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1 Introduction

We’ve seen that sometimes a nice linear transformation T (from a finite-
dimensional vector space V to itself) can be diagonalized, and that doing
this is closely related to finding eigenvalues of T . Here’s the basic theorem
about how to find them.

Theorem 1.1. Suppose V is an n-dimensional vector space over a field F ,
and T : V → V is any linear map. Then there is polynomial

pT = xn + an−1x
n−1 + · · ·+ a1x+ a0

(with coefficients in F ), with the following properties:

1. the eigenvalues of T are precisely the roots of pT ; and

2. pT (T ) = 0.
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The polynomial pT is called the characteristic polynomial of T . (The two
properties listed in the theorem don’t specify pT completely.) The purpose
of these notes is to write down as simply as possible how to compute pT .
The longer Notes on generalized eigenvalues will repeat this more slowly,
and draw some more serious conclusions.

2 Polynomials

Recall from pages 10 and 22–23 of the text that P(F ) is the (F -vector
space) of all polynomials with coefficients in F . The degree of a nonzero
polynomial is the highest power of x appearing with nonzero coefficient;
the polynomial zero is defined to have degree −∞ (to make the formula
deg(pq) = deg(p) + deg(q) work when one of the factors is zero). We write

Pm(F ) = {amxm + · · ·+ a1x+ a0 | ai ∈ F} (2.1)

for the (m + 1)-dimensional subspace of polynomials of degree less than
or equal to m. A polynomial is called monic if its leading coefficient is 1;
therefore

1, x2 − 7x+ 1/2, x− π

are monic polynomials (with real coefficients), but 2x+ 1 is not monic.

3 Characteristic polynomial: theory

The proof of Theorem 1.1 is an algorithm for computing pT . Here it is.

Proof. We proceed by induction on n = dimV , If n = 0, then V = {0},
so T = 0. In this case we are forced to define pT = 1, the unique monic
polynomial of degree 0. The polynomial pT has no roots, and T has no
eigenvalues. Also pT (T ) = IV = 0; so both conclusions of the theorem are
true.

Suppose therefore that n ≥ 1, and that we know the conclusion of the
theorem for vector spaces of dimension strictly less than n. Since V has
dimension at least 1, it is nonzero; so we can choose a nonzero vector

0 6= v0 ∈ V. (3.1a)

Define
vj = T jv0 (j = 0, 1, 2, . . . ) (3.1b)
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The list (v0, v1, v2, . . . ) is infinite, and V is finite-dimensional; so the list
must be linearly dependent. According to the linear dependence lemma
proved in class (very close to Lemma 2.4 on page 25 of the text), it follows
that there must be an integer m ≥ 1 with the property that

(v0, . . . , vm−1) is linearly independent, (3.1c)

and
vm ∈ span(v0, . . . vm−1). (3.1d)

Then there is a unique expression

vm = −a0v0 − · · · − am−1vm−1. (3.1e)

So far we have an m-dimensional vector space

U =def span(v0, . . . , vm−1),

and a degree m polynomial

pU =def x
m + am−1x

m−1 + · · ·+ a0. (3.1f)

Now extend the linearly independent list (v0, . . . , vm−1) to a basis

(v0, . . . , vm−1, e1, . . . , en−m)

of V . Now Tvi is a linear combination of other vj . More precisely,

Tvj =

{
vj+1 (0 ≤ j < m− 1)

−a0v0 − · · · − am−1vm−1 (j = m− 1)
(3.1g)

Consequently the matrix of T in the basis (v0, . . . , vm−1, e1, . . . , en−m) is of
the form (

A B
0 C

)
. (3.1h)

Here A is an m×m matrix (of a very simple form given by (3.1g)); B is an
m× (n−m) matrix; and C is an (n−m)× (n−m) matrix. Define

pA(x) = xm + am−1x
m−1 + · · ·+ a0,

a monic polynomial of degree m ≥ 1 in P(F ).
By inductive hypothesis, we know how to compute the characteristic

polynomial pC of the matrix C; it is a monic polynomial of degree n −m.
Define

pT = pA(x)pC(x),

3



a monic polynomial of degree n. This is by definition the characteristic poly-
nomial of T . I’ll postpone the proof that pT has the two desired properties
to the later/longer Notes on generalized eigenvalues. The key ingredient is

Proposition 3.2. Suppose

T =

(
A B
0 C

)
is an n × n block upper-triangular matrix, with A an m ×m matrix, B an
m× (n−m) matrix, and C an (n−m)× (n−m) matrix.

1. The set of eigenvalues of T is the union of the set of eigenvalues of A
and the set of eigenvalues of C.

2. Suppose p1 and p2 are polynomials such that p1(A) = 0 and p2(C) = 0.
Then (p1p2)(T ) = 0.

(You might think about how to prove this proposition; it needs only
things you already know.)

4 Characteristic polynomial: practice

Here is a description of the algorithm for computing the characteristic poly-
nomial. We begin with a linear transformation T on an n-dimensional vector
space. We need also a basis (e1, . . . , en) of V ; this is used as a source for
various starting vectors in the algorithm. What the algorithm produces is a
new basis

(v10, v
1
1, . . . , v

1
m1−1, v

2
0, v

2
1, . . . , v

2
m2−1, v

3
0, . . . v

k
mk−1). (4.1a)

Here each mi is at least 1. That is, the new basis consists of k strings of
positive lengths (m1,m2, . . . ,mk); so the sum of the mi is equal to n. We’ll
choose the basis so that the action of T in the basis is very simple:

Tvij =

{
vij+1 (0 ≤ j < mi − 1)

−ai0v0 − · · · − aimi−1v
i
mi−1 + (junk) (j = mi − 1)

(4.1b)

Here (junk) means a linear combination of various basis vectors vi
′
j′ from

earlier strings; that is, with i′ < i. The ith string defines a polynomial

pi(x) = xmi + aimi−1x
mi−1 + · · ·+ ai0, (4.1c)
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monic of degree mi. The characteristic polynomial of T is

pT (x) = p1(x) · p2(x) · · · · · pk(x). (4.1d)

Here is how to find such a basis.
The first string of basis vectors (v10, v

1
1, · · · , v1m1−1) is calculated as ex-

plained in the previous section: start with any nonzero vector v10 in V (like
the first basis vector e1), and define

v1j = T jv10.

The list (v10) is linearly independent, because v10 was chosen to be nonzero.
For each successive j, check whether the v1j is a linear combination of the
preceding terms. If it is not, add it to the list, which continues to be linearly
independent. If it is a linear combination, then declare j = m1; the linear
combination equation

v1m1
= −a10v0 − · · · − a1m1−1v

1
m1−1

is exactly what is claimed in (4.1b) for i = 1. (There is no (junk) yet because
there is no i′ < 1.)

If m1 = n, then the algorithm stops here. If m1 < n, then the first string
(v10, . . . , v

1
m1−1) does not span V . Define

v20 = first vector in (e1, . . . , en) not in span(v10, . . . , v
1
m1−1) (4.1e)

Now define
v2j = T jv20.

The list (v10, . . . , v
1
m1−1, v

2
0) is linearly independent by the choice of v20. For

each successive j, check whether the v2j is a linear combination of the pre-
ceding terms in the list. If it is not, add it to the list, which continues to be
linearly independent. If it is a linear combination, then declare j = m2; the
linear combination equation

v2m2
= −a20v20 − · · · − a2m1−1v

2
m2−1 + (b10v

1
0 + b11v

1
1 + · · · b1m1−1v

1
m−1)

is exactly what is claimed in (4.1b) for i = 2. (The term in parentheses is
(junk). The coefficients b1j give some entries of the matrix B from (3.1h).)

Now our two strings make a linearly independent list

(v10, . . . , v
1
m1−1, v

2
0, . . . , v

2
m2−1)
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of length m1 + m2. If m1 + m2 = n, the algorithm stops here. If not, we
can define

v30 = first vector in (ei) not in span(v10, . . . , v
2
m2−1). (4.1f)

And so on. At each step, our linearly independent list gets strictly longer;
so after at most n steps, we end up with a basis of V .

5 Examples

For almost all linear transformations T , and almost all choices of nonzero
v10, the n vectors

(v10, T v
1
0, . . . , T

n−1v10)

are linearly independent, and the algorithm for calculating the characteristic
polynomial has just one interesting step: solving the system of n equations
in n unknowns (the various a1j )

Tnv10 = −a10v10 − a11Tv10 − · · · − a1n−1Tn−1v10.

For example, if

T =

(
1 2
3 4

)
v10 =

(
1
0

)
, (5.1a)

then

v11 = Tv10 =

(
1
3

)
, v12 = Tv11 =

(
7
15

)
.

The system of equations we need to solve is(
7
15

)
= −a10

(
1
0

)
− a11

(
1
3

)
,

or
−a10 − a11 = 7, −3a11 = 15.

Solution is a11 = −5, a10 = −2; so the characteristic polynomial is

pT (x) = x2 − 5x− 2. (5.1b)

Eigenvalues are therefore (5± 2
√

3)/2, at least as long as the characteristic
of the field is not 2. If the characteristic of F is 2, then

T =

(
1 0
1 0

)
, pT (x) = x2 − x,
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and the eigenvalues are 0 and 1.
Here is an example of the “rare” case of more than one string. Take

T =


1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

 . (5.2a)

Choosing v10 to be the first standard basis vector as the algorithm directs,
we find

v10 =


1
0
0
0

 v11 = Tv10 =


1
1
1
1

 , v12 =


1
2
2
2

 .

The first two are linearly independent, but the third is a linear combination
of them: the linear independence test equation

1
2
2
2

 = −a10


1
0
0
0

− a11


1
1
1
1

 ,

has unique solution
a10 = 1, a11 = −2.

Therefore m1 = 2, and

p1(x) = x2 − 2x+ 1 = (x− 1)2. (5.2b)

(So far the only eigenvalue we’ve found is 1.)
Because m1 = 2 is strictly smaller than 4, the algorithm continues. We

choose v20 to be the first standard basis vector not in the span of our list so
far (as the algorithm directs) and calculate

v20 =


0
1
0
0

 , v21 = Tv20 =


0
0
0
1

 , v22 = Tv21 =


0
1
0
0

 .

The list (v10, v
1
1, v

2
0, v

2
1) is linearly independent, but the fifth vector is a linear

combination of the first four:
0
1
0
0

 = −a20


0
1
0
0

− a21


0
0
0
1

+ (b10


1
0
0
0

+ b11


1
1
1
1

).
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The last two terms in parentheses are (junk). The unique solution of this
equation is

a20 = −1, a21 = 0, b10 = 0, b11 = 0.

Therefore m2 = 2, and the second factor of the characteristic polynomial is

p2(x) = x2 − 1 = (x+ 1)(x− 1). (5.2c)

Since m1 +m2 = 4, the algorithm is finished:

pT (x) = p1(x)p2(x) = (x− 1)2(x+ 1)(x− 1). (5.2d)

The complete set of eigenvalues of T is {1,−1}.
You should check that you can calculate that the +1 eigenspace of T has

basis 
0
1
0
1

 ,


0
0
1
0

 . (5.2e)

So far this is true for any field at all (since we didn’t need to divide by
anything to solve the equations along the way).

If the characteristic of F is two, then the eigenvalue −1 is equal to +1;
so we have calculated the only eigenspace, and it’s two-dimensional. In
particular, T is not diagonalizable (since there is no basis of eigenvectors:
we need four, but we have only two).

If the characteristic of F is not two, then the eigenvalue −1 is different
from 1. You should check that the −1 eigenspace of T has basis

0
1
0
−1

 ; (5.2f)

solving the equations for the null space of T+I involves dividing by 2, which
is why this part only works if the characteristic is not two. So altogether
we have three linearly independent eigenvectors: still smaller than four, so
T is not diagonalizable even in characteristic not two, and even though the
characteristic polynomial is a product of linear factors.
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