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1. Take arbitrary 2° € suppa. Since V®(z) # 0, by the inverse mapping theorem
there exists open sets Vyo 3 2%, W0 in R” and a diffeomorphism 40 : Vo — W0 such
that ® = x1 o 9,0 on Vo, where z; : R — R is the coordinate map.

The sets {V,o | 2° € suppa} form an open cover of suppa. Take a finite subcover
Vi,...,Vip and let ¢; : V; — W, be the corresponding diffeomorphisms. Take a
partition of unity x1, ..., X, subordinate to the cover of V1, ..., V,,. Changing variables
in the integral, we have

1) =350, 5= [

@My (x)a(z) dx:/ e/ha;(x) do
Vi

W;

where a; = (x;a) o 1/1].’1 - J; € C(W;) and J; is the Jacobian of 1/1{1.
It remains to show that each I;(h) is O(h™). For that, integrate by parts N times
in x:
I;(h) :/ ((—ih@zl)Nem/h)aj(x) dx = (ih)N/ eixl/hﬁﬁaj(x) dx
W W
which gives
()] < Cinh™, Ciw = |0y a1

2. We will show the stronger statement

WEy (1) € X := {(z,0,0(2,0)) | (2,0) € suppa, dypo(a,0) =0}. (1)

Assume that (z9,&) ¢ X. Choose x € C°(R") such that y(z) # 0 and a small ball
W C R" centered at &, such that

X N (suppy x W) = 0. (2)

We compute for £ € R”

Xu(é/h) = / e ®e@O/hy (1,0) dvdd

Rn+'m
where &, € C*(U;R), b, € C>(U;C) are given by
De(z,0) = o(2,0) = (2,§),  by(x,0) = a(x,0)x(z).

We have

axq)ﬁ(xa 9) = 836(,0(1', 0) - ga 89(1)5(3:7 9) = 8990(%’ 9)
1
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By (2), for £ € W the phase ®¢ has no stationary points on suppb,. Therefore, by
Exercise 1

xu(§/h) = O(h>), £eW.
The latter statement is in fact uniform in £ € W, as can be seen by carefully examining
the solution of Exercise 1. (Uniformity of nonstationary and stationary phase in a
parameter, here &, is both true and very useful in semiclassical analysis, but is usually
made implicit.) Therefore, we obtain

(w0, &0) & WEp(u)
which gives (1).

3 (a) We write

Ima(h):/xei:ﬂ/h dx___/a @zQ/h
R

Integrating by parts (which is fine since a is Schwartz) we obtain

La(h) = % /R eI (1) dw = T (h).

Next, assume that a(0) = 0. Then we may write a = xb where b is a Schwartz function.
Indeed, the fact that 279%(a(x)/z) is bounded for large |x| is verified directly, and to
establish that a(z)/z extends smoothly to 2 = 0 we use the representation

a(r) = xb(z), blz)= /0 a(tx)dt.
Now we have "
Lo(h) = L(h) = 51y (h) = O(h).

3 (b) Define
F(s) :/e“’”‘"2 der, se€C, Res>0.
R

The integral converges exponentially fast and the integrated function is holomorphic in
s, therefore F'(s) is holomorphic in s as well. For real s > 0, using change of variables
y = s*/2z and the Gaussian integral we compute

F(s) =

I
S (3)
Since both sides are holomorphic in {Re s > 0}, the formula (3) holds for all Re s > 0.
Here we choose the (usual) branch of the square root /z on {Rez > 0} such that

2

V1= 1. Now we compute for a(z) = e,

) 7h .
_ A _ im/d71/2 3/2
I(h) F(l h) P Ve ™+ O(hP).
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3 (c) We write
a=a(0)e™ +b, b0)=0.
From Exercise 3(a), we have I,(h) = O(h). Using the formula from Exercise 3(b), we

get
In(a) = Y2 - \/me™*a(0) + O(h).



