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Motivation

Resonances are a discrete set of complex frequencies describing decay
of waves/classical correlations for open systems

Motivated by decay of linear waves on black holes, we study
resonances for r -normally hyperbolic trapped sets

We obtain two resonance free strips in terms of the transversal
expansion rates νmin ≤ νmax and a Weyl law in the band in between:

λ

− νmin−ε
2

− νmax+ε
2

−(νmin−ε)

This is one of the very few known asymptotics for counting resonances.

Our result relies on the construction of a microlocal projector
corresponding to resonances in the band, a Fourier integral operator

We also get new information on microlocalization of resonant states
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Motivation

Motivation: ringdown on black holes

Chandrasekhar '83:

. . . we may expect that any initial perturbation will, during its last stages,

decay in a manner characteristic of the black hole itself and independent of

the cause. In other words, we may expect that during these last stages, the

black hole emits gravitational waves with frequencies and rates of damping

that are characteristic of the black hole itself, in the manner of a bell

sounding its last dying notes.
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Motivation

Motivation

Linear waves on (slowly) rotating Kerr�de
Sitter black holes (M̃, g̃)

�g̃u = f ∈ C∞0 , u|t<0 = 0.

Open system: most energy escapes through
the event horizons.

r− r+

Two radial timelike geodesics,
with light cones shown

What is the behavior of u(t) as t → +∞?

Theorem [D '10, '11]

There is a discrete set of resonances {λj} ⊂ {Imλ ≤ 0} such that ∀ν > 0,
the following resonance expansion∗ holds

u(t, x) =
∑

Imλj>−ν
e−itλj Πj f (x) +O(e−νt).
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Motivation

Theorem [D '10, '11]

Moreover, resonances satisfy a quantization condition, that is they lie
asymptotically on a distorted lattice.

The quantization condition agrees with the exact values computed in
Berti�Cardoso�Starinets '09 (shown here for a = 0, 0.05, . . . , 0.25)
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Previous work: Sá Barreto�Zworski '97, Bony�Häfner '07,
Dafermos�Rodnianski '07, Melrose�Sá Barreto�Vasy '08,
Wunsch�Zworski '10, Vasy '10. . . + numerous results for Λ = 0
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Motivation

How about (stationary) perturbations of Kerr�de Sitter?

Strategy for exact K�dS:

Resonance
expansion

Quantization
condition

Symmetries

Perturbations destroy symmetries and our ability to handle individual
resonances (similarly to the compact case).

Strategy for perturbations:

Long-time behavior
of waves

Quantitative
information about
resonances in bulk

Dynamical
assumptions stable
under perturbations
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Results

Setup

The structure of open ends/event horizons does not change our result
(Vasy '10 for event horizons of K�dS) =⇒ use a simpler model at in�nity:

(M̃, g̃) = (Mx , g)× Rt , (Mx , g) ' Rn outside of a compact set

De�ne resonances as poles of the meromorphic continuation of the
resolvent of the Laplacian ∆ ≥ 0:

R(λ) = (∆− λ2)−1 :

{
L2(M)→ L2(M), Imλ > 0;

L2comp(M)→ L2loc(M), Imλ ≤ 0.

Long-living resonances: Reλ→∞, | Imλ| ≤ C . Depend on trapping for
the geodesic �ow etHp , p(x , ξ) = |ξ|g :

Γ± = {ρ ∈ T ∗M | etHp(ρ) 6→ ∞ as t → ∓∞}, K = Γ+ ∩ Γ−.
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Results

Dynamical assumptions

Γ± are C r hypersurfaces (r � 1)

K = Γ+ |∩ Γ− is symplectic

νmin ≤ νmax are the expansion rates of
etHp along Γ± transversally to K

µmax ≥ 0 is the maximal expansion
rate of etHp along K

r -normal hyperbolicity: νmin > r · µmax

pinching: νmin >
1
2
νmax

Normally hyperbolic trapping,
with Γ+, Γ−, and K .

Stable under small smooth perturbations: Hirsch�Pugh�Shub '77

True for slowly rotating K�dS (for S�dS, K is the photonsphere)

More general normally hyperbolic trapping (r = 0) appears for Ruelle
resonances for Anosov �ows [Faure�Sjöstrand '11] and quantum
chemistry [Goussev�Schubert�Waalkens�Wiggins '10]
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Results

Main theorem [D '13]

For each �xed ε > 0, there exist two resonance free strips

{Reλ� 1, Imλ ∈ [−(νmin − ε),− 1
2
(νmax + ε)] ∪ [− 1

2
(νmin − ε),∞)}

and in these strips, ‖χR(λ)χ‖L2→L2 = O(1) for χ ∈ C∞0 (M).
Moreover, resonances between the two strips satisfy a Weyl law as h→ 0:

#{0 ≤ Reλ ≤ h−1, Imλ > − 1
2
(νmax + ε)} =

Volσ(K ∩ B∗M)

(2πh)n−1
+ o(h1−n).

λ

− νmin−ε
2

− νmax+ε
2

−(νmin−ε)

h−1
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Results

What about exact Kerr�de Sitter?

M > 0 mass of the black hole

a speed of rotation, |a| < M

Λ > 0 cosmological constant,
9ΛM2 < 1

The metric is r -normally hyperbolic
for Λ� 1 or |a| � 1: νmin > 0,
µmax = 0.

νmax

νmin

1
2νmax
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a/M
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M
ν

However, the pinching condition νmin >
1
2
νmax breaks down for a = M − ε,

ε� 1: there exist two closed trajectories (equators) E± ⊂ K such that the
local expansion rate ν satis�es as ε→ 0

ν ∼ 3
√
3

28M
on E+, ν ∼

√
ε/2M

M
on E−.
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Results

Previous work

Resonant free strips for NH trapped sets: Gérard�Sjöstrand '88,
Dolgopyat '98, Liverani '04, Tsujii '10, Wunsch�Zworski '11,
Nonnenmacher�Zworski '13. Our gap {Imλ > − 1

2
(νmin − ε)}

coincides with the one of N�Z '13 (valid in more general situations)

Our Weyl law saturates general upper bounds in strips: Sjöstrand '90,
Guillopé�Lin�Zworski '04, Sjöstrand�Zworski '07, Nonnenmacher
�Sjöstrand�Zworski '11,'12, Datchev�D '12, Datchev�D�Zworski '12.

Completely integrable cases: Gérard�Sjöstrand '87, Christianson '07,
Sá Barreto�Zworski '97, D '11

Bands of resonances/Weyl laws: Zworski '87, Sjöstrand�Vodev '97,
Sjöstrand�Zworski '99, Sjöstrand '00,'11, Faure�Tsujii '12,'13

F�T '13 shares some ideas with presented work. It applies in settings with
lower regularity, but does not recover microlocal structure away from K .
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Proofs

Ingredients of the proof

Fourier integral operator Π projecting microlocally onto resonant
states for the band of resonances

Left/right ideals of pseudodi�erential operators annihilating Π

Local reduction to Taylor expansion

Positive commutator estimates (replaced in this talk by wave
propagation estimates)

Grushin problems: resonances as zeros of a Fredholm determinant

Trace formulas above and below the band of resonances, using
microlocal analysis in λ

Complex analysis (almost analytic continuation and argument
principle) to obtain the Weyl law
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Proofs

Model case

M = R, P0 = xDx +
1

2i
, U0(t)f (x) = e−t/2f (e−tx)

p(x , ξ) = xξ, νmin = νmax = 1

The Taylor expansion

f (e−tx) = f (0) +O(e−t)L2
loc

can be viewed as a resonance expansion:

U0(t)f = U0(t)Π0f +O(e−3t/2),

Π0f (x) := f (0),

U0(t)Π0f = e−t/2Π0f

A resonance at λ = − i
2
and Π0 = δ0 ⊗ 1 is the projector onto the

corresponding resonant state.
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Proofs

General case

P =
√

∆, U(t) = e−itP

�Projector�:

Π : C∞0 (M)→ C∞(M), Fourier integral operator

�Resonance expansion�: for f ∈ C∞0 (M) living at frequencies ∼ h−1 and
χ ∈ C∞0 (M), χ = 1 near K , modulo O(h∞) errors,

‖χU(t)(1− Π)f ‖L2 = O(h−1e−(νmin−ε)t)‖f ‖L2 ,

e−
νmax+ε

2
t‖χΠf ‖L2 . ‖χU(t)Πf ‖L2 . e−

νmin−ε
2

t‖χΠf ‖L2

This is enough for two resonance free strips
+ u = Πu +O(h∞) for resonant states in the band.

Also true for Kerr black holes, using Vasy�Zworski '00 (note: high
frequency régime!)
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Proofs

The projector Π

Construct unique h-Fourier integral
operator Π, associated to a canonical
relation Λ ⊂ T ∗M × T ∗M, such that:

Π2 = Π +O(h∞), (1)

[∆,Π] = O(h∞), (2)

microlocally near K ∩ S∗M.

K

Γ−

Γ+

ρ−

ρ+

The canonical relation Λ
(�ow lines of V± dashed).

If V± ⊂ TΓ± are the symplectic complements of TΓ± in T (T ∗M) and
π± : Γ± → K are the projections along the �ow lines of V±, then

Λ = {(ρ−, ρ+) | ρ± ∈ Γ±, π−(ρ−) = π+(ρ+)}.
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Proofs

Transport equations

To construct Π, we need to solve transport equations of the form

Hpa = f , a ∈ C∞(Γ±), a|K = 0

where f ∈ C∞(Γ±), f |K = 0.
The unique solution is given by the integral

a = ±
∫ ∞
0

f ◦ e∓tHp dt.

The integral converges: |f ◦ e∓tHp | = O(e−(νmin−ε)t), but is a smooth?
Di�erentiate along K :

∂ka = ±
∫ ∞
0

∂k f ◦ e∓tHp · ∂ke∓tHp dt.

Therefore, r -normal hyperbolicity guarantees that a ∈ C r .
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Proofs

P =
√

∆, U(t) = e−itP , Π ∈ I (Λ);

U0(t)f (x) = e−t/2f (e−tx), Π0f (x) = f (0).

�Resonance expansion�: for f ∈ C∞0 (M) living at frequencies ∼ h−1 and
χ ∈ C∞0 (M), χ = 1 near K , modulo O(h∞) errors,

‖χU(t)(1− Π)f ‖L2 = O(h−1e−(νmin−ε)t)‖f ‖L2 , (3)

e−
νmax+ε

2
t‖χΠf ‖L2 . ‖χU(t)Πf ‖L2 . e−

νmin−ε
2

t‖χΠf ‖L2 . (4)
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Proofs

To prove (3) for the model case, write

(1− Π0)f = xf1, f1(x) =
f (x)− f (0)

x
, ‖f1‖L2 . ‖f ‖H1 ;

χU0(t)(1− Π0)f = χU0(t)xU0(−t)U0(t)f1, U0(t)xU0(−t) = e−tx .

To prove (4) for the model case, note that hDxΠf = 0 and thus
〈a(x)Πf ,Πf 〉 depends only on

∫
a(x) dx . Then

‖χU0(t)Πf ‖2L2 = 〈χ2
t (x)Πf ,Πf 〉, χt = U0(−t)χU0(t),

and we use that χt(x) = χ(etx) =⇒
∫
χ2
t dx = e−t

∫
χ2 dx .

The general case is handled using the same ideas, but replacing x and hDx

by pseudodi�erential operators Θ− and Θ+ solving

ΠΘ− = O(h∞), Θ+Π = O(h∞). (5)

Such Θ± are not unique, but the sets of solutions to the equations form
one-sided ideals invariant under the propagator U(t).
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Open problems

Open problems

Show existence of further gaps and bands, below the �rst band of
resonances. The main question is how to construct Fourier integral
operators Π1,Π2, . . . projecting onto resonant states for each band.

Obtain a quantization condition if the �ow is completely integrable on
the trapped set, recovering Gérard�Sjöstrand '87,
Sá Barreto�Zworski '97, and D '11.

Get an optimal remainder O(h2−n) in the Weyl law (we prove o(h1−n)
and O(h2−n−) should not be much harder), perhaps using the work of
Sjöstrand '00 on the damped wave equation.
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Thank you for your attention!
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