
Worksheet 14: Dimension and linear
transformations

1. Lay, 4.5.13.
Answer: The dimension of Col A is 3, the dimension of Nul A is 2.

2. Lay, 4.5.19.
Answers: (a) True (b) False (does not need to pass through the origin)

(c) False (the dimension is 5, as a basis is given by {1, t, t2, t3, t4}) (d) True
(e) True

3.* Lay, 4.5.27.
Solution: Assume that P is finite dimensional and dim P = n < ∞.

Then the space Pn of all polynomials of degree ≤ n is n + 1-dimensional, as
it has basis {1, t, . . . , tn}; however, Pn is a subspace of P, which would imply
by Theorem 4.5.11 that dim Pn ≤ dim P, a contradiction with the fact that
dim P = n.

4. Using the definition of a linear transformation, prove that the trans-
formation T : P→ P given by T (f) = f ′ is linear. (Here P is the space of all
polynomials and f ′ is the derivative of a polynomial f .)

Solution: We need to verify that for any c, d ∈ R and f, g ∈ P, T (cf +
dg) = cT (f) + dT (g). Recalling the definition of T , this turns into

(cf + dg)′ ≡ cf ′ + dg′.

This follows from the properties of differentiation.

5. Using the definition of a linear transformation, prove that the trans-
formation S : P→ P given by S(f)(t) = tf(t) is linear.

Solution: We need to verify that for any c, d ∈ R and f, g ∈ P, S(cf +
dg) = cS(f) + dS(g). Recalling the definition of S, this turns into

t(cf(t) + dg(t)) ≡ c(tf(t)) + d(tg(t)),
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a true identity.

6. Find the matrix of the linear transformation T : P1 → P2 given by
T (f)(t) = (t+1)f(t) in the bases {1, t} of P1 and {1, t, t2} of P2. Is T 1-to-1?
Is it onto?

Solution: We have

T (1) = 1 + t = 1 · 1 + 1 · t + 0 · t2,
T (t) = t + t2 = 0 · 1 + 1 · t + 1 · t2.

Therefore, the matrix is

A =

1 0
1 1
0 1

 .

A has a pivot in each column, so T is 1-to-1; A does not have a pivot in each
row, so T is not onto.

7. Find the matrix of the linear transformation T : R2 → P2 given by
T (x1, x2)(t) = x1t+x2(1+t2) in the bases {(1, 1), (1,−1)} of R2 and {1, t, t2}
of P2.

Solution: We have

T (1, 1) = 1 + t + t2 = 1 · 1 + 1 · t + 1 · t2,
T (1,−1) = t− 1− t2 = (−1) · 1 + 1 · t + (−1) · t2.

Therefore, the matrix is

A =

1 −1
1 1
1 −1

 .

8. Prove that the transformation from problem 4 is onto, but not 1-to-1;
find its kernel.

Solution: Onto: we need to prove that for each g ∈ P, there exists f ∈ P
such that f ′ = g. This is true since every polynomial has an antiderivative,
which is also a polynomial.

Not 1-to-1: a polynomial f is in the kernel of T if and only if f ′ = 0.
Therefore, the kernel of T consists of constant polynomials (or we can say
that it is spanned by 1).

9. Prove that the transformation from problem 5 is 1-to-1, but not onto;
find its range.
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Solution: 1-to-1: We need to prove that for every f ∈ P, if tf(t) ≡ 0,
then f ≡ 0. This is true, as tf(t) ≡ 0 implies that f(t) = 0 for all t 6= 0;
thus, f has infinitely many roots, which can only happen when f ≡ 0.

Not onto: a polynomial f is in the range of S if and only if f = tg for
some polynomial g. Therefore, the range of S consists of polynomials with
zero constant term.

10. Given the transformations T from problem 4 and S from problem
5, find T ◦ S and S ◦ T . (Recall that T ◦ S is the composition of T and S,
defined by (T ◦ S)(f) = T (S(f)).)

Solution: We find

(T ◦ S)f(t) = (tf(t))′ = f(t) + tf ′(t),

(S ◦ T )f(t) = tf ′(t).

Note that T ◦ S 6= S ◦ T .

100.* (Lagrange interpolation) (Do not attempt this problem in section;
however, you might want to come back to it later.) Let Pn be the space of
polynomials of degree no more than n, and assume that t0, . . . , tn ∈ R are
n + 1 distinct points. (We fix these points from now on.)

(a) Consider the transformation T : Pn → Rn+1 given by

T (f) = (f(t0), . . . , f(tn)).

Prove that it is linear.
(b) Prove that T is 1-to-1. (Hint: a nontrivial polynomial of degree no

more than n can have at most n roots.)
(c) Use part (b) and IMT to prove that T is onto. (Hint: take some

bases of Pn and Rn+1 and consider the matrix of T in these bases; why is it
square?)

(d) Reformulate part (c) as follows: for every s0, . . . , sn ∈ Rn, there ex-
ists a unique polynomial f of degree ≤ n such that f(t0) = s0, . . . , f(tn) =
sn.

(e) Try to think what the statement of (d) means for n = 0, 1, 2 in terms
of the graph of f .
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