
Worksheet 25: Higher order linear ODE and
systems of ODE

1. NS&S, 6.1.2.
Solution: The interval is (0,∞), because that’s where the coefficient

√
x

is well-defined and continuous.
2. NS&S, 6.1.17.
Solution: We substitute y = xk into the equation to yield

x3y′′′ − 3x2y′′ + 6xy′ − 6y

= (k3 − 6k2 + 11k − 6)xk = (k − 1)(k − 2)(k − 3)xk.

Therefore, x, x2, x3 solve the considered equation. Next, the Wrosnkian is

W (x, x2, x3) = det

x x2 x3

1 2x 3x2

0 2 6x

 = 2x3.

Since the Wronskian is not identically equal to zero, the functions {x, x2, x3}
form a linearly independent set and thus a fundamental system of solutions
for our equation.

3. NS&S, 6.1.21.
Solution: (a) The general solution is y = lnx+c1x+c2x lnx+c3x(lnx)2,

where c1, c2, c3 ∈ R are arbitrary. (b) We find

y′(x) = x−1 + c1 + c2(1 + ln x) + c3(2 + ln x) lnx,

y′′(x) = −x−2 + c2x
−1 + 2c3x

−1(1 + ln x);

3 = y(1) = c1,

3 = y′(1) = 1 + c1 + c2,

0 = y′′(1) = −1 + c2 + 2c3;
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solving this system of linear equations in c1, c2, c3, we find

c1 = 3, c2 = −1, c3 = 1;

therefore, the solution to our initial-value problem is

y = lnx+ 3x− x lnx+ x(lnx)2.

4. NS&S, 6.2.2.
Solution: The auxiliary equation is r3 − 3r2 − r + 3 = 0; the roots are

r = −1, 1, 3. The fundamental system is {e−x, ex, e3x}; the general solution
is c1e

−x + c2e
x + c3e

3x.
5. NS&S, 6.2.13.
Solution: The auxiliary equation is r4 + 4r2 + 4 = 0; the solutions are

r = ±i
√

2, both with multiplicity 2. The fundamental system is

{cos(
√

2x), sin(
√

2x), x cos(
√

2x), x sin(
√

2x)};

the general solution is

y = c1 cos(
√

2x) + c2 sin(
√

2x) + c3x cos(
√

2x) + c4x sin(
√

2x).

6. NS&S, 6.2.17.
Solution: The auxiliary equation is

(r + 4)(r − 3)(r + 2)3(r2 + 4r + 5)2r5 = 0;

the roots are r = −4, 3 (multiplicity 1), r = −2 + i,−2 − i (multiplicity 2),
r = −2 (multiplicity 3), r = 0 (multiplicity 5); the fundamental system is

{e−4x, e3x, e−2x cosx, e−2x sinx, xe−2x cosx, xe−2x sinx,

e−2x, xe−2x, x2e−2x, 1, x, x2, x3, x4}.

7.* Draw the trajectories (y(t), y′(t)) on the plane R2, where y(t) solves
the following initial-value problems:

(a) y′′ − y = 0, y(0) = 1, y′(0) = 0;
(b) y′′ − y = 0, y(0) = 1, y′(0) = 1;
(c) y′′ − y = 0, y(0) = 1, y′(0) = −1;
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(d) y′′ + y = 0, y(0) = 1, y′(0) = 0;
(e) y′′ + y = 0, y(0) = 0, y′(0) = 0;
(f) y′′ + 2y′ + 2y = 0, y(0) = 1, y′(0) = 0.
Solution: (a) We have[

y(t)
y′(t)

]
= et

[
1/2
1/2

]
+ e−t

[
1/2
−1/2

]
;

since et · e−t = 1, the trajectory, taken in the coordinate system induced by
the vectors (1/2, 1/2) and (−1/2,−1/2), lies on a hyperbola.

(b) We have [
y(t)
y′(t)

]
= et

[
1
1

]
;

the trajectory consists of all positive multiples of the vector (1, 1) and thus
is a ray.

(c) We have [
y(t)
y′(t)

]
= e−t

[
1
−1

]
;

the trajectory is a ray, as in (b).
(d) We have [

y(t)
y′(t)

]
=

[
cos t
sin t

]
;

since cos2 t+ sin2 t = 1 for all t, the trajectory is a circle.
(e) We have [

y(t)
y′(t)

]
=

[
0
0

]
;

the trajectory is a single point. (This is called a stationary point.)
(f) We have [

y(t)
y′(t)

]
= et cos t

[
1
0

]
+ et sin t

[
−1
−2

]
.

The coordinates of this vector with respect to the basis {(1, 0), (−1,−2)} are
~v(t) = (et cos t, et sin t). We can write ~v(t) = et(cos t, sin t); we see that its
length is et, while its polar angle is t. Therefore, the trajectory of ~v(t), and
thus of the original vector, is a logarithmic spiral.

8. NS&S, 9.1.2.
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Answer: [
x
y

]′
=

[
0 1
−1 0

] [
x
y

]
.

9. NS&S, 9.1.8.
Solution: We divide the equation by 1− t2 to get

y′′ − 2t

1− t2
y′ +

2

1− t2
y = 0;

we can rewrite it as [
y
y′

]′
=

[
0 1
− 2

1−t2
2t

1−t2

] [
y
y′

]
.

10. NS&S, 9.1.11.
Answer: 

x
x′

y
y′


′

=


0 1 0 0
−3 0 −2 0
0 0 0 1
2 0 0 0



x
x′

y
y′

 .
11. NS&S, 9.4.20.
Solution: We compute the Wronskian:

W = det

[
3e−t e4t

2e−t −e4t

]
= −5e3t;

since it is not identically zero, the given vectors form a fundamental solution
set and the general solution is given by

c1e
−t

[
3
2

]
+ c2e

4t

[
1
−1

]
.

12. NS&S, 9.5.12.
Solution: The characteristic polynomial is λ2− 2λ− 35; the eigenvalues

are −5, 7. A basis for the eigenspace for λ = −5 is {(−1, 2)}; a basis for the
eigenspace for λ = 7 is {(1, 2)}. Therefore, a fundamental system of solutions
is {

e−5t

[
−1
2

]
, e7t

[
1
2

]}
.
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13. NS&S, 9.5.17.
Solution: (a) We verify that A~u1 = 2~u1 and A~u2 = −2~u2. (As a harder

exercise, try to prove that the matrix A/2 is actually the standard matrix of
a certain reflection in R2.)

(b) The solution is −e2t~u1. The trajectory consists of all negative multi-
ples of ~u1 and is a ray (starting from the origin, but not containing it).

(c) Similar to (b).
(d) The solution is −e2t~u1 + e−2t~u2; the coordinates of a point on the

trajectory in the basis {~u1, ~u2} are (e2t, e−2t) = (f(t), g(t)). Since f(t) ·g(t) =
1 for all t, we see that these coordinates lie on a hyperbola.

14. NS&S, 9.5.31.
Solution: The eigenvalues are −2, 4; a basis of the eigenspace for λ =

−2 is {(−1, 1)} and a basis of the eigenspace for λ = 4 is {(1, 1)}. The
general solution is

y = c1e
−2t

[
−1
1

]
+ c2e

4t

[
1
1

]
.

Plugging in the initial condition, we get

c1

[
−1
1

]
+ c2

[
1
1

]
=

[
3
1

]
;

solving this vector equation, we get c1 = −1, c2 = 2; the solution to the
initial value problem is

y = e−2t

[
1
−1

]
+ e4t

[
2
2

]
.

15.* NS&S, 9.5.37.
Solution: (a) Direct verification, using the fact that A is upper triangu-

lar.
(b) Take ~u1 = (1, 0, 0); then A~u1 = 2~u1. We calculate

~x′1(t) = (e2t~u1)
′ = 2e2t~u1 = 2~x1(t) = A~x1(t).

Therefore, ~x1(t) is a solution to the equation ~x′ = A~x.
(c) Using that A~u1 = 2~u1, we get

~x′2(t) = 2te2t~u1 + e2t(~u1 + 2~u2);

A~x2(t) = 2te2t~u1 + e2tA~u2;
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for these two vector-valued functions to be equal, we need

~u1 + 2~u2 = A~u2,

or (A−2I)~u2 = ~u1. We solve this equation for ~u2 (recalling that ~u1 = (1, 0, 0))
and get

~u2 =

0
1
0

+ c

1
0
0

 , c ∈ R.

We are free to choose any value of c (this will add a multiple of the solution
found in (b) to our solution); we pick c = 0 and then ~u2 = (0, 1, 0).

(d) Using that A~u1 = 2~u1 and A~u2 = 2~u2 + ~u1, we get

~x′3(t) = t2e2t~u1 + te2t(~u1 + 2~u2) + e2t(~u2 + 2~u3);

A~x3(t) = t2e2t~u1 + te2t(2~u2 + ~u1) + e2tA~u3;

for these two vector-valued functions to be equal, we need

~u2 + 2~u3 = ~u3,

or (A− 2I)~u3 = ~u2. Similarly to the above, we can solve for ~u3; one possible
solution is ~u3 = (0, 0, 1).
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