
Worksheet 27: Fourier series

Full Fourier series: if f is a function on the interval [−π, π], then the
corresponding series is

f(x) ∼ a0

2
+
∞∑
n=1

an cos(nx) + bn sin(nx);

an =
1

π

∫ π

−π
f(x) cos(nx) dx,

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

Fourier cosine and sine series: if f is a function on the interval [0, π], then
the corresponding cosine series is

f(x) ∼ a0

2
+
∞∑
n=1

an cos(nx);

an =
2

π

∫ π

0

f(x) cos(nx) dx,

and the corresponding sine series is

f(x) ∼
∞∑
n=1

bn sin(nx);

bn =
2

π

∫ π

0

f(x) sin(nx).

Convergence theorem for full Fourier series: if f is a piecewise differentiable
function on [−π, π], then its Fourier series converges at every point. The sum
of the series is computed as follows:
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1. Forget about what the function f looks like outside of the interval
[−π, π]. After all, the formulas for the coefficients only feature the
values of f on that interval.

2. Continue f periodically from [−π, π] to the whole real line; let f̃ be the
resulting function.

3. The sum of the Fourier series at the point x is equal to f̃(x), if f̃ is
continuous at x; otherwise, it is equal to (f̃(x+) + f̃(x−))/2.

Convergence for Fourier cosine series: forget about what f looks like outside
of [0, π], then extend f as an even function to [−π, π], then use the above
algorithm. Same approach works for sine series, except that you extend f to
[−π, π] as an odd function.

1.* This problem shows an alternative way of proving that the functions
sin(kx), k ∈ Z, k > 0, form an orthogonal set in C[0, π].

(a) Assume that u and v are eigenfunctions of the following problem:

u′′(x) + λu(x) = 0, 0 < x < π;

u(0) = u(π) = 0;

v′′(x) + µv(x) = 0, 0 < x < π;

v(0) = v(π) = 0,

where λ and µ are two real numbers. Integrate by parts twice and use the
boundary conditions to show that∫ π

0

u′′(x)v(x) dx =

∫ π

0

u(x)v′′(x) dx.

Use the differential equations satisfied by u and v to show that

(λ− µ)

∫ π

0

u(x)v(x) dx = 0.

(b) Take u(x) = sin(kx), v(x) = sin(lx), for k, l positive integers and
k 6= l. Verify that these functions satisfy the conditions of part (a) for
certain λ and µ, and conclude that∫ π

0

sin(kx) sin(lx) dx = 0.
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Solution: (a) We have∫ π

0

u′′(x)v(x) dx = u′(x)v(x)|πx=0 −
∫ π

0

u′(x)v′(x) dx;∫ π

0

u(x)v′′(x) dx = u(x)v′(x)|πx=0 −
∫ π

0

u′(x)v′(x) dx.

Since u(0) = u(π) = v(0) = v(π), the boundary terms vanish and we get∫ π

0

u′′(x)v(x) dx =

∫ π

0

u(x)v′′(x) dx.

Next, u′′(x) = −λu(x) and v′′(x) = −µv(x); substituting this into the equa-
tion above, we get

−λ
∫ π

0

u(x)v(x) dx = −µ
∫ π

0

u(x)v(x) dx.

(b) The functions u(x) and v(x) satisfy the equations of (a) for λ = k2

and µ = l2; therefore,

(k2 − l2)
∫ π

0

u(x)v(x) dx = 0.

Since k2 6= l2, the functions u and v are orthogonal.
2. Find the Fourier sine series for the function

f(x) = x(π − x), 0 < x < π.

Solution: Integrate by parts:

bk =
2

π

∫ π

0

x(π − x) sin(kx) dx

= − 2

πk

∫ π

0

x(π − x) d(cos(kx))

= − 2

πk
x(π − x) cos(kx)|πx=0 +

2

πk

∫ π

0

(π − 2x) cos(kx) dx

=
2

πk2

∫ π

0

π − 2x d(sin(kx))

=
2

πk2
(π − 2x) sin(kx)|πx=0 +

4

πk2

∫ π

0

sin(kx) dx

= − 4

πk3
cos(kx)|πx=0 =

4

πk3
[1− (−1)k].
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Therefore, bk = 0 for k even and bk = 8/(πk3) for k odd; the Fourier series is

f(x) ∼ 8

π

∞∑
j=1

sin((2j − 1)x)

(2j − 1)3
.

3. Using the previous problem, find the formal solution to the problem

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0;

u(x, 0) = x(π − x), 0 < x < π.

Answer:

u(x, t) =
∞∑
j=1

8

π(2j − 1)3
e−(2j−1)2t sin((2j − 1)x).

4. Find the Fourier cosine series for the function

f(x) = π − x, 0 < x < π.

Solution: We calculate

a0 =
2

π

∫ π

0

π − x dx = π,

ak =
2

π

∫ π

0

(π − x) cos(kx) dx

=
2

πk

∫ π

0

π − x d(sin(kx))

=
2

πk

∫ π

0

sin(kx) dx =
2

πk2
[1− (−1)k].

The corresponding Fourier series is

f(x) ∼ π

2
+

4

π

∞∑
j=1

cos((2j − 1)x)

(2j − 1)2
.
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5. Find the full (sine and cosine) Fourier series for the function

f(x) =

{
0, −π < x < 0;

1, 0 < x < π.

Solution: We calculate

a0 =
1

π

∫ π

0

dx = 1,

ak =
1

π

∫ π

0

cos(kx) dx = 0, k > 0,

bk =
1

π

∫ π

0

sin(kx) dx =
1− (−1)k

k
.

Therefore, the Fourier series is

f(x) ∼ 1

2
+
∞∑
j=1

2

2j − 1
sin((2j − 1)x).

6. Assume that f(x) is an odd function on the interval [−π, π]. Explain
why the full Fourier series of f consists only of sines (in other words, why
the coefficients next to the cosines are all zero).

Solution: We have

ak =
1

π

∫ π

−π
f(x) cos(kx) dx = 0,

since cos(kx) is even, f(x) is odd, the product f(x) cos(kx) is odd and thus
its integral over [−π, π] is zero.

7. Using the Fourier series convergence theorem, find the functions to
which the series in problems 2, 4, and 5 converge. Sketch their graphs.

Answers: For problem 2, the Fourier series converges to the 2π-periodic
extension of the function

g(x) =

{
x(π − x), 0 ≤ x ≤ π;

−x(π − x), −π ≤ x ≤ 0.

For problem 4, the Fourier series converges to the 2π-periodic extension of
the function π − |x| from the segment [−π, π].
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For problem 5, the Fourier series converges to the 2π-periodic extension
of the function

h(x) =


0, −π < x < 0;

1, 0 < x < π;

1/2, x ∈ {−π, 0, π}.

8. Assume that f is a function on the interval [0, π] whose graph is
symmetric with respect to the line x = π/2; in other words, f(π−x) = f(x).
If

f(x) ∼
∞∑
k=1

bk sin(kx)

is the Fourier sine series of f , prove that bk = 0 for even k. (Hint: write out
the formula for bk and make the change of variables y = π − x.)

Solution: Making the change of variables y = π − x, we get

bk =
2

π

∫ π

0

f(x) sin(kx) dx

=
2

π

∫ π

0

f(π − y) sin(k(π − y)) dy

=
2

π

∫ π

0

f(y)(−1)k+1 sin(ky) dy = (−1)k+1bk.

Therefore, for k even, bk = −bk and thus bk = 0.
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