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1 (a) It suffices to show the following estimates for some constant C' (depending on A, V'
but not on f) and all f € C°(R), u:= Ry(\)f:

lull2 < ClI |2, (1)
[/l < ClLFI 22, (2)
[u"llz2 < Cllfllza- (3)

The estimate (1) is actually the hardest one, in particular it is the only one that uses
that A is not a resonance. To show it, recall from Problemset 1, Exercise 4 that

u= /RRv(:s,y; M) dy,  Bv(zy: ) = Wl()\) {?82_8 zzz

where W () # 0 since \ is not a resonance. By Schur’s inequality it suffices to prove
the following estimates for some constant C':

sup (Jes@)] - [ le_(w)ldy) < C. (4)
sup (le_@)]- [ lex(w)ldy) < C. (5)

Take ro > 0 such that suppV C [—rg,r0]. Denote v := ImA > 0. We know that

e+(z) = e when +x > 7y and es(x) is a linear combination of % e~ when

Fx > rg. Therefore
lex(z)| = e, x>

lex(x)] < Ce”®l z eR.

We now show (4), with (5) proved similarly. We consider the following cases:

(1) > ro: then we have

@l = [ leldy < ce

(2) x < —r¢: then we have
’ 1 —V|T
e ()] < Ce, / e ()] dy = —e™";

(3) —ro < x < 1o: then we have

wwwsa_fhwmwso
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This finishes the proof of (4) and thus the proof of (1).

To show (2), we integrate by parts (using the rapid decay of u as |z| — 00):

/f dx—/|u |2dx—|—/(V(x)—Az)]u(x)|2dx.

Bounding the left-hand side by the Cauchy-Schwarz inequality, we get
/R’“/(»”E)IQdﬂf < [ fllz2 - llullzz + Cllullz..

Estimating ||u||z2 by (1), we get (2).

Finally, to show (3), we note that —u” + (V — A*)u = f and thus

[u”llz> < [Ifllz2 + Cllullz2;
it remains to use (1).
1 (b) It suffices to prove that for each f,u € C*(R), we have
(Py = X)Rv(MN)f=f, Rv(N)(Pv = N)u=u,

which follows immediately from the fact that for each f € C°(R), u := Ry (\)f is the
unique solution to the equation (P, — A\*)u = f which lies in L*(R).

2 (a) Assume first that u is outgoing and (P, — A\*)u = f. We have
0. W (u,e1) = fe;.

On the other hand, since both u and e; are outgoing, we have W (u, e;) = 0 for |z| > 1.
It follows that

/ f(z)ei(z)dz = 0. (6)
R
Now, assume that f € C°(R) satisfies (6) and put u := Ry f. Similarly to Problem-
set 1, Exercise 4 we see that u solves (Py — A\?)u = f. Using (6), we also verify that u
is outgoing.
2 (b) Assume first that u, @ solve the Grushin problem and u is outgoing. By Exer-
cise 2(a), we have
0=((Pv = N)u,e1)r2 = (f —ag,en)2 = (f,en) 2 — .

It follows that

a=(f,en)r. (7)
Next, u — Ry (f — (f,€1) 2 - g) is an outgoing function killed by the operator Py — A2,
thus it is a multiple of e;. That is, for some ¢ € C

u=cer+Rif —(f &)z Ry

Using the equation (u, h)r2 = /3, we find

c=p+(f.e1)2(Rig,h)r2 — (Rif, h) 2
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which implies
u=Ryf + Pey. (8)

On the other hand, if f, 5 are given and u, a are defined by (7),(8), then it is direct to
verify that u, a solve the Grushin problem and u is outgoing.

2 (c) The operator f +— (f,e1)r2(Rig,h)2 - €; is bounded L? — H? since e; € H?.
Therefore it suffices to establish the boundedness of the operator R, given by

Rof = Rif — (fien)r2 - Rag — (Ruf, h)p2 - en.
We compute the integral kernel of Ry:

Rof(z) = / Rale, 9)f(4) dy.

Ry(z,y) = Ry(z,y) — el(y)/RRl(x,t)g(t) dt — ey (x) /RRl(t,y)h(t) dt.
Recall that Ry (z,y) = e1(z)e2(y)[x > y] + ea(x)e1(y)[z < y]. Therefore

Ry(z,y) =ex(2)ex(y) ([z > y] — H(y))
+ex(@)er(y) ([o < y] - G()) (9)

- el(x)el(y)</m ex(t)g(t) dt + /y ea(t)h(t) dt)

—00 —0o0

where

We write Ry = Rgl) + RéQ) + R&” where the summands correspond to the three lines
in (9). Take ry > 0 such that supp g, supp h,supp V' C [—719,70]. Put v :=Im A\ > 0.
Note that

H(y)=0 fory>ry, H(y)=1 fory<—n.
We use Schur’s inequality to estimate the L2 — L2 norm of each RY:

. Rgl): we need to show
sup (lao)l - [ leal- [lo > ] - HH )] ) < .
Given the estimate |e;(z)| < Ce Il we need to prove that for all =,
sl -Jia > 91 = Hw|dy < ce. (10)

Note that [x > y] — H(y) is bounded. We consider the following cases:
(1) © > ro: then [x > y] — H(y) is supported in y € [—rg,z]. Since |ex(y)| <
Cev | we obtain (10).
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(2) x < —rg: then [z > y| — H(y) is supported in y € [x,ry]. We again
obtain (10).

(3) —ro < & < ro: then [z > y|] — H(y) is supported in y € [—rg,ro] so the
integrand is bounded.

We also need to show

pr@@nléwxw«Hx—m—Hwﬂm)gcx

Yy

For this it suffices to show
[ les@l - Jle > v) = () do < 0 (1)
R

We consider the following cases:
(1) y > ro: then [x > y] — H(y) is supported in z € [y,00). Since e;(z) <
Ce "Il we obtain (11).
(2) y < —rg: then [x > y] — H(y) is supported in x € (—oo,y]. We again
obtain (11).
(3) —ro <y < ro: the left-hand side of (11) is bounded.
. Rf): handled similarly to Rél).
) Ré?’): the expression in parentheses is bounded since g, h are compactly sup-
ported. It remains to use the fact that e; is exponentially decaying and thus
in L'(R).

We have proved that Ry extends to a bounded operator L? — L2. That is, for each
f € CXR), u:= Ryf we have

[ull 2 < Cllf]] 22 (12)

Put
Q= <f76_1>L27 |OZ| < Cl|f||L2
By Exercise 2(b) we have
(Pv = X)u+ag = f.
In particular, by (12) we have
[u”llz> < Cllullze + Cllf e < Cllfllze.

Arguing as in Exercise 1(a), we also get

[/l < ClIf 2

This shows that Ry extends to a bounded operator L*(R) — H?*(R).
2 (d) Denote

2
P = (th* A g) . H’(R) & C - L’(R) & C.
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Using Exercise 2(c) and arguing similarly to Exercise 1(b), we see that P~ is invertible,

in fact
_ R2 €1>
pl=| " )
((61)* 0

We now show that P, — A2 : H? — L? is Fredholm, in fact both the dimension of its
kernel and the codimension of its range are equal to 1:

e Assume u € H? satisfies (P — A*)u = 0. Then we have for some ¢ € C

7(5)= ()

which implies that u is a multiple of e;. Thus the kernel of P, — A\? is one
dimensional (since e; does lie in the kernel).
e Assume f € L? satisfies (f,e1)z2 = 0. Then we have for some u € H*(R)

-1 f . u
7 (0) =)
and we get (Py — A)u = f. This implies that the range of P, — A? has

codimension 1 (since the equation ((Py — A?*)u, ;)2 = 0 holds for all u € H?
by continuous extension from C2°).



