Worksheet 20: Inner product

L. Givenﬁ—(1,2 3) and ¥ = (2,3,1), compute 4 - ¥, ||, H 0|
Answer: i-7=1-2+2-3+3-1=11, |[u|| = ||7] = V14

2. Given i,V € R" such that ||d|| = 1, @-¥ = 2, ||t]| = 3, compute ||d+ 7|
and ||@ — o).
Solution: Using the properties of inner products, we compute
17 £ 91* = [|a]|* + 2 - 7 + |7]]*.
Using the known values of |||, ||7]|, @ - U, we get

1@ + 7| = V14, ||@ — || = V6.

3. Lay, 6.1.24.

Solution: We calculate
|G+ 7> = (@ +0) - (@+0) =06 @+ T+ 2 -7,
Hu—vH2 (U—70)- (U—0V)=u-u+7-U—-20-0U

Adding these two equalitites up, we get the parallelogram identity.

4. Find all unit vectors lying in Span{(3,4)}.

Solution: Every element of Span{(3,4)} has the form ¢(3,4) = (3t, 4¢),
where t € R. This is a unit vector if and only if ||(3¢, 4t)|| = 1; in other words,
if (3t)%> + (4t)* = 1. This equation has two solutions, ¢ = +1/5. Therefore,
Span{(3,4)} has two unit vectors, (3/5,4/5) and (—3/5,—4/5).

5. Describe the set of all unit vectors in R?.

Solutlon A vector in R? has the form (z,%); this is a unit vector if and
only if 22 + y? = 1. Therefore, the set of all unit vectors in R? is the circle

of radius 1 centered at the origin.



6. Let W C R? be the subspace spanned by the vectors (1,0, —1) and
(1,—1,0). Using Theorem 6.1.3, find a basis for W+.
Solution: We have W = Col A, where

Then W+ = Nul AT, where

A basis for Nul A is given by {(1,1,1)}.
7. Find all values of ¢ for which the vectors (1,2) and (1, ¢) are orthogonal.
Solution: We have (1,2)-(1,t) = 142t; therefore, the vectors in question
are orthogonal if and only if t = —1/2.

8. Let @ € R™ be nonzero. Explain why {w}+ cannot equal to the whole
R™. (Hint: find a specific vector in R™ which cannot lie in W+.)

Solution: We argue by contradiction. Assume that {w}+ = R™. Then
in particular @ € {w}~; so, @ - @ = 0. However, this can only happen when
@ = 0, a contradiction.

9. Given u = (1,1), ¥ = (=1,1), @ = (0,1), prove that {«, v} form
an orthogonal set. Then, find the orthogonal projections w, and , of w
onto # and v, respectively. Draw the vectors u, v, W, w,, W, and verify that
W = W, + w, by the parallelogram rule. Find the coordinates of « in the
basis B = {u, 7} of R%

Solution: We compute @ - v = 0 and

A {1/2} g T {—1/2} (s = Eg} |
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10. Given @ = (1,0), ¥ = (—1,1), @ = (1, 2), find the orthogonal projec-
tions w,, W, of W onto u and ¥, respectively. Draw the vectors , ¥, W, W, W,
and verify that @ # , + ,.

Solution: We compute
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100.* Let A be an m X n matrix.

(a) Prove that there exists unique n x m matrix B with the following
property: for each v € R", v € R™,

(Ad) - v = u - (BY); (1)
in fact, B = AT. (Hint: for the uniqueness part, try substituting columns of
the n x n and m x m identity matrices in place of @ and v.)

(b) Use part (a) to prove that (Col A)* = Nul AT,

(c) Use part (a) to prove that (AC)T = CT AT,

Solution: (a) (The proof is quite technical, so it might be helpful to run
it on some specific example to understand how it works.) First, assume that
B is a matrix such that (1) holds for all 4 and 0. Let €; be the i-th column
of the n x n identity matrix and f; be the j-th column of the m x m identity
matrix. Take arbitrary ¢, 7 and put « = €;, v = f;-; then

(Aé) - f; = € - (Bf)). (2)
A direct calculation shows that the left-hand side is the element in the j-th
row and i-th column of A, while the right-hand side is the element in the
i-th row and j-th column of B. Since (2) holds for all 4, j, we get B = AT,

We have just proved uniqueness of the solution of (1); now, a direct

calculation shows that B = A” solves (1).
(b) Let 7 € R™. Then

7 € Nul A" if and only if
AT = 0 if and only if (see problem 8)
Vit € R": @ - (AT%) = 0 if and only if
Vi € R": (Ad) - ¥ = 0 if and only if
Vi € Col A: w - v = 0 if and only if
v € (Col A)*.
(c) By (a), the matrix B = (AC)T solves the equation
Vi, v: (ACU) - U = @ - (BY). (3)
However, by (a) applied twice,
(ACT) -7 = (C1) - (AT0) = @ - (CT ATD).
Therefore, CT AT also solves (3). By uniqueness in (a), (AC)T = CTAT.



