18.156, SPRING 2017, PROBLEM SET 1, SOLUTIONS

1. Recall d’Alembert’s formula for the wave operator Oy = 97 — 92

_ t t 1 T+t
wit, ) = L0 >+w@x+)+§/
r—1

x+(t—s)
/ / Cow(s,y) dsdy, t>0.

In our case, Uyw = g — Vw, therefore

w(t,z) = fo(ﬂf—t)Jrfo / Ay

/ / — V(y)w(s,y) dsdy.

1 (a) Fix ro > 0 such that supp V,supp fo,supp fi,suppg C {|z| < ro}. Then (1)
implies

atw(()? y) dy

(1)

suppw N {t > 0} C {|z| < ro+t}.
1 (b) We find from ( ) that w(t,z) = wy(z Ft) for t >0, |z| > ro where

wy () = / fily)dy + 5 / /m s,y) = V(y)w(s,y) dyds,
w-(z) = fo; +§/Oo fi(y) dy+§/0 /:g(s,y)—V(y)w(say) dyds.

2 (a) Differentiating under the integral sign and integrating by parts (recall that by
Exercise 1(a) the support of the integrand is compact) we compute

E't) = Re/ Wiwy + Wy + Vwyw dr = Re/@g dz
R R

which gives the required identity for £(t). It follows that £(T) is constant for 7" large
enough (specifically, as soon as suppg C {t < T'}).

Now, assume that V' > 0. Then the quantity
1
5/ 0w (t, 2)|* + |O,w(t, z)|* dov < E(t)
R
is bounded uniformly in ¢. It remains to show the bound

/ lw(t,z)|*de < C(1+1t)? t>0.
R
1
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Recall that suppw(t,e) is contained in an interval of size 2t + C' by Exercise 1(a).
Then by Poincaré inequality we have

/ w(t, )2 de < C(1 + t)2/ o (t, 2) 2 dz < C(1+ £)2E(t)

which finishes the proof.
2 (b) Put Cy := max(2,sup |V — 1]). We estimate

E(t) = Re/mwtt + Whw, + Ww dr = Re/ wi(g— (V—=1w)dx
R R
1
<5 [ 2w 41l V-1 o do
R

1
S Cvgo(t) + —/ |g|2 dx.
2 Jr
It remains to use Gronwall’s inequality and recall that ¢ is compactly supported.

3. Define the energy quantity

1 xo+to—t
Eu(t) = -/ w2 + w2 + w2 dz, 0<t<to
2 xo—to+t

We compute
Jwit mo — to + 1) 4+ wa(t, o — to + 1) + |w(t, m —to + 1)

E(t) =
) .
et o+t — t) = wa(t, wo + to — H)]* + Jw(t, 2o + to — )
2
xo+to—t
+ Re/ wi(g — (V = 1Dw) dx.
xo—to+t

Here we need to be careful because the limits of integration depend on ¢ and integration
by parts in = produces boundary terms. We then get as in Exercise 2(b)

xo+to—t

, 1
E(t) < CvE (1) + 5/ 1gl? da

o—to+t
However, then the vanishing condition on fy, f1, g implies that £/(0) = 0 and &{(t) <
Cv&i(t), which immediately gives £ (t) = 0 for all ¢ € [0,t9]. This implies that
w(t, x) = 0 almost everywhere for 0 <t <ty and |x — zg| < to —t, which by continuity
gives w(ty, zg) = 0.

4. We first deal with uniqueness. Assume that u solves
(Py — XNu=f; u(x) ~ef™ for 2> 1. (2)
Then we have

W (u,ex) =ex-f; Wu,er) =0 for £z > 1.
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Therefore,

W(u, e )(x) = /

—00

x

I dy. Wne)w) = - e )f () dy.

Using the identity
W(u,e_)e, —W(u,ey)e_
W)

we see that
w) = [ Rota, N f) do 3)

To show existence, fix f and define u by (3). Then it is straightforward to verify that
u solves (2).

5. Denote W4 := W (ey, e¥™?). Since (Py — \2)e?* = Vet we have
0. Wi(x) = =V (2)ey (z)eF
AT

for £ > 1 we have

Wi(x)=0, W_(z)=—-2i\ foraz>r.

and from the fact that e () =e

Together these imply the required integral identities.

Next, choose 79 > 0 such that suppV C [—rp,70] and put Cy := e sup |V]|.
Using the identity

er(x) = QZ_A(W_ (2)e™ — W (z)e ™)
and the fact that | Im A| < Cjy we get we get the bound

sp [V (a)e. ()67 < S0 (W] + W),
Therefore, for |z| < ro we have
W)+ W) +200 < 5 [ W] + -] o
which by Gronwall’s inequality implies
W (2)] + |W_(2) + 20| < 4Cyro exp (2%'7”0) — 0(1) (4)

for |z| < 7y, and thus for all z since Wy (z) are constant for +x > ro. This gives the
required asymptotics of W, which by the identity

() = 2 (e ) ('5)

gives the required asymptotics on e, e . The asymptotics of e_, ¢!

are proved simi-
larly.
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6 (a). The function W(X) is holomorphic in A € C. To show that W(A)™! is mero-
morphic it then suffices to prove that W(A) is not identically zero. One way to see
this is to use the asymptotic formulae for e, from Exercise 5, which imply

W) = —2i0+O(1), |[ImA <Cy, |Re) — oo. (5)

Another way is to note that if A = is, s> > —infV, then an integration by parts
argument shows that there is no nontrivial solution u to the equation (P, — A?)u = 0
with u(z) ~ e** for £z > 1, and thus W(\) # 0.

Now the meromorphy of W(A)~! implies the meromorphy of Ry (z,y;\) in A and
thus of the operator Ry .

6 (b) By (5), we see that for |[Im A| < Cj and || large enough
W) < A7

In particular, A is not a resonance. Next, we use the formula for Ry (\) and the
asymptotics of e4(z) from Exercise 5 to see that for all f € L'(R) and x € C°(R)

xRy ()X fllzoe < sup [x(@) By (2,3 Mx ()] - L f] e
2y
< |7 sup [xes| - sup [xe—| - || £l
< CIATH 1Al
where C' depends only on V, Cy, x.
7 (a) For each a € C*°(R) we have
(P — M) a(x) = ire™ ( F 20,a(z) — A" 'V (2)a(z) + X' 0%a(x)).

In order to have (Py — A?)e™(z) = O(|A|™"), the functions a!” should solve the
system of transport equations

28,4 (x) =0,
720,a7 (2) = iV (2)a (z) — 1020 (2).

These transport equations have unique solutions, given the boundary conditions ag? ) () =

dno for £x > 1. Moreover, ai))(x) =1 and ag? ) is locally constant for large |z|. Tt is
then easy to see that (P, — )\Q)eiN) (x) = 0 for large |z|.

For part (c) below, we also compute aS_Ll). For n = 0 the transport equation gives

1200 (z) = iV ().

Combining this with the initial condition ag)(ac) =0 for £z > 1, we get

i

al (z) 5 / h V(s)ds, a(z)= 5 / ’ V(s)ds. (6)



18.156, SPRING 2017, PROBLEM SET 1, SOLUTIONS 5
7 (b) Put
Wi (x) = W(el", ex)(x).

Since locally uniformly in z, we have e (z) = O(1) by Exercise 5 and (PV—)\Q)eSrN) (x) =
O(|A|=Y) by Exercise 7(a), we find

0, W () = ex(x) - (Py — Nl (2) = O(A™).

On the other hand, for large x we have eSrN) (z) = e = e, (v) and thus

Wi(z)=Wi(ey,ex) forz>>1.
Therefore we have locally uniformly in x,
Wi(x) = W(es, ex) + O(IATY).

Using the identity

@)\ L1 (—e_<x> e+<x>> (Wim)
0, (@)) — Wilep,eo) \—e (x) €(z)) \WX(x)
and the fact that W(es,e_) = —2iA + O(1) by (5), we get the needed bounds for

er — eSrN). Similarly we obtain the bounds for e_ — eX

7 (c) Since ag? )(m) are locally constant for large z, we have for some constants
(n)( (n)

ay oo)aa:t (_OO)
ay’(r) = (n)
ay’(—o0), —xz>1.
Note that
n )
a(i)(:lzoo) = 0no, a(f)(ZFoo) =1, a(il)(qioo) =3 / V(s)ds (7)
R

where the latter equation follows from (6). By Exercise 7(b) we have locally uniformly
in x,
e:i:i)\z’ +r > 1;
ex(z) = tide NN y—n,(n) ~N-1
ey o ATay (Foo) + O(|A| ), Fx> 1.
Recall that the scattering matrix is given by

(T Ry
SW‘(R_W m)

and T'(\), R+ () are determined as follows: for any solution u to the equation (P, —
A)u = 0, u has the form

() bye ™ 4 a e 1> 1,
u\x) = . )
b_ez)\x + a_e—z)\x7 —r > 1
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() =so ()

Applying this to u = ey we get as |\| = 0o

and

ay =1, by=0, a_=0(A"), b_~> A"
Similarly putting u = e_ gives
a_ =1, b_=0, a, =0\ Z)\ al”

This gives the asymptotics

- NZ)\ 0 Z)\ " (00),  Re(X) = O(A] ™)

In particular, by (7) we have
T =1+ ﬁ V(s)ds+ O(\]7?)
and thus

TO) = 1— % [Viods+0(2)

An corollary of this asymptotic expansion is that the integral of V' is determined by
the scattering matrix S(\).



