j|§C

They correspond to waves with bounded rate of exponential decay
@ At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
e Long living waves have to localize on geodesics which do not escape

@ In our case, the flow is hyperbolic and the trapped set is fractal. Need
to understand the interplay between

o dispersion of waves living on individual geodesics

e interferences between different geodesics
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The limit set and ¢
M = T'\H? hyperbolic surface

Ar C St = 9H? the limit set
§ :=dimy(Ar) € [0, 1]

Trapped geodesics: both endpoints in Ar
Forward/backward trapped: one endpoint in Ar
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size 5 > 0:
only finitely many resonances with Im A > —f

One application: resonance expansions of waves with O(e~?) remainder
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size 5 > 0:

only finitely many resonances with Im A > —f
One application: resonance expansions of waves with O(e~?) remainder

Patterson-Sullivan: the topmost resonance is A = i(J — %), therefore there
is a gap of size § = max (O, % — 5)

See also lkawa '88, Gaspard—Rice '89, Nonnenmacher—Zworski '09
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Results: spectral gap

Essential spectral gap: finitely many resonances with ImA > —f
Standard gap: Bsta = max(0, % —9)

Naud '04, Stoyanov '11 (inspired by Dolgopyat '98):
gap of of size % —0+efor0< < % and ¢ > 0 depending on M
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Results: spectral gap

Essential spectral gap: finitely many resonances with ImA > —f
Standard gap: Bsta = max(0, % —9)

Naud '04, Stoyanov '11 (inspired by Dolgopyat '98):

gap of of size % —0+efor0< < % and ¢ > 0 depending on M

Theorem 1 [D-Zahl '15]

There is a gap of size

=369+

where g € [0, d] is the improvement in the asymptotic of additive energy
of the limit set Ar. Furthermore

Be >dexp [ — K(1—0)"2® log™(1 + Q)] >0

where C is the 0-regularity constant of Ar and K a global constant.

B > Bsiq for 6 = % and nearby surfaces, including some with ¢ > %
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Results: spectral gap

Theorem [D-Zahl '15]
There is an essential spectral gap of size
31 BEe
=50+ %

where g € [0, 4] is the additive energy improvement

B

ol

3+8E
16

Numerics for 3- and 4-funneled surfaces by Borthwick—Weich '14
+ our gap for g := ¢ (representing some wishful thinking)
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im X a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0

How fast do Nig rj(c) and Nig ri1)(c) grow as R — oo?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im X a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0
How fast do Nig rj(c) and Nig ri1)(c) grow as R — oo?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im A a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0

How fast do Njg gj(c) and Nig r41j(c) grow as R — 00?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of ImA a b R
resonances with Re A
ReAe€[a, b, ImA>—0c —0
How fast do Nig rj(o) and Nig ri1)(0) grow as R — oo?
.
s} [—roreE .
0=05-074 o
7=05-09 St PY ®
*
o
ol o
ég 0 o *
g *
% linear fitto Npo, R]/R
o  concave fit to N[R. Re1)
*
log,(R) 0.5-6 0.5-0.55
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Fractal Weyl bounds

Nia,p)(0) = #{resonances with Re\ € [a,b], ImA > —0}
Theorem 2 [D '15]
For o fixed and R — oo, Nig p41)(0) = O(R™@9)+) where

m(o,d) = min(20 4+ 20 — 1,9).

Note that m=0at 0 = % — 0 and m = ¢ starting from o =

N[
N[>

m
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Fractal Weyl bounds

Nia,p)(0) = #{resonances with Re\ € [a,b], ImA > —0}
Theorem 2 [D '15]
For o fixed and R — oo, Nig p41)(0) = O(R™@9)+) where

m(o,d) = min(20 4+ 20 — 1,9).

Notethatm:OatU:%—éandmzéstartingfromaz%—%

m Zworski '99, Guillopé—Lin—Zworski '04,
Datchev-D '13: Nz r11j(0) = O(R°)

See also Sjostrand '90, Sjostrand—Zworski '07,
Nonnenmacher-Sjéstrand—Zworski '11, '14

Naud '14, Jakobson—Naud '14:

Nio,r)(0) = O(R'), for some (o, M) < 6
when o < % — %
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures

*

% linear fit to N[0 R]/R
O concave fit to N[R' R+1]
— — the bound of [GLZ '04]

— - — - the bound of [JN '14]
the bound of [D '15]

1

1

0.5-6

0.5-0.50

A comparison of numeric fits with the bounds of
Guillopé—Lin—Zworski '04, Jakobson—Naud '14, and D '15
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = I'\H? convex co-compact hyperbolic surface

The homogeneous geodesic flow

A
\

' T*M\O0O— T*M\ 0

is hyperbolic with weak (un)stable foliations L, /Ls
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = I'\H? convex co-compact hyperbolic surface

The homogeneous geodesic flow

A
\

o' T*"M\0— T*M\0

is hyperbolic with weak (un)stable foliations L, /Ls

Incoming/outgoing tails:

M ={(x.&) [ ¢(x,€) /> 00 as t — —o0}
Mo ={(x.6) [ ¢(x,€) /> 00 as t — +00}
On the cover T*H?\ 0,

[/l are foliated by L,/Ls and look similar to
the limit set Ar in directions transversal to L, /L
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state

1 -
( —Ag — i )\2)u =0, u outgoing at infinity, |ul| =1

Microlocally, u lives near ', has positive mass on I, and
u=eMU(t)u; U(t) = e V214 quantizes o*
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A\ = h™! — ji is a resonance, 0 < h < 1. There is a resonant state
( —Ng — 1_11 - >\2>u =0, wuoutgoing at infinity, |ju|| =1
Microlocally, u lives near 'y, has positive mass on I, and
u=eU(t)u; U(t) = e VR 1/% quantizes *
Outgoing condition implies:

u = Opy(x4)u+ O(h™),
10pA(x-)ull > C*
supp x+ C e-neighborhood of Iy
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~! — v is a resonance, 0 < h < 1. There is a resonant state
( —Ag — 1_11 - )\2)u =0, wuoutgoing at infinity, |ju|| =1
Microlocally, u lives near ', has positive mass on I, and
u=eU(t)u; U(t) = e VR 1/% quantizes *
Propagation for time t:

u = Opy(x+)u+ O(h™),
10p(x—)ul = Cte™
supp x+ C e ‘-neighborhood of 'y
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state
1 ) e
( —Ag — i )\2)u =0, wuoutgoing at infinity, |ju|| =1

Microlocally, u lives near ', has positive mass on I, and
u=eMU(t)u; U(t) = e V214 quantizes o*
Propagation for time t = log(1/h):
u = Opy*(x+)u+ O(h™),
10p; (x-)ull = Cre™t = CHh
supp x+ C h-neighborhood of T 1
Use second microlocal calculi associated to L, /Ls
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Method: fractal uncertainty

u aresonant state at A= h"' —jv, |ul| =1
u=Op;“(x+)u+ O(h®),  [[Opy:(x-)ull = C*h"
supp x+ C h-neighborhood of 'L N S*M

Proof of Theorem 1 (gaps)
@ To get a gap of size 3, enough to show a fractal uncertainty principle:
10p;* (x=)OP5* (x+ )l 2si2 < K
@ A basic bound gives the standard gap 5 = "51 — 0
10} (x-)Opg (x+)llus < Ch*=~* (1)

@ The bound via additive energy is obtained by harmonic analysis in L*

v
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Method: fractal uncertainty

u aresonant state at A= h"' —jv, |ul| =1
u=Opy"(x+)u+O(h*), [[Opy(x—)ull = CHh
supp x+ C h-neighborhood of L. N S*M

Proof of Theorem 1 (gaps)
@ To get a gap of size 3, enough to show a fractal uncertainty principle:
10p;* (x=)OP5* (x+ )l 2si2 < K
@ A basic bound gives the standard gap 5 = ”51 — 0
|0p}* (x-)OPR* (x4 )llus < Ch"2 (1)

@ The bound via additive energy is obtained by harmonic analysis in L*

v

Proof of Theorem 2 (counting)

o First write for each resonant state, u = A(\)u,
AN) = Y(N)Opy:(x-)0p;(x+) + O(h), YN < Ch™
o Next estimate det(/ — A(A)?) < exp(||.A(N)[|3s) using (1)
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Thank you for your attention!
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