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Overview

Overview

Resonances: complex characteristic frequencies
describing exponential decay of waves in open systems
Reλj = rate of oscillation, − Imλj = rate of decay

Our setting: convex co-compact hyperbolic surfaces

The high frequency régime | Imλ| ≤ C , |Reλ| � 1
is governed by the set of trapped trajectories,

which in our case is determined by the limit set ΛΓ

We give a new spectral gap and fractal Weyl bound
for resonances using a “fractal uncertainty principle”
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Setup

Hyperbolic surfaces

(M, g) = Γ\H2 convex co-compact hyperbolic surface
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An example: three-funnel surface with neck lengths `1, `2, `3
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Setup

Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
∆g Laplace–Beltrami operator on L2(M)

The L2 spectrum of −∆g consists of
eigenvalues in (0, 1

4)

continuous spectrum [1
4 ,∞)

`1 `2
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0 1/4
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Resonances are poles of the meromorphic continuation

R(λ) =
(
−∆g−λ2−1

4

)−1
:

{
L2 → H2, Imλ > 0
L2

comp → H2
loc, Imλ ≤ 0
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The L2 spectrum of −∆g consists of
eigenvalues in (0, 1

4)

continuous spectrum [1
4 ,∞)

`1 `2

`3

M`

0 1/4

Existence of meromorphic continuation:
Patterson ’75,’76, Perry ’87,’89, Mazzeo–Melrose ’87,
Guillopé–Zworski ’95, Guillarmou ’05, Vasy ’13

Resonances can be defined in many other situations,
such as Euclidean scattering or black hole scattering
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Setup

(M, g) convex co-compact hyperbolic surface
Resonances: poles of the meromorphic continuation

R(λ) =
(
−∆g − λ2 − 1

4

)−1
:

{
L2 → H2, Imλ > 0
L2

comp → H2
loc, Imλ ≤ 0

As poles of the resolvent, resonances participate in resonance
expansions of waves (under additional assumptions)

χe−it
√
−∆g−1/4χf =

∑
λj resonance

Imλj≥−ν

e−itλjuj(x) +O(e−νt)

As poles of the Selberg zeta function, resonances play a role in
counting closed geodesics on M

As poles of the scattering operator, resonances can be computed from
experimental data, see for instance
Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Zworski ’12,
Barkhofen–Weich–Potzuweit–Stöckmann–Kuhl–Zworski ’13
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Setup

Plots of resonances

Three-funnel surface with `1 = `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Setup

Plots of resonances

Three-funnel surface with `1 = 6, `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more

Semyon Dyatlov Resonances in chaotic scattering January 21, 2016 6 / 18



Setup

Plots of resonances

Torus-funnel surface with `1 = `2 = 7, ϕ = π/2, trivial representation

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Setup

High frequency asymptotics and geometric optics

We will study resonances in the high frequency limit

Reλj →∞, | Imλj | ≤ C

They correspond to waves with bounded rate of exponential decay
At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
Long living waves have to localize on geodesics which do not escape
In our case, the flow is hyperbolic and the trapped set is fractal. Need
to understand the interplay between

dispersion of waves living on individual geodesics
interferences between different geodesics

Semyon Dyatlov Resonances in chaotic scattering January 21, 2016 7 / 18



Setup

High frequency asymptotics and geometric optics

We will study resonances in the high frequency limit

Reλj →∞, | Imλj | ≤ C

They correspond to waves with bounded rate of exponential decay
At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
Long living waves have to localize on geodesics which do not escape
In our case, the flow is hyperbolic and the trapped set is fractal. Need
to understand the interplay between

dispersion of waves living on individual geodesics
interferences between different geodesics

Semyon Dyatlov Resonances in chaotic scattering January 21, 2016 7 / 18



Setup

High frequency asymptotics and geometric optics

We will study resonances in the high frequency limit

Reλj →∞, | Imλj | ≤ C

They correspond to waves with bounded rate of exponential decay
At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
Long living waves have to localize on geodesics which do not escape
In our case, the flow is hyperbolic and the trapped set is fractal. Need
to understand the interplay between

dispersion of waves living on individual geodesics
interferences between different geodesics

Semyon Dyatlov Resonances in chaotic scattering January 21, 2016 7 / 18



Setup

High frequency asymptotics and geometric optics

We will study resonances in the high frequency limit

Reλj →∞, | Imλj | ≤ C

They correspond to waves with bounded rate of exponential decay
At high frequency, waves approximately travel along geodesics of M.
We use microlocal analysis, the mathematical theory behind
geometric optics, as well as classical/quantum correspondence
Long living waves have to localize on geodesics which do not escape
In our case, the flow is hyperbolic and the trapped set is fractal. Need
to understand the interplay between

dispersion of waves living on individual geodesics
interferences between different geodesics

Semyon Dyatlov Resonances in chaotic scattering January 21, 2016 7 / 18



Setup

The limit set and δ

M = Γ\H2 hyperbolic surface
ΛΓ ⊂ S1 = ∂H2 the limit set
δ := dimH(ΛΓ) ∈ [0, 1]

`1 `2

`3

M`

Trapped geodesics: both endpoints in ΛΓ

Forward/backward trapped: one endpoint in ΛΓ
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size β > 0:
only finitely many resonances with Imλ > −β

One application: resonance expansions of waves with O(e−βt) remainder

Patterson–Sullivan: the topmost resonance is λ = i(δ − 1
2), therefore there

is a gap of size β = max
(
0, 1

2 − δ
)

See also Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09

δ − 1
2

δ − 1
2

δ > 1
2 δ < 1

2
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Results: spectral gap

Essential spectral gap: finitely many resonances with Imλ > −β
Standard gap: βstd = max(0, 1

2 − δ)

Naud ’04, Stoyanov ’11 (inspired by Dolgopyat ’98):
gap of of size 1

2 − δ+ ε for 0 < δ ≤ 1
2 and ε > 0 depending on M

Theorem 1 [D–Zahl ’15]

There is a gap of size

β =
3
8

(1
2
− δ
)

+
βE
16

where βE ∈ [0, δ] is the improvement in the asymptotic of additive energy
of the limit set ΛΓ. Furthermore

βE > δ exp
[
− K (1− δ)−28 log14(1 + C )

]
> 0

where C is the δ-regularity constant of ΛΓ and K a global constant.

β > βstd for δ = 1
2 and nearby surfaces, including some with δ > 1

2
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Results: spectral gap

Theorem [D–Zahl ’15]

There is an essential spectral gap of size

β =
3
8

(1
2
− δ
)

+
βE
16

where βE ∈ [0, δ] is the additive energy improvement

δ

β

11
2

1
2

3+βE
16

Numerics for 3- and 4-funneled surfaces by Borthwick–Weich ’14
+ our gap for βE := δ (representing some wishful thinking)
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Results: Weyl upper bounds

Counting resonances

Denote by N[a,b](σ) the number of
resonances with

Reλ ∈ [a, b], Imλ ≥ −σ

Reλ

Imλ a b

−σ

How fast do N[0,R](σ) and N[R,R+1](σ) grow as R →∞?
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Results: Weyl upper bounds

Fractal Weyl bounds

N[a,b](σ) = #{resonances with Reλ ∈ [a, b], Imλ > −σ}

Theorem 2 [D ’15]

For σ fixed and R →∞, N[R,R+1](σ) = O(Rm(σ,δ)+), where

m(σ, δ) = min(2δ + 2σ − 1, δ).

Note that m = 0 at σ = 1
2 − δ and m = δ starting from σ = 1

2 −
δ
2

σ1
2 − δ

1
2 −

δ
2

δ

m Zworski ’99, Guillopé–Lin–Zworski ’04,
Datchev–D ’13: N[R,R+1](σ) = O(Rδ)

See also Sjöstrand ’90, Sjöstrand–Zworski ’07,
Nonnenmacher–Sjöstrand–Zworski ’11, ’14

Naud ’14, Jakobson–Naud ’14:
N[0,R](σ) = O(R1+γ), for some γ(σ,M) < δ

when σ < 1
2 −

δ
2
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures

0.5-δ 0.5-0.5δ

0

δ

linear fit to N[0, R]/R

concave fit to N[R, R+1]
the bound of [GLZ '04]
the bound of [JN '14]
the bound of [D '15]

A comparison of numeric fits with the bounds of
Guillopé–Lin–Zworski ’04, Jakobson–Naud ’14, and D ’15
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = Γ\H2 convex co-compact hyperbolic surface
The homogeneous geodesic flow

ϕt : T ∗M \ 0→ T ∗M \ 0

is hyperbolic with weak (un)stable foliations Lu/Ls

Incoming/outgoing tails:

Γ+ = {(x , ξ) | ϕt(x , ξ) 6→ ∞ as t → −∞}
Γ− = {(x , ξ) | ϕt(x , ξ) 6→ ∞ as t → +∞}

On the cover T ∗H2 \ 0,
Γ+/Γ− are foliated by Lu/Ls and look similar to
the limit set ΛΓ in directions transversal to Lu/Ls
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Method: fractal uncertainty

Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
−∆g −

1
4
− λ2

)
u = 0, u outgoing at infinity, ‖u‖ = 1

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−1/4 quantizes ϕt
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−∆g −

1
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)
u = 0, u outgoing at infinity, ‖u‖ = 1

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−1/4 quantizes ϕt

Outgoing condition implies:

u = Oph(χ+)u +O(h∞),

‖Oph(χ−)u‖ ≥ C−1

suppχ± ⊂ ε-neighborhood of Γ±
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Method: fractal uncertainty

Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
−∆g −

1
4
− λ2

)
u = 0, u outgoing at infinity, ‖u‖ = 1

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−1/4 quantizes ϕt

Propagation for time t = log(1/h):

u = OpLuh (χ+)u +O(h∞),

‖OpLsh (χ−)u‖ ≥ C−1e−νt = C−1hν

suppχ± ⊂ h-neighborhood of Γ±

Use second microlocal calculi associated to Lu/Ls
In practice, we take t = ρ log(1/h), ρ = 1− ε
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Method: fractal uncertainty

u a resonant state at λ = h−1 − iν, ‖u‖ = 1

u = OpLuh (χ+)u +O(h∞), ‖OpLsh (χ−)u‖ ≥ C−1hν

suppχ± ⊂ h-neighborhood of Γ± ∩ S∗M

Proof of Theorem 1 (gaps)

To get a gap of size β, enough to show a fractal uncertainty principle:
‖OpLsh (χ−)OpLuh (χ+)‖L2→L2 � hβ

A basic bound gives the standard gap β = n−1
2 − δ:

‖OpLsh (χ−)OpLuh (χ+)‖HS ≤ Ch
n−1
2 −δ (1)

The bound via additive energy is obtained by harmonic analysis in L4

Proof of Theorem 2 (counting)

First write for each resonant state, u = A(λ)u,
A(λ) = Y (λ)OpLsh (χ−)OpLuh (χ+) +O(h∞), ‖Y (λ)‖ ≤ Ch−ν

Next estimate det(I −A(λ)2) ≤ exp(‖A(λ)‖2HS) using (1)
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Thank you for your attention!
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