Linear Algebra 18.700 Fall Semester, 2019

General Information

Class meetings: Monday, Wednesday, and Friday 10:00–11:00, in 4-237.

Text: Sheldon Axler, *Linear Algebra Done Right*, third edition. Read the text *before* class as well as after; your understanding and your chance of catching me in a *faux pas* will both be greatly increased. I **strongly recommend** using the third edition: it is extremely different in detail from the second. You can download a pdf from the library.

Lecturer: David Vogan, 2-355. Telephone: 617-253-4991. E-mail: dav@math.mit.edu. My office hours are **Thursday 3-4**, **Friday 4-5**, or by appointment.

Homework: There will be nine graded problem sets; due dates **IN CLASS** are on the schedule below. **Late problem sets will not be accepted.** (Really. If you need to miss one, the grading system won't destroy you for that.)

Exams: There will be three one-hour exams during the lecture hour: Sept 27, Oct 25, and Nov 18. There will be a three-hour final exam Thursday, December 19, 9:00–12:00 in 50-340. All exams will be closed book.

Grading: Each hour exam will be worth 100 points, the final exam will be worth 200 points, and the problem sets will be worth about 20 points each.

Schedule

Wed 9/4 Fri 9/6	Lecture 1 Lecture 2	Ch 1A–B Ch 1C	Definition of vector spaces Properties, subspaces	
Mon 9/9 Wed 9/11 Fri 9/13	Lecture 3 Lecture 4 Lecture 5	Ch 1C Ch 2A Ch 2B	Sums and direct sums Span and independence Bases	
Mon 9/16 Wed 9/18 Fri 9/20	Lecture 6 Lecture 7 Holiday	Ch 2C Ch 3A–B	Bases and dimension Linear maps, null space, range Study of roots	PS 1 due
Mon 9/23 Wed 9/25 Fri 9/27	Lecture 9 Lecture 10 Lecture 11	Ch 3C Ch 3D	matrices invertibility, isomorphism Exam 1 on Chapters 1–3	PS 2 due
Mon 9/30 Wed 10/2 Fri 10/4	Lecture 12 Lecture 13 Lecture 14	F GE GE	Finite fields Solving systems of equations Gaussian elimination	
Mon 10/7 Wed 10/9 Fri 10/11	Lecture 15 Lecture 16 Lecture 17	F Ch 5A Ch 5B	Counting matrices over \mathbb{F}_p Eigenvectors, invariant subspaces Upper triangular matrices	PS 3 due
Mon 10/14 Wed 10/16 Fri 10/18	Holiday Lecture 18 Lecture 19	Ch 5C	Columbus Day Diagonal matrices 2 × 2 real matrices	PS 4 due
Mon 10/21 Wed 10/23 Fri 10/25	Lecture 20 Lecture 21 Lecture 22	Ch 9A	Eigenvectors for real vector spaces Eigenvectors over \mathbb{F}_p Exam 2 on Chapters 1–5	PS 5 due

Mon 10/28 Wed 10/30 Fri 11/1	Lecture 23 Lecture 24 Lecture 25	Ch 6A Ch 6B Ch 6C	Inner products and norms Orthogonal bases, Gram-Schmidt Orthogonal projection, minimization	
Mon 11/4 Wed 11/6 Fri 11/8	Lecture 27	Ch 7A Ch 7B Ch 7C	Adjoint, self-adjoint, normal Spectral theorem Positive operators	PS 6 due
Mon 11/11 Wed 11/13 Fri 11/15	Lecture 29	Ch 7C Ch 7D	Veterans Day Isometries Polar decomposition	PS 7 due
Mon 11/18 Wed 11/20 Fri 11/22		Ch 8A Ch 8B	EXAM 3 on Chapters 1–7 Generalized eigenspaces Generalized eigenspace decomposition	
Mon 11/25 Wed 11/27 Fri 11/29	Lecture 34 Lecture 35 Holiday	Ch 8C Ch 8D	Characteristic polynomial Jordan canonical form Thanksgiving	PS 8 due
,	Lecture 36 Lecture 37 Lecture 38	Ch 10B Ch 10B Ch 10B	Determinant Calculating determinant n-dimensional volume	PS 9 due
Mon 12/9 Wed 12/11	Lecture 39 Lecture 40	Ch 10A	Trace, canonical commutation relation The rest of linear algebra, review	ns
week of $12/16-12/20$			Final Exam	