
Worksheet 21: Orthogonality

1–3. Given the subspace V with an orthogonal basis {~v1, ~v2} and the
vector ~u,

(a) Find the orthogonal projection ~v = projV ~u of the vector ~u onto the
subspace V .

(b) Compute the vector ~w = ~u− ~v and verify that it is orthogonal to ~v1

and ~v2.
(c) Find the coordinates of ~v in the basis {~v1, ~v2} of V .
(d) Find the distance from ~u to V .

~v1 =

1
1
0

 , ~v2 =

0
0
1

 , ~u =

1
2
3

 ; (1)

~v1 =

 1
−1
0

 , ~v2 =

1
1
1

 , ~u =

0
2
1

 ; (2)

~v1 =

[
1
1

]
, ~v2 =

[
1
−1

]
, ~u =

[
1
2

]
. (3)

Answers: 1. (a) (3/2, 3/2, 3) (b) (−1/2, 1/2, 0) (c) (3/2, 3) (d)
√

2/2
2. (a) (0, 2, 1) (b) (0, 0, 0) (c) (−1, 1) (d) 0
3. (a) (1, 2) (b) (0, 0) (c) (3/2,−1/2) (d) 0

4. Fix ~v = (1, 1). Define the transformation T : R2 → R2 by the formula
T (~u) = proj~v ~u; that is, T (~u) is the orthogonal projection of ~u onto ~v. (See
also Lay, 6.2.33.)

(a) Assuming that T is linear, write its standard matrix A.
(b) Verify that A2 = A and use this fact to deduce possible eigenvalues

of A.
(c) Using either the computed value of A or geometric considerations,

find the bases of eigenspaces of A.
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Solution: (a) We have for ~u = (u1, u2),

T (~u) =
~u · ~v
~v · ~v

~v =
u1 + u2

2

[
1
1

]
=

[
(u1 + u2)/2
(u1 + u2)/2

]
.

We then find

A =
1

2

[
1 1
1 1

]
.

(b) A direct computation shows that A2 = A. Then, if λ is an eigenvalue
of A and ~x is the corresponding eigenvector, we have A~x = λ~x and A2~x = λ2~x;
since A2 = A, λ~x = λ2~x and λ = λ2. Therefore, the possible eigenvalues of
A are 0 and 1.

(c) The matrix A has eigenvalues 0 and 1. The eigenspace for the eigen-
value 0 is spanned by (−1, 1) and it is orthogonal to ~v. The eigenspace for
the eigenvalue 1 is spanned by (1, 1) = ~v.

5. Lay, 6.2.31.
Solution: We have

projc~u ~y =
(c~u) · ~y
‖c~u‖2

(c~u) =
c(~u · ~y)

c2‖~u‖2
c~u =

~u · ~y
‖~u‖2

~u = proj~u ~y.

6. Fix ~v = (1, 1). Define the transformation T : R2 → R2 by the formula
T (~u) = ~u−2 proj~v ~u. Explain why T (~u) is the result of reflecting the vector ~u
across the line Span{~v}⊥. Then, do parts (a)–(c) from the previous problem
for this transformation T . (You should use the equation A2 = I instead of
A2 = A in (b). (See also Lay, 6.2.34.))

Solution: (a) We have for ~u = (u1, u2),

T (~u) = ~u− 2
~u · ~v
‖~v‖2

~v =

[
u1

u2

]
− 2

u1 + u2

2

[
1
1

]
=

[
−u2

−u1

]
.

T is the reflection across the line Span{~v}⊥ = Span{(−1, 1)}. Then,

A =

[
0 −1
−1 0

]
.

(b) A direct calculation shows that A2 = I. Then, arguing similarly to
the previous problem, we get that each eigenvalue λ of A satisfies λ2 = 1 and
thus the possible eigenvalues are 1 and −1.
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(c) The matrix A has eigenvalues 1 and −1. The eigenspace for the
eigenvalue 1 is spanned by (−1, 1) and is orthogonal to the eigenspace for
the eigenvalue −1; the latter is spanned by (1, 1) = ~v.

7. Prove that if U is an orthogonal matrix, then its determinant is equal
to either 1 or −1. (Hint: we have done this problem before.) If detU = 1,
we call U orientation preserving; if detU = −1, we call U orientation
reversing.

Solution: We have UTU = I; therefore,

1 = det(UTU) = detUT · detU = (detU)2.

Thus, detU = 1 or detU = −1.

8. For the standard matrix A of the transformation T from problem
6, show that A is orthogonal. Is it orientation preserving or orientation
reversing?

Solution: We check that ATA = I and detA = −1; therefore, A is
orthogonal and orientation reversing.

9.* (Orthogonal orientation preserving matrices in R2) Assume that A is
a 2× 2 orthogonal matrix such that detA = 1. Prove that A must have the
form [

cosφ − sinφ
sinφ cosφ

]
for some φ. (Hint: assume that A =

[
a b
c d

]
; write the identity A−1 = AT

and use the formula for A−1 from Section 2.2.)
Solution: Let

A =

[
a b
c d

]
;

then, since detA = 1,[
a c
b d

]
= AT = A−1 =

[
d −b
−c a

]
;

therefore, d = a and b = −c; A has the form

A =

[
a −c
c a

]
.
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Now, 1 = detA = a2 + c2; therefore, we can write a = cosφ and c = sinφ for
some angle φ. It follows that A is the standard matrix of counterclockwise
rotation by φ.

10.* (Orthogonal orientation preserving matrices in R3) Assume that A
is a 3× 3 orthogonal matrix such that detA = 1.

(a) Prove that I − A = (AT − I)A.
(b) Use part (a) and properties of determinants to prove that 1 is an

eigenvalue of A. (In fact, combining this with the previous problem, one can
show that A must be the standard matrix of rotation about some axis in R3.)

(c) Consider the transformation T : R3 → R3 given by T (x1, x2, x3) =
(x2, x3, x1). Write down the standard matrix A of T and verify that it is
orthogonal and orientation preserving. Find an eigenvector of A correspond-
ing to the eigenvalue 1. Prove that A3 = I. If I were to tell you that T is
actually a rotation about some axis, what would the axis and the angle be?

Solution: (a) We have (AT − I)A = ATA− A = I − A.
(b) We have

det(A− I) = − det(I − A) = − det(AT − I) detA

= − det((A− I)T ) = − det(A− I).

in the first equality, we used the properties of determinants under row op-
erations and A being a 3 × 3 matrix. We get det(A − I) = 0; thus, 1 is an
eigenvalue of A.

(c) We have

A =

0 1 0
0 0 1
1 0 0

 ;

we compute ATA = I and detA = 1. An eigenvector for eigenvalue 1 is
(1, 1, 1). We can check that A3 = I directly or we can see that T 2(x1, x2, x3) =
(x3, x1, x2) and T 3(x1, x2, x3) = (x1, x2, x3). Therefore, T has to be a 120
degree rotation around the line spanned by (1, 1, 1).
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