
PROPAGATION OF SINGULARITIES AND
NONTRAPPING ESTIMATES

SEMYON DYATLOV

Abstract. In this expository note, we prove the semiclassical propagation of singularities
estimate in the presence of complex absorbtion, using the positive commutator method
of Hörmander. As an application, we show a nontrapping estimate for one-dimensional
semiclassical potential scattering using the method of complex scaling. We also explain
how nontrapping estimates in certain other situations (such as a nontrapping obstacle in
R3) lead to exponential decay for solutions of the wave equation.

1. Motivation

Let O ⊂ R3 be an obstacle (a domain with smooth boundary and connected complement)

and E = R3 \ O be its exterior domain. Consider the wave equation in E with Dirichlet

boundary conditions1

(∂2
t −∆x)u(t, x) = f(t, x), t > 0, x ∈ E ;

u|t=0 = ∂tu|t=0 = 0;

u|x∈E = 0.

Here f has bounded support. For simplicity, we will assume that f(t, x) ∈ C∞((0,∞)×E)

and thus u lies in the same class, but the estimates work naturally in certain Sobolev

classes. In this note, we concentrate on the nontrapping property and not on the general

properties of wave equations, which can be found for example in [Ta, Chapter 8].

The global energy

E(t) =
1

2

∫
E
|ut|2 + |∇xu|2 dx

is conserved in time. However, we are interested in the behavior of u(t, x) when t → +∞
and x stays in a fixed compact set K ⊂ E . We define local energy as

EK(t) =
1

2

∫
K

|ut|2 + |∇xu|2 dx.

1A classical treatment of obstacle scattering can be found in [LaPhi]. A shorter introduction following
similar methods is found in [Ta]. Our approach is perhaps closest to [Sj].
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We wish to prove exponential decay of local energy ; i.e., that there exists a constant ν > 0

and an f -dependent constant C such that

EK(t) ≤ Ce−νt. (1.1)

It turns out that this exponential decay property is related to the phenomenon of trapping.

Namely, consider a billiard ball trajectory γ(t) in E ; that is, γ(t) moves along a straight

line until it hits the obstacle, at which point it is reflected and continued further by the

same principle.2 It is convenient to picture γ as living in the phase space E × Rn = T ∗E ,

with coordinates (x ∈ E , ξ ∈ Rn); x corresponds to position and ξ to momentum (or speed,

in our situation); then away from O, (x, ξ) = γ(t) solves Hamilton’s equations for the

Hamiltonian p = 1
2
|ξ|2:

ẋ = ∂ξp = ξ, ξ̇ = −∂xp = 0. (1.2)

Such a γ is called forward trapped if there exists a compact set K such that γ(t) ∈ K

for all t > 0. Otherwise, we say that γ escapes as t → ∞. (In fact, once γ(t) leaves the

convex hull of O, it moves in a straight line to infinity.) Similarly we define backwards

trapped trajectories; the compact trapped set consists of trajectories that are trapped in

both directions. The obstacle O is called nontrapping if the trapped set is nonempty; in

fact, in this case each trajectory escapes in both directions (exercise). For a nontrapping

obstacle, the exponential decay estimate (1.1) holds.3 We will not prove this fact here, but

rather indicate how it follows from a certain nontrapping estimate from scattering theory

and prove this estimate in a simpler model case. (The simplifications have to do with the

structure of infinity, not of the trapped set; in fact, we present the key propagation of

singularities estimate in great generality.)

Estimates of type (1.1) have been discovered by Lax and Phillips, see [LaPhi]. They

used an object now called Lax–Phillips semigroup; however, most modern treatments use

instead the contour deformation argument, which we briefly present here. Let us take the

Fourier–Laplace transform of u in time:

û(ω)(x) =

∫ ∞
0

eitωu(t, x) dt. (1.3)

If Imω > 0, then by conservation of energy and thanks to the exponential decay of eitω, the

integral (1.3) converges and gives a function in L2(E). Moreover, we have the differential

2We cannot afford to consider the microlocal properties of boundary value problems in this note; in
particular, we ignore the problems of glancing or obstacles with corners. Both propagation of singularities
and the nontrapping estimate for the model case in Section 4 are proved in a situation without boundary.

3If the obstacle has a trapped set of full measure (for example, imagine a three-dimensional version of
the letter C, with the ends very close to each other), then a lot of energy will stay near the trapped set
and we cannot expect exponential decay. However, the estimate (1.1) is still true in certain cases when
the trapping is mild; i.e. almost all trajectories near the trapped set move away from it exponentially fast.
See [Ik] for the case of several convex obstacles and [NoZw] for a general statement under a certain pressure
condition.
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equation

(−∆x − ω2)û(ω) = f̂(ω). (1.4)

The equation (1.4) makes sense for Imω ≤ 0 as well. In fact, one can show that there

exists a family of operators R(ω) : L2
comp(E) → L2

loc(E) (i.e., from compactly supported

to locally square integrable functions) such that û(ω) = R(ω)f̂(ω) for Imω > 0, and

R(ω) is meromorphic in ω, with poles of finite rank. The construction of R(ω) depends

on the structure of spatial infinity; for the obstacle problem, one can either construct a

parametrix from the free resolvent and the cutoff resolvent of the Laplacian on E using the

framework of black box scattering [Sj, Section 2.3], or use the method of layer potentials [Ta,

Section 9.7]. We will not give a construction of R(ω) here; we only note that in the absence

of the obstacle, it would be given by the free resolvent

R0(ω)f(x) =
1

4π

∫
eiω|x−y|

|x− y|
f(y) dy. (1.5)

The operator R(ω) has no poles on the real line; however, it does have infinitely many poles

in {Imω < 0}, called resonances.

Coming back to analysing the behavior of u(t) for large t, we write by Fourier inversion

formula

u(t) =
1

2π

∫
Imω=1

e−itωR(ω)f̂(ω) dω.

We now want to deform the contour of integration to the lower half-plane, where e−itω is

decaying exponentially in t → +∞.4 For this, we need to have an estimate on R(ω) in

some strip below the real line; we claim that under the nontrapping assumption, we have

the following nontrapping estimate: for each χ ∈ C∞0 (E) and each ν > 0,

‖χR(ω)χ‖L2→L2 ≤ C|ω|−1, Imω > −ν, |Reω| � 1 depending on ν. (1.6)

Given (1.6), we see that for each ν, the set of resonances in {Imω ≥ −ν} is finite; therefore,

we can write

u(t) =
∑

Im ω̂≥−ν

Resω̂(e−itωR(ω)f̂(ω)) +
1

2π

∫
Imω=−ν

e−itωR(ω)f̂(ω) dω

=
∑

Im ω̂≥−ν

Resω̂(e−itωR(ω)f̂(ω)) +O(e−νt),
(1.7)

where we estimated the integral by (1.6) and used the fact that f̂(ω) is Schwartz in Reω

for bounded Imω. The sum in (1.7) is over resonances ω̂ and each of its terms has a time

profile tke−itω̂, with k ≥ 0 an integer and e−itω̂ exponentially decaying. The formula (1.7)

4The general contour deformation argument can be found in [Sj, Section 3]. For a simpler one-
dimensional situation, the reader is directed to [Zw, Section 2.2]; in fact, the nontrapping estimate
there follows from our discussion below, as after semiclassical rescaling the operator D2

x + V (x) becomes
h2D2

x + h2V (x) instead of h2D2
x + V (x) that we study; thus, the semiclassical prinicipal symbol is just |ξ|2

and its flow is nontrapping regardless of V .
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is known as resonance expansion of linear waves. In particular, if we take ν > 0 small

enough so that there are no resonances in {Imω > −ν}, we arrive to the exponential decay

estimate (1.1).

We now need to understand why the geometric nontrapping condition on the classical

flow implies the nontrapping estimate (1.6). The estimate (1.6) was proved by Morawetz

for a star-shaped obstacle, see [LaPhi, Appendix 3 and Theorem 5.3.2]. For that, she used

the vector field

F = x · ∂x.

The symbol of (i times) the multiplier F is the function f(x, ξ) = x · ξ. For p = |ξ|2
the symbol of the Laplacian, one computes the derivative of f along solutions to (1.2):

Hpf = 2|ξ|2 > 0 for ξ 6= 0. Moreover, if O is star-shaped, then f strictly increases with

each reflection; therefore, f grows along the billiard ball trajectories. Such f is called an

escape function; its existence is equivalent to the obstacle being nontrapping. For a general

nontrapping obstacle, we might not be able to find an escape function f which is polynomial

in ξ and would thus correspond to a differential operator F ; however, we can quantize an

arbitrary smooth function f to a pseudodifferential operator. The nontrapping estimate

in this general case is then proved as follows: we first handle the infinity, for example

by complex scaling (presented in Section 4 for a model one-dimensional case) and then

use the propagation of singularities estimate, based on Hörmander’s positive commutator

argument; the latter is presented in Section 3.

2. Semiclassical quantization

In this section, we briefly review semiclassical notation as used in [EvZw]. We consider

the Weyl quantization (see [EvZw, Chapter 4] for details)

a ∈ Sm 7→ Oph(a) = aw(x, hDx) : Hs
h(Rn)→ Hs−m

h (Rn)

We will often denote semiclassical quantization of a symbol by the corresponding uppercase

letter, e.g. A := Oph(a). Here a smooth function a(x, ξ) lies in the symbol class Sm if and

only if

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|β|.

(We restrict to Kohn–Nirenberg symbols as in [EvZw, Section 10.3] to make it possible

to quantize functions on manifolds.) For m a nonnegative integer, the class Sm includes

polynomials a(x, ξ) in ξ (with coefficients functions of x bounded with all their derivatives),

and the corresponding operators Oph(a) are semiclassical differential operators. (We use the

Weyl quantization to fix notation; any other quantization would work equally as well.) The

Hs
h are semiclassical Sobolev spaces; however, we will often concentrate on the behavior of

symbols in a compact subset of (x, ξ); for functions localized there, all semiclassical Sobolev

norms are equivalent. We also assume that all studied symbols a(x, ξ;h) ∈ Sm are classical
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in their dependence on h in the following sense: there exists a sequence aj(x, ξ) ∈ Sm−j

such that for each N ,

a(x, ξ;h) =
∑

0≤j<N

hjaj(x, ξ) +O(hN)Sm−N .

We write a ∼
∑

j≥0 h
jaj. It turns out that the space of operators with classical symbols

is invariant under the basic operations of semiclassical analysis (products, adjoints, and

changes of variables). The component a0 is called the principal symbol.

The main property of semiclassical quantization that we use is the multiplication formula:

a ∈ Sm1 , b ∈ Sm2 =⇒ Oph(a) Oph(b) = Oph(a#b),

where a#b ∈ Sm1+m2 and

(a#b)(x, ξ) ∼
∑
j≥0

hj

(2i)jj!
(∂ξ · ∂x − ∂η · ∂y)j(a(x, ξ)b(y, η))| y=x

η=ξ
.

In particular, we derive (with remainders bounded between appropriate semiclassical Sobolev

spaces)

Oph(a) Oph(b) = Oph(ab) +O(h), (2.1)

[Oph(a),Oph(b)] =
h

i
Oph({a, b}) +O(h2). (2.2)

Here {a, b} is the Poisson bracket:

{a, b} = ∂ξa · ∂xb− ∂xa · ∂ξb.

For a real-valued, we can write {a, b} = Hab, where Ha is the Hamilton vector field of a:

Ha = ∂ξa · ∂x − ∂xa · ∂ξ.

Finally, we need the following sharp G̊arding inequality [EvZw, Theorem 4.32]: if a ∈ C∞0
and a ≥ 0 everywhere, then there exists a constant C such that for each u ∈ L2,

〈Oph(a)u, u〉 ≥ −Ch‖u‖2L2 . (2.3)

Here 〈·, ·〉 denotes the L2 inner product.

3. Propagation of singularities

The results of this section apply in fact to any manifold, not just Rn, if we use semiclas-

sical quantization on manifolds as in [EvZw, Chapter 14].

We let p(x, ξ;h) ∈ Sm, with p0 its principal part, and let P = Oph(p) be the associated

operator. Our goal is to get estimates on solutions to the equation Pu = v. We start with
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Theorem 1. (Elliptic estimate) Assume that a(x, ξ) is compactly supported and such that

supp a ⊂ {p0 6= 0}. (3.1)

Then there exists a constant C such that for each u,

‖Au‖L2 ≤ C‖Pu‖L2 +O(h∞)‖u‖L2 .

Proof. If one is content with O(h) in place of O(h∞), the estimate is proved by taking any

q0(x, ξ) ∈ C∞0 such that a = q0 · p0; its existence follows immediately from (3.1). Then

by (2.1),

A = Oph(q0)P +O(h);

thus
‖Au‖L2 ≤ ‖Oph(q0)Pu‖L2 +O(h)‖u‖L2

≤ C‖Pu‖L2 +O(h)‖u‖L2 .
(3.2)

In order to get the O(h∞) remainder, we consider an h-dependent q:

q ∼
∑
j≥0

hjqj,

such that, with Q = Oph(q),

A = Q#P +O(h∞). (3.3)

This is done by inductively solving for each qj. In fact, q0 has been found above, and we

will be able to arrange it so that each qj is supported in {p0 6= 0}. Assume that for some

J , we found q1, . . . , qJ−1 such that

a−
(∑
j<J

hjqj
)
#p = O(hJ). (3.4)

We can write the right-hand side of (3.4) as hJcJ(x, ξ) + O(hJ+1), with cJ supported in

{p0 6= 0}. Then, if we take qJ such that p0qJ = cJ , we have (3.4) for J +1 in place of J . By

induction in J , we arrive to (3.3). It remains to argue analogously to (3.2), with Q taking

the place of Oph(q0). �

The main fact to be proved in this section is

Theorem 2. (Propagation of singularities) Assume that the principal symbol p0 is real

valued. We can then consider the flow lines of the Hamiltonian vector field Hp0, which we

call bicharacteristics. Also, assume that q ∈ Sm is such that q0 is real-valued. Let a, b, g be

compactly supported functions on R2n such that supp b ⊂ {g 6= 0} and one of the following

dynamical assumptions holds:

(1) for each bicharacteristic γ(t) with γ(0) ∈ supp a∩{p0 = 0}, there exists T > 0 such

that γ(T ) ∈ {b 6= 0} and γ([0, T ]) ⊂ {g 6= 0}, and q0 ≤ 0 near supp g;

(2) for each bicharacteristic γ(t) with γ(0) ∈ supp a∩{p0 = 0}, there exists T > 0 such

that γ(−T ) ∈ {b 6= 0} and γ([−T, 0]) ⊂ {g 6= 0}, and q0 ≥ 0 near supp g.
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Figure 1. Assumptions of Theorem 2. We estimate Au by Bu and G(P − iQ)u.

Then, there exists a constant C such that for all u,

‖Au‖L2 ≤ C(‖Bu‖L2 + h−1‖G(P − iQ)u‖L2) +O(h∞)‖u‖L2 . (3.5)

If Bu = O(h∞) and Pu = 0, we see that Au = O(h∞). This means that for q0 = 0,

Theorem 2 can be reformulated as follows: the wavefront set (in the sense of [EvZw, Sec-

tion 8.4]) of any solution of Pu = 0 lies in {p0 = 0} and is invariant under the Hamiltonian

flow of p0. One can also say that regularity propagates along the bicharacteristics in both

directions. Then for q0 ≤ 0, regularity propagates backwards along the bicharacteristics,

while for q0 ≥ 0, it propagates forward. The operator Q, called complex absorbing operator,

is important in our application in Section 4 because it fixes the direction of propagation.

To see how the sign of q affects the direction of propagation, one can consider the one-

dimensional example with P = hDx, Q = q(x) ≤ 0 everywhere, a(x) supported near x = 0,

and b(x) supported near x = 1. Then the solutions to (P − iQ)u = 0 are multiples of

u(x) = exp

(
− h−1

∫ x

0

q(y) dy

)
;

we see that ‖Au‖ . ‖Bu‖, but not the other way round. Note also that the assumptions

of the theorem still hold for q = Ch for some constant C (as the principal symbol of Q is

then zero), and then ‖Au‖ ∼ eC‖Bu‖; this explains why the escape function we construct

below has to grow sufficiently fast (condition (3) in Lemma 3.1).

We now prove Theorem 2. We operate under the assumption (1); assumption (2) is

handled, for example, by multiplying both P and Q by −1. We can moreover assume that

(1) holds for bicharacteristics with γ(0) ∈ supp a, not just γ(0) ∈ supp a∩{p0 = 0}; indeed,

we can write a = a1 +a2, where (1) holds for each γ with γ(0) ∈ supp a1, and a2 ⊂ {p0 6= 0}
and thus Theorem 1 applies to it. First, we reduce Theorem 2 to the following estimate:

‖Au‖L2 ≤ C(‖Bu‖L2 + h−1‖G(P − iQ)u‖L2 + h1/2‖Gu‖L2) +O(h∞)‖u‖L2 . (3.6)

Indeed, we can prove the following family of estimates by induction in n:

‖Au‖L2 ≤ C(‖Bu‖L2 + h−1‖G(P − iQ)u‖L2 + hn/2‖Gu‖L2) +O(h∞)‖u‖L2 . (3.7)

For n = 1, (3.7) is just (3.6); knowing (3.7) for all n immediately gives (3.5). So assume

that (3.7) holds for some n and all operators satisfying the assumptions of Theorem 2, and

we want to prove it for n+ 1 and some operators A,B,G. Since supp a∩{p0 = 0} is closed
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t0−ε T T + ε

Figure 2. An escape function f1(t), with the ligher and darker shaded re-

gions corresponding to A and B, respectively.

and {b 6= 0} is open, we can find G′ such that the assumptions of Theorem 2 hold both for

(A,B,G′) and (G′, B,G). Then we apply (3.7) for n and the operators (A,B,G′) and (3.6)

for the operators (G′, B,G) to estimate the term ‖G′u‖L2 on the right-hand side of (3.7),

and get the required estimate (with ‖G′(P − iQ)u‖L2 ≤ C‖G(P − iQ)u‖L2 +O(h∞)‖u‖L2

by Theorem 1).

It now remains to prove (3.6). For that, we use the positive commutator argument.5 The

key component is the escape function:

Lemma 3.1. For each R > 0, there exists a function f ∈ C∞0 (R2n) such that:

(1) f ≥ 0 everywhere and f > 0 on supp a;

(2) supp f ⊂ {g 6= 0};
(3) Hp0f ≥ Rf near the complement of {b 6= 0}.

Proof. We use a local construction and a covering argument, similarly to [DaVa2, Lemma 4.3].

Take a point ρ ∈ supp a and let γ(t) = exp(tHp0)ρ be the bicharacteristic starting at

ρ. By the dynamical assumption, there exists T > 0 such that γ(T ) ∈ {b 6= 0} and

γ([0, T ]) ⊂ {g 6= 0}. We now introduce the system of coordinates6

(t, ζ) ∈ [−ε, T + ε]× {|ζ| < ε}

in a neighborhood U of γ([0, T ]) such that γ(t) has coordinates (t, 0) and the Hamiltonian

vector field Hp0 corresponds to ∂t. We shrink U (and decrease ε) so that U ⊂ {g 6= 0}
and each point with coordinates (t, ζ), where t ∈ [T, T + ε), lies in {b 6= 0}. Now, take a

function f1(t) ∈ C∞0 (−ε, T+ε) such that f1 ≥ 0, f1(0) > 0, and ∂tf1 ≥ Rf1 on (−ε, T ]. (See

Figure 2; note that near the ’touchdown’ t = −ε/2 we can make f1 behave like e−1/(t−ε/2)

5When there is no Q, one can prove propagation of singularities using Egorov’s theorem; see for exam-
ple [HöIV, Section 26.1] for the microlocal setting and [EvZw, Section 13.3] for the semiclassical setting.
We use the positive commutator argument because it is more robust and in particular applies when the
complex absorbing operator Q is present.

6Of course, such coordinates exist only when ρ is not a critical point of p0 (in most applications, p0 has
no critical points on {p0 = 0}). The opposite case is handled trivially, as then ρ ∈ {b 6= 0}.
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and we see that ∂tf1(t)� f1(t).). Also, take nonnegative χ(ζ) supported in {|ζ| < ε} and

such that χ(0) = 1. Then the function

fρ = f1(t)χ(ζ) ∈ C∞0 (U),

extended by zero outside U , is nonnegative, satisfies properties (2) and (3) of the statement

of this Lemma, and is nonzero in a neighborhood Uρ of ρ. It remains to use compactness of

supp a, cover it by finitely many sets Uρ, and take the sum of the corresponding functions

fρ. �

Now, let F = Oph(f). Let us write P = ReP + i ImP , where by the adjoint property

of semiclassical quantization [EvZw, Theorem 4.1(ii)] ReP = 1
2
(P + P ∗) is formally self-

adjoint and still has principal symbol p0 and ImP = 1
2i

(P −P ∗) is O(h). We now calculate

(with 〈·, ·〉 denoting the L2-inner product)

Im〈(P − iQ)u, F ∗Fu〉

=
1

2i
(〈(ReP )u, F ∗Fu〉 − 〈F ∗Fu, (ReP )u〉)− Re〈(Q− ImP )u, F ∗Fu〉

=
1

2i
〈[F ∗F,ReP ]u, u〉 − Re〈FQ̃u, Fu〉,

where Q̃ = Q− ImP still has principal symbol q0 ≥ 0 on supp f ⊂ supp g. Then it follows

from sharp G̊arding inequality (2.3) (by applying it to Oph(χ)Q̃, with χ equal to 1 near

supp f and supported inside {g 6= 0}, and using that F (1 − Oph(χ)) = O(h∞)) that for

some constant C0 independent of the choice of F ,

Re〈Q̃Fu, Fu〉 ≥ −C0h‖Fu‖2L2 +O(h∞)‖u‖2L2 .

Now,

Re〈FQ̃u, Fu〉 = Re〈Q̃Fu, Fu〉+ Re〈[F, Q̃]u, Fu〉;
the last term on the right-hand side equals 〈Re(F ∗[F, Q̃])u, u〉, where T = F ∗[F, Q̃] =
h
i

Oph(f{f, q}) + O(h2). Since f{f, q} is real-valued, we know that ReT = O(h2) and its

symbol is supported in {g 6= 0}. Therefore, for h small enough

Re〈FQ̃u, Fu〉 ≥ −C0h〈F ∗Fu, u〉 −O(h2)‖Gu‖2L2 −O(h∞)‖u‖2L2

and

h−1 Im〈(P−iQ)u, F ∗Fu〉 ≥
〈(

i

2h
[ReP, F ∗F ]−C0F

∗F

)
u, u

〉
−O(h)‖Gu‖2L2−O(h∞)‖u‖2L2 .

Choose R > C0 in Lemma 3.1. The operator in parentheses on the right-hand side has

principal symbol

fHp0f − C0f
2,

which is nonnegative near the complement of {b 6= 0}. Then, for large enough constant C1,

the function

fHp0f − C0f
2 + C1|b|2 − C−1

1 f 2 (3.8)
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is nonnegative everywhere. We may always shrink b so that supp b ⊂ {g 6= 0} and the

dynamical assumption still holds. Then the function from (3.8) is supported inside {g 6= 0};
applying again sharp G̊arding inequality, we get

h−1 Im〈(P − iQ)u, F ∗Fu〉 ≥ C−1
1 ‖Fu‖2L2 − C1‖Bu‖2L2 −O(h)‖Gu‖2L2 −O(h∞)‖u‖2L2 .

This converts (using Theorem 1 and the fact that the symbol of F ∗F is supported inside

{g 6= 0}) to the estimate

‖Fu‖2L2 ≤ C(‖Bu‖2L2 + h−1‖G(P − iQ)u‖L2 · ‖Fu‖L2 + h‖Gu‖2L2) +O(h∞)‖u‖2L2 .

From here, it follows that

‖Fu‖L2 ≤ C(‖Bu‖L2 + ‖G(P − iQ)u‖L2 + h1/2‖Gu‖L2) +O(h∞)‖u‖L2 ;

using that ‖Au‖L2 ≤ C‖Fu‖L2 + O(h∞)‖u‖L2 by Theorem 1, we get (3.6) and thus finish

the proof of Theorem 2.

4. Complex scaling and nontrapping estimate

We now explain how propagation of singularities implies the nontrapping estimate (1.6).

First of all, we perform semiclassical rescaling: for the obstacle case, let P = −h2∆ on

E with Dirichlet boundary conditions, and assume that h is chosen so that hω = 1 + hσ,

with σ = O(1). (Recall that | Imω| is bounded by ν in the nontrapping estimate. The case

Reω < 0 is handled similarly.) Then, if ω is not a resonance, f ∈ C∞0 , and u = R(ω)f ,

then u is the unique solution to the scattering problem

Pu = h2v, u is outgoing. (4.1)

(For the obstacle case, one needs to assume the Dirichlet boundary condition on u; as

remarked before, we will avoid dealing with boundary value problems and billiard ball flow

and study a model problem with no boundary.) If ω is a resonance, then there exists a

nonzero solution to (4.1) with zero right-hand side. The outgoing condition acts like a

boundary condition at infinity. We will not state this condition in general, noting only the

following: (1) for Imω > 0, being outgoing is equivalent to lying in L2 of the whole space,

and thus the scattering resolvent is equal to the usual resolvent given by spectral theory of

the Laplacian (2) for Imω = 0, the outgoing condition is known as Sommerfeld radiation

condition, see [Ta, Section 9.1] (3) for the obstacle case, the outgoing condition means that

outside of some ball B(0, R), u = R0(ω)ṽ, with ṽ ∈ C∞0 (R3) and R0(ω) the free resolvent

from (1.5).

There are several methods of obtaining microlocal information from the outgoing con-

dition, including (1) complex scaling the problem to emphasize the outgoing trajectories

while dampening the incoming ones [SjZw], (2) radial points estimates [Va], and (3) con-

sidering instead the operator P − iQ with q > 0 near infinity (see for example [WuZw])

and gluing it together with some other estimate at infinity [DaVa1]. Each of the methods
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above should produce the following effect: u is O(h∞) near the incoming points near in-

finity; for a large compact set K ⊂ R2n containing the trapped set, a point (x, ξ) ∈ K is

incoming if the backwards bicharacteristic starting at this point never enters K and goes

to infinity. Then by propagation of singularities, u has to be microlocalized on the set of

backwards trapped trajectories and the trajectories starting at the wavefront set of v. If

the nontrapping assumption holds, then there are no backwards trapped trajectories and

we can estimate u through v, thus getting the nontrapping estimate.7

We now give the proof of the nontrapping estimate in a model example of one-dimensional

scattering by a compactly supported potential; see [Zw, Section 2] for a detailed description

of this setting. Namely, assume that u solves the scattering problem

P (h)u = vh, P (h) = h2D2
x + V (x)− (1 + hσ)2.

Here σ ∈ C is bounded, x ∈ R, and V (x) ∈ C∞0 (R). We assume that both V and v are

supported in some ball (−X,X). We also assume that u satisfies the following outgoing

condition:

u(x) = c±e
±i(1+hσ)x/h for ± x ≥ X,

where c± are some constants. (By theory of constant-coefficient ODE, on any interval out-

side of the support of V the function u is a linear combination of ei(1+hσ)x/h and e−i(1+hσ)x/h.)

The nontrapping estimate takes the form

‖u‖L2(−X,X) ≤ Ch−1‖vh‖L2 . (4.2)

(The power of h is different from (1.6) because the operator P (h) is h2 times the original

operator and thus we are considering vh = h2v instead of v.) To prove (4.2), we start

by applying complex scaling as described in [Zw, Section 2.6]: using the holomorphy of u

near infinity, we deform it to complex values of x. Namely, let F (x) be a smooth function

supported in {|x| ≥ X}, equal to x for large values of x, and with F ′(x) ≥ 0 and F ′(x) > 0

for |x| > X. Define the complex rescaled function

ũ(x) =

{
u(x), |x| ≤ X;

c±e
±i(1+hσ)(x+iF (x))/h, ±x ≥ X.

This is the result of first extending u to the complex plane C on {|x| > X}, and then

restricting it to the contour Γ = {x+ iF (x) | x ∈ R}. Note that ũ(x) is now exponentially

decaying and thus lies in L2 globally. We can deform the operator P (h) into the complex

as well (recalling that V = 0 when Γ is not on the real line) and then restrict it to Γ, to

7In fact, instead of the positive commutator method presented in Section 3 one often needs to use a
closely related method of conjugating by the exponential of the escape function, for instance to get a
logarithmic resonance free region [SjZw] or in certain estimates for mild trapping [WuZw], but we do not
pursue this direction here.
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X

−X

Figure 3. The contour used for complex scaling.

get

P̃ ũ(x) = vh, P̃ =

(
hDx

1 + iF ′(x)

)2

+ V (x)− (1 + hσ)2.

We can split P̃ into two parts, roughly the real and the imaginary part :

P̃ = P1 − iQ1;

P1 =
1− F ′(x)2

(1 + F ′(x)2)2
(hDx)

2 + V (x)− 1 +O(h),

Q1 =
2F ′(x)

(1 + F ′(x)2)2
(hDx)

2.

We see that both P1 and Q1 are semiclassical differential operators of order 2 of real

principal type. In fact, the principal symbol of P1 restricted to [−X,X] is just

p(x, ξ) = ξ2 + V (x)− 1,

and the principal symbol q0 of Q1 satisfies q0 ≥ 0 everywhere and q0 > 0 on {|x| > X}. The

nontrapping assumption in our situation in particular means that every bicharacteristic of

p on {p = 0} escapes to infinity as time goes to −∞. In particular, this bicharacteristic

reaches the elliptic set {q > 0} of Q right after it crosses the lines {x = ±X}; a little bit

beyond these lines, the principal symbol of P1 is still close to p. Therefore, we can find

compactly supported functions a(x, ξ) and b(x, ξ) such that:

• a 6= 0 on {p−1(0)} ∩ {|x| ≤ X};
• supp b ⊂ {|x| > X};
• each backward bicharacteristic of the principal symbol of P1 starting at supp a

reaches {b 6= 0}.

We are now in position to apply Theorem 2; we get

‖Aũ‖L2 ≤ C(h−1‖vh‖L2 + ‖Bũ‖L2) +O(h∞)‖u‖L2 .
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X−X
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Figure 4. Left: an example of a potential V (x) satisfying the nontrapping

assumption. Right: the corresponding bicharacteristics, with the supports of

a and b marked.

However, supp b lies inside the set {q > 0}; therefore, by Theorem 1

‖Bũ‖L2 = O(h∞)‖u‖L2 .

Combining these with a standard elliptic estimate away from {p−iq = 0} (namely, a version

of Theorem 1 allowing non-compactly supported symbols with estimates in semiclassical

Sobolev classes), we get

‖ũ‖L2 ≤ Ch−1‖vh‖L2 ,

which immediately translates to the required estimate (4.2).
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