Worksheet 26: PDE and Fourier method

0. Given the functions
u(r,t) = e 'sinw,

v(x,t) = costsinz,

calculate the derivatives
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Explain why wu solves the following initial/boundary value problem for the
heat equation:

ou 0%u

E(Q?,t) = @(l‘,t), O<x<m t>0;
u(0,t) = u(m,t) =0, t > 0;
u(z,0) =sin(z), 0 <z <,

while v solves the following initial/boundary value problem for the wave
equation:
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a0 = 9

v(0,t) = v(m,t) =0, t > 0;

(x,t), 0 <z <m, t>0;
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Describe the behavior of the functions wu(t,-) and v(t,-) as time goes on.
Solution: We find

v(x,0) =sinx, —(z,0) =0, 0 <z <.
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E = —€¢ SInxr = @,
ov . 0%
E = —costsinz = %



It remains to verify the boundary and initial conditions for v and v. The
shape of the profile (for fixed ¢ and varying x) of the functions u and v stays
the same (in the shape of sinz); however, the function u will exponentially
fast go to zero, while the function v will bounce back and forth with period
2.

1. Find all eigenvalues A and the corresponding eigenfunctions for the
boundary value problem (see also problem 2)

y'(x)+ My(z) =0, 0 <z <m;
y'(0) =0, y(7) =0.

Solution: Assume that {y;(z),y2(z)} is a fundamental system of solu-
tions to the equation y”(z) + Ay(z). (Both y; and y, depend on \.) The
general solution is then c;y;(z) 4+ coya(x) for ¢1, ¢ arbitrary constants; the
boundary conditions are satisfied if the following system of equations on ¢, o
holds:

0 =14'(0) = 13/ (0) + c295(0),
0 =y'(m) = c1yy () + cay ().

This system has a nonzero solution if and only if
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Now, the auxiliary equation is 72 + A = 0. We consider the following cases:
Case 1: A < 0. Put r = +v/—=XA> 0. We find y1(z) = €, y2(x) = 777,
and (2) turns into

(1)

7,2(61”71' o efrfr) — O,

which cannot be true for r» > 0.

Case 2: A = 0. We find y1(x) = 1, yo(x) = z, and the equation (2)
is satisfied. Solving (1), we get ¢; € R, ¢o = 0; therefore, y = 1 is an
eigenfunction for this eigenvalue.

Case 3: A > 0. Put s = vA > 0. We find y,(z) = cos(sz), ya(x) =
sin(sx); (2) turns into

0 = sin(sm).
This equation is solved for s = k a positive integer; the corresponding value

of X is A = k?. Solving (1), we get ¢; € R, ¢3 = 0; therefore, y = cos(kz) is
an eigenfunction for this eigenvalue.



Therefore, the eigenvalues for our problem are A = k2, k € Z, k > 0, and
the corresponding eigenfunctions are cos(kx).

2.* Prove that problem 1 has no eigenvalues A < 0, using the follow-
ing method: assume that y(z) is an eigenfunction with A < 0. Using the
equation, integration by parts, and boundary conditions, show that

0= / "W (@) + My(a@)y(e) de = / () + Myle)? da.

Explain why this leads to a contradiction.
Solution: Assume that y(z) is an eigenfunction with A < 0. We use the
integration by parts formula

/07r u'(z)v(x) de = u(z)v(z)|]_y — /07r u(x)v'(z) dx

for u =19 and v =y, to get

| v e =- [ @y

since y'(z)y(x) = 0 both at © = 0 and at = 7 due to boundary conditions.
Combining this with the equation y” + Ay = 0, we get

/Oﬂ —/(2)* + \y(z)? dz = 0.

Since A < 0, the expression under the integral is nonpositive. Therefore, if its
integral is zero, this expression is identically zero. We then get \y(z)? = 0;
since A # 0, it follows that y(x) = 0, a contradiction with y(x) being an
eigenfunction.

3. Using separation of variables, solve the following initial /boundary

value problem for the heat equation:

ou 0*u

E(ZE,IS) = @(I’,t), O<ax< ™, t> 0,
ou ou
g(oyt) = %(Wat) =0, t>0;

u(z,0) =2+ cosz — cos(3z), 0 <z < .

Find the limit of u(z,t) as t — +o00 and explain your results from a physical
point of view.



Solution: We look for solutions in the form u = T'(t) X (z); plugging this
into the equation, we get 7"(¢t) X (z) = T(t) X" (x), or T"/T = X"/ X = =\,
where A is a constant. Now, X needs to satisfy the boundary conditions
X'(0) = X'(m) = 0; in other words, it is an eigenfunction for problem 1.
Therefore, A = k?, where k is a nonnegative integer, and we can take X =
cos(kz). The corresponding function 7 has the form ce ™ * and satisfies

Therefore, the function u = 2 solves our problem with initial data u(z,0) =
2; the function u = e~*cosx solves our problem with initial data u(z,0) =
cosz, and the function u = —e % cos(3z) solves our problem with initial
data u(z,0) = — cos(3z); adding these up, we get the following solution to
the original problem:

u(z,t) =2+ e cosz — e” cos(3z).

The limit of this expression as ¢ — 400 is equal to 2; this reflects the
physical observation that, once you insulate a heated rod, after a large time
the temperature everywhere in the rod will become the same.

4. Using separation of variables, solve the following initial /boundary
value problem for the wave equation:

0%u 0%u
W(l’,t) = @(l’,t), O<z<m t>0;
ou ou
%(Oat) - %(th) =0, t>0;
ou
u(z,0) =1, E(a:,O) =cosz, 0 <z <.

Solution: We argue similarly to the previous problem, trying to find
solutions of the form T'(¢) X (z). We get 7" /T = X" /X = —\. The equation
X"/X = —\ is solved exactly as in the previous problem, yielding A\ = k?
with k£ > 0 an integer. The corresponding solution to the equation 7" /T =
—\ is ay cos(kt) + by sin(kt), with ag, by € R, and it has T'(0) = ay, T7(0) =
kby..

Therefore, the function u = 1 solves our problem with initial data u(z,0) =
1, 24(x,0) = 0; the function u = sint cosx solves our problem with initial
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data u(x,0) =0, aa—;‘(x, 0) = cosz. Adding up these two solutions, we get the

following solution to the original problem:

u(z,t) =1+ sintcosz.



