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Abstract

Given a finite-dimensional symplectic vector space, we first study the
fundamentals group of the space of symplectomorphisms and the space of
Lagrangians to construct Maslov indices of loops in these spaces. Then we
introduce Hörmander-Kashiwara index of a Lagrangian triple and use it to
define Maslov indices counting the number of intersections of two paths of
Lagrangians or symplectomorphisms. This paper largely follows [1], with
more emphasis on the construction of Maslov and Hörmander-Kashiwara
indices and proving their properties.

1 Lagrangians, complex structures, and symplec-
tomorphisms

Recall that a symplectic vector space is a finite-dimensional vector space E
together with a bilinear, skew-symmetric form ω : E × E → R such that the
kernel

ker ω = {x ∈ E | ω(x, y) = 0 for all y ∈ E}

is trivial. If (Ej , ωj)j=1,2 are two symplectic vector spaces, then a symplecto-
morphism is a linear isomorphism T : E1 → E2 such that ω1 = T ∗ω2, meaning
that ω1(x, y) = ω2(Tx, Ty) for all x, y ∈ E1. We denote by Sp(E) the group of
all symplectomorphisms E → E.

Note that ω can also be regarded as a linear map ω∗ : E → E∗ given by the
formula

〈ω∗(x), y〉 = ω(x, y), x, y ∈ E.

The triviality of ker ω means that ω∗ is a linear isomorphism.
Given a subspace L ⊂ E, we may define its ‘orthogonal complement’ with

respect to ω by

Lω = {x ∈ E | ω(x, y) = 0 for all y ∈ L}.

We see immediately that L ⊂ (Lω)ω. On the other hand, Lω is the preimage
under ω∗ of the annihilator of L; therefore,

dim Lω = dim E − dim L, (Lω)ω = L.
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We say that L is isotropic if L ⊂ Lω and Lagrangian if L = Lω. We denote
by Lag(E) the set of all Lagrangian subspaces of E. In studying these, we will
often use the following

Lemma 1. Suppose that M1, . . . ,Mn ⊂ E is a finite (possibly empty) set of
isotropic subspaces and that L0 is an isotropic subspace of E that is transversal
to each Mj (henceforth we say that two subspaces of E are transversal if they
have trivial intersection). Then there exists L ∈ Lag(E) containing L0 and
transversal to each Mj.

Proof. Since E is finite-dimensional, there exists a maximal isotropic subspace
L ⊂ E containing L0 and transversal to each Mj . We claim that it is Lagrangian.
Indeed, suppose that L 6= Lω. Consider the subspaces Lj = L+(Mj∩Lω) ⊂ Lω;
since both L and Mj are isotropic, Lj is isotropic as well. If Lj = Lω for some j,
then Lω = Lj ⊂ Lω

j = (Lω)ω = L, which is false. Therefore, each Lj is a proper
subspace of Lω and we can find a vector x ∈ Lω such that x 6∈ Lj , x 6∈ L. Then
the space L⊕Rx is an isotropic subspace properly containing L and transversal
to each Mj , a contradiction.

In particular, there exists at least one Lagrangian subspace L ⊂ E; together
with the formula for the dimension above it yields that dim E = 2 dim L must
be even. We may use Lagrangian subspaces to prove that all symplectic spaces
of given dimension are symplectomorphic:

Proposition 1. 1. Let L be any finite-dimensional vector space. Then the
formula

ωL((x, α), (y, β)) = 〈α, y〉 − 〈β, x〉

defines a symplectic form ωL on L⊕L∗. The subspaces L and L∗ are Lagrangian.
2. If T : L → M is a linear isomorphism, then T ⊕ T−∗ : (L ⊕ L∗, ωL) →

(M⊕M∗, ωM ) is a symplectomorphism. (Henceforth we denote T−∗ = (T ∗)−1.)
3. Suppose that (E,ω) is a symplectic vector space and L,M ∈ Lag(E) are

transversal to each other, so that E = L⊕M . Then the map Φ : M → L∗ given
by Φ(x) = ω∗(x)|L is a linear isomorphism, and the map 1⊕Φ : E = L⊕M →
(L⊕ L∗, ωL) is a symplectomorphism.

Now, we study compatible complex structures. A linear transformation J :
E → E is called a complex structure on E iff J2 = −1. If we put ix = J(x)
for x ∈ E, then E becomes a complex vector space. A complex structure J is
called ω-compatible if the formula

g(v, w) = ω(v, Jw)

defines a symmetric positive definite inner product on J . (Note that the sym-
metricity condition is equivalent to J being a symplectomorphism.) For a com-
patible complex structure J , we may define a positive definite Hermitian inner
product on E by the formula

h(v, w) = g(v, w)− iω(v, w).
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Conversely, if E is a finite-dimensional complex vector space and h is a positive
definite Hermitian inner product on E, then the formula

ω(v, w) = −=h(v, w)

defines a symplectic form on E compatible with the complex structure. We
denote by J (E,ω) the set of all compatible complex structures. Since all sym-
plectic spaces of same dimension are symplectomorphic (and we have examples
of Hermitian spaces in all dimensions), this set is nonempty.

Finally, we establish the identities

J (E) ' Sp(E)
U(E)

, Lag(E) ' U(E)
O(L)

making J (E) and Lag(E) into homogeneous spaces (and thus smooth mani-
folds).

First, fix J0 ∈ J (E,ω); let g and h be the corresponding real and Hermitian
inner products. Since ω = −=h, the Lie group U(E) = U(E, J0) of all unitary
transformations on E with respect to h is a closed subgroup of the Lie group
Sp(E). The first identity above is now given by

Proposition 2. The group Sp(E) acts on J (E) by the formula

T · J = TJT−1, T ∈ Sp(E), J ∈ J (E).

This action is transitive and the stabilizer of J0 is exactly U(E, J0).

Proof. We only need to prove that the action is transitive. For that, consider
J1, J2 ∈ J (E) and the corresponding Hermitian inner products h1, h2. Then
(E, J1, h1) and (E, J2, h2) are Hermitian spaces of the same dimension; there
exists some isomorphism T : (E, J1, h1) → (E, J2, h2). Since T is C-linear,
we get TJ1 = J2T ; since T preserves Hermitian inner products, we get T ∈
Sp(E).

To study the structure of J (E), we will need the following fact from the
theory of Lie groups:

Lemma 2. (Polar decomposition) Define the Lie algebra sp(E) as the space of
all linear transformations T : E → E such that ω(Tx, y) + ω(x, Ty) = 0 for all
x, y ∈ E. Fix J ∈ J (E) and let

p = {T ∈ sp(E) | T t = T}.

Here T t is the transpose with respect to the inner product g. Then the map
U(E)× p → Sp(E) given by

(A,B) 7→ A · expB

is a diffeomorphism.
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Therefore, each J0 ∈ J (E) induces a diffeomorphism p → J (E). It follows
that Sp(E) is connected and J (E) is contractible.

Finally, we establish the identity for Lag(E). Let L ∈ Lag(E) and fix J ∈
J (E); then we get

Proposition 3. 1. A basis of L is orthonormal with respect to the Euclidean
inner product iff it is an orthonormal complex basis of E with respect to the
Hermitian inner product.

2. The group U(E) acts transitively on Lag(E) with stabilizer O(L), the
group of orthogonal transformations on L.

In particular, Lag(E) is connected.

2 Maslov indices

We know from the previous section that Sp(E) is homotopy equivalent to U(E).
It follows that their fundamental groups are isomorphic. However, the funda-
mental group of U(E) can be found using the following fact from the theory of
Lie groups:

Lemma 3. The map det : U(E) → S1 mapping each matrix to its determinant
induces an isomorphism of fundamental groups

π1(U(E)) → π1(S1) = Z.

Composing this map with the isomorphism π1(Sp(E)) → π1(U(E)) (induced
by the projection Sp(E) → U(E) given to us by polar decomposition), we get
an isomorphism

µ : π1(Sp(E)) → Z.

Moreover, since J (E) is connected, this map does not depend on J . (The maps
Sp(E) → S1 induced by two different complex structures are homotopic.) Note
that det is the determinant of a complex matrix; in fact, the real determinant
of an element of Sp(E) is always 1. The image under the map above of a loop
in Sp(E) is called the Maslov index of this loop of symplectomorphisms.

The fundamental group of Lag(E) is also Z, as we see from the following

Proposition 4. The map det2 : U(E) → S1 induces a map Lag(E) → S1

(which we also denote by det2). This in turn induces an isomorphism

µ : π1(Lag(E)) → π1(S1) = Z.

Proof. The first statement follows from the identity Lag(E) ' U(E)/O(L) and
the fact that det takes values ±1 on O(L); it remains to prove that µ is an
isomorphism. For that, identify E with Cn and consider the path A(t) =
diag(eiπt, 1, . . . , 1) ∈ U(E), 0 ≤ t ≤ 1. Take L0 = Rn ∈ Lag(E) and consider
L(t) = A(t)L0; then L(0) = L(1). By definition we see that µ(L(t)) = 1 ∈ Z, so
µ is epi.
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To see that µ is mono, consider a loop L(t) ∈ Lag(E) such that det2(L(t))
is contractible; we have to show that L(t) is contractible. Choose a (continu-
ous) path A(t) ∈ U(E) such that L(t) = A(t)L0; then A(0)−1A(1) ∈ O(L0).
Multiplying A(t) on the right by a suitable path in O(L0), we may assume
that either A(1) = A(0) or A(1) = A(0) diag(−1, 1, . . . , 1). In the first case
A is a loop in U(E) and det2 A(t) is contractible; it follows that A(t) is con-
tractible and thus L(t) = A(t)L0 is contractible. In the second case we have
A(t) = B(t) diag(eiπt, 1, . . . , 1), where B(t) is a loop in U(E). It follows that
the loop e2iπt det2 B(t) is contractible, which is impossible because the loop
det2 B(t) on S1 corresponds to an even integer.

Since both Lag(E) and J (E) are connected, the homomorphism µ defined
above does not depend on J or L0. The image of a loop of Lagrangians under
this map is also called Maslov index. The two indices can be related by the
following

Proposition 5. If A(t) is a loop of symplectomorphisms and L(t) is a loop of
Lagrangians, then

µ(A(t)L(t)) = µ(L(t)) + 2µ(A(t)).

Proof. We may replace A by a homotopic loop to get A(t) ∈ U(E). Now, we
have det2(A(t)L(t)) = det2 A(t) det2 L(t); the proposition follows.

We will now try to generalize Maslov indices to paths that are not necessarily
loops. But first, let us reduce symplectomorphisms to Lagrangians:

Proposition 6. Let E− be the vector space E with the symplectic form −ω.
Let A : E → E be a linear transformation and consider its graph

ΓA = {(Ax, x) | x ∈ E} ⊂ E− ⊕ E.

Then:
1. A ∈ Sp(E) iff ΓA ∈ Lag(E− ⊕ E).
2. It A(t) is a loop of symplectomorphisms and Γ(t) = ΓA(t) is the corre-

sponding loop in Lag(E− ⊕ E), then

µ(Γ(t)) = 2µ(A(t)).

Proof. 2. If ∆ ⊂ E−⊕E is the diagonal (equivalently, the graph of the identity
transformation), then we have Γ(t) = (A(t)⊕1)∆, so by the previous proposition
µ(Γ(t)) = 2µ(A(t)⊕1). Now, it follows from the definition of Maslov index that
µ(A(t)⊕ 1) = µ(A(t)).

Before making general definitions, let us consider the space E = C = R2

with the symplectic form ω(z1, z2) = =(z̄1z2) induced by the canonical Hermi-
tian product. Each one-dimensional subspace is Lagrangian, so Lag(E) ' S1.
Consider the path L(t) = Reiπt, 0 ≤ t ≤ 1; then µ(L(t)) = 1. Suppose now that
we wish to define Maslov index of the subpath of L(t) given by a ≤ t ≤ b, where

5



0 ≤ a ≤ b ≤ 1. For that, we may consider a fixed line, say M = {<z = 0}, and
count the (signed) number of times that L(t) intersects M . Then we will put
µ = 0 if 1/2 6∈ [a, b] and µ = 1 if 1/2 ∈ (a, b). This answer can be expressed
as follows: if the endpoints of the path in question are transversal to M , then
we can augment it to a loop by a path of Lagrangians transversal to M at each
point and then calculate the Maslov index of this loop. (The question of what
to do if either a or b equals 1/2 is more subtle and will be dealt with in the
following section. In our example, each intersection with M will count as a half
if it lies at an endpoint.)

Now, let us go back to the general case and suppose that M ∈ Lag(E).
Denote by Lag(E,M) the set of all Lagrangians L that are transversal to M ;
that is, L∩M = 0. This is an open subset of Lag(E). In fact, it can be identified
with a linear space:

Proposition 7. Let L0 ∈ Lag(E,M) and let L ⊂ E be a subspace of half
dimension. Then:

1. L is transversal to M iff it is the graph of a map TL : L0 → M .
2. If SL : L0 ×L0 → R is the bilinear form given by SL(x, y) = ω(TL(x), y),

then L is Lagrangian iff SL is symmetric. The form SL uniquely determines TL

and thus L; in fact, we have SL(x, y) = 〈Φ(TL(x)), y〉, where Φ : M → L∗
0 is

the isomorphism from Proposition 1.
3. ker SL = L0 ∩ L.

We see in particular that Lag(E,M) is contractible, which lets us make

Definition 1. Suppose that L(t) is a path of Lagrangians whose endpoints are
transversal to M . Augment it to a loop L′(t) by a path between endpoints lying
completely in Lag(E,M); each two of these loops are homotopic. Now, define
the Maslov index [L(t) : M ] = µ(L′(t)).

3 Hörmander-Kashiwara index

In the end of the previous section, we constructed Maslov index [L(t) : M ] for
a path of Lagrangians L(t) that is transversal to M at the endpoints. This
construction does not work if we drop the transversality assumption; in this
section we will generalize Maslov indices to any paths of Lagrangians. (A useful
application, for example, would be to compute Maslov index with respect to
the diagonal ∆ ⊂ E− ⊕ E of a path of symplectomorphisms starting at the
identity.) As we saw earlier, in the case E = C Maslov index can be interpreted
as the (signed) number of intersections of L(t) with M . However, in higher
dimensions the set Lag(E) \ Lag(E,M) is not a submanifold; it has different
portions corresponding to different dimensions of L(t) ∩ M . One way to get
around this is to perturb L(t) so that it only intersects the regular part of
Lag(E) \ Lag(E,M) and prove that the resulting number of intersections does
not depend on the pertrubation. However, we will instead use the following
algebraic invariant:
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Definition 2. Let L1, L2, L3 ∈ Lag(E). Consider the symmetric form Q on
L1 ⊕ L2 ⊕ L3 given by

Q((x1, x2, x3), (y1, y2, y3)) = ω(x1, y2) + ω(y1, x2)
+ω(x2, y3) + ω(y2, x3) + ω(x3, y1) + ω(y3, x1).

Define the Hörmander-Kashiwara index of the Lagrangian triple (L1, L2, L3)
as

s(L1, L2, L3) = Sig Q ∈ Z,

where Sig denotes the signature (the dimension of the positive eigenspace minus
the dimension of the negative eigenspace).

It follows from the definition that s(L1, L2, L3) is anti-symmetric under per-
mutations of the arguments and s(A(L1), A(L2), A(L3)) = s(L1, L2, L3) for any
symplectomorphism A.

To derive further properties, suppose that M ∈ Lag(E) is transversal to all
Lj . Take L0 ∈ Lag(E,M); then by Proposition 7 we may associate to each Lj

a symmetric bilinear form Sj on L0. Consider the isomorphisms Tj : L0 → Lj

given by the fact that each Lj is the graph of a map L0 → M ; then

(T1 ⊕ T2 ⊕ T3)∗Q(L1, L2, L3) =

 0 S1 − S2 S3 − S1

S1 − S2 0 S2 − S3

S3 − S1 S2 − S3 0

 .

Now, if the linear isomorphism T on L3
0 is given by T (v1, v2, v3) = (v2 + v3, v3 +

v1, v1 + v2), then T ∗Q = diag(S2 − S3, S3 − S1, S1 − S2); therefore,

s(L1, L2, L3) = Sig(S1 − S2) + Sig(S2 − S3) + Sig(S3 − S1).

From here, we get

Proposition 8. 1. (Cocycle identity) For each L1, L2, L3, L4 ∈ Lag(E),

s(L2, L3, L4)− s(L1, L3, L4) + s(L1, L2, L4)− s(L1, L2, L3) = 0.

2. If L(t) is a (continuous) path of Lagrangians transversal to L1, L2 ∈
Lag(E) at each point, then s(L1, L2, L(t)) is constant as a function of t.

3. If L1(t), L2(t), L3(t) are paths of Lagrangians pairwise transversal at
each point, then s(L1(t), L2(t), L3(t)) is constant as a function of t.

Proof. 1. Follows directly from the formula above, if we select M transversal to
all Lj .

2. It suffices to prove that s(L1, L2, L(t)) is locally constant. Take any t0;
then there exists M ∈ Lag(E) transversal to L1, L2, and L(t0). Since Lag(E;M)
is an open subset of Lag(E), L(t) is transversal to M for t close to t0. Now, we
get

s(L1, L2, L(t)) = Sig(S1 − S2) + Sig(S2 − S(t)) + Sig(S(t)− S1)
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near t0; here Sj and S are the corresponding bilinear forms. Now, since L(t) is
transversal to L1 and L2, the forms S2 − S(t) and S(t)− S1 are nonsingular; it
follows that the signatures above do not depend on t.

3. This is proven similarly to the previous statement.

Let us compute s(L1, L2, L3) when L2 is transversal to both L1 and L3.
Using a symplectomorphism, we may assume that E = L ⊕ L∗, L1 = L,
and L2 = L∗. As before, we may associate to L3 a symmetric bilinear form
S on L. Now, if T is a linear automorphism on L, then A = T ⊕ T−∗

is a symplectomorphism on E; A(L) = L, A(L∗) = L∗, and A(L3) corre-
sponds to the form (T−1)∗S. Therefore, we may use a symplectomorphism
to make S diagonal in a chosen basis e1, . . . , en of L. If we consider the basis
e1, . . . , en, e∗1, . . . , e

∗
n, e1 + S(e1), . . . , en + S(en) of L⊕ L∗ ⊕ L3, where e∗ is the

basis of L∗ dual to e, then the form Q(L1, L2, L3) splits into the following blocks
Qε corresponding to each diagonal value ε ∈ {0,±1} of S:

Qε =

 0 −1 ε
−1 0 1
ε 1 0

 .

By computing the signature of each of such blocks, we get

s(L1, L2, L3) = Sig S.

We also see that a Lagrangian triple L1, L2, L3 ∈ Lag(E) such that one of the
Lagrangians is transversal to the other two is determined up to a symplectomor-
phism by the index s(L1, L2, L3). (As a matter of fact, any triple of Lagrangians
is determined up to a symplectomorphism by the dimensions of their intersec-
tions and their index.)

We are now ready to define Maslov index of any two paths of Lagrangians.
Before we do that, however, let us again consider the case E = C. Suppose
that L2 = {<z = 0} and L1(t), a ≤ t ≤ b, is a path of lines. We cannot a
priori compute the intersection number [L1(t) : L2] based on information at
the endpoints; for example, one may let L1(t) be a loop winding around the
origin arbitrarily many times. However, if we know that there exists a line M
such that L1(t) is transversal to M at each t, then we may deduce the index
[L1(t) : L2] from the relative position of L1, L2,M at the endpoints t = a, b. For
example, if L1(a) = R(1 + i) and L1(b) = R(1− i), then [L1(t) : L2] must equal
1.

Back to the general case. We first prove the following

Lemma 4. Suppose that L1(t), L2(t) are two paths of Lagrangians, a ≤ t ≤ b,
and M ∈ Lag(E) is transversal to L1(t) and L2(t) for each t. Then the value

[L1(t) : L2(t)] =
1
2
(s(L1(a), L2(a),M)− s(L1(b), L2(b),M))

does not depend on the choice of M .
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Proof. Let M1 and M2 be two Lagrangians with the required property; then by
the cocycle identity we have to prove that

s(L1(a),M1,M2)− s(L2(a),M1,M2)
= s(L1(b),M1,M2)− s(L2(b),M1,M2).

This identity follows from Proposition 8.

Now, suppose that L1(t), L2(t) are any two paths of Lagrangians, a ≤ t ≤ b.
Consider a partition a = t0 < t1 < · · · < tN = b such that there exist Mj ∈
Lag(E) transversal to both L1(t) and L2(t) for tj−1 ≤ t ≤ tj . Then we may
define

[L1(t) : L2(t)] =
1
2

N∑
j=1

s(L1(tj−1), L2(tj−1),Mj)− s(L1(tj), L2(tj),Mj).

By the lemma above, it does not depend on Mj and the partition.
We will now prove that if L2 is constant and L1(t) is transversal to L2 at the

endpoints, then the so-defined index coincides with the Maslov index defined in
the previous section. We start with

Proposition 9. (Homotopy invariance) Suppose that L1(t, s) and L2(t, s) are
families of Lagrangians continuously depending on t ∈ [a, b], s ∈ [c, d] with
Li(a, s) and Li(b, s) independent of s. Then

[L1(·, c) : L2(·, c)] = [L1(·, d) : L2(·, d)].

Proof. Assume first that there exists a partition a = t0 < t1 < · · · < tN = b and
a sequence of spaces Mj ∈ Lag(E) such that Mj is transversal to each Li(t, s)
for tj−1 ≤ t ≤ tj and all s. Then we get

2([L1(·, c) : L2(·, c)]− [L1(·, d) : L2(·, d)])

=
N∑

j=1

s(L1(tj−1, c), L2(tj−1, c),Mj)− s(L1(tj , c), L2(tj , c),Mj)

−s(L1(tj−1, d), L2(tj−1, d),Mj) + s(L1(tj , d), L2(tj , d),Mj)

=
N−1∑
j=1

(s(L1(tj , c), L2(tj , c),Mj+1)− s(L1(tj , d), L2(tj , d),Mj+1))

−(s(L1(tj , c), L2(tj , c),Mj)− s(L1(tj , d), L2(tj , d),Mj)).

Now, each of the terms in the last sum is zero by Lemma 4 applied to the path
s 7→ (L1(tj , s), L2(tj , s)).

In the general case, we only need to prove that the function s 7→ [L1(·, s) :
L2(·, s)] is locally constant. Consider any s0 ∈ [c, d]; then for each t0 ∈ [a, b],
there exists an open neighborhood U of (t0, s0) in [a, b]× [c, d] and a Lagrangian
M that is transversal to Li(t, s) for all i and all (t, s) ∈ U . We may assume that
U is a Cartesian product of two open intervals; taking a finite subcover of the
cover of [a, b]× {s0} by such U , we reduce to the case considered above.
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Now, [L1(t) : L2(t)] is clearly additive under addition of paths; moreover, if
L1(t) and L2(t) are transversal to each other at each t, then [L1(t) : L2(t)] =
0 by Proposition 8. Therefore, it remains to prove that the homomorphism
π1(Lag(E)) → Z induced by L(t) 7→ [L(t) : L2] (for any fixed L2) is equal to µ.
For that, it suffices to verify that both homomorphisms take the same value on
a given non-contractible loop:

Proposition 10. Let E = Cn and put L1(t) = diag(eiπt, eiπ/4, . . . , eiπ/4)Rn for
0 ≤ t ≤ 1 and L2 = iRn. Then the Maslov index defined in this section is

[L1(t) : L2] = 1

and thus coincides with the Maslov index defined in the previous section.

Proof. The spaces L1(t) and L2 are transversal for t 6= 1/2, so it suffices to
compute the index on the interval 1/4 ≤ t ≤ 3/4. Now, the space M = Rn is
transversal to both M and L(t), and by the reasoning above we get

s(L1(1/4), L2,M) = n, s(L1(3/4), L2,M) = n− 2.

Therefore, [L1(t) : L2] = 1 as required.

References

[1] Eckhard Meinrenken, Symplectic Geometry. Lecture notes, University of To-
tonto, http://www.math.toronto.edu/mein/teaching/lectures.html

10

http://www.math.toronto.edu/mein/teaching/lectures.html

	Lagrangians, complex structures, and symplectomorphisms
	Maslov indices
	Hörmander-Kashiwara index

