Quiz 2, September 9, 2009

Please write your name on each sheet. Show your work clearly and in order, including the intermediate steps in the solutions and the final answer.

Section 105

- 1. (3 pt) Compute the definite integral $\int_2^3 \frac{dx}{x^2-1}.$
- 2. (3 pt) Find the indefinite integral $\int \frac{dx}{x^2\sqrt{16-x^2}}$. Simplify your answer so that it does not include trigonometric functions.
- 3. (4 pt) Find the indefinite integral $\int \frac{dx}{1 + \cos x}$.

Section 106

- 1. (3 pt) Find the indefinite integral $\int \frac{dx}{x^2\sqrt{25-x^2}}$. Simplify your answer so that it does not include trigonometric functions.
- 2. (3 pt) Compute the definite integral $\int_{1}^{2} \frac{dx}{x^{2} + x}$.
- 3. (4 pt) Find the indefinite integral $\int \frac{dx}{1-\cos x}$.

Solutions for section 105

1. Since $x^2 - 1 = (x - 1)(x + 1)$, we have

$$\frac{1}{x^2 - 1} = \frac{A}{x + 1} + \frac{B}{x - 1}$$

for some constants A and B. To find these, multiply both sides by x^2-1 :

$$1 = A(x-1) + B(x+1) = (A+B)x + (B-A).$$

This gives us the system of equations

$$0 = A + B,$$

 $1 = B - A.$

The first equation yields B=-A; using this in the second equation, we get 1=-2A; thus $A=-\frac{1}{2}$ and $B=-A=\frac{1}{2}$. We can now find the indefinite integral:

$$\int \frac{dx}{x^2 - 1} = \int \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx = \frac{1}{2} (\ln|x - 1| - \ln|x + 1|) + C.$$

Finally, by the Fundamental Theorem of Calculus,

$$\begin{split} &\int_{2}^{3} \frac{\mathrm{d}x}{x^{2} - 1} = \frac{1}{2} (\ln|x - 1| - \ln|x + 1|)|_{x = 2}^{3} \\ &= \frac{1}{2} (\ln 2 - \ln 4 - \ln 1 + \ln 3) = \frac{1}{2} \ln\left(\frac{3}{2}\right). \end{split}$$

2. Make the substitution $x=4\sin\theta$, where $-\frac{\pi}{2}\leqslant\theta\leqslant\frac{\pi}{2}$; then $dx=4\cos\theta\,d\theta,\,\sqrt{16-x^2}=4\cos\theta$, and

$$\int \frac{\mathrm{d}x}{x^2 \sqrt{16 - x^2}} = \int \frac{4 \cos \theta \, \mathrm{d}\theta}{(4 \sin \theta)^2 (4 \cos \theta)}$$
$$= \frac{1}{16} \int \frac{\mathrm{d}\theta}{\sin^2 \theta} = -\frac{1}{16} \cot \theta + C.$$

Now, $\cot\theta=\cos\theta/\sin\theta$. We know that $\sin\theta=x/4$ and we can find $\cos\theta=\sqrt{1-\sin^2\theta}=\frac{\sqrt{16-x^2}}{4}$; therefore,

$$\int \frac{dx}{x^2 \sqrt{16 - x^2}} = -\frac{\sqrt{16 - x^2}}{16x} + C.$$

3. (Solution 1) Using the double angle identities and the substitution $t=\frac{\kappa}{2}$, we get

$$\int \frac{dx}{1 + \cos x} = \int \frac{dx}{2\cos^2 \frac{x}{2}} = \int \frac{dt}{\cos^2 t}$$
$$= \tan t + C = \tan(x/2) + C.$$

3. (Solution 2) Multiply the denominator and the numerator by $1 - \cos x$:

$$\int \frac{dx}{1+\cos x} = \int \frac{1-\cos x \, dx}{1-\cos^2 x} = \int \frac{1-\cos x \, dx}{\sin^2 x}$$
$$= \int \frac{dx}{\sin^2 x} - \int \frac{\cos x \, dx}{\sin^2 x} = -\cot x + \csc x + C$$
$$= \frac{1-\cos x}{\sin x} + C.$$

(We used the substitution $u = \sin x$ to evaluate the second of the two integrals above.) To see that the answer is the same as in the previous solution, use the double angle identities:

$$\frac{1-\cos x}{\sin x} = \frac{2\sin^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \tan\frac{x}{2}.$$

3. (Solution 3) Use the universal substitution from Stewart, Exercise 7.4.57:

$$t = \tan \frac{x}{2}, \ dx = \frac{2 dt}{1 + t^2},$$

$$\cos x = \frac{1 - t^2}{1 + t^2}, \ 1 + \cos x = \frac{2}{1 + t^2}.$$

We then get

$$\int \frac{dx}{1+\cos x} = \int dt = t + C = \tan \frac{x}{2} + C.$$

Solutions for section 106

1. Make the substitution $x=5\sin\theta$, where $-\frac{\pi}{2}\leqslant\theta\leqslant\frac{\pi}{2}$; then $dx=5\cos\theta\,d\theta,\,\sqrt{25-x^2}=5\cos\theta$, and

$$\int \frac{\mathrm{d}x}{x^2 \sqrt{25 - x^2}} = \int \frac{5 \cos \theta \, \mathrm{d}\theta}{(5 \sin \theta)^2 (5 \cos \theta)}$$
$$= \frac{1}{25} \int \frac{\mathrm{d}\theta}{\sin^2 \theta} = -\frac{1}{25} \cot \theta + C.$$

Now, $\cot\theta=\cos\theta/\sin\theta$. We know that $\sin\theta=x/5$ and we can find $\cos\theta=\sqrt{1-\sin^2\theta}=\frac{\sqrt{25-x^2}}{5};$ therefore,

$$\int \frac{dx}{x^2 \sqrt{25 - x^2}} = -\frac{\sqrt{25 - x^2}}{25x} + C.$$

2. Since $x^2 + x = x(x+1)$, we have

$$\frac{1}{x^2 + x} = \frac{A}{x} + \frac{B}{x + 1}$$

for some constants A and B. To find these, multiply both sides by x(x+1):

$$1 = A(x + 1) + Bx = (A + B)x + A.$$

This gives us the system of equations

$$0 = A + B,$$
 $1 = A.$

From the second equation, we get A=1; then we use the first equation to get B=-A=-1. We can now find the indefinite integral:

$$\int \frac{dx}{x^2 + x} = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \ln|x| - \ln|x+1| + C.$$

Finally, by the Fundamental Theorem of Calculus

$$\int_{1}^{2} \frac{dx}{x^{2} + x} = (\ln|x| - \ln|x + 1|)|_{x=1}^{2}$$
$$= \ln 2 - \ln 3 - \ln 1 + \ln 2 = \ln\left(\frac{4}{3}\right).$$

3. (Solution 1) Using the double angle identities and the substitution $t=\frac{x}{2},$ we get

$$\int \frac{dx}{1 - \cos x} = \int \frac{dx}{2\sin^2 \frac{x}{2}} = \int \frac{dt}{\sin^2 t}$$
$$= -\cot t + C = -\cot(x/2) + C.$$

3. (Solution 2) Multiply the denominator and the numerator by $1 + \cos x$:

$$\int \frac{dx}{1 - \cos x} = \int \frac{1 + \cos x \, dx}{1 - \cos^2 x} = \int \frac{1 + \cos x \, dx}{\sin^2 x}$$
$$= \int \frac{dx}{\sin^2 x} + \int \frac{\cos x \, dx}{\sin^2 x} = -\cot x - \csc x + C$$
$$= -\frac{1 + \cos x}{\sin x} + C.$$

(We used the substitution $u = \sin x$ to evaluate the second of the two integrals above.) To see that the answer is the same as in the previous solution, use the double angle identities:

$$\frac{1+\cos x}{\sin x} = \frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \cot\frac{x}{2}.$$

3. (Solution 3) Use the universal substitution from Stewart, Exercise 7.4.57:

$$t = \tan \frac{x}{2}, \ dx = \frac{2 dt}{1 + t^2},$$

$$\cos x = \frac{1 - t^2}{1 + t^2}, \ 1 - \cos x = \frac{2t^2}{1 + t^2}.$$

$$\int \frac{dx}{1+\cos x} = \int \frac{dt}{t^2} = -\frac{1}{t} + C = -\cot \frac{x}{2} + C.$$