
Worksheet 18: Diagonalization and
diagonalizability

Given an n× n matrix A, here’s what you need to do to diagonalize it:
(1) Compute the characteristic polynomial P (λ) = det(A−λI). Its roots

are the eigenvalues of A.
(2) If P (λ) does not have n real roots, counting multiplicities (in other

words, if it has some complex roots), then A is not diagonalizable.
(3) If for some eigenvalue λ, the dimension of the eigenspace Nul(A−λI) is

strictly less than the algebraic multiplicity of λ, then A is not diagonalizable.
(4) If neither (2) nor (3) hold, then A is diagonalizable. Find a basis

for each eigenspace; combining these bases, you should get exactly n vectors
~v1, . . . , ~vn. Let D be the matrix whose diagonal elements are given by the
eigenvalues corresponding to ~v1, . . . , ~vn (in this order), and its offdiagonal
elements are equal to zero. Define the square matrix P by its columns:

P =
[
~v1 . . . ~vn

]
.

Then we have diagonalized A:

A = PDP−1.

If you are able to diagonalize A = PDP−1, then for every nonnegative
integer k, the kth power of A can be computed by

Ak = PDkP−1;

the matrix Dk is computed by taking the kth power of the diagonal elements
of D.
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1–3. Decide if the matrix A is diagonalizable. If it is, then diagonalize it
(find D and P ; you do not need to find P−1).

A =

1 0 0
0 2 1
0 1 2

 ,
A =

1 0 0
0 2 −1
0 1 2

 ,
A =

1 3 0
0 2 4
0 0 1

 .
Solutions: (1) The characteristic polynomial is (1 − λ)(λ2 − 4λ + 3);

the eigenvalues are 1 (multiplicity 2) and 3 (multiplicity 1). A basis for
Nul(A − 1I) is {(1, 0, 0), (0,−1, 1)}; a basis for Nul(A − 3I) is {(0, 1, 1)}.
The matrix A is diagonalizable, with

P =

1 0 0
0 −1 1
0 1 1

 , D =

1 0 0
0 1 0
0 0 3

 .
(2) The characteristic polynomial is (1−λ)(λ2−4λ+5). Since λ2−4λ+5

has only complex roots, A is not diagonalizable.
(3) The characteristic polynomial is (1−λ)2(2−λ); the eigenvalues are 1

(multiplicity 2) and 2 (multiplicity 1). A basis for Nul(A− 1I) is {(1, 0, 0)};
since dim Nul(A− 1I) = 1 is strictly less than the multiplicity of the eigen-
value 1, A is not diagonalizable.

4–6. Given the characteristic polynomial of the matrix A, decide whether
(a) A is diagonalizable (b) A is not diagonalizable (c) A might or might not
be diagonalizable, depending on the dimensions of eigenspaces:

P (λ) = (1− λ)(2− λ)2(3− λ),

P (λ) = (1− λ)(2 + λ2)(3− λ),

P (λ) = (1− λ)(2− λ)(3− λ).

Answers: (4) Case (c); A is diagonalizable if and only if dim Nul(A −
2I) = 2. (5) Case (b), as the polynomial 2 + λ2 has only complex roots. (6)
Case (a), as all eigenvalues of A are real and distinct.
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7. Lay, 5.3.4.
Solution: We have

Ak =

[
3 4
1 1

] [
2k 0
0 1

] [
−1 4
1 −3

]
=

[
4− 3 · 2k 12 · 2k − 12

1− 2k 4 · 2k − 3

]
.

8.* Define the sequence of Fibonacci numbers Fn by the recurrence
relation

F0 = 0, F1 = 1; Fn = Fn−1 + Fn−2, n ≥ 2.

The first several numbers in this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

(a) Define the vector ~vn by

~vn =

[
Fn

Fn+1

]
.

Prove that

~v0 =

[
0
1

]
and ~vn = A~vn−1, n ≥ 1, where A =

[
0 1
1 1

]
.

(b) Diagonalize the matrix A. (If you do this right, you should get
√

5
somewhere.)

(c) Prove that ~vn = An~v0; use this to derive Binet’s formula:

Fn =
ϕn − (ϕ̂)n

√
5

,

where

ϕ =
1 +
√

5

2

is the golden ratio and ϕ̂ = 1− ϕ.
Solution: (a) We have ~v0 = (F0, F1) = (0, 1). Next,

~vn =

[
Fn

Fn+1

]
=

[
Fn

Fn−1 + Fn

]
=

[
0 1
1 1

] [
Fn−1

Fn

]
= A~vn−1.

3



(b) The characteristic polynomial is λ2 − λ − 1. The eigenvalues are ϕ
and ϕ̂, defined above. We can write A = PDP−1, where

P =

[
1 1
ϕ ϕ̂

]
, D =

[
ϕ 0
0 ϕ̂

]
, P−1 =

1√
5

[
−ϕ̂ 1
ϕ̂ −1

]
.

(c) We have
~vn = A~vn−1 = A2~vn−2 = · · · = An~v0.

Next,

An~v0 = PDnP−1~v0 =

[
1 1
ϕ ϕ̂

] [
ϕn 0
0 ϕ̂n

]
· 1√

5

[
1
−1

]
=

1√
5

[
1 1
ϕ ϕ̂

] [
ϕn

−ϕ̂n

]
=

1√
5

[
ϕn − ϕ̂n

ϕn+1 − ϕ̂n+1

]
.

By definition of ~vn, we get Binet’s formula.

9.* (Nilpotent matrices and transformations) A square matrix A is called
nilpotent if there exists a positive integer N such that AN = 0.

(a) Prove that if A is nilpotent, then the only possible eigenvalue of A
can be zero. (Hint: take a vector ~x 6= 0 such that A~x = λ~x, and compute
AN~x.)

(b) Prove that if A is nilpotent and A 6= 0, then A is not diagonalizable.
(Hint: assume that A is diagonalizable and use the formula A = PDP−1;
what is D?)

(c) A linear transformation T : V → V is called nilpotent if TN = 0 for
some N . (Here TN means T composed with itself N times.) Prove that the
transformation T : P3 → P3 defined by T (f) = f ′ is nilpotent.

Solution: (a) Assume that λ is an eigenvalue of A. Then there exists
~x 6= 0 such that A~x = λ~x. We can then compute AN~x = λn~x (similarly to
what we did for A2 last time). Since AN = 0, we get λn~x = ~0; but ~x 6= 0, so
λn = 0. It follows that λ = 0.

(b) We argue by contradiction. Assume that A is both nilpotent and
diagonalizable; represent A = PDP−1. By (a), the only eigenvalue of A is
zero; since the diagonal entries of D are eigenvalues of A, we get D = 0.
Then A = P · 0 · P−1 = 0.

(c) We claim that T 4 = 0. Indeed, T 4f is the fourth derivative of f ; since
f is a polynomial of degree no more than 3, we have T 4f = 0.
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