
Orthogonal bases

The text emphasizes orthonormal lists, in keeping with tradition. Remember that a list (e1, . . . , em) is
called orthonormal if

〈ei, ej〉 = 0, (1 ≤ i 6= j ≤ m)

〈ei, ei〉 = 1, (1 ≤ i ≤ m).
ONL

These lists are indeed convenient, and lead to lots of simple formulas. In most applications, the first
condition (pairwise orthogonality) has a fairly clear and simple meaning. In a few applications (like quantum
mechanics) the second condition (length one) also has a clear and natural meaning: the length of a vector
can sometimes be related to a probability, and “probability one” is a very natural condition.

But it is more typical that the length in an application refers to some chosen measurement units, so
that “length one” changes when the units are changed. In these cases the length one condition is just an
organizational convenience.

There are also costs associated to working with orthonormal lists. A central strength of linear algebra
is that almost all the computations required are arithmetic: addition, subtraction, multiplication, and di-
vision. In the world of computers, a consequence is that when the problems involve rational numbers, all
computations can be performed exactly, without roundoff errors. The Gram-Schmidt process as described
in the text involves extraction of m square roots. (Can you see where? There are no square root signs on
page 183 of the text.) This is computationally expensive. Computer algebra systems can manipulate square
roots formally without error, but this is a (sometimes unnecessary) layer of complexity.

The purpose of these notes is therefore to rewrite pages 180– of the text in terms of orthogonal lists rather
than orthonormal ones. A list (f1, . . . , fm) is called orthogonal if

〈fi, fj〉 = 0, (1 ≤ i 6= j ≤ m). OL

The rest of these notes is a collection of substitutes for things in the text, using orthogonal lists rather than
orthonormal ones. The proofs are almost identical to those in the text, and I’ll in general omit them.

6.25′ Proposition. If (f1, . . . , fm) is an orthogonal list of vectors in V , then

‖b1f1 + · · · bmfm‖ = |b1|
2‖f1‖

2 + · · ·+ |bm|2‖fm‖2

for all b1, . . . , bm ∈ F .

6.26′ Corollary. The list of nonzero vectors in an orthogonal list is linearly independent.

An orthogonal basis of V is an orthogonal list of vectors in V that is also a basis of V . Every orthogonal
list of nonzero vectors in V with length dim V is automatically an orthogonal basis of V . To illustrate this
principle, consider the following list of three vectors in R

3:

((1, 1, 1), (2,−1,−1), (0, 1,−1))

The verification that this list is orthogonal is easy (do it!); because we have an orthogonal list of length three
in a three-dimensional vector space, it must be an orthogonal basis.

6.30′ Theorem. Suppose (f1, . . . , fn) is an orthogonal basis of V . Then

v =
〈v, f1〉

〈f1, f1〉
f1 + · · ·+

〈v, fn〉

〈fn, fn〉
fn

and

‖v‖2 =
|〈v, f1〉|

2

〈f1, f1〉
+ · · ·+

|〈v, fn〉|
2

〈fn, fn〉

for every v ∈ V .
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6.31′ Gram-Schmidt. If (v1, . . . , vm) is a list of vectors in V , then there is an orthogonal list (f1, . . . , fm)
of vectors in V such that

6.21′ span(v1, . . . , vj) = span(f1, . . . , fj)

for j = 1, . . . ,m.

The proof and the algorithm changes only in the inductive step, constructing fj after (f1, . . . , fj−1) are
constructed. The new definition is

6.23′ fj = vj −
∑

1≤i≤j−1,fi 6=0

〈vj , fi〉

〈fi, fi〉
fi.

What has changed is that we do not divide by the length to get a vector of length one.
The new algorithm is always replacing vj by vj plus a linear combination of strictly earlier vi. So we end

up with formulas

fj = vj +
∑

i<j

aijvi. (LT )

In the language of Gaussian elimination, thinking of the vj as the rows of a matrix, the operations we
are performing are the ones called L(j, i;µ), corresponding to lower triangular matrices with ones on the
diagonal. The fact that

span(v1, . . . , vj) = span(f1, . . . , fj)

follows immediately from (LT ); we have used things like this often, for example in the proof of Proposition
5.1 in the notes on Gaussian elimination.

The rest of the section about Gram-Schmidt requires little change. In order for orthogonal bases to be
useful, we should also generalize a little some formulas later in the chapter. On page 194, proof of Theorem
6.47, we can say instead

Let (f1, . . . , fm) be an orthogonal basis of U . Obviously

v =
〈v, f1〉

〈f1, f1〉
f1 + · · ·+

〈v, fm〉

〈fm, fm〉
fm

︸ ︷︷ ︸

u

+ v −
〈v, f1〉

〈f1, f1〉
f1 − · · · −

〈v, fm〉

〈fm, fm〉
fm

︸ ︷︷ ︸

w

.

Clearly u ∈ U . Because (f1, . . . , fm) is an orthogonal list, for each j we have

〈w, fj〉 = 〈v, fj〉 −
〈v, fj〉

〈fj , fj〉
〈fj , fj〉 = 0.

Thus w is orthogonal to every vector in span(f1, . . . , fm).
on page 196: if (f1, . . . , fm) is an orthogonal basis of U , then the formula for PU becomes

6.35′ PU (v) =
〈v, f1〉

〈f1, f1〉
f1 + · · ·+

〈v, fm〉

〈fm, fm〉
fm

for every v ∈ V .


