18.155, FALL 2021, PROBLEM SET 5

Review / helpful information:

e Convolution of compactly supported distributions: if u,v € &'(R™) then uxv €
E'(R™) is defined by

(uxv,9) = (u(x) ®v(y), p(x +y)) forall ¢ e C*R").

e Two closed sets V1, Vo C R™ sum properly if for each R > 0 there exists T'(R) >
0 such that for all z € Vi, y € V5 such that |z +y| < R, we have |z|, |y| < T(R).
e If u,v € D'(R") and supp u, supp v sum properly, then define uxv € D'(R™) by

(u*v,0) = (u(z) @v(y), x(@)x(y)p(z +y))

for each ¢ € C*(R™). Here xy € C°(R") is chosen so that x = 1 near
B(0,T(R)) where suppy C B(0,R). (The result does not depend on the
choice of x.) In other words,

w*v|po,r) = (xu) * (xv)|o,r) if x € CZR"), supp(l —x)NB(0,T(R)) = 0.

We have supp(u * v) C supp u + supp v.

e £ € D'(R") is a fundamental solution of a constant coefficient differential
operator P, if PE = §y. In this case, if u € D'(R") and suppu, supp E sum
properly, then u = E % (Pu) = P(E * u).

e A fundamental solution for 92 — 92, on R? is given by

xr1 > |$2‘,

E(xy,29) = {5’ (1)

0, otherwise.

1. (Optional) Let U < R", V. C R™ be open and fix Q € C*(U x V). Let A :
C*(V) — D'(U) be the operator with Schwartz kernel @). Show that A extends to
a sequentially continuous operator A : (V) — C®(U). (Such operators are called
smoothing, we will encounter them again later in the course. The converse is true, a
version of the Schwartz kernel theorem.)

(Hint: for v € & (V), define Av(z) := (v(y), Q(z,y)). The smoothness of this can be

proved similarly to, or deduced from by using cutoffs, the lemma in §7.1 in lecture notes.

For sequential continuity, if v, — 0 in £'(V'), which automatically implies that supp vy
all lie in a fixed compact subset of V', you can use Banach-Steinhaus for distributions

to see that every derivative of Av is bounded locally uniformly. On the other hand,

cach derivative of Auvy, goes to 0 pointwise. Now you can use Arzela—Ascoli.)
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2. Assume that Rea, Reb > 0. Show that 2% ' x 2% = B(a, b)z™*~ where B denotes
the beta function. (You can use the standard integral formula for convolution, no need
to do things distributionally here. Note: using analytic continuation one can show
that the same formula actually holds for all a,b € C, but you don’t have to do this.)

3. Denote elements in R™ (where n > 2) by z = (xy,2) where 2/ € R""!. Define the
set = {z: x; > |2'|}. Show that Q 4+ Q = Q. Show also that Q2 sums properly with
the set {x; > 0}. Does the set {x; > 0} sum properly with itself?

4. (Optional) Show that a fundamental solution for the Cauchy-Riemann operator
P := 1(0,, + i0,,) on R? is given by the locally integrable function

1

E N
(21,22) m(z1 + ix2)

5. Using the fact that the Heaviside function is a fundamental solution for 0,, show
that for u € D'(R), if suppu C [a,00) and supp(d,u) C [b,00) for some a < b, then
supp u C [b,00). Could we remove the condition that suppu C [a, 00)?

6. This exercise studies solutions to the initial value problem for the wave operator
on R? P :=92 — 02 . Assume that

Pu = f7 U(O, I'Q) = 90(172)7 azlu(oa I'Q) - gl(xQ)
Here u € C?(IR?) is the solution, f € C°(R?) is the forcing term, and gy € C*(R), g; €
C!(R) are the initial data.

(a) Define v(zy,x9) = H(zy)u(z1,z2) € D'(R?) where H is the Heaviside function.
Show that, with derivatives in the sense of distributions,

Pv = §y(21) ® go(w2) + do(1) @ g1 (22) + H(z1) f.

(b) Using that suppv C {z; > 0} show that v = F % (Pv) where E is defined in (1).
(c) Assume that w € D'(R?) and suppw C {z; > 0}. Show that for each p € C°(R?)

we have

(B +w,¢) = (w,9)
for some ¢ € C°(R?) such that

1

Y(z) = 5/ oz +y)dy, x1>0.
ly2|<y1
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(d) (Optional) Using parts (a)—(c), show d’Alembert’s formula: for z; > 0

1 r2+x1
5(90(1'2 + 1) 4+ go(za — 1)) + 5/ 91(s)ds
)

$2+ xr1— T
/ / (1,s)dsdr.
xo—(x1—7T)

(This would need a fair amount of computation.)

(e) Assume that f = 0 and supp go,supp g1 C [—R, R]. Show that
suppu N{z; >0} C {|za] < a1 + R}.

(g, xe) =

(This is called ‘finite speed of propagation’.)

(f) Assume that go = g1 = 0 and supp f C {z; > 0}. Show that singularities propagate
at unit speed: namely, if € singsuppu and x; > 0, then we have x = y + (¢, —t) or
x =y -+ (t,t) for some t > 0 and y € singsupp f. (Hint: what is sing supp £7?)



