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Review/useful information:

• Pushforward of a measure µ by a map ϕ: ϕ∗µ(A) = µ(ϕ−1(A)).

• Schottky group: Γ ⊂ PSL(2,R) generated by γ1, . . . , γm where, denoting A =

{1, . . . , 2m} and ā = a±m,

γa(Ċ \D◦ā) = Da, γā = γ−1
a for all a ∈ A

where D1, . . . , D2m ⊂ C are disjoint closed disks centered on R.

• Schottky words: for a = a1 . . . an ∈ An, we say a ∈ Wn if aj+1 6= aj for all j.

In this case define γa := γa1 ◦ · · · ◦ γan ∈ Γ and the disk Da := γa1...an−1(Dan).

• Limit set of a Schottky group: ΛΓ =
⋂
n≥1

⊔
a∈Wn Da.

• You can use the following statement (it’s not hard to prove but let’s not bother):

if diam(Da) denotes the diameter of the disk Da then

max
a∈Wn

diam(Da)→ 0 as n→∞. (1)

• Brouwer fixed point theorem: if K ⊂ Rn is a nonempty convex compact set and

B : K → K is a continuous map, then there exists x ∈ K such that B(x) = x.

1. Consider the map ϕ(x) = 2x mod Z on X = R/Z. In this exercise we see what

happens in the construction of a measure of maximal entropy for a particular choice

of separated points. Namely, take n ≥ 1 and put

νn := 2−n
2n−1∑
`=0

δ`/2n , µn :=
1

n

n−1∑
j=0

ϕj∗νn.

Find the weak limit of µn as n→∞.

2. Let Γ be a Schottky group. Define the set

D := H2 \
⊔
a∈A

D◦a.

Show that for each z ∈ H2, there exists γ ∈ Γ such that γ(z) ∈ D. (That is, every

orbit of Γ on H2 intersects D. This is part of what one needs to check to show that D
is a fundamental domain of the action of Γ on H2. Hint: using (1), show that there

exists n depending on z such that z 6∈ Da for all a ∈ Wn.)

3. (Optional) Let Γ be a Schottky group and fix z ∈ H2. Let x ∈ R. Show that x is

the limit of a sequence of points in the orbit {γ(z) | γ ∈ Γ} if and only if x lies in the

limit set ΛΓ defined above.
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4. (Optional) Let F be the hyperbolic funnel [0,∞)r × S1
θ, where S1 = R/`Z for some

` > 0, with the metric g = dr2 + cosh2 r dθ2. Assume that ψ : [0, T ] → F is a

geodesic segment such that the endpoints ψ(0) and ψ(T ) lie on the boundary circle

{r = 0}. Show that the whole segment ψ lies on {r = 0}. (This implies that for a

convex co-compact hyperbolic surface the convex core, which is the complement of all

the interiors of the funnels, is geodesically convex. You can use any way you want

to compute the geodesic flow on F , including the contact flow approach of §5 in the

lecture notes.)

5. In this exercise we prove a version of the Perron–Frobenius theorem for matrices.

A generalization of this to transfer operators is given by the Ruelle–Perron–Frobenius

Theorem (see e.g. Bowen, Theorem 1.7) which was not properly stated in class but

parts of the proof were used to construct the Patterson–Sullivan measure.

Assume that A is a real n×n matrix such that all its entries ajk are positive numbers.

Denote by 1 ∈ Rn the vector (1, 1, . . . , 1) and by 〈•, •〉 the Euclidean inner product

on Rn. Define also the sets

C := {(x1, . . . , xn) ∈ Rn | xj ≥ 0 for all j},
C◦ := {(x1, . . . , xn) ∈ Rn | xj > 0 for all j}.

(a) Show that A has an eigenvector in C◦: there exist λ > 0 and v ∈ C◦ such that

Av = λv. Hint: first construct an eigenvector in the set {x ∈ C | 〈x,1〉 = 1}, by

applying the Brouwer fixed point theorem to the map x 7→ Ax/〈Ax,1〉. Then show

the following statement:

If x ∈ C \ {0} is an eigenvector of A then x ∈ C◦. (2)

(b) Show that there exists a constant C such that for all ` ≥ 0 we have ‖A`‖ ≤ Cλ`.

(Hint: look instead at the norm of (A`)∗ where A∗ is the transpose of A. Using that

(A`)∗ has positive entries, show that this norm must be maximized by a vector in

C \ {0}. Then show that there exists a constant C such that for all x ∈ C we have

|x| ≤ C〈v, x〉 and compute 〈v, (A`)∗x〉.)
(c) Show that λ is a simple eigenvalue of A and every eigenvalue ν of A satisfies

|ν| ≤ λ. (Hint: to exclude Jordan blocks and eigenvalues with |ν| > λ, use part (b).

To show that the eigenspace at λ is one-dimensional, argue by contradiction: if there

are two linearly independent eigenvectors, then we can take their linear combination

to produce an eigenvector which contradicts (2).)

On the next page is a plot of eigenvalues of a (somewhat) randomly chosen matrix

with all positive entries. The leading eigenvalue λ is in red. Note that there are no

eigenvalues other than λ on the circle of radius λ; this is true in general but we don’t

prove it in this exercise.
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