
One-sided inverses

These notes are a small extension of the material on pages 53–55 of the text.

Definition 1. Suppose V and W are vector spaces over a field F , and T ∈

L(V,W ). A left inverse for T is a linear map S ∈ L(W,V ) with the property
that ST = IV (the identity map on V ). That is, we require

ST (v) = v (all v ∈ V ).

A right inverse for T is a linear map S′ ∈ L(W,V ) with the property that TS′ = IW
(the identity map on W ). That is, we require

TS′(w) = w (all w ∈ W ).

What are these things good for? I’ve said that one of the most basic problems
in linear algebra is solving an equation like

Tx = c (QUESTION)

(with c ∈ W specified); you are to find the unknown x ∈ V . If S is a left inverse of
T , then we can apply S to this equation and get

x = IV (x) = STx = Sc. (LEFT )

What this calculation proves is

Proposition 2. Suppose S is a left inverse of T . Then the only possible solution
of (QUESTION) is x = Sc.

This does not say that Sc really is a solution; just that it’s the only candidate
for a solution. Sometimes that’s useful information.

On the other hand, suppose S′ is a right inverse of T . Then we can try x = S′c

and get
Tx = TS′c = IW c = c. (RIGHT )

This calculation proves

Proposition 3. Suppose S′ is a right inverse of T . Then x = S′c is a solution of
(QUESTION).

This time the ambiguity is uniqueness: we have found one solution, but there
may be others. Sometimes that’s all we need.

Example. Suppose V = W = P(R) (polynomials), and D = d
dx
. We would like to

“undo” differentiation, so we integrate:

(Jp)(x) =

∫ x

0

p(t) dt.

The fundamental theorem of calculus says that the derivative of this integral is p;
that is, DJ = IP . So J is a right inverse of D; it provides a solution (not the only

one!) of the differential equation dq

dx
= p. If we try things in the other direction,

there is a problem:

JD(p) =

∫ x

0

p′(t) dt = p(x)− p(0).

That is, JD sends p to p − p(0), which is not the same as p. So J is not a left
inverse to D; since D has a nonzero null space, we’ll see that no left inverse can
exist.
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Theorem 4. Suppose V and W are finite-dimensional, and that T ∈ L(V,W ).
1) The operator T has a left inverse if and only if Null(T ) = 0.
2) If S is a left inverse of T , then Null(S) is a complement to Range(T ) in the

sense of Proposition 2.13 in the text:

W = Range(T )⊕Null(S).

3) Assuming that Null(T ) = 0, there is a one-to-correspondence between left in-
verses of T and subspaces of W complementary to Range(T ).

4) The operator T has a right inverse if and only if Range(T ) = W .
5) If S′ is a right inverse of T , then Range(S′) is a complement to Null(T ) in the

sense of Proposition 2.13 in the text:

V = Null(T )⊕ Range(S′).

6) Assuming that Range(T ) = W , there is a one-to-correspondence between right
inverses of T and subspaces of V complementary to Null(T ).

7) If T has both a left and a right inverse, then the left and right inverses are unique
and equal to each other. That, is there is a unique linear map S ∈ L(W,V )
characterized by either of the two properties ST = IV or TS = IW . If it has one
of these properties, then it automatically has the other.

The theorem is also true exactly as stated for possibly infinite-dimensional V
and W , but the proof requires a little more cleverness.

Proof. For (1), suppose first that a left inverse exists. According to Proposition
2, the equation Tx = 0 has at most one solution, namely x = S0 = 0. That
says precisely that Null(T ) = 0. Conversely, suppose Null(T ) = 0. Choose a basis
(v1, . . . , vn) of V . By the proof of the rank plus nullity theorem, (Tv1, . . . , T vn) is
a basis of Range(T ); so in particular it is a linearly independent set in W . We may
therefore extend it to a basis

(Tv1, . . . , T vn, w1, . . . wp)

of W .
To define a linear map S from W to V , we need to pick the images of these n+p

basis vectors; we are allowed to pick any vectors in V . If S is going to be a left
inverse of T , we are forced to choose

S(Tvi) = vi;

the choices of Swj can be arbitrary. Since we have then arranged for the equation
STv = v to be true for all elements of a basis of V , it must be true for all of V .
Therefore S is a left inverse of T .

For (2), suppose ST = IV ; we need to prove the direct sum decomposition shown.
So suppose w ∈ W . Define v = Sw and r = Tv = TSw ∈ W . Then r ∈ Range(T ),
and

n = w − r = w − TSw

satisfies
Sn = Sw − STSw = Sw − IV Sw = Sw − Sw = 0;
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so n ∈ Null(S). We have therefore written w = r + n as the sum of an element
of Range(T ) and of Null(S). To prove that the sum is direct, we must show that
Null(S) ∩ Range(T ) = 0. So suppose Tv (in Range(T )) is also in Null(S). Then

v = STv = 0

(since Tv ∈ Null(S)) so also Tv = 0, as we wished to show.
For (3), we have seen that any left inverse gives a direct sum decomposition of

W . Conversely, suppose that W = Range(T ) ⊕ N is a direct sum decomposition.
Define a linear map S from W to V by

S(Tv + n) = v (v ∈ V, n ∈ N).

This formula makes sense because there is only one v with image Tv (by Null(T ) =
0); it defines S on all of W by the direct sum hypothesis. This construction makes
a left inverse S with Null(S) = N , and in fact it is the only way to make a left
inverse with this null space.

Parts (4)–(6) are proved in exactly the same way.
For (7), if the left and right inverses exist, then Null(T ) = 0 and Range(T ) = W .

So the only possible complement to Range(T ) is 0, so the left inverse S is unique
by (3); and the only possible complement to Null(T ) is V , so the right inverse is
unique by (6). To see that they are equal, apply S′ on the right to the equation
ST = IV ; we get

S′ = IV S
′ = STS′ = SIW = S,

so the left and right inverses are equal.


