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Review / helpful information:

• 〈ξ〉 :=
√

1 + |ξ|2. Note that C−1(1 + |ξ|) ≤ 〈ξ〉 ≤ C(1 + |ξ|) for some global

constant C > 0 and 〈ξ〉 is smooth in ξ.

• Plancherel Theorem: for all ϕ, ψ ∈ S (Rn) we have 〈ϕ̂, ψ̂〉L2(Rn) = (2π)n〈ϕ, ψ〉L2(Rn).

• Sobolev space Hs(Rn): u ∈ S ′(Rn) lies in Hs(Rn) if and only if 〈ξ〉sû(ξ) ∈
L2(Rn). Define ‖u‖Hs := (2π)−n/2‖〈ξ〉sû(ξ)‖L2(Rn).

• Note that H0 = L2 and H t ⊂ Hs when t ≥ s.

• If s ∈ N0 is a nonnegative integer, then u ∈ S ′(Rn) lies in Hs(Rn) if and only

if each distributional derivative ∂αu, |α| ≤ s, lies in L2(Rn).

• If 0 < s < 1, then for each u ∈ L2(Rn)

u ∈ Hs(Rn) ⇐⇒
∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞. (1)

• Local Sobolev spaces: if U ⊂ Rn is open, then Hs
loc(U) ⊂ D′(U) is defined as

follows: u ∈ D′(U) lies in Hs
loc(U) if and only if ψu ∈ Hs(Rn) for each ψ ∈

C∞c (U). (Here ψu is in E ′(U) which naturally embeds into E ′(Rn) ⊂ S ′(Rn).)

• Sobolev spaces with compact support: if U ⊂ Rn is open, then Hs
c (U) ⊂ E ′(U)

consists of elements of Hs(Rn) whose support is contained in U .

• Hölder space Cγ(Rn), 0 < γ < 1: a function u ∈ C0(Rn) lies in Cγ(Rn) if for

each compact set K ⊂ Rn there exists a constant C such that for all x, y ∈ K
we have |u(x) − u(y)| ≤ C|x − y|γ. The space Cγ

c (Rn) consists of compactly

supported functions in Cγ(Rn).

• Constant coefficient differential operators of order m ∈ N0 have the form P =∑
|α|≤m cαD

α
x where cα ∈ C and D := −i∂. The principal symbol is p0(ξ) =∑

|α|=m cαξ
α. We say P is elliptic if the equation p0(ξ) = 0 has no solutions

ξ ∈ Rn \ {0}.

1. Fix s ∈ R. This exercise shows that H−s(Rn) is dual to Hs(Rn) with respect to the

usual pairing

(f, g) :=

∫
Rn

f(x)g(x) dx. (2)

(Note: since Hs is a Hilbert space, Riesz representation theorem shows that Hs is dual

to itself, but this duality features the inner product 〈•, •〉Hs rather that (2).)

(a) Show that there exists a unique bilinear map

u ∈ Hs(Rn), v ∈ H−s(Rn) 7→ (u, v) ∈ C
1
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such that (i) for all u, v ∈ S (Rn), (u, v) is given by (2) and (ii) there exists a constant C

such that for all u, v we have the bound |(u, v)| ≤ C‖u‖Hs‖v‖H−s . A consequence of

this is that each v ∈ H−s(Rn) defines a bounded linear functional on Hs(Rn) by the

rule u 7→ (u, v).

(b) Assume that F : Hs(Rn) → C is a bounded linear functional. Show that there

exists v ∈ H−s(Rn) such that F (u) = (u, v) for all u ∈ Hs(Rn).

2. This exercise studies the relation between the spaces Ck(Rn) of k times continuously

differentiable functions and the Sobolev spaces Hs(Rn).

(a) Show that for each k ∈ N0, the space Ck
c (Rn) (where ‘c’ stands for ‘compactly

supported’) embeds into Hk(Rn): that is, Ck
c (Rn) ⊂ Hk(Rn) and for each sequence

uj ∈ Ck
c (Rn) converging to 0 (in a way similar to convergence in C∞c but with only k

derivatives), we have ‖uj‖Hk(Rn) → 0 as well.

(b) Show the following version of Sobolev embedding : if k ∈ N0 and s > k + n
2

then

Hs(Rn) embeds into the space C̃k(Rn) of functions in Ck(Rn) with bounded derivatives

up to order k. (Hint: for u ∈ S (Rn), use Fourier inversion formula and the Cauchy–

Schwarz inequality to bound the C̃k norm of u by ‖〈ξ〉kû(ξ)‖L1 , which is bounded in

terms of ‖u‖Hs . Now, each u ∈ Hs(Rn) can be approximated by Schwartz functions,

and this approximating sequence will be a Cauchy sequence in C̃k, which is a Banach

space – this step is similar to the proof of the Continuous Linear Extension theorem.)

3. (Optional) This exercise extends the previous one by comparing Sobolev spaces with

Hölder spaces. Assume that 0 < γ < 1.

(a) Show that Cγ
c (Rn) ⊂ Hs(Rn) for each s < γ. (Hint: use (1). Note that the integral

there is bounded for any u ∈ L2(Rn) if we restrict to the region |x− y| ≥ 1.)

(b) Show that Hs(Rn) ⊂ Cγ(Rn) for each s > γ+ n
2
. (Hint: write each u ∈ Hs(Rn) in

terms of û using the Fourier inversion formula, and use the inequality |eix·ξ − eiy·ξ| =

|ei(x−y)·ξ − 1| ≤ Cγ|x− y|γ|ξ|γ.)

4. Let U ⊂ Rn be an open set. Assume that P is an elliptic constant coefficient

differential operator of order m. Following Step 2 of the proof of Elliptic Regularity II

in §12.2 of the lecture notes, show that for each u ∈ D′(U) such that Pu ∈ Hs−m
loc (U),

we have u ∈ Hs
loc(U). (You do not need to reprove the existence of elliptic parametrix.)

5. For the distributions below, find out for which s they lie in Hs(Rn):

(a) δ0;

(b) the indicator function of the some interval [a, b] ⊂ R (here n = 1).

6. (Optional) This exercise forms the basis for the theorem about restricting elements

of Sobolev spaces to hypersurfaces, which is important for the study of boundary
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value problems. We write elements of Rn as (x1, x
′) where x′ ∈ Rn−1, and consider the

restriction operator to {x1 = 0},

T : S (Rn)→ S (Rn−1), Tϕ(x′) = ϕ(0, x′).

Show that when s > 1
2
, there exists a constant C such that we have the bound

‖Tϕ‖
Hs− 1

2 (Rn−1)
≤ C‖ϕ‖Hs(Rn) for all ϕ ∈ S (Rn).

Thus by Continuous Linear Extension T extends to a bounded operator Hs(Rn) →
Hs− 1

2 (Rn−1). (Hint: use Fourier Inversion Formula to write the Fourier transform of

Tϕ in terms of the integral of ϕ̂ in the ξ1 variable. Next, if v ∈ L2(Rn), then we can

use Cauchy–Schwartz to estimate
∫
R〈ξ〉

−sv(ξ1, ξ
′) dξ1 in terms of the L2 norms of the

functions ξ1 7→ (1 + |ξ1|2 + |ξ′|2)−s/2 and ξ1 7→ v(ξ1, ξ
′). It remains to show that the

first of these norms is bounded by C〈ξ′〉 12−s.)

7. This exercise establishes coordinate invariance of Sobolev spaces, which is key for

defining Sobolev spaces on manifolds. Assume that U, V ⊂ Rn are open sets and

Φ : U → V is a C∞ diffeomorphism. Recall the pullback operator Φ∗ : E ′(V )→ E ′(U).

We will show that

v ∈ Hs
c (V ) =⇒ Φ∗v ∈ Hs

c (U) (3)

and for each compact K ⊂ V there exists a constant C such that ‖Φ∗v‖Hs ≤ C‖v‖Hs

for all v ∈ Hs
c (V ) such that supp v ⊂ K. (A similar argument shows that Φ∗ maps

Hs
loc(V ) to Hs

loc(U) as well.)

(a) Show (3) when s is a nonnegative integer. (Hint: use the Chain Rule.)

(b) Show (3) when 0 < s < 1. You may use the following stronger version of (1): if

A(u) is the square root of the right-hand side of (1) then for all u ∈ L2(Rn)

‖u‖Hs ≤ C(‖u‖L2 + A(u)), A(u) ≤ C‖u‖Hs .

(c) (Optional) Show (3) for all s ∈ R. (Hint: show that for s ≥ 0, a function u ∈
Hs(Rn) lies in Hs+1(Rn) if and only if ∂xju ∈ Hs(Rn) for all j, and reduce to parts (a)–

(b). For s < 0 and v ∈ Hs
c (V ), show that the functional ϕ ∈ S (Rn) 7→ (Φ∗v, ϕ) is

bounded in terms of the H−s norm of ϕ and thus extends to a bounded functional on

H−s(Rn), and use Exercise 1.)


