Math 1B quiz 3

Sep 16, 2009

Section 105

- 1. (3 pt) Compute the integral $\int e^{(x+e^x)} dx$.
- 2. (3 pt) Calculate the integral $\int_{-2}^{2} x^2 dx$ approximately using Midpoint Rule with n=4.
- 3. (4 pt) Let $f(x)=\frac{1}{(x+1)(x^2+1)}$. Does the integral $\int_0^\infty f(x)\,dx$ converge? What about the integral $\int_{-\infty}^0 f(x)\,dx$? Justify your answers. You do not have to evaluate the integral. (Warning: Comparison Theorem does not work for negative functions. However, $\int_a^b f(x)\,dx$ converges if and only if $\int_a^b -f(x)\,dx$ converges.)

Section 106

- 1. (3 pt) Compute the integral $\int e^{(e^{-x}-x)} dx$.
- 2. (3 pt) Calculate the integral $\int_{-2}^{2} x^2 dx$ approximately using Trapezoid Rule with n = 4.
- 3. (4 pt) Let $f(x)=\frac{1}{(x+1)(x^2+1)}$. Does the integral $\int_0^\infty f(x)\,dx$ converge? What about the integral $\int_{-\infty}^0 f(x)\,dx$? Justify your answers. You do not have to evaluate the integral. (Warning: Comparison Theorem does not work for negative functions. However, $\int_a^b f(x)\,dx$ converges if and only if $\int_a^b -f(x)\,dx$ converges.)

Solutions for section 105

1. Make the substitution $u = e^x$: then $du = e^x dx$, and

$$\int e^{x+e^x} dx = \int e^x e^{e^x} dx = \int e^u du$$
$$= e^u + C = e^{e^x} + C.$$

2. The answer is

$$\frac{2 - (-2)}{4} \left[\left(-\frac{3}{2} \right)^2 + \left(-\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 \right] = 5.$$

3. (Solution 1) The function f(x) is defined everywhere except at x = -1.

For the integral $\int_0^\infty f(x)\,dx$, note that for x>0, $f(x)\leqslant \frac{1}{x^3}$. Now, $\int \frac{dx}{x^3}=-\frac{1}{2x^2}+C$, which has limit 0 as $x\to +\infty$. So the integral $\int_1^\infty \frac{dx}{x^3}$ converges. By Comparison Theorem, the integral $\int_1^\infty f(x)\,dx$ converges. Since f(x) is well-defined and continuous on [0,1], the integral $\int_0^1 f(x)\,dx$ converges. Therefore, $\int_0^\infty f(x)\,dx$ converges. (Note that the integral $\int_0^\infty \frac{dx}{x^3}$ does not converge.) Alternatively, use that $f(x)\leqslant \frac{1}{x^2+1}$ for x>0.

For the integral $\int_{-\infty}^{0} f(x) dx$, first analyse the integral $\int_{-1}^{0} f(x) dx$. We have $x^2+1\leqslant 2$ for $-1\leqslant x\leqslant 0$, so $f(x)\geqslant \frac{1}{2(x+1)}$. However, $\int \frac{dx}{2(x+1)}=\frac{1}{2}\ln|x+1|+C$, which has limit $-\infty$ as $x\to -1$; therefore, $\int_{-1}^{0} \frac{dx}{2(x+1)}$ diverges. By Comparison Theorem, the integral $\int_{-1}^{0} f(x) dx$ diverges. Therefore, the integral $\int_{-\infty}^{0} f(x) dx$ diverges.

3. (Solution 2) Find the antiderivative $\int f(x) dx = F(x) + C$ by partial fractions:

$$\frac{1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1},$$

$$1 = A(x^2+1) + (Bx+C)(x+1) = (A+B)x^2 + (B+C)x + (A+C).$$

Therefore,

$$0 = A + B,$$

 $0 = B + C,$
 $1 = A + C.$

We find $A = \frac{1}{2}$, $B = -\frac{1}{2}$, $C = \frac{1}{2}$, so

$$\begin{split} f(x) &= \frac{1}{2(x+1)} + \frac{1-x}{2(x^2+1)}, \\ F(x) &= \frac{1}{4}(2\ln|x+1| + 2\arctan x - \ln|x^2+1|). \end{split}$$

To analyze $\int_0^\infty f(x) dx$, it is enough to find

$$\begin{split} &\lim_{x \to +\infty} F(x) = \frac{1}{4} \lim_{x \to +\infty} 2 \arctan x + \ln \left| \frac{(x+1)^2}{x^2 + 1} \right| \\ &= \frac{\pi}{4} + \frac{1}{4} \lim_{x \to +\infty} \ln \left| \frac{(1 + (1/x))^2}{1 + 1/x^2} \right| = \frac{\pi}{4} + \frac{1}{4} \ln 1 = \frac{\pi}{4} \end{split}$$

Since this is finite, the integral $\int_0^\infty f(x) dx$ converges.

For $\int_{-\infty}^{0} f(x) dx$, we have to find the limits of F(x) at x = -1 and $x = -\infty$ to make sure that the integral converges. However,

$$\begin{split} \lim_{x \to -1} F(x) &= \lim_{x \to -1} \frac{1}{2} \arctan x - \frac{1}{4} \ln(x^2 + 1) + \frac{1}{2} \ln|x + 1| \\ &= \frac{1}{2} \arctan(-1) - \frac{1}{4} \ln 2 + \frac{1}{2} \lim_{x \to -1} \ln|x + 1| = -\infty. \end{split}$$

Therefore, the integral $\int_{-\infty}^{0} f(x) dx$ diverges.

Solutions for section 106

1. Make the substitution $u = e^{-x}$: then $du = -e^{-x} dx$, and

$$\int e^{(e^{-x}-x)} dx = \int e^{e^{-x}} e^{-x} dx = -\int e^{u} du$$

= $-e^{u} + C = -e^{e^{-x}} + C.$

2. The answer is

$$\frac{2-(-2)}{2\cdot 4}[1\cdot (-2)^2+2\cdot (-1)^2+2\cdot 0^2+2\cdot 1^2+1\cdot 2^2]=6.$$

3. See solution to problem 3 for section 105.