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ABSTRACT

We study wave maps equation in three distinct settings.

First, we prove a small data result for wave maps on a curved background. To be specific,
we consider the Cauchy problem for wave maps v : R x M — N, for Riemannian manifolds
(M, g) and (N, h). We prove global existence and uniqueness for initial data, (ug,uq), that
is small in the critical norm H7 x H%_l(M; TN), in the case (M, g) = (R%, g), where g is
a small perturbation of the Euclidean metric. This part of the thesis has appeared in print
in [52].

Next, we establish relaxation of an arbitrary l-equivariant wave map from R%}'?’ \ (R x
B(0,1)) — S3 of finite energy and with a Dirichlet condition at r = 1, to the unique
stationary harmonic map in its degree class. This settles a recent conjecture of Bizon,
Chmaj, and Maliborski who observed this asymptotic behavior numerically, and can be
viewed as a verification of the soliton resolution conjecture for this particular model. The
chapters concerning these results are based on joint work with Wilhelm Schlag [53], and with
Carlos Kenig and W. Schlag, [35].

In the final two chapters, we consider l-equivariant wave maps from R*2 — S2. For
wave maps of topological degree zero we prove global existence and scattering for energies
below twice the energy of harmonic map, ), given by stereographic projection. This gives a
proof in the equivariant case of a refined version of the threshold conjecture adapted to the
degree zero theory where the true threshold is 2€(Q), not £(Q). The aforementioned global
existence and scattering statement can also be deduced by considering the work of Sterbenz
and Tataru in the equivariant setting.

For wave maps of topological degree one, we establish a classification of solutions blowing
up in finite time with energies less than three times the energy of (). Under this restriction
on the energy, we show that a blow-up solution of degree one decouples as it approaches the
blow-up times into the sum of a rescaled () plus a remainder term of topological degree zero

X



of energy less than twice the energy of (). This result reveals the universal character of the
known blow-up constructions for degree one, l-equivariant wave maps of Krieger, Schlag,
and Tataru as well as Raphaél and Rodnianski.

Lastly, we establish a classification of all degree one global solutions whose energies are
less than three times the energy of the harmonic map ). In particular, for each global energy
solution of topological degree one, we show that the solution asymptotically decouples into
a rescaled harmonic map plus a radiation term. Together with the degree one finite time
blow-up result, this gives a characterization of all 1-equivariant, degree one wave maps in the
energy regime [F(Q),3E(Q)). The last two chapters are based on joint work with Raphaél
Cote, C. Kenig, and W. Schlag, [15, 16].
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CHAPTER 1
INTRODUCTION

1.1 The Wave Maps Equation

This thesis consists of various results on the wave maps equation. In physics, wave maps
arise as a model in both particle physics as what are called nonlinear o—models, see [27],
[56], and in general relativity, see [11]. From a purely mathematical perspective, wave maps
are the natural hyperbolic analogs of harmonic maps in the elliptic case, and harmonic map
heat flow in the parabolic case.

We begin with a definition. Let (M, g) be a Riemannian manifold of dimension d. Denote
by (M,n) the Lorentzian manifold M = R x M, with the metric 7 represented in local
coordinates by 7 = (1,5) = diag(—1,g;;). Let (N,h) be a complete Riemannian manifold
without boundary of dimension n.

A map u: (M,n) — (N, h) is called a wave map if it is, formally, a critical point of the

functional

Here we view the differential, du, of the map u as a section of the vector bundle (T*M ®
u*T'N,n®u*h), where w*T'N is the pullback of TN by u and u*h is the pullback metric. In

local coordinates this becomes

Llu) =5 /M 0™ (2)hij (u(2))0au’ (2)050 (2) /I dz.



The Euler-Lagrange equations for £ are given by

1
——D,, ( |77|770‘ﬁ85u> =0, (1.1.1)

il

where D is the pull-back covariant derivative on «*T'N. In local coordinates on N, writing

uw=(ul,...,u"), we can rewrite (1.1.1) as
Dnuk = —naﬂffj (u)@auiaﬁuj, (1.1.2)
where Uyu := —0yu + Agu, and

Agu = 9a(\/]9lg* 05u)

1
vard
is the Laplace-Beltami operator on M. Ffj = %hke (Oihgj + Ojhip — Oghyj) are the Christoffel

symbols associated to the metric connection on N. We will often study the Cauchy problem

for wave maps in local coordinates. That is, given smooth, finite energy initial data

ug: M — N,
(1.1.3)
up : M — ugT'N, such that Vz, ui(z) € T, ()N

a solution to the Cauchy problem is a smooth map u(t) satisfying (1.1.2) with

(0) == (u(0), Bru(0)) = (ug, u1)-

£y

We remark that we often use the notation (t) to denote the pair u(t) = (u(t), Oru(t).
Wave maps can also be defined extrinsically. This approach is equivalent to the intrinsic
approach, see for example [68, Chapter 1]. By the Nash-Moser embedding theorem there

exists m € N large enough so that we can isometrically embed (N, h) < (R, (-,-)), where



(-,-) is the Euclidean scalar product. We can thus consider maps u : (M,n) — (R™, (-,-))
such that u(t,z) € N for every (t,) € M. Wave maps can then be defined formally as

critical points of the functional
£ =5 [0 0u.050) Vil a
One can show that v is a wave map if and only if
Opu L Ty N. (1.1.4)
From this we can deduce that u satisfies
Opu =~ S(u) (Dau, dgu), (1.1.5)

where S is the second fundamental form of the embedding N < R". For the Cauchy

problem in the extrinsic formulation, we consider initial data
(uo,u1) : (M, g) = TN,
by which we mean

ug(xr) € N — R™,

u1(2) € Tyy(m)N = R V 2 € M.

One can formally establish energy conservation from the extrinsic definition (1.1.4). De-

fine the energy

£ (u, ) (t) = %/M (100l + ldarul?) Vgl da. (1.1.6)

3



where by djyu we mean the differential of the map u(t) : M — R™. Observe that Cyu L Ty, N

implies that <Dnu, 8tu> = 0. Hence we have

0=— Oyu, O, v 0gld

/M< nt tu>u(x) |9l dz

— | @00,y Viglde ~ [ (oGl 050, 00)
1 d

—5 [ Glowl Vislae+ [ {g0u0000)  Vdlds
2 /m M u(x)

t

d (1
=55/ (@ + ) Viglae).

Integrating in time then gives £ (u, du)(t) = £(u, Opu)(0) for any time ¢.

1.1.1  Wave Maps on a Flat Background and Criticality

The case of wave maps on a Euclidean background (M, g) = (R?, (-,-)) has received much
attention in recent years. Here, n is the Minkowksi metric on R4 and the intrinsic formu-

lation (1.1.1) simplifies to
1P Dadgu = 0 (1.1.7)

For convenience we rewrite the Cauchy problem,

Ou¥ = =Pk (w)dau'dgu,
ARG (1.1.8)

u(0) = (ug, u1)
with the conserved energy given by

1
E(u)(t) = 3 /]Rd |8tu\% + \Vu\% dx = constant.



In this setup, we note that wave maps are invariant under the scaling

U(t, z) — iy(t, z) = (u(Nt, A\x), AOpu (A, Ax)) for A >0

On the other hand, we have
E(@y) = A2 (a)

In light of the above, the Cauchy problem is called energy critical when d = 2, since the
energy is unaffected by the rescaling of the solution. When we have d > 2, wave maps are
referred to as energy supercritical. Here it is energetically favorable for the solution to shrink
to a point and hence finite time blow-up is expected. The lone energy subcritical case is
d=1.

The scaling critical norm in d spacial dimensions is H2 x H f_l(Rd) as we have

i) (0
CACTISI.

= [|u(0 .
17O 4, -1
Thus, the Cauchy problem for (1.1.8) is called critical in H § x Fo1 (R?) and called energy-

critical when d = 2.

1.1.2  Equivartant Wave Maps

In the presence of symmetries, such as when the target manifold (V, h) is rotationally sym-
metric, one often singles out a special class wave maps called equivariant wave maps. For
example, for the sphere N = S% one requires that u o p= pé ou where £ is a positive integer
and p € SO(d) acts on both the domain R and target S by rotation, in the latter case
about a fixed axis. Equivariant wave maps have been extensively studied, see for example

Shatah [67], Christodoulou, Tahvildar-Zadeh [13, 12], Shatah, Tahvildar-Zadeh [70, 71]. For
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a summary of these developments, see the book by Shatah and Struwe [68].

In the latter chapters of this thesis we will focus on the case when the target manifold
is the d-sphere, (Sd, h) where h is the round metric on Sd, d = 2,3, and equivariance class
¢ = 1. However, several of the results hold in more general settings as will be explained
later. To illustrate how an equivariance assumption leads to a simplification of the Cauchy

problem, we outline the 2d case below. In spherical coordinates,

(1, w) > (sin ) cos w, sin ¢ sin w, cos 1),

on S?, the metric g is given by the matrix ¢ = diag(1, sin?(¢)). In the l-equivariant setting,

we thus require our wave map, u, to have the form

u(t,r,w) = (Y(t,r),w) — (sin(t, r) cosw, sin(t, r)sinw, cos(t,r)),

where (r,w) are polar coordinates on R?. In this case, the Cauchy problem (1.1.8) reduces

to an equation for the azimuth angle 1, namely,

wtt - w’I“T - %¢r + Sil;(f;b) =0 (1'1'9)
(¥, ¥t) =0 = (Y0, %1)-
The conservation of energy reads
00 102
E(W)(t) = EW, ) (t) = / <¢t2 + 2+ smﬂ(gb)) rdr = const. (1.1.10)
0

Any 9(r,t) of finite energy and continuous dependence on t € I := (tg,t1) must satisfy
¥(t,0) = mm and ¥ (t,00) = nx for all t € I, where m, n are fixed integers. This requirement
splits the energy space into disjoint classes according to this topological condition. The wave

map evolution preserves these classes.



1.1.3 History

Wave maps have been studied extensively over the past few decades and we give a brief
and noninclusive overview of some of the significant developments here. In the subsequent
chapters we will review the relevant history in more detail.

In the energy super-critical case, d > 3, Shatah [67] showed that self-similar blow-up can
occur for solutions of finite energy. In the energy critical case, d = 2, there is no self similar
blow-up as demonstrated by Shatah and Struwe [68]. In the equivariant, energy critical
setting, Struwe [76] proved that if blow-up does occur then the solution must converge, after
rescaling, to a non-constant, co-rotational harmonic map. Recently, Krieger, Schlag, and
Tataru [50], Rodnianski-Sterbenz [63] and Raphael Rodnianski [62] have constructed finite
energy wave maps u : R1T2 — S2 that blow up in finite time.

The well-posedness theory for critical, spherically symmetric wave maps was developed
by Christodoulou and Tahvildar-Zadeh [13, 12], and in the equivariant setting by Shatah and
Tahvildar-Zadeh [70, 71]. In the non-equivariant case, Klainerman and Machedon [39, 40,
41, 42], and Klainerman and Selberg [44, 45], established well-posedness in the subcritical
norm H?® X Hs_l(]Rd) with s > % by exploiting the null-form structure present in (1.1.8).

The first breakthrough in the non-equivariant critical theory, s = %l, was accomplished
by Tataru [84, 81|, where he proved global well-posedness for smooth data that is small
in the scaling critical Besov space 32%71 X B;l’;l(Rd) for d > 2. Then, in the ground-
breaking works, [77, 78], Tao proved global well-posedness for wave maps w : Ritd _y sk
for smooth data that is small in the critical Sobolev norm H% x B %_1(Rd) for d > 2.
Later, this result was extended to more general targets by Klainerman and Rodnianski [43],
Krieger [46], [47], [48], Nahmod, Stefanov and Uhlenbeck [58], Shatah and Struwe [69], and
by Tataru [82], [83].

Finally, the difficult large data, energy critical case has been undertaken in a remarkable

series of papers by Krieger and Schlag [49], Sterbenz and Tataru [74], [75], and Tao [79]. In
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particular, these papers show that all smooth finite energy data leads to a unique global and
smooth evolution which scatters to zero in the energy space when the target manifold does
not admit finite energy harmonic maps. Moreover, [74, 75] establish the so-called threshold
conjecture, which states that all wave maps with energy below that of a minimal energy
harmonic map are global in time and scatter. These results will be explained in more detail
in Chapters 5 and Chapter 6 where a refined version of the threshold conjecture is considered

in the case of equivariant energy critical wave maps to S2.

1.1.4 OQOutline of the Thesis

In this thesis we study the Cauchy problem for wave maps in three distinct settings. The
main results have all appeared in research articles, several of which have been written in col-
laboration with Raphaél Cote, Carlos Kenig, and Wilhelm Schlag in different combinations.

In Chapter 2, we examine wave maps on curved backgrounds. In this case the left-hand-
side of (1.1.2) involves variable coefficients and this makes the problem more challenging.
Indeed, many of the main tools used in the study of dispersive equations, in particular
Strichartz estimates, have their roots in sophisticated techniques from harmonic analysis and,
unfortunately, these tools do not extend easily to the case of variable coefficient equations.
Recently, using phase-space transformations, Metcalfe and Tataru [57] established Strichartz
estimates for free waves on curved backgrounds in the case that the domain is a small
perturbation of Minkowski space. After deducing a slight refinement of these estimates, we
prove small data global well-posedness and scattering in the critical H g x H §-1 norm for
wave maps on curved backgrounds in dimension d = 4. The domains considered are small
perturbations of Euclidean space and our results hold for a general class of targets, namely

those with bounded geometry. In particular, we prove the following theorem:

Theorem 1.1.1. [52] Let (N,h) be a smooth, complete, n-dimensional Riemannian man-

ifold without boundary and with bounded geometry. Let (M,g) = (R*, g) with g satisfying
8



the asymptotic flatness and smallness conditions to be made precise in (2.1.1)-(2.1.4). Let
(M,n) = (R x M,n) with n = diag(—1, g). Then there exists an o > 0 such that for every
(ug,u1) € H2 x HY((M,g); TN) with

[ (w0, w)ll g2y g1 < €0, (1.1.11)

there exists a unique global wave map, u : (M,n) — (N, h), with initial data @(0) = (ug, uq),
such that @ € CY(R; H*(M;N)) x CYR; HY(M;TN)). Moreover, u satisfies the global

estimates
Il o gy + lldul 215 S <o (1112)

In addition, any higher regularity of the data is preserved.

The proof proceeds via the outline provided by Shatah-Struwe [69] in the case of a flat
background by working in the Coulomb frame. The approach in [69] constituted a significant
simplification of the method used by Tao who established the first global well-posedness
results in the critical norm in high dimensions in [77]. The cases of lower dimensions,
d = 2,3 are significantly more difficult as the structure, as opposed to only just the size, of
the nonlinearity plays a crucial role in the analysis, see [78]. The content of Chapter 2 has
appeared in [52].

In the remaining chapters, we restrict our attention to equivariant wave maps. The
equations in the equivariant setting are greatly simplified and provide an ideal environment
in which to attempt to understand possible large data dynamics in the presence of stationary
solutions, which are called harmonic maps.

Over the last several years, Kenig and Merle have employed their innovative version of
Bourgain’s induction on energy principle, [6], to obtain global existence and scattering results

for both focusing and defocusing semi-linear wave equations, with additional conditions

9



needed in the focusing case as finite time blow-up can occur, see [36], [37]. A fundamental
part of their strategy, which has come to be known as the Kenig-Merle method, involves the
use of the concentration compactness techniques and in particular the profile decomposition
of Bahouri and Gérard, [1]. The concentration compactness procedure, which is rooted in
the underlying symmetries of the problem, has turned out to be extremely versatile, and
has been a key ingredient in the recent classification results of large data dynamics for
semi-linear waves, which includes identifying blow-up mechanisms and describing the long
time behavior of global solutions such as the resolution of solutions into multi-bumps plus
radiation as predicted by what is loosely referred to as the soliton resolution conjecture; see
Duyckaerts, Kenig, Merle [22, 21, 24, 23].

Concentration compactness techniques have recently been applied to the wave maps equa-
tion as well in the groundbreaking work of Krieger, Schlag [49] on the large data scattering
theory for non-equivariant energy critical wave maps to HZ2.

In Chapters 3 and 4, we use concentration compactness techniques to investigate 1-
equivariant wave maps from 1 + 3—dimensional Minkowski space ezterior to a ball and
with S? as target. To be specific, we consider wave maps u : R x (R?\ B) — S3 with a
Dirichlet condition on 0B, i.e., u(0B) = { N} where N is the north pole. In the 1-equivariant
formulation of this equation, where 1 is the azimuth angle measured from the north pole,

the Cauchy problem reduces to

2 sin(2
Uit — Ypr — —Pr + (;b) =0 Vr>1,
r r

(1.1.13)
Y, 1) =0 Vt>0, (¥, ¢)]i=0 = (vo,%1).

Any (t,r) of finite energy and continuous dependence on ¢t € I := (tg,t1) must satisfy
(t,00) = nr forallt € I where n > 0 is fixed, giving rise to a notion of degree. Removing the
unit ball gives rise to several striking features, namely, (1) the absence of scaling symmetry

renders the formerly energy-supercritical equation subcritical relative to the energy, and (2)
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it admits infinitely many stationary solutions (@p,, 0), which are harmonic maps indexed by
their topological degree.

This exterior equation (3.1.2) was proposed by Bizon, Chmaj and Maliborski [5] as a
model in which to study the problem of relaxation to the ground states given by the various
equivariant harmonic maps, or the soliton resolution conjecture. In the physics literature,
this model was introduced in [2] as an easier alternative to the Skyrmion equation. Moreover,
[2] stresses the analogy with the damped pendulum which plays an important role in our
analysis. Numerical simulations described in [5] indicate that in each equivariance class ¢,
and for each topological degree n, every solution scatters to the unique harmonic map that
lies in this class. In [53], together with Schlag we verified this conjecture for the topologically
trivial solutions, i.e., degree n = 0. These solutions start at the north-pole and eventually
return there. For n > 1 we obtained a perturbative result in [53] by proving Strichartz
estimates for the linearized operator around ). Later, together with Kenig and Schlag,
[35], we established the full conjecture for all degrees n > 0. This result can be thought of

as a verification of the stable soliton resolution conjecture for this particular equation.

Theorem 1.1.2. [55] [35] Let (1o, 1) be smooth finite energy data of degree n > 0. Then
there exists a unique and global smooth solution ¥(t) to (1.1.13) of degree n with ¥(0) =

(1o, 11). Moreover, U(t) scatters to (Qn,0) as t — oo.

The above theorem is proved using the Kenig-Merle concentration compactness/rigidity
method, with the novel aspect of our implementation being the techniques we used in the
rigidity argument. The Kenig-Merle framework can be compartmentalized into three inde-
pendent steps. First, one establishes the theorem for initial data that is close to the ground
state harmonic maps in the energy space via a perturbative method based on Strichartz
estimates. For the second step, referred to as the concentration compactness argument, one
assumes that the theorem fails and then uses concentration compactness type arguments

based on Bahouri-Gerard type profile decompositions to construct a minimal, non-scattering
11



solution called the critical element. The key point here is that one can show that the critical
element has a pre-compact trajectory in the energy space. The final step, referred to as the
rigidity argument, involves showing that the critical element cannot possibly exist. For this
part of the argument, we give two completely independent proofs, one that works only in
the degree zero case, and a second that holds for all degrees.

The first rigidity proof, which holds only in the degree 0 case, is based on virial identities,
which arise from contracting the stress energy tensor with appropriate vector fields. This
approach relies heavily on the precise structure of the nonlinearity and hence is extremely
equation-specific. Indeed, in order to prove the degree 0 case without any upper bound
on the energy we demonstrate that the natural virial functional is globally coercive on H.
This requires a detailed variational argument, the most delicate part of which consists of a
phase-space analysis of the Euler-Lagrange equation which uses classical ODE techniques.

The second argument, which holds for all degrees is based on what has come to be known
as the channels of energy method and has its roots in the work of Duyckaerts, Kenig, and
Merle on the quintic, semi-linear wave equation as well as 3d super-critical semi-linear waves;
see [23, 25]. As opposed to the virial approach, this argument is robust with respect to the
nonlinearity at the level of the nonlinear wave under consideration, and relies instead on the
underlying elliptic theory and a new class of estimates, called exterior energy estimates for
the underlying radial free wave.

The idea is to provide an asymptotic lower bound on the energy of free waves exterior
to the light cone with base R > 0 in terms of the free energy of the data outside the ball
of radius R. This estimate fails as stated due to the fact that data (f,0) and (0,¢g) with
f(r) = g(r) = 2= — note that this is the Newton potential — have corresponding solutions
that have vanishing exterior energy for any R > 0. Therefore one must project away from
the plane formed by this data in the energy space to establish a lower bound.

To use these estimates in the nonlinear setting, one then notes that the compactness

12



property of the critical element implies that it has vanishing exterior energy for all cones
with base R > 0. Choosing R large enough, the data outside a ball of radius R is small and
the nonlinear and linear evolutions remain close up to a lower order term coming from the
Duhamel integral. One can then use the exterior estimates for the linear evolution to show
that the nonlinear evolution must, in fact, be an elliptic solution that fails to have a crucial
property — here we show that the Dirichlet boundary condition is violated.

Finally, in Chapters 5 and 6, we study energy critical equivariant wave maps to positively
curved targets, in particular to S2. As is the case with more general dispersive equations,
the asymptotic behavior of energy critical wave maps is of particular interest. Here one can
distinguish between the small data and large data theory. Energy critical wave maps with
initial data that have small energy exhibit relatively simple global dynamics as the waves
become asymptotically free under fairly generic assumptions on the target, a phenomena
referred to as scattering. This was established in the non-equivariant case in the landmark
work of Tao, [78] when the target is S2, and later extended to H? by Krieger [48], and then
to wide class of targets by Tataru, [83].

On the other hand the dynamical structure for large energy critical wave maps is very
rich, with the geometry of the target playing a decisive role. Negatively curved targets
lead to defocusing type behavior and in a remarkable series of papers global existence and
scattering for all smooth data was established in the non-equivariant case by Krieger and
Schlag, [49], Sterbenz, Tataru [74], [75], and Tao [79].

In the work of Sterbenz and Tataru, [75], the possibility of blow-up was linked to the
existence of nontrivial finite energy stationary solutions, namely harmonic maps, a result
that was previously seen in the simpler equivariant setting by Struwe [76]. For positively
curved targets that do admit harmonic maps, they proved what is referred to as the threshold
conjecture, which states that for all smooth data with energy below the energy of a minimal

energy nontrivial harmonic map, (), the corresponding evolution is global in time and scat-
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ters. Many questions remain in the case of positively curved targets including understanding
the dynamics when one looks above the threshold, and the results in these chapters are in
this direction in the case of the simpler equivariant model, where explicit blow-up solutions
have been constructed in the important works of Krieger, Schlag, Tataru [50], Raphael,
Rodnianski [62] and Rodnianski, Sterbenz [63].

Here, together with R. Cote, C. Kenig, and W. Schlag, [15], we give a new proof of a
refined version of the threshold conjecture in the equivariant setting for wave maps R112 —
S2, based on the concentration compactness/rigidity method of Kenig and Merle. Then,
we provide a classification of the possible dynamics for all degree 1 wave maps with energy
less that 3 times the energy of the unique (up to scaling) harmonic map to the sphere,
Q(r) = 2arctan(r), a truly large data result; see [15, 16] for the submitted versions of these
results.

We denote by H,, the space of finite energy data of degree n and we note that the unique
harmonic map (Q,0) € H; has minimal energy amongst degree 1 maps, with £(Q,0) = 4.

The following theorem summarizes the main results in Chapters 5 and Chapter 6.

Theorem 1.1.3. [15, 16] Let 1(0) := (g, 1) be smooth, finite energy data.

—

1. Degree 0—threshold: Let (g, 1) < 26(Q,0), ¥(0) € Hy. Then the solution exists
globally, and scatters (energy on compact sets vanishes as t — o0). For any 6 > 0

there exist data of energy < 2E(Q,0) + § which blow up in finite time.

—

2. Degree 1, finite time blowup: Let (Y, 1) < 3E(Q,0), ¥(0) € Hy. If the solution
¥ (t) blows up at, say, t = 1, then there exists a continuous function, A : [0,1) — (0, 00)
with A(t) = o(1 — 1), a map & = (po,91) € Hy with £() = £(F) — £(Q,0), and a

decomposition



—

3. Degree 1, global solutions: Let E(¢g, 1) < 3E(Q,0), ¥(0) € Hy. If the solution
U(t) € Hy eists globally in time then there exists a continuous function, X : [0, 00) —
(0, 00) with A\(t) = o(t) ast — oo, a solution Gr,(t) € Ho to the linearization of (1.1.9)

about 6, and a decomposition

(1) = Frt) + (Q (/A1) ,0) + 05 (1) as t = o0

The degree 0 result follows from the Kenig-Merle method, [36], [37], the novel part of
our implementation being the development of a robust rigidity theory for wave maps with
pre-compact (up to symmetries) trajectories in the energy space. We note that one can
also deduce the degree 0 theorem by considering the work of Sterbenz, Tataru [75], in the
equivariant setting.

The techniques developed by Duyckaerts Kenig and Merle in [22], [24] motivated the
proofs of the degree 1 results, as we used certain elements of their ideology, in particular
concentration compactness techniques. We also relied explicitly on several classical results
in the field of equivariant wave maps. In particular, crucial roles are played by the vanishing
of the kinetic energy proved by Shatah, Tahvildar-Zadeh [70], and Struwe’s bubbling off
theorem, [76], in our finite time blow-up result. Another key ingredient is the new class of

exterior energy estimates for the underlying even-dimensional linear wave equation proved

in [18].

1.1.5 Notation

In what follows we will adopt the convention that f < g means that there exists a constant
C > 0 such that f < Cg. Similarly, f ~ ¢ will mean that there exist constants ¢,C > 0
such that cg < f < Cg. We also warn the reader that some notation may change meaning

between chapters. Each chapter is meant to be read on its own and the relevant notation
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for each chapter will be defined within that very chapter.
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CHAPTER 2
WAVE MAPS ON A CURVED BACKGROUND

2.1 Introduction

In this chapter we prove global well-posedness for wave maps on curved backgrounds that are
small perturbations of Euclidean space. In the case of a nonlinear dispersive equation, one
expects that data that is small in the critical norm leads to a global and smooth evolution.
For wave maps in dimensions d > 4 on flat backgrounds, this was established by Tao in
the breakthrough work, [77]. Later the work of Shatah and Struwe in [69] gave a significant
simplification of Tao’s argument in dimensions d > 4, and it is on the methods utilized
in [69], that this present work is based. In [69], Shatah and Struwe consider the Cauchy
problem for wave maps v : R1T? — N with initial data (ug,u1) € HY x H%_l(]Rd,TN)
that is small in the critical norm F% x H %_I(Rd, TN) for d > 4. The target manifold N
is assumed to have bounded geometry. Their main result is a proof of the existence of a
unique global solution, (u,u) € CO(]R; H%) X C’O(]R; H%_l). Existence is deduced by way of

the following global a priori estimates for the differential, du, of the wave map:

<
HdU||L?0H%_1 +lldullpprze S uoll g + lluall gy

T

In order to prove the above estimates, Shatah and Struwe exploit the gauge invariance
of the wave maps system and introduce the Coulomb frame. This allows one to derive a
system of wave equations for du that is amenable to a Lorentz space version of the endpoint
Strichartz estimates proved in [34]. The connection form, A, associated to the Coulomb
frame on the vector bundle ©*T'N appears in the nonlinearity of the wave equation for du,
and estimates to control its size are crucial to the argument. The Coulomb gauge condition
implies that A satisfies a certain elliptic equation, and it is this structure that enables the

proof, for example, of the essential L%Lgo estimates for A, see [69, Proposition 4.1].
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Here, we consider the Cauchy problem for wave maps v : R x M — N, where the
background manifold (M, g) is no longer Euclidean space. We follow the same basic argument
as in [69] and derive a wave equation for the u*T'N-valued 1-form, du, using the Coulomb
gauge as our choice of frame on w*T'N. As the geometry of (M, g) is no longer trivial,
the resulting equation for du is, in its most natural setting, an equation of 1-forms. In
coordinates on M, we can rewrite the equation for du in components, obtaining a system of
variable coefficient nonlinear wave equations. This is the content of Section 2.4.

The main technical ingredients in [69] are elliptic-type estimates for the connection form
A, and the endpoint Strichartz estimates for the wave equation used to control the L H § _1ﬁ
L%L?Cd norm of du. In order to proceed as in [69], but now in the setting of a curved
background manifold, we will need replacements for each of these items.

In what follows, we restrict our attention to the case that the background manifold
(M, g) is (R*, g), with ¢ a small perturbation of the Euclidean metric, as in this case we have
suitable replacements for the technical tools used in [69]. Here we view the equations for
the components of connection form, A, as a system of variable coefficient elliptic equations
and prove elliptic estimates via a perturbative argument; see Proposition 2.3.2. We employ
several tools from the theory of Lorentz spaces to prove the crucial L% L3¢ estimates for A.

In order to have suitable Strichartz estimates, we tailor our assumptions on the metric
g so that the variable coefficient wave equations for du are of the type studied by Metcalfe
and Tataru in [57]. We deduce a Lorentz refinement to the Strichartz estimates in [57], see
Section 2.8 below, which we use to prove global a priori estimates for du in Section 2.5.

The global-in-time Strichartz estimates for variable coefficient wave equations in [57]
that we use in the proof of the a priori estimates for du have emerged from Tataru’s method
of using phase space transforms and microlocal analysis to prove dispersive estimates for
variable coefficient dispersive equations. In the case of the variable coefficient wave equation,

the Bargmann transform is used to construct a parametrix that satisfies suitable dispersive
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estimates. Localized energy estimates are then used to control error terms when proving
estimates for the variable coefficient operator. We refer the reader to [85, 86, 88, 87, 89, 90]
and of course to [57], for more details and history. A very brief summary is included in
Section 2.8.

Our main theorem is a global existence and uniqueness result for the Cauchy problem
for wave maps in this setting, with data (ug,u1) that is small in the critical norm H g X

- d
H271 (M, TN). The precise statement of the result is Theorem 2.1.1 below.

2.1.1 Geometric Framework

We set (M, g) = (R*, g) with ¢ a small perturbation of the Euclidean metric on R*, satisfying
the following assumptions: Let ¢ > 0 be a small constant, to be specified later. We will

require

lg = gollpe < (2.1.1)
199l a1y S € (2.1.2)
1079 p21ray S & (2.1.3)
10¥ gl p2gey < 00 for k>3 (2.1.4)

where gg = diag(1,1,1,1) is the Euclidean metric on R* and Lp’q(]R4) denotes the Lorentz
space. Assumptions (2.1.1)—(2.1.3) are needed in order to prove the elliptic estimates for
the connection form, A, associated to the Coulomb frame in Section 2.3.1. Note that these
assumptions are consistent with, and are, in fact, stronger than the weak asymptotic flatness

conditions specified in Metcalfe and Tataru [57], namely

sup [ [029(2)| + []199(2)| + lg(x) — g0l < ¢ (2.1.5)
jeZ x|~
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This will justify our application in Section 2.5 of the Strichartz estimates for variable coeffi-
cient wave equations deduced in [57].

The assumptions in (2.1.4) are needed in order to establish the high regularity local
theory for wave maps. This theory will be used in the existence argument in Section 2.7.

We will also record a few comments regarding the assumptions on the target manifold
(N,h). We will assume that (N, h) is a smooth complete Riemannian manifold, without
boundary that is isometrically embedded into R™. Following [69], we also assume that N
has bounded geometry in the sense that the curvature tensor, R, and the second fundamental
form, .S, of the embedding are bounded and all of their derivatives are bounded.

In the argument that follows, we will assume that either N admits a parallelizable struc-
ture or that N is compact, as we will require a global orthonormal frame for TN in our
argument. Such a frame does not, of course, exist for a general compact manifold. However
if N is compact, by an argument in [32], we can avoid this inconvenience by constructing
a certain isometric embedding J : N < N where N is diffeomorphic to the flat torus T™
and admits an orthonormal frame. This embedding J is constructed so that w is a wave
map if and only if the composition J o u is a wave map, see [32, Lemma 4.1.2]. This allows
us to work with J ow : M — N instead of with u. Hence we can assume without loss of

generality that the target manifold N admits a global orthonormal frame é = (é1,...,ép)

for the tangent space T'N.

2.1.2 Main Result

The initial data for the Cauchy problem, (u,)|t—o = (ug, u1), can either be viewed intrin-

sically or extrinsically. In the extrinsic formulation, we will consider initial data

(ug,u1) € (M,g9) = TN (2.1.6)
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by which we mean ug(z) € N — R™ and uy(z) € T;,(,) N — R" for almost every x € M.
And we say that (ug,u1) € HSx HS=V(M; TN) if ug € H*(M;R™) and ug € HS~H(M;R™).
The homogeneous spaces HZ x HE~L(M; TN) are defined similarly. For the definition of the
spaces H*(M;R"™) we refer the reader to Section 2.9.1, or to [31].

To view the data intrinsically, we will put to use the parallelizable structure on T'N. Let
our initial data be given by (ug,u1) where ug : M — N and uy : M — ujTN with uy(x) €
T uO(x)N . Observe that ujT'N inherits a parallelizable structure from T'N, see Section 2.3,
and let e = (eq,...,ep) be an orthonormal frame for «*T'N. Since dug : TM — u*T'N
we can find a u*T'N-valued 1-form gy = g{eq such that dug = gfeq. Similarly we can find
g} © M — R such that u; = gfeq. We then say that (ug,uy) € Hf x Hi Y(M;TN) if
a5 € HS 1 (TM;R) and qf € H5 1 (M;R) for each 1 < a < n. These norms are further
discussed in Section 2.9.1. Again, the homogeneous versions H 7 X Hf_l(M ; TN) are defined
similarly.

In Section 2.3.2, we show that if we choose the frame e to be the Coulomb frame, see
Section 2.3, then the extrinsic and intrinsic approaches to defining the homogeneous Sobolev
norms of our data (ug,uq) are equivalent. This will allow us to use both definitions inter-
changeably in the arguments that follow.

Also in the appendix, Section 2.9.1, we show that the “covariant” Sobolev spaces
HS(M; N), with (M, g) = (R, g) with the metric g as in (2.1.1) — (2.1.4) are equivalent to
the “flat” spaces H*((R*, go); N) with the Euclidean metric gy on R*. Hence in what follows
we can, when convenient, ignore the non-FEuclidean metric g for the purpose of estimating
Sobolev norms, replacing covariant derivatives on M with partial derivatives and the volume
form dvoly with the Euclidean volume form.

We can now re-state the main result in this chapter; see Theorem 1.1.1.

Theorem 2.1.1. Let (N,h) be a smooth, complete, n-dimensional Riemannian manifold

without boundary and with bounded geometry. Let (M,g) = (R* g) with g as in (2.1.1)~
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(2.1.4) and let (M,n) = (R x M,n) with n = diag(—1,g). Then there exists an cq > 0 such
that for every (ug,u1) € H> x HY((M, g); TN) such that

luoll g2 + llull g1 < €0 (2.1.7)

there exists a unique global wave map, u : (M,n) — (N, h), with initial data (u,)|—g =
(ug, u1), such that (u,i) € CO(R; H2(M;N)) x CYR; H'(M;TN)). Moreover, u satisfies

the global estimates
Idull ey + 1l 2.5 <o (218)

In addition, any higher reqularity of the data is preserved.

We will use a bootstrap argument to prove the global estimates (2.1.8). In what follows
we will make the assumption that there exists a time 71" such that for a wave map u with
data (ug,u1) as in (2.1.7), the estimates in (2.1.8) hold on the interval [0,7"). That is, we

have

Il e o sty *+ Il 2oy S 0 (2.1.9)

We will use this assumption to prove the global-in-time estimates (2.1.8).

Remark 1. The local well-posedness theory for the high regularity Cauchy problem for (1.1.5)
is standard. For example, with (M, g) = (R%, ¢) for a smooth perturbation g as in (2.1.1)-
(2.1.4), if we have data (ug,u1) € H®x HS~(M; TN) for say, s > 4 = %—1-2, then the Cauchy
problem for (1.1.5) is locally well-posed. This can be proved using H® energy estimates and
a contraction argument. The proof relies on the fact that H S(]Rd) is an algebra for s > %,
and can be found for example in [68].

Remark 2. We have only addressed the case d = 4 case here because this is the only dimension
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where we have applicable Strichartz estimates. In dimension 3, the endpoint L%Lgo estimate
is forbidden. In higher dimensions, d > 4, the initial data is assumed to be small in HSxHs1
with s = %, but the estimates in [57] only apply when lower order terms are present if we
have s = 2 or s = 1, see [57, Corollary 5 and Theorem 6]. This leaves d = 4 as the only
option, as here % = 2.

2.2 Uniqueness

We use the extrinsic formulation (1.1.5) of the wave maps system to prove uniqueness. The
argument given for uniqueness in [69] adapts perfectly to our case and we reproduce it below
for completeness.

Suppose that (u, %) and (v, d) are two solutions to (1.1.5) of class H? x H'((R%, ¢); TN)

such that
(u, @)]t=0 = (v, 0)|¢=0 (2.2.1)
In addition, assume that
||duHL§L§ < 00, ||dv||L§L§C < 00 (2.2.2)
Set w = u —v. Then w satisfies

Opw = —n*?[S(u) — S(v)](Bau, Igu) — n°’S(v)(dau + dav, dgw)
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By considering the pairing <D77w, w> and integrating over M we obtain

spldula = [ (n°2150) = )@ 050). 0} /Iglda

+ / <n0‘ﬁ5(v)(8au + Oqv, 8ﬂw),w> Vgl dz
R4
=1I(t)+ 11(t)
Using that S and all of its derivatives are bounded we have

(1) < / dul? w] |duw| do
R4
< Nl el pallde ] 2

2 2
S lldull7slldw]| 72

with the last inequality following from the Sobolev embedding H'(R*) — L4(RY).

To estimate II(t), we exploit the fact the S(u)(-,-) € (T, N)+ which gives

(S(u) (s -), ur) = (S() (), ) = 0.
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This implies that we can rewrite

‘<77a65(v)(80‘u + Oav, dgw), w>‘ = ‘<77a65(v)(5au + 0av, dgw), u>’
— [(15(0) = S())(@ut+ Ou0, ). )

< (1718 (0) = S()](@an, Ggw), i)
+|(n*P15(0) = $(@)] (Oav, Ogw), 0)]
S (ldul* + |dof?) |w] |dwl
Hence we have
L)) S (ldulls + ldollFs)lwl palldwll g2 S (ldul7s + lldv] 7s) | dwl]?
~ L L L L~ L8 L8 L2

Putting this together we have

1d, . o

s—lldwll7s S (ldullys + [ldoll7s)lldwl7
2 dt

L2~
Integrating in ¢t and applying Gronwall’s inequality gives us the uniform estimate
2 2 2 2
Jdwl2oo g2 < I (@)]3 - exp(CCldulZo s + ldv]2s 1))

which implies uniqueness since dw(0) = 0.
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2.3 Coulomb Frame & Elliptic Estimates

We follow [69] by exploiting the gauge invariance of the wave maps problem and rephrasing
the wave maps equation in terms of the Coulomb frame. As discussed in Section 2.1.1, we
can, without loss of generality, assume that T'N is parallelizable, and we choose a global
orthonormal frame é = {€7,...,én}. If u: (M,n) — (N, h) is a smooth map, then we can
pull back € to an orthonormal frame € = € o u of u*T'N. Now, let B : R x M — SO(n).
With B we can rotate this frame over each point z € R x M and obtain a new frame

e=(e1,...,en), with e, given by

Observe that we can express the «*T N-valued 1-form du in this new frame by finding 1-forms

q* = ¢Adx®™ where ¢2 = u*h(0qu, eq), and writing

du = ¢%eq (2.3.1)

For this frame e we have the associated connection form A. A = (Ay) is a matrix of 1-forms

obtained in the following way. Given the frame e, we obtain for each s € R a map

Deq : T(T({s}xM)) —» T(u*TN)

X — DXea

where D is the pull back connection on u*T'N and where for a vector bundle £ — M,
['(E) denotes the space of smooth sections. Equivalently, we can view De, as a section of

T*M @ u*TN. We can express this map in terms of the connection form A which can be
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viewed as the matrix of 1-forms so that

Dea = A2®eb

Deq(X) = Dyeq = A2 (X)ey

Observe that this is the same as viewing Deg as a G)-tensor on T*"M @ u*T'N — M in the

sense that Dey : TM x u*T*N — R is a bilinear map over C°°(M) . Then we have that
AV = W R(AS @ e, ep)

where u*h is the metric on «*T'N. In local coordinates, AZ is given by Agvad:co‘ where the
coefficients of A% are defined by Aga = AY(9,). Hence if X is given in local coordinates by
X = X0, we have that Dxe, = XO‘Agjaeb.

One should also note that for a fixed coordinate o, the matrix (Al?,o) is antisymmetric.
That is, Ag,a = —Agja. To see this, simply differentiate the orthogonality condition of our

orthonormal frame, h(eq, ep) = d4p. This gives

0= D (h(eq,ep))
= h(Deg, ep) + h(eq, Dep)

= A + AY

The curvature tensor, F, on «*T'N can be represented in term of the connection form A.
Viewed as a 2-form, F'is given by F' = dA+ AN A. We can also represent F' in terms of the
curvature tensor on T'N. In local coordinates, F' is given by Fi,g3 = R(u)(0au, dgu).

As in [32, Lemma 4.1.3], we choose our rotation B so that at for each s € R, B(s, )
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minimizes the functional

n/‘ j{: g1 (A%(s), AL(s)) dvol,,

a,b=1

/ S gL (A, (9) Vgl de

a,b=1

This gives us a frame e that we call the Coulomb frame. The Euler-Lagrange equations for

this minimization problem are given by

1
——0a(/19l9*" Ag) =0 (23.2)

Vol

The above equation implies that A = 0 since the exterior co-differential, §, on 1-forms is

given in local coordinates by

1
—0A = —=04(\/]glg*" Ag) = 0 (2.3.3)

Vol

Since the Hodge Laplacian A on M is given by A = dd + dd, (2.3.3) implies the following

differential equation of 1-forms for A
AA=06dA

Using the fact that the curvature form F satisfies F' = dA+ A A A we can rewrite the above

equation for A as

AA=6(F — AN A) (2.3.4)
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In local coordinates we can write this in components as

where V& = go‘ﬁ V3 and V denotes the Levi-Civita connection on M.
Observe that (2.3.5) can be written as system of elliptic equations for the components of

A in local coordinates on M. We record this fact in the following lemma:

Lemma 2.3.1. The components of A satisfy the following system of elliptic equations

9"10:0; Ay — g"ITE0, Ay, + 0,970, A; — 0("TT) Ay

= g0 (Fjy — [4;,44]) (2:3.6)

where the Ffj = %gkm (@-gmj + 0;9im — 8mgl-j) denote the Christoffel symbols on M.

Proof. We first expand the left-hand side of (2.3.5)

(AA)y = (d3A)y + (5dA)y
= —0y(g" (V;A);) — g1(VjdA);,

(o) (W, (0, T

_ 4l <3j(dA)m — T;(dA)gy — Fﬁj(dA)ik)

oy~ (o)t 0 ()

+ g5 (dA) gy + TR (dA),
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Similarly, we expand the right-hand side of (2.3.5)

—[VI(F = AN Ay = =9"0; (Fiy = [Ai, Ay]) + 6T (Fiy = [Ag, Aq])

+ g% (Fy, — [As, Ag))
Equating the left and right hand sides and recalling that (dA);; = Fj; — [A;, A;] we have
g0, 4, + (0497 ) (VA4); = 910, (T AL ) = 60; (Fiy = [4i, 45))
which is exactly (2.3.6). O

2.3.1 Connection Form Estimates

With the metric ¢ as in (2.1.1)-(2.1.3) and ¢ small enough, we can use the elliptic sys-
tem (2.3.6) to establish a variety of estimates for the connection form A. In particular, we
can prove the following proposition which will be essential when deriving a priori estimates

for wave maps.

Proposition 2.3.2. Let (N, h) be a n-dimensional manifold smoothly embedded in R™ with
bounded geometry and a bounded parallelizable structure. Let u : (R x RY, n) — (N, h) be a

smooth map withn = diag(—1, g) and g as in (2.1.1)~(2.1.3). Moreover, assume the bootstrap

hypothesis,
sup ||dul| ;1 S €0 (2.3.7)
te[0,T)
Then, for each t € R, there exists a unique frame e = (e1,...,en) for w*TN with the

associated connection form, A, satisfying the uniform-in-time estimates
(1) [[Allpa S lldull g S €0
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() Al 18 < ldull gslldull g
(i) Al 58 S dull pslldull g

(i) Al e S )20z

as long as g is small enough. Also, the frame e, and hence A, depend continuously on t.

Above, L2 = LB2(R*) denotes the Lorentz space.

The estimates are deduced via a perturbative method as the assumptions in (2.1.1)-

(2.1.3) imply that the left hand side of (2.3.6) is a slight perturbation of the flat Laplacian

on R*. To simplify notation, in what follows we consider an elliptic operator of the form

L= g"0;0; +b0; +c
and the elliptic system
LAy = g"0;Gy
where Gy := F;p — [A;, Ay, and b and ¢ satisfy

1l Lo (rey S €
’|3b||L2,1(R4) Se

||C||L2,1(R4) Se

(2.3.8)

(2.3.9)

(2.3.10)
(2.3.11)

(2.3.12)

Since Ffj = %gkf(aiggj—l-@jg,-g—aggij), it is clear that the left-hand side of (2.3.6) is essentially

of this form.

We begin by recalling some basic elliptic estimates. Let gy denote the Euclidean metric
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on R* and let Ly := géj 0;0; denote the flat Laplacian on R*. Then we have

[Allyirs+20 S I L0Allirsp (2.3.13)

for every s € R and for every 1 < p < co. With (2.3.13) we can prove the following elliptic

estimates for the connection form A.

Lemma 2.3.3. Let A be the connection form associated to the Coulomb frame e. Then, if

€ 1s small enough, we have the following uniform-in-time estimates
(1) 1Al S WA Allle + 1 Fll e if 1 <p <4
(ii) | Allyir2p < A Alllypre + 1F e o 1 <p <2

where F' denotes the curvature tensor on u*TN.

Proof. Let Ly and L be defined as above and write LA = LgA + (L — Lg)A. Hence,
ILANirsp 2 [1LoAllyirsn = (L = Lo) Allyirs,s
We can use (2.3.13) to obtain
[Allyirs+2p S ILAlsp + 1L = Lo) Allyirsp (2.3.14)
for every s € R and for 1 < p < co. To prove (i), set s = —1 above to get

Al S NLAl -1 + 1L = Lo)Allyr-1,
<ot oc|,,, + 1b0ANG -,
-1 —1\92
+lleAlly 1, + || (57 = 95024

W_17p
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We claim that

This follows from the dual estimate

lo= ] S 111 (2:3.15)
To prove (2.3.15) observe that we have
-1 < -1
Hg fHlep,N (g f)‘Lp/

< -1 -1 ‘
s @, + |l @],
< Joa | L0+ o7 N0f1
S Iy

where the last inequality follows from (2.1.2) and the Sobolev embedding WP < L7 since

we have 1 = l,

m — 21£ Next, we assert that
p

|t =ghe?a| ., S ]?4] o, S eIl

Again, this follows from a duality argument. Observe that

-1 -1 -1 -1 -1 -1
19~ =95 Ml SN00™ =90 ) F i + 11007 =95 )OS
-1 -1 -1
S 109 pall Al + g™ = 99 )z |01l 1

S ellf iy

where the last inequality is again due to (2.1.1), (2.1.2), and Sobolev embedding since + =

T
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1
7

ZlI' To estimate ||b0A||W_Lp, we use Sobolev embedding, Holder’s inequality and (2.3.10).

p
Indeed,
16OAl[ 1 S 10OA]| s
S bl pal|OA| e
S el Al
where % = % — % Finally, we show that

leAllyi-1p S € 1Al

To see this, we again use Sobolev embedding and (2.3.12) to obtain

le Allyp—1p S lle AllLs
S llellz2lAllzr

S ellAllyg

— % Putting this all together we are able to conclude

[Allyir1p S NGlle + € 1Al

For e small enough, this implies (i), since G = F — A A A.

To prove (i) we set s = 0 in (2.3.14), and use (2.1.1), (2.3.10), (2.3.12), and Sobolev
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embedding to obtain

[All2p S a7 0G|, + 160Al o+ lleAlls + |7 - g5 )6%4]

P
S o7, 19G Lo + ol alOAl s + lel 1 All e
- Hg_l - 90—1HLOO 10%Al| v
SGlyip +ellAllyzp
where % = % — i and % = ]19 — % This proves (i7) as long as ¢ is small enough. O

With the elliptic estimates in Lemma 2.3.3 we can prove Proposition 2.3.2 (i), (i)

and (7i).

Proof of Proposition 2.3.2 (i). This will follow from Lemma 2.3.3 (7) with p = 2, a contrac-
tion argument at one fixed time, and then a bootstrap argument to conclude the uniform-in-
time estimates. We note that this argument also proves the existence of a unique Coulomb
frame e with the associated connection form A having small L* norm.

To carry out the contraction argument we fix a time ¢y and we set X to be the space
X:={AeH'nLY}
with the norm
Al x == l[Allza + [[All g
Of course by Sobolev embedding we have ||Al|x < [[All z1. We set X¢; to be

Xep = {A€ X : | Alx <0
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Define a map ® that associates to each A € X¢, the solution A to the linear elliptic problem

LA, = g"0;(Fj, — [Aj, Ay) (2.3.16)

The existence of such a solution follows easily by the method of continuity, the key estimate

here being
[All g1 S ILAl 1

which was obtained in the course of proving Lemma 2.3.3 (i) with p = 2. We will show that
if g and ||du 71 are small enough, then ® : X¢; — X¢ and that ® is a contraction mapping
on this space. To see that ® : X, — X, we use Sobolev embedding and Lemma 2.3.3 (4)

to obtain
1Al < 1Al S A Alll g2 + [1Fl 2

Recall that we can write F, 3 = R(u)(Jau, dgu) where R is the Riemannian curvature tensor

on N. Hence

A2 2
IAllx < 1A + Rl oo lldull 74

< 1| A% + Colldull%, < &g

as long as gy and ||dul| 5, are small enough. Next we show that ® : X5 — X, is a

contraction mapping. Let A1, A2 € X¢, and let AL, A2 be the associated solutions to (2.3.16).

36



Then A! — A2 is a solution to
L(A} — A}) = gY0;(|A}, A]] — [A2, A7)
and hence we have estimates

1A = A% x S (1A" = A% S N[A AT - (A%, A7 2
S A" = A2 pall A g+ A = A% 4] A% a

Seoll Al — A% x

which proves that ® is a contraction. Hence ® has a unique fixed point A = A(ty) which

solves (2.3.9) such that

[ACto)l 4 < €0

To obtain this estimate for all times ¢ with a uniform constant we again use Lemma 2.3.3 (7)

with p = 2 to obtain for any time

Az S WAl g S NA, Alll g2 + 1Fl 2

2 2
< AR+ dul,,

As long as ||dul| ;;; is small enough we can use a bootstrap argument, with [[A(to)|| < €o as

our base case, to absorb the HA||%4 term on the left hand side and obtain
Al L4 < 0
for all times ¢, as desired. O
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Proof of Propostion 2.3.2 (ii) and (iii). To prove (ii) we set p = % in Lemma 2.3.3 (1),

giving

A < ||[A, A F
A 5 S A AL s +IF) s

First we claim that [|[A4, A]HLg S 5HA||W1§ and this term can thus be absorbed on the
left-hand side above. Indeed,
1A, AJll s < (1Al 4l 0A]l s
L3
SeolAl g

where the last inequality follows from Sobolev embedding and the previous estimate
[Allza S e
Next we recall that F' = R(u)(du,du) and hence we have
Il s < lldullgslldullpa < lldull pslldull g
Putting this together implies gives
1401 g S leull pslidull g

as long as ¢ is small enough.

To prove (iii) we proceed in a similar fashion. We set p = % in Lemma (2.3.3) (4¢). This
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gives
4 < 4 4 E,
|| ||W2’% ~ ||[ ? ]HWl’% || ||Wl’%

First we observe that ||[A, A] HWl 8 < »5||A||W2 8 and this term can thus be absorbed on the

left-hand side above. In fact,

<
A, AJll s S 140A]

oo

< Al oAl

8
3

SeollAl s
where the last inequality follows from Sobolev embedding and the previous estimate
[Allp1 S e

Next observe that

Oy Fog = (OR(u))(0yu, Oqu, dgu) + R(u)(0y0au, dgu) + R(u)(Oau, Oy0gu)
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Hence by Sobolev embedding and the assumption that |[dul| ;1 < €0,

IOFIl s S N1OR(u)| oo lldul palidul palidull s + [ Bl oo |dul| p2lldul s

wloo

S lldull g lldul s
Putting this all together we have for small enough ¢ that
1Al 2.8 = lldull galidull s < lidu s

establishing (i7). O

To prove the pointwise estimates for the connection form in Propostion 2.3.2 (iv), we will
need a few facts about Lorentz Spaces, Lp’T(R‘l), including Sobolev embedding for Lorentz
spaces and the Calderon-Zygmund theorem for Lorentz spaces. These facts, along with a
few others, are reviewed in the appendix, see Section 2.9.3.

Now, again let Ly = géj 0;0; be the flat Laplacian on R* and let K = Ly I he convolution
with k(z) = ﬁ, the fundamental solution for Ly in R*. We can then write

A=KLA+ K(Ly—L)A

In order to prove Proposition 2.3.2 (iv), we will need the following preliminary estimates

for 0A.

Lemma 2.3.4. Let A denote the connection form associated to the Coulomb frame as in

Proposition 2.3.2. Then, the following estimates hold uniformly in time:

2
10Al a1 S lldull7s2 + €llAll oo
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Proof. With K, L and L as above, write
A=KLA+ K(Ly—L)A
Then

KLA = k+¢"9,G;

= (0;k) * gY Gy — k+ (0;9"7)G;
Then, formally, we have
Oa(KLA) = (0a0;k) * g G j — (0ak) * (8;9")G (2.3.17)

Since, 0y 0;k is a Calderon-Zygmund kernel, we can use the Calderon-Zygmund theorem for
Lorentz spaces, see Theorem 2.9.5 below, and Hoélder’s inequality for Lorentz spaces, see

Lemma 2.9.3 (i) below, to obtain

10adik) * ¢V Gll a1 S 197Gl pan
S A Alllpa + [1F [l paa

2 2
S ANz s + ldull7s 2

Using the fact that LP'" C LP® for r < s, Sobolev embedding for Lorentz spaces, see

Lemma 2.9.4 below, and Proposition 2.3.2 (iiz), we have

14lls2 S 1Al g8 S Al o8 < lldulgslldull g

WQ
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Then using the bootstrap assumption that [[du|| ;1 <1 we can conclude that
[Allzs2 S lldullzs < lldulls.2 (2.3.18)
Inserting this estimate above we can conclude that
1(Padik) * g7 Gl 11 S |l dull7s2
Next, we can use Young’s inequality for Lorentz spaces, see Lemma 2.9.3 (i7) below, to show

[(Bak) * (0:9)Gjll L1 S 10kl 4 N10ig" Gl 2
S 09" || paco |Gyl pan
2
S A% paa + [|F[[ an

< lldullF g2

where above we have used (2.1.2). Now, to deal with the error term K(Lg — L)A, write

(Log— L)A = 5ij8i8jA — bjﬁjA — ¢A where £ (z) = géj(x) — ¢%(x). Then we have

K(Ly— L)A=k+c"0;0;A — k* Y 0;A—k*cA

= (0;k) * €9, A — k* Oisij D;A—kxb0:A—kx*cA
J J J
Hence, formally we have

Oa(K (Lo — L)A) = (0a0;k) * €7 9; A — (9ak) * (9;)0; A (2.3.19)

— (Oak) * Y 0jA — (Bak) * cA

And as before, we use the Calderon-Zygmund theorem on the first term on the right-hand
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side above to get

1(0a0k) % €70 Al pax S 11€70;Allpan S ell0A]| pan

7

We estimate the other three terms on the right-hand side of (2.3.19) using Young’s inequality

for Lorentz spaces as follows

10ak) * (0ie)0j All a1 S HﬁakHL%,O@||(ai5ij)ajAHL271
S 1057 pacc 195A] pa

S ell0A] paa
the last inequality following from the fact that 8;c% = 9,¢" € L*°. We also have

[0k * cAll jar S 100k 3 . llcAll 2,

S llellp2allAll e

S ellAll pee
Above we have used the fact that
1 4 50/
|0ak| ~ —5 € L3(RY), |lcl[21 Se,

jaf? -

see Lemma 2.9.2; (i77) and (2.3.12). And lastly,

1(@ak) * b0 All a1 S ||3ak||L§,wllbj3jAllL2,1
S bl zaso 19A] L4

S elloAllpan
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which follows by (2.3.10). Putting this all together establishes that
10A]| 41 S lldullF 52 + el All oo + €| OA] pa
which, for small ¢, implies that
10A] o S lldull7s 2 + e[| All oo

as desired. ]
Now we are able to prove Proposition (2.3.2) (iv).

Proof of Proposition 2.3.2 (iv). Since A = KLA+ K(Ly— L)A, it suffices to show that for

every t the following two estimates hold:

IKLA| oo S lldull s (2.3.20)

1K (Lo — L)A| oo S lldull3s.2 + €l All o (2.3.21)
Observe that we can write

KLA = k+¢"9,G;

= (0;k) * gV G} — k+ (0;9")G}
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By Lemma 2.9.3 (iii), we have that

1(0ik) * g Gjllzee S N3kl 4 o ll9™ Gl Lo
S A Alllaa + [[Fll pan
2 2
S IA[7s2 + 1F1 740

< lldullZs
where we have used (2.3.18) in the last inequality. Similarly,

1k % (0;9")Gjll Lo S El 12001109 Gl 121
S 10i9" M| 1,00 1G5l 141
S G pan

S lldull s
This proves (2.3.20). To establish the error estimate (2.3.21) we again write

K(Ly— L)A=kxc"0;0;A— k+V9;A—kxcA
= 0ik x €90, A — k% (0;67)0;A — (9;k) * Y A+ k x (0;)) A
—kxcA
= 0ik x Y 0;A — Ok % (0;2") A + k * (9;0;")A — (9;k) VA (2.3.22)

+k*(8jbj)A—k*cA

where as before £ = géj — ¢, Now, we can use Lemma 2.3.4 to control the first term on
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the right above

|03k 0 Al o S k] 4 I8 Al
S elloAl s

< lldul7s + el Al e
The other terms in (2.3.22) are estimated as follows:

|07k  (9i) Al Lo S ||f9jk||L,§,,oo||(@'€”)AIIL471

S D Nig7 | paal|All e
J

S ellAll Lo
We also have

I+ (9305 oo S 1Kl 200118056 ) Al 2.
S 1050 g2 | Al oo

S ellAll e

The remaining terms are handled exactly in the same manner as these last two, using (2.3.10),
(2.3.11) and (2.3.12) as needed. This proves (2.3.21). Finally, putting everything together,

we have

Al oo S IK LAl oo + 1K (Lo — L)All oo S l|dull7s2 + ]| All oo
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which, for € small enough, gives
2
[AllLee S [ldul[7s,2
as claimed. 0

2.3.2  FEquivalence of Norms

In this section we again set (M, g) = (R*, ¢g) with g as in (2.1.1)-(2.1.4). Now that we have
settled Proposition 2.3.2, we can show that in the case that e is the Coulomb frame, the

extrinsic HZ norms of du are equivalent to the intrinsic H; norms of ¢ = ¢%e, where ¢ is

defined, as in (2.3.1), by
du = q%q

In the appendix, Section 2.9.1, we show using (2.1.1)-(2.1.4), that Hes((M, g); N) is equiv-
alent to HS((R*, go); N) and that HZS((M, g); N) is equivalent to Hf((R4, 90); N). Therefore,

it suffices to ignore the perturbed metric g on R* and show that

||duHHg((R4ng);N) = Hq||Hg((R4,go);N) (2323)

This will follow from Proposition 2.3.2. We proceed exactly as in [69, Section 4.3]. We

reproduce their argument here. For each ¢, since e is an orthonormal frame, we have

4
2 2 2
dul® = |q]* =) _ |gal
a=0

This implies that for 1 < p < oo that the LP norm of du is well defined and independent of

the choice of frame and coincides with the “extrinsic” LP norm of du. However, this “gauge”
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independence is in general lost when we consider norms of higher derivatives of du as the
connection form A appears when relating the intrinsic and extrinsic representations, and A,
in general, cannot be controlled. In the case of the Coulomb frame, we can use the smallness
provided by Proposition 2.3.2 to prove the desired equivalence of Sobolev norms. To see
this, let ¥ be a section of «*T'N whose components in terms of the Coulomb frame e are

given by

Y =Q%q = Qe (2.3.24)

By the previous discussion we have ||¢||;2 = ||Q|| ;2. Recall that we can represent covariant
derivatives of 1 in terms of the extrinsic partial derivatives of ¢ and the second fundamental

form by

Y = Dptp + S(u)(Opu, ) (2.3.25)

Using the representation (2.3.24) we also have

Dy = (0pQ + AQ)e (2.3.26)

Combining (2.3.25) and (2.3.26), we obtain

O = 0pQe + AQe + B(u)(pu, Qe)

We can then use Proposition 2.3.2 (¢), Sobolev embedding and the boundedness of the second
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fundamental form to obtain

0¥l 2 = 119Qll 2| S IIAQII 2 + l|lduQ]l 12 (2.3.27)
S ([Allpa + lldull L)l Q1 4

S €ll0Q]| 2

This proves equivalence of the H! norms of Q and 1. Interpolation then provides equivalence
for the H® norms for all 0 < s < 1. To conclude the equivalence of all the H® norms of ¢
and du, we apply the above argument to ¢ = Vidu for all ¢ € N.

Note that a similar argument also proves the equivalence of the H® norms of v if we

instead used covariant derivatives on uw*T'N. That is, we can also show that

D@l 2 = 0@ .2 = 19 gy = 1901y (2329)

We will use (2.3.28) in Section 2.6 when we prove that higher regularity of wave maps is

preserved by the evolution.

2.4 'Wave Equation for du

In this section show that for any Riemannian manifold (M, g), if u : R x M — N is a smooth
wave map, then we can derive wave equations of 1-forms for du. The wave equations of
1-forms imply a system of variable coefficient wave equations for the components of du. We
emphasize that the content of this section holds for any Riemannian manifold (M, g) and
not just the special case (M, g) = (R%, ¢) with g as in (2.1.1)-(2.1.4).

We begin by expressing du € F(T*M ® u*T'N) in terms of the Coulomb frame e as in
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Proposition 2.3.2, by finding «*T N-valued one-forms ¢ = godz® so that
du = ¢%eq (2.4.1)

Here ¢% = u*h (0qu,eq). Assuming that u is a wave map, we derive a wave equation of
1-forms for ¢. In what follows we let [J = dd + dd denote the Hodge Laplacian on p-forms

over M =R x M, where d is the exterior derivative on M and § is the adjoint to d.

Lemma 2.4.1. Let u : (M,n) — (N,h) be a smooth wave map. And let ¢ = du be the

representation of du in the Coulomb frame e as in (2.4.1). Then we have 6 ¢ = Ag , 770‘5 qg.

Proof. This follows from the fact that u is a wave map. We have that u is wave map if and

only if

LDoa( In|n0‘58ﬁU) —0 — D, ( \nlno‘ﬂqgea> =0

] VIl

Hence, we have

0=——D, ( Wl no‘ﬂqﬁea)

VIl

1

VAT

o ( [ q[%) ec + 0P qhAG e

Therefore,

as desired. ]
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Lemma 2.4.2. Letu : (M,n) — (N, h) be a smooth map and let ¢ = du be the representation

of du in the Coulomb frame as in (2.4.1). Then we have dg® = —Af A Q.

Proof. First we claim that Dq(dgu) — Dg(9au) = 0. To see this recall that

Da(aﬁu)k = 8a85uk + Fi-‘fj (u)@aujﬁﬁui

Then the claim follows from the fact that 8a85uk = 8ﬁ8auk and the fact that Ffj = F;‘:Z

The above implies that

Da(qg €a) — Dﬁ(qg €a) =0

Now, recalling that the A is the connection form for the frame e we have that

0= Da(qg ey) — Dg(dl ep)
= (aaq[% + Ag,a C_I% - aﬁqg - Ag,ﬂ qg) €c
= <8aq§ — 9340 + Ap o qg — A 3 qg> ec

— ((dg)as — (A5 A d")ga ) ec

and the lemma follows. O

Lemma 2.4.2 shows that in local coordinates on M we have that (dq)qp dz™ A daf =
(Ag/\qb)ﬁa dz®AdzP. We can abbreviate this by writing dg = —AAq. Hence, by Lemma 2.4.1

and Lemma 2.4.2 we obtain the following equation for ¢

Og = d(n®P Aaqg) + 6(=A A q) (2.4.2)
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This is a system of wave equations for the v*T'N valued 1-form ¢. In coordinates we can
express the operator § on a 2-form w in terms of Levi-Civita connection, V, on R x M as

follows
(dw)g = —(V*W)ap (2.4.3)
where V& = 770‘5 V3. Hence, in components, the equations for ¢ become
(Qa)y = 041" Aagp) + V(A A @)y (2:4.4)

By expanding the right-hand side of (2.4.4) we obtain the following equation for g.

Proposition 2.4.3. Let u : (M,n) — (N,h) be a smooth wave map. Let ¢ = du be the
representation of du in the Coulomb frame, e as in (2.4.1). Then q satisfies the following

wave equation of 1-forms, written in components as
(Og)y = Fya ¢" + Aa A% gy + (V¥ A)a gy +24% (Vag)y (2.4.5)

where F is the curvature tensor on uw*TN.

Remark 3. Proposition 2.4.3 essentially amounts to differentiating the wave map equation
(1.1.1) and then expressing the result in terms of the Coulomb frame. We emphasize that

in order to obtain (2.4.5) we must begin with a wave map wu.
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Proof. We begin by expanding the right-hand side of (2.4.4)

(Dg)y = (™" Aaqp) + VAN G)ary

= (031 Aags + 17 (05 4a)as + 1" Aa(Dyag) + 07 (VAN Q)

+n"? (AN V5a),,

= (0yn°P) Aaag + 0P (0yAa)ag + 17 Aa(9vas) + 1P (V5 A)a ¢y

— 1% (V3A)y ga + 1P Aa(V50)y — 1P Ay(V 50)a

Now, observe that
no‘ﬁ(ﬁyAa)qﬂ = 00 Avq” + Fyaq® — AyAaq® + AaAyg”
and by Lemma 2.4.1 we have
1A (Vg@)a = —Ay(VOq)a = Ay0q = Ay Aaq®
Also, Lemma 2.4.2 implies

1P Aa(9ya5) = 1P Aa(dq)~ s + 1P Aadsay
= P Aa(A N q) g,y + 1P Aadgay

- AaAaqu - AaA'yqa + naﬁAaan7
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Hence,

+(0y1°7) Aagg + 17705 Avq0 — 1P (V 5A)y 4o
Next observe that
1% 40050y = 1P Aa(Vgq)y + 1P AT Byl
and
n*P05A4q0 = 1°%(V 3A)100 = 1*7T%, Asga
Therefore,

(Og)y = Fyaq® + Aa A%y + (V¥ A)a gy + 2A%(Vag)y

+ (avnaﬂ)AOzQB + ﬁaﬂAaF%qa + naﬂF%VAJQOz
Finally, we claim that
(01°7) Aaqs + 17 AT % g0 + 1*T% Agga = 0 (2.4.6)

This follows from the fact that F%”Y = %7}06(8[37]75 + Oyngs — Osmp) and that &mo‘ﬁ =

—no‘5(077750)n05 , the latter statement being the general fact that for an invertible matrix
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G(x) we have 9;G~1 = —G719;GG™1. To show (2.4.6), we write

(%no‘ﬁ)Aaqg + naﬁAaFU 4o + naﬁra Asqa
By egl

= (07776“3 + 12T + 7P F%) Aagp

( 105759 7750> Anp

B
(

naalrlﬁé O'g&y + (97905 — (95907)) AaQﬁ (247)

170 (0595, + Oy Gos — (%gm)) Aagg

N~ N —

_l_

where the last line follows by swapping ¢ and ¢ in line (2.4.7) above. Therefore,

(Oq)y = Fyaq® + AaA%y + (V¥A)a ¢y + 2A%(Vaq)y

as claimed. 0

Next, we examine the left hand side of (2.4.2). We claim that for a 1-form q, we can
write g = § + Aq, where A denotes the Hodge Laplacian on the Riemannian manifold M

and § is the 1-form given in local coordinates by (¢, x) = o (t, ) dz®.

Lemma 2.4.4. We can express U in local coordinates on R x M by

(Hg)y = Gy + (Ag)y (2.4.8)

where here A is the Hodge Laplacian on 1-forms over M.

Remark 4. Despite the appearance of the 4 sign in expression (2.4.8), the expression [J =

25



8152+A is, in fact, a hyperbolic operator as we will see in Proposition 2.4.6. The sign in (2.4.8)

is simply due to our sign convention for the Hodge Laplacian A. Our convention is such
1

Vgl

that for a O-form f, Af = —Ayf where Ay = 05 ( |g|gij0j) is the Laplace-Beltami

operator on M.

Proof. Let n = diag(—1, g) denote the metric on M =R x M. In the following argument,
0 < a,B,7 < dwill be indices denoting coordinates on R x M and 1 < i, j < d will be indices
denoting coordinates on M. Also we denote by dps, (resp. dp7), the exterior differential,

(resp. co-differential), on M. It follows that

(Oq)y = (ddgq)y + (5dq)~
= =0y (1" (V30)a ) = 1°%(V 5da)ar
= 0, (=(Yo0)o + 97(0);) + (Voda)o, — 9 (V jda)
= 0y0pq0 — Oy (gij(va)i) +090ay — 950090 — 9" (Vdq);,
= Gy + (daronrq)y + (Sardara)y

=gy + (AQ)7
Above we have used the fact that the Christoffel symbols I" ‘; 3= 0 if either a, 3, or ¢ are
equal to 0. 0

We can derive a coordinate representation for the Hodge Laplacian A on 1-forms in terms

of the Laplace-Beltrami operator, Ay, on functions plus lower order terms.

Lemma 2.4.5. The Hodge Laplacian on 1-forms q can be written in coordinates as
(Aq)y = —Dgay + 29T Digy + 0y(97 T, (2.4.9)

Proof. Here we will let d and ¢ denote the exterior differential and exterior co-differential on
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M. Then,

(Agq)y = (dbq)y + (6dg)
= —0y (gij (VjQ)i> — 9" (V;da),,
= —(0v9") (V)i — 9"70,(0;q; — Thiap)
— 9" (9(dq)ir = T (dg)y — T, (dg)yr
= —(0,9")0q; + 04 (9" Th)ay, — 9" 05050, + g T4,

+ 9Tk 0y — 97T Opas

Recalling that Agqy = g 0;0;qy — g Fé‘?iakqv and that &Ygij = —gikﬁygkmgmj we have

then that

(Aq)y = —Agay + 0 (9" TH ) + 90, gmg™ 005 + 9T Dy — 91 O

Finally observe that
%) "I 9iq; + g9k 0iq — gUTE Og; = 291K 5
g ’ngmg qu g 7 19k g 7 kdi = 49 77 19k
Therefore
(Aq)y = —Agay + 207T% Dy + 04(g" T} ay

which is exactly (2.4.9). O

Combining the results of the previous two lemmas with Proposition 2.4.3 gives us a
system of nonlinear wave equations for the components of q. The following Proposition is
the main result of this section and will be used to prove a priori estimates for the differential,

du, of a wave map u.
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Proposition 2.4.6. Let u : (M,n) — (N,h) be a smooth wave map. Let ¢ = du be the
representation of du in the Coulomb frame, e as in (2.4.1). Then, the components of q

satisfy the following system of variable coefficient wave equations:

ij’y - AgQ’y + 2gijF§78iQk + a’y(gijrﬁjj)%

= Fyaq® + Aa A% gy + (VO A)q gy + 24% (Vaq)y  (2.4.10)
Expanding the term Agqy, the left-hand side of the above system becomes
('].7 _ gijaiaqu + gijrfj&kq”Y + QQijFiyaiQk + &y(QUFZ)Qk (2411)

2.5 A Priori Estimates

To derive a priori bounds for wave maps u we use the Strichartz estimates for variable
coefficient wave equations proved in [57]. We require a Lorentz space refinement of the
estimates in [57] obtained by a rephrasing in terms of Besov spaces and real interpolation.
Equation (2.4.10), the decay assumptions on the metric ¢ specified in (2.1.1)—(2.1.3), and [57,

Theorems 4 and 6] imply the following estimates for ¢:

9| foor2 < 1lal0]]l; H 2.5.1
||QHL§B§2+H Al psorz S N9l gy + 1H L1z2 (2.5.1)

where Hr = Fryq ¢“ 4+ Aq A% gy + (V¥ A) o gy + 2AY (Vq)~ is the nonlinearity in (2.4.10).
There are a few things to note. The first is that we have extended the result in [57] to
the case of a system of variable coefficient equations as ¢ is the solution to such a system.
However this extension is immediate as the methods in [57] allow us to treat the lower order
terms in (2.4.10) perturbatively, and the principle part of our operator is diagonal. Hence

the system of equations for ¢ in (2.4.10) falls directly into the class of equations that are
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treated in [57] because of the assumptions in (2.1.1)—(2.1.3). The second observation is that
a Besov norm appears on the left-hand side in (2.5.1). This refinement can be obtained by
an easy modification of the proof of Lemma 19 in [57]. For completeness we carry out this
refinement in Section 2.8.3.

To obtain a Lorentz space version of estimate (2.5.1) we use the Besov space embedding

into Lorentz spaces, see Lemma 2.9.4, with d =4, s = %’ q =6, p=_8and r = 2 which gives

=

BE(RY) — L32(RY)

o

)

This, together with the estimate in (2.5.1), gives

lall 282 + 190l gz S NalOlll a2 + 14N Ly 2 (2.5.2)

We use Proposition 2.3.2, together with Sobolev embedding to estimate the various terms

in H. In local coordinates on M, H is given by

Hy = anw qa + naﬁAa Ag gy + naﬁ(aﬁAa) Qv (2.5.3)

+ QHQBABFESW% + 2770‘BA5 (Oagy)

Hence, at any time t € [0,7"), (where T is chosen as in (2.3.7), for the sake of our bootstrap
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argument), we have

2
IH 2 < [1Fallz2 + 1A%l 22 + [[(0A)allp2 + T Agli 2 + [[Adq]| 2 (2.5.4)
2
S FNpallallps + 1A% sllallzs + [1OA] sllqllzs
Ul pallAll s llall s + 1Al zee [19all 2

2 2
< Nl Fgloalz + 1A g halzs + Nl selloul
X

2
S llallys2l94ll 2

where in the third inequality above we have used Proposition 2.3.2 and Sobolev embedding

to show that HA2HL§ SNAlzallAllzs S HAHW1 - This implies that we have the estimate

lall 20,7y, 282 + 190l e o.mys2) S 900l 1 2 (2.5.5)

2
L2((0,1):L) 194ll o< (jo,):2)

xT

+ 4l
S a0 gy 2

3
(191,300, *+ 10020102

By the equivalence of the extrinsic and intrinsic norms of du = ¢, see Section 2.3.2, we can

show

1[0l g1 2 S Nlduoll g + lluall g1 S €0 (2.5.6)

Hence as long as ¢ is sufficiently small, we can use a bootstrap/continuity-trapping argument

to absorb the cubic term,

3
(el 2o 252y + 19ll e o, 7)522))
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on the left-hand side in (2.5.5) and obtain the global in time estimate

lgllz2zs2 + 194l poop2 < llduoll g + llull g (2.5.7)

Using again the equivalence of the relevant extrinsic norms of du and intrinsic norms of ¢,
see Section 2.3.2, and recalling that ||dul[;278 < [|dul[;2782, we obtain the desired global a

priori bounds which we record in the following proposition:

Proposition 2.5.1. Let (M,n) = (R x R%, 1), where n = diag(—1,g), and g satisfies the
conditions (2.1.1)~(2.1.3). Let u : (M,n) — (N,h) be a smooth wave map with initial data

(ug,u1) satisfying (2.1.7). Then du satisfies the following global, a priori estimates
ldull 2z + lldull oo 1 < lduoll g + [lull g < 20 (2.5.8)

2.6 Higher Regularity

In this section we show that higher regularity of the data is preserved. In particular, we
show that if we begin with initial data, (ug,u1) € H® x H“1((R*, ¢), TN) for any s > 2,
such that (2.1.7) holds, then the H® x H*~! norm of the solution, (u(t),u(t)), to (1.1.1),
is finite for any time ¢. This will allow us to immediately deduce global existence of wave
maps with data (ug,u1) € H® x H5™1 satisfying (2.1.7) for s > 5, as any local solution to
the Cauchy problem can then be extended past any finite time, 7', using the high regularity
local theory with data (u(T"),w(T)), which is finite in H* x H5~! due to the results in this
section. We note that the a priori estimates, (2.5.8), and in particular the global control of
|| dul] 28 will play a key role in the argument. We formulate the main result of this section

in the following proposition:

Proposition 2.6.1. Let (M,n) = (R x R*,n), where n = diag(—1,g), and g satisfies the

conditions (2.1.1)-(2.1.3). Let u : (M,n) — (N,h) be a solution to (1.1.1) with initial
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data (ug,wy) that is small in the sense of (2.1.7). Suppose in addition that (ug,u1) €
HS x H571((R*, 9), TN) with s > 2. Then for any time T, the HS x HS~Y((R4, g), N) norm

of the solution (u(T),u(T)) is finite. In particular,

sup ||(u(®), @) s grs—1 < O [[ulO]ll s grs—1 (2.6.1)
0<t<T

where the constant, Cp, depends on T and €.

To prove Proposition 2.6.1, we begin by differentiating (1.1.1) covariantly. Let 1 <y <4
be a space index and let ¢ = du be the representation of du in the Coulomb frame. Then,

recalling that DaDﬂ - D[;Da = Faﬂ, we have

_p. (L o
0=D, <\/WDa(\Mn q@))

= — Dy (Diqt) + Dy <ﬁDa(\/Ega%>)

1
= — DtDtgy + ——=Dq( ‘9|gaﬂD7%)

Vol

1
+ F”yanaBQB + a’y(gaﬁ)DOzQﬁ + &y <—8oz( ‘g‘gaﬁ)> 4p

V1ol

This implies that ¢ satisfies the equation

D¢Dygy — Da(v/]9lg™" Dgqy)

L
Vgl

= Fyan™’qg + 04(9"”)Dags — 0, (gaf’rﬁp) g5 (26.2)
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Pairing this equation with g75th5 as sections of u*T'N — M and integrating over M gives

1
DiDygy — —=Da(y/199°° D), 975th5> Vgl dx
/M< Y \/m « Y4B
= /M <ano‘ﬂ q; 975th5> Vgl dz + /M <8~y(90‘ﬁ )Daqg, 975th5> Vlgldx
5
B /M <87 (gaprgp> a3, g7 Dt%> Vgl dx

Integrating the second term on the left by parts gives

1d
5iIDalEe == [ 6°%00(a7%) (Dya5. Dras) VIal da

+ /M gaﬁg% <DWQﬂ> FatQ5> \/de
+ /M naﬂgwi <F'yoz(m7 DtQ5> \/@dfc
+ /M 0,(9°%)9"° (Daag, Dias) /19l dx

— /M Dy <gapr§p) g7 (43, Digs) Vgl dx

where we define

IDq|)%2 = /M 97’ (Dyqr. Dsar) /19| dw (2.6.3)

+ /M 9* g7 (Dyqg, Dags) Vgl dz
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Hence,

1d

§EIIDQII%2 S 09l Lol Dall7s + 11l pallal pall Dall 2 (2.6.4)

2
+ 11079l pallall pall Dall g2

2 o2 2
S 1Dall72llallzs + 1Dgll72

Integrating in time gives

t
1Dg()]172 < 1Dg(0)]17 +C/O 1Da(s)|72(lla(s) 175 + 1) ds

Hence by Gronwall’s inequality we have

t
| Da(t)|[72 < 1Da(0)720xp <C/O (las)lI7s + 1)d8> (2.6.5)

< IDg(0)122ex0 (Cllal3aps +1))

< ||Dg(0) |7 2exp (C(z0 + 1))

The last inequality follows from the global a priori bounds, (2.5.8), proved in the previous
section.

As explained in Section 2.3.2, see (2.3.27) and (2.3.28), the inequality in (2.6.5) is equiv-
alent to a bound on (u, ) in H2(M;N) x HY(M; N). We thus obtain a bound on (u, )
in H2(M;N) x HY(M;N) by combining the above with the conservation of energy and
the simple L? estimates obtained by the fundamental theorem of calculus and Minkowksi’s

inequality
[u(®)ll 2 < lu0)|| g2 + tl|Orul@)] 2 (2.6.6)
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Remark 5. Of course, we already have proved an even stronger result than (2.6.5) in the

H1 < gq for any time ¢ where the

previous section where we showed that, in fact, ||q(¢)]|
wave map u is defined. We have gone through the trouble in proving (2.6.5) here in order
to establish the technique required to prove bounds on higher derivatives of ¢ below.

To obtain bounds in H3(M; N) x H>(M; N) and in H*(M; N) x H3(M; N) we proceed

in exactly the same manner as above, differentiating (2.6.2) two more times and obtaining

wave equations for Dyqs and for D), Dyqs. Roughly, these are of the form

DyDiDyqy — ——Da ( |g\gaﬁDﬁD,{q7) — Du(1* Fyaqp) (2.6.7)

L
Vgl

+ lower order terms

and

DyDiDyDygy — ——Da ( |g|gaf3D5D#D,qu) -

1
Vgl
= Dan(UaﬁFanﬁ) + lower order terms (2.6.8)
Proceeding as above, we pair (2.6.7) with g’“g”Y‘SDtDLq(;, and we pair (2.6.8) with

9" g™ g7 Dy Dy D,gs

and integrate over M to obtain for £/ = 1,2

0+1

1d 2 ko2

§§”D£+1‘IHL2 S Z 1D%ql|72 + 1D (nFq)|| 2| D gl 2 (2.6.9)
=1
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We claim that (2.6.9) implies the estimate

1d +1 +1
+1 12 k112 k112 2
510 allze Yo ID s+ [ DD al7s | llall7s (2.6.10)
k=1 k=1

In order to deduce (2.6.10) from (2.6.9), we need the following lemma:

Lemma 2.6.2. For any time t and for { = 1,2 we have

+1

ID‘0Fa)| 2 > I1D ]l 2llal7s (2.6.11)
k=1

Proof. In what follows we will freely use the equivalence of norms explained in Section 2.3.2.
For ¢ = 1, we have d(nFq) = OnFq+ ndFq + nF0q. Schematically, recall that we have
F = R(u)(q,q) and hence OF = (0R(u))(q,q,q) + 2R(u)(0q, q). Hence we have

l00EQ) g2 S Nomllalla’l| g + 10R@) po<llal ralla®ll o (2.6.12)
+ |1 R(u)|| oo 10all palla®|l 4

3 3 2 2
SN llza + lall galla”lpa + 1Dgll 2 llgll s

Finally we claim that ||¢3| ;4 < || D%l 2 ||q||%8. This follows from the multiplicative Sobolev

inequality, see [26, pg. 24]. Indeed,

3 3
3 2 1-6; 0; 2 2
e’ 4 < [T llallze: < TTIDall 2 " lal7s < I1D%al r2llalys (2.6.13)
1=1 1=1

1

as long as we set p% + p% + 55 = %, é = % and 01 + 09 + 3 = 2. For example, we can set

pi=12and 0; = 3 fori = 1,2,3.
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For / = 2 we have
O*(nFq) = 8?nFq+ nd*Fq + nFd>q + 20n0Fq + 20nFdq + 2ndFdq
And we have
0°F = (0*R(u))(q,q,q,q) + 5(OR(w))(q, ¢, q) + 2R(u)(9%q, q) + 2R(u)(dq, q)
Hence,

10*(nFa)1F S 0% nF a2 + 10n0Fqll 2 + |0 Foq| 12 (2.6.14)

+[nF%q| 12 + [nOFq|| 12 + In0*Fql| 2 (2.6.15)

The first three terms on the right-hand side of (2.6.14) all have derivatives hitting 7 and can

be controlled as follows

10*nFqll 2+ 1090F dl| 12 + 1onFdal 2 S 10%0] pall Fall g + 10nll Lo 10F gl 12
+ 1100l oo || FOq]| 2
S lla’llza + 1OR(w) || o< llgll palla® | pa
+ 1R oo l|0gl| 4l pa
+ 119gll 4 ll4° |

2 2
S 1D%allp2llall7s

where the last line is deduced via the same argument as in (2.6.12) and (2.6.13). To estimate

the first term in (2.6.15) we observe that

2 2 3 2
InF07qll g2 S N Fllpallo”qliza < 107l z2llall7s
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For the last two terms in (2.6.15) we have

1n0Fdq| 12 + 1n0* Fall 12 S 1OR) ()]l £ lla* Dl 2 (2.6.16)
+ |1 R(w)]| oolla(9)? | 2
+ [ R(w)]| Loollg®0%qll 2

2 5
+ [ R) (W) Loolla” | 2
< llall allall7 6l10gll s + llall zs1l0g)1?
~ N4l p4lldll 1611991 1,8 qilrs QL?
2 2 2 3
+ lallzsl0%allpa + llalizsllall7 2

The multiplicative Sobolev inequality then implies

1 2

.,
lallie < 1D°qll ;2 llallys

1 2

.,

194l s < 1Dl 72llall7s
1 1

g b1

19q]l 16 < 107l 7allall7s

1 2
L1
lall 12 S 1032, g3,

Plugging these into (2.6.17), and using Sobolev embedding followed by the a priori bounds

g/l foc g1 < €0, we get

2 3 2
[nOF0q| 12 + [n0"Fal r2 < llall gl D7all p2llall 7

3 2
S ID%qll p2llallys

Putting this all together we conclude

10200F )2 < (1102l 2 + 103l 12 ) lall2s
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as desired. ]
Now, inserting the conclusion in Lemma 2.6.2 into (2.6.9) we have for £ = 1,2

41
2dt” D g3, < [ D 1D )32 (IIQII%S + 1) (2.6.17)
k=1
Together with (2.6.4) this implies for ¢ = 1,2 that
€+1 41

th Z 1D q||%2 S Z ||Dkq||%2 <HQ||%8 + 1) (2.6.18)
k=1

Integrating in time, applying Gronwall’s inequality and using the a priori estimates

||QHL2L8 5 €0,
gives
/+1 /+1
ZIID’“ ()]|2, < ZIID’“ (0)]125 | exp (Cleg +1)) (2.6.19)

for £ = 1,2. This implies that the H3(M; N) x H?(M; N) (resp. H*(M;N) x H3(M;N))
norm of the solution (u, %) remains finite for all time assuming the data (ug, ;) is bounded
in H3(M; N) x H*(M; N), (resp. HYM; N) x H3(M; N)).

To deal with higher derivatives, s > 5, we note that (2.6.19) implies that
q(t) € H3 < L,

and hence we can bootstrap the preceding argument, in particular Lemma 2.6.2, to all higher
derivatives. For the global existence proof to come in the next section, we only need to do

the case s = 5 as we have a local well-posedness theory for (1.1.2) at this regularity, see for
69



example [68, Chapter 5.

2.7 Existence & Proof of Theorem 2.1.1

In this section, we the complete the proof of Theorem 2.1.1. We begin by establishing
the existence statement in Theorem 2.1.1. The argument here follows exactly as in [69].
As explained in Section 2.9.2, we can find a sequence of smooth data (ulg,ulf) e C™ x
C(M;TN) such that (uf,uf) — (ug,u1) in H* x HY(M;TN) as k — cc. Using the high
regularity, local well-posedness theory, we can find smooth local solutions u* to the Cauchy

problem (1.1.1) with data (ulg,u]f) satisfying
k k
lugll g2 + lutll g < o (2.7.1)

for large enough k. Then, by the a priori bounds in Proposition 2.5.1 and the regularity

k

results in Proposition 2.6.1, these local solutions u"” can be extended as smooth solutions

of (1.1.1) for all time satisfying the uniform in %, global-in-time estimates

k k k k
ldu™ || oo 1 + ldu™l[ 28 S llugll g + llutll g < €0 (2.7.2)

k exists on the

for large enough k. To see this, suppose that the smooth local solution
time interval [0,7"). Then, by Proposition 2.5.1 and Proposition 2.6.1 we have, say, that the
H® x H* norm of (u*(T),a*(T)) is finite. Hence, we can apply the high regularity local
well-posedness theory again to the Cauchy problem with data (uF(T),4*(T")) obtaining a
positive time of existence, T7. By the uniqueness theory, this solution agrees with uk, thereby
extending u¥ to the interval [0, 7+ T}). This implies that " is, in fact a global solution, as
it can always be extended.

k

Now, by (2.7.2), we can find a subsequence, u" such that uF — u weakly in H120C. We
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also have

ldull poc g1 + ldull g2 S Nluoll gz + utll o S €0 (2.7.3)

By Rellich’s theorem, we can find a further subsequence so that duf = du pointwise almost
everywhere. It follows that u is a global solution to (1.1.1) with data (ug, u1). We have now

completed the proof of Theorem 2.1.1. We summarize the entire proof below.

Proof of Theorem 2.1.1. In Proposition 2.5.1 we established the global a priori bounds
(2.1.8) for smooth wave maps (u,u) with initial data (ug,u1) that satisfies (2.1.7). Now,
given data (ug,uq) € H2 x H'((R*, ), TN) satisfying (2.1.7) the above argument concludes
the existence of a global wave map (u, ) € CY(R; H? x H'). Proposition 2.5.1, and in par-
ticular the global control of the L%Li norm of du allowed us to deduce the global regularity
result, Proposition 2.6.1, which not only drives the existence proof above, but also shows
that higher regularity of the data is preserved. Finally, the global control of the L%Lg norm

of du validates the uniqueness proof in Section 2.2. O

2.8 Linear Dispersive Estimates for Wave Equations on a

Curved Background

In this section we outline the linear dispersive estimates for variable coefficient wave equations
established by Metcalfe and Tataru in [57]. We review a portion of the argument in [57] with
the necessary extensions needed to prove (2.5.1). It is suggested that the reader refer to [57]
when reading this section as here we detail only the parts where changes have been made
to suit our needs. In order to facilitate this joint reading we will try to use as much of the
same notation as possible. We begin with a brief summary.

We say that (p, p, q) is a Strichartz pair if 2 < p < 00, 2 < ¢ < 00, and if (p, p, q) satisfies
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the following two conditions

1 d d

D= = 2.8.1
PR el (2.8.1)
1 d-1 d—1

S R 2.8.2
p+ 2q — 4 (28.2)

with the exception of the forbidden endpoint (1,2, 00), if d = 3.
In [57], Metcalfe and Tataru prove global Strichartz estimates for variable coefficient wave

equations of the form

Pv=f (2.8.3)

v[0] = (vo, v1)
where P is the second order hyperbolic operator,
P(t,2,0) = —07 + 0a(a®P (2)0g) + b () + c(x) (2.8.4)

In fact, in [57] time-dependent coefficients are considered as well, but we will restrict our
attention to the time-independent case for our purposes. Here we assume that the matrix a

is positive definite and the coefficients a, b, ¢ satisfy the weak asymptotic flatness conditions

Z sup |z|? ’0%(2:)’ + |z||0a(x)| + |a(z) — go| < & (2.8.5)
jez lw~2

where gy denotes the diagonal matrix diag(1,...,1). And

> sup [af?[9b(x)| + [2] [b(x)| < & (2.8.6)
jez lx~27

4 2 ~
> sup ot fe(w)? <& (2.87)
jez lx~2
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Given the assumptions in (2.1.1)—(2.1.3), it is clear that our wave equation for ¢ in (2.4.10) is
of this form. Metcalfe and Tataru introduce the following function spaces in order to deduce
localized energy estimates and control error terms later on.

Let Sy denote the kth Littlewood Paley projection. Set A; = R x {[x| =~ 27} and

Acj=Rx{]z] 27}, For a function v of frequency 2% define the norm

k _1
ol =22 HUHL%@(A<—1@) +js>qu ™2 UHL%,:C(AJ') (2.8.8)

With this we can define the global norm

2 2sk 2
lol%es = 2% Sk, (2.8.9)
keZ

for —% <s< % The space X ¥ is defined to be the completion of all Schwartz functions

with respect to the X® norm defined above. For the dual space Y* = (X %)’ we have the

norm

1715 = > 22FIsefI, (2.8.10)
keZ

for —% <s< % We refer the reader to [57] for details regarding the structure of these

spaces.

With this setup, Metcalfe and Tataru are able to prove the following results:

1. Establish H* localized energy estimates for the operator P, see [57, Definition 2, The-

orem 4 and Corollary 5.

2. Construct a global-in-time parametrix, K, for the operator P, and prove Strichartz
estimates for this parametrix. Error terms are controlled in the localized energy spaces,

see [57, Propositions 15-17 and Lemmas 19-21].
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3. Combine the localized energy estimates with the Strichartz and error estimates for
the parametrix to prove global Strichartz estimates for solutions to (2.8.3), see [57,

Theorem 6.

To prove these results, Metcalfe and Tataru are able to make a number of simplifications
that allow them to treat the lower order terms in P as small perturbations and work instead
with only the principal part of P, denoted by P, = —8152 + Opa®P 93.

Let x; be smooth spatial Littlewood-Paley multipliers, i.e.

L=>_ (@), supp(x;j) C {2/ < Jo < 271}
JEZL

And set

X<j(@) = xp(x), Sj = Zsk

k<j k<j

We then define frequency localized coefficients

a?}f) =0 + > (S<ox<r—20)80a™” (2.8.11)
{<k—4

corresponding frequency localized operators

Py = —0% + aa(a?,f)ﬁg) (2.8.12)

used on functions of frequency k, and the global operators

P:=>" Pu)S (2.8.13)
keZ

In order to prove (2.5.1), we only need to make a small alteration to the proof of the
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Strichartz estimates for the parametrix, K. At first, the parametrix construction occurs on
the level of the frequency localized operator, Py, see [57, Propositions 15-17]. In particular,

they prove the following result.

Proposition 2.8.1 ([57], Proposition 17). Assume that € is sufficiently small, and assume
that f s localized at frequency 0. Then there is a parametriz Ky for P(O) which has the

following properties:

1) (reqularity) For any Strichartz pairs respectivel with < we
(i) (reg y) y pairs (p1,q1) resp y (P2, @2 a1 < g2,

have
0K fll o1 por i, S ||f||L,,f2Lq/2 (2.8.14)
¢+ L
(ii) (error estimate) For any Strichartz pair (p,q) we have

(Ploy%o — D llxs < 161 (2.8.15)

/ /
V'L
The next step is to move from these frequency localized parametrices to a construction

of a parametrix for P,, and this is where we make a slight alteration. To begin, Metcalfe
and Tataru prove that the operator P(O) in Proposition 2.8.1 can be replaced with P, see [57,
Lemma 10], on functions localized at frequency 0. To construct parametrices, K j» at any

frequency j, for P we rescale, setting
K;f(t,x) = 272 Ko(fy-i)(2t,272) (2.8.16)
where fo—;(t,z) = f(277t,279z). Next, set
K =) K;S, (2.8.17)

JEZ
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With these definitions it is straightforward to prove the following lemma, which is our
altered version of [57, Lemma 19]. Recall that the homogeneous Besov norm of a function

@ is given by
el s = [ D710l Lp)?
b,q X
JjE€EZ
Then we have

Lemma 2.8.2 (Besov space version of Lemma 19 in [57]). The parametriz K has the fol-

lowing properties:

(i) (regularity) For any Strichartz pairs (p1,p1,q1), respectively (pa, p2, q2) with g1 < qo

we have

10K I o1 - Snxs S S I L dl (2.8.18)
L B nX |3 |—s—p2L?2Lg2
(i1) (error) For any Strichartz pair (p,p,q), we have
(P = 1) fllys S I/ (2.8.19)

/ /
0|75 P LY L

Proof. We begin by extending the results of Lemma 2.8.1 to the parametrices K;. Observe
that 0K f(t,x) = 271K (fy-;)(27t, 2/x). Hence, for a function f localized at frequency j,

we have

T
10K 1l o _ 9=i9l iy q1)||8K0(f2_j)HLi>1Lg1

~ ||f2 ]H p2Lq2

i
/
)

(WAl
L,

2L



Therefore, by (2.8.1) we obtain

cod 1 od
0d(§+1 pl)”aKJfHLfngl < 23(2+1+p2)||f||Lp,2Lqé (2.8.20)
t L

for functions f localized at frequency j.
We also need to estimate [[0K; f|| x;- Let f again be localized at frequency j. Observe

that

1
. _ 1
2%||8Kjf||L%x(A<_j) — 9% </| ' \8Kjf(t,x)}2 d:cdt)

x| <277

i 1_d
_ 9i(-1 2)||8K0f2—j||L%x(A<0)

Therefore we can apply Proposition 2.8.1 to deduce

- d J f —
211)n% . ]
2](2 )22’|8K]f“l%7x(14<—j) ’S || 2 j”[péLq/?
t x

J(E+4)
=2 B f] o
LtzLx2

— 2| g

/
Lf2Li2
Similarly one can show for any £ > —j that
JEGHD) ||~ 2 J(§+1+p2)
D a2 okys| A,
L »(Ag) L2212

Hence,

10K fllx; S 27151 ,
t

/ /
q
2 Lx2
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Putting this all together we obtain the frequency j version of Proposition 2.8.1 (i):

270K fll por pan + 10K fllx; S 2”2||f||Lp/2 (2.8.21)
t

/
q
L2

The next step is to use the Littlewood-Paley theorem to sum up these frequency localized

pieces. As a preliminary step we observe that (2.8.21) implies that for each s

2j(s—p1) 2 2js 12, < 2j(s+p2) 2 29
2 10K FI 71 pan + 210K £ Ik < 2 ||f!|L§,/2L;,E/2 (2.8.22)
Then, we have
1
2 2
1O FIl oy o = ||| D 257|150 Ky f (2.8.23)
t Tq1,2 JEZL i</ L?cl )
Lt
1
2
25(s— 2
S D2 2% ok 8; | fm (2.8.24)
JEZL Lfl
1
2
25(s— 2
DI pl)H&KijfHLfngl (2.8.25)
j
3
275(s+ 2
< ZQ j(s p2)HijHLf'2L§'2 (2.8.26)
J
2
j 2
S| | o2 sy (2.8.27)
J LféLgé
SIS (2.8.28)

/ /
|3m|—s—ﬁ2Li’2ng

Above, (2.8.25), (2.8.26), (2.8.27) and (2.8.28) follow, respectively, from Minkowski’s inequal-

ity, estimate (2.8.22), the dual estimate to Minkowski, and the Littlewood-Paley theorem.
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Finally, we have

2\ 3
OK fllxs = | Y 2% (1S;0) " KyS,f (2.8.29)
JEZL (e Xj
1
2
] 2
< | Do 2ok s;fl, (2.8.30)
JEZL
1
2
2j(s+ 2
S22 IS g 0 (2:8.31)
JEL t o
S 1) (2.8.32)

/ /
0|72 LY L

where (2.8.32) follows from the dual to Minkowski’s inequality and the Littlewood-Paley

theorem. The proof of (2.8.19) follows exactly as in [57]. O

We can carry out the rest of the argument exactly as in [57] except with Lemma 2.8.2 in

place of [57, Lemma 19], to obtain the following Besov space version of [57, Theorem 6].

Theorem 2.8.3 (Besov space version of Theorem 6 in [57]). Let d > 4. Assume that the
coefficients a“3, b, ¢ satisfy (2.8.5), (2.8.6), and (2.8.7) with & sufficiently small. Let
(p1,p01,q1) and (p2,p3,q2) be two Strichartz pairs and assume further that s =0 or s = —1.

Then the solution v to (2.8.3) satisfies

||3U!|L5135—p1 100l xs S N0IONll sty grs + 11l (2.8.33)

vl
1.2 |0p| S TP2L 2 L2 4Y

(@31

To obtain (2.5.1) weset s =0, p1 = g, p=2,¢=06,py =0,pp =1 and g0 = 2 in (2.8.33)
giving

[ v]] ) S vlol gy po + 1 fllpap2 (2.8.34)

X3
B6,2
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We combine this which the energy estimates which correspond to s = 0, p;1 = 0, p = o0,

q=2,p2=0,p2=1,9 =2 and d =4 in (2.8.33) giving

ol S 190l 5oy z2R)) S

=
w
Soy
no

HU[O]HH1><L2(R4) + Hf”L%(R,(L%(Rﬁ) (2.8.35)

which is exactly (2.5.1).

2.9 Appendix

2.9.1 Sobolev Spaces

We have interchangeably used two different definitions of Sobolev spaces throughout this
chapter. The difference in the definitions arises from the different ways that we can view
maps f : M — N and their differentials df : TM — «*T'N. On one hand, we can take the
extrinsic viewpoint, where we consider the isometric embedding of N — R and view T'N as
a subspace of R"". Here we view f as a map M — R with values in N and df : TM — R™
with values in TN. On the other hand, we can view things intrinsically, and exploit the
parallelizable structure on TN. We outline these different approaches below, and show that
if we take the Coulomb frame on u*T'N these approaches are equivalent for our purposes.
Furthermore, we show that if (M, g) = (R% ¢) with ¢ as in (2.1.1)-(2.1.4) then all of the
following spaces are equivalent to those that would arise if we had set M to be R* with the

Euclidean metric.

Extrinsic Approach

Taking the extrinsic point of view, we consider maps f : (M, g) — (R™, (-,-)). Hence, we
can write f = (f1,..., f™) with the differential df = (df!,...,df™). For such f and for
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1 < p < 00, we define the norm

1

p
! dvolg> (2.9.1)
g

k m .
£l ep = ( v fe
We ;Z% ;/M’

1

k m P
=2 (Z (g o9 i) VT daz)
(=0 \a=1

where V¢ denotes the ¢th covariant derivative on M with the convention that VOf® = f¢,
see [31] . For example, the components in local coordinates of V f® are given by (Vf%), =

(df); = 8;f while the components in local coordinates for V2 f¢ are given by
(V2F")ij = 03 f* — Ffjf/?

We define Wek’p(M, R™) to be the completion of {f € C*°(M;R™) : ||fHWk,p < oo} with
respect to the above norm, (the subscript e here stands for extrinsic). We then define
Wf’p(M, N) to be the space of functions {f € Wf’p(M, R™) : f(x) € N, ae}. The

homogeneous Sobolev spaces Wek P(M:; N) are defined similarly.

Remark 6. The one drawback with this definition is that C'°°(M; N) may not be dense in
WLP(M; N) for p < dim M, for a generic compact manifold N. For example, in [66], Schoen
and Uhlenbeck show that f(z) = |‘%| e HY(B3;5?) cannot be approximated by C*° maps
from B3 — S? in H!(B3;5?), see [54] for a proof. This poses a potential difficulty for us
as we required the density of C*°(M,TN) in HY(M;TN) in order to approximate the data
(ug,u1) € H? x H'(M;TN) by smooth functions in our existence argument. Thankfully,

this difficulty can be avoided using the equivalence of the extrinsic and intrinsic definitions

of Sobolev spaces which will be argued below.

With (M, g) = (R%,g), with g as in (2.1.1)-(2.1.4), and ¢ small enough, we can show

that these “covariant” Sobolev Spaces Wf P((R4, g); N) are equivalent to the “flat” Sobolev
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spaces Wf’p((R4a (), V).

Lemma 2.9.1. Let (M, g) = (R, g) with g as in (2.1.1)~(2.1.4) and let 1 < p < co. Then
Wk’p((R4,g)) is equivalent to Wk’p(R4,go) where gg is the Euclidean metric on RY. In

particular, if f: R* — R™ then for every k € N we have

1% 71 oty = 1V* L o) (2:9.2)

Proof. As the above norms are defined component-wise for f = (f L f™), it enough to
prove the statement for functions f : (M, g) — R instead of for maps f: (M, g) — R™ with
values in N. We also will only prove this lemma in detail for a few easy cases, namely for
k= 0,1 and for k = 2,p = 2. These, in fact, include all the cases that we need. The other
cases follow by similar arguments.

By (2.1.1) it is clear that v/]g(x)| is a bounded function on R*. Hence, for every k we

have
k |P k |P
‘v f‘ Vgl dz = ‘v f‘ dx
R4 g R4 g

This proves the lemma for £ = 0. In local coordinates we have, for k = 1, that (Vf); :=
(df); = 0;f and |0f |3 = ¢"; f0;f. Letting gg denote the Euclidean metric we have, for p

even, that

[\ohst

p
2

V[P — 0fP = (970, £0;£) — (95 ;O )

.. § b
= (" — g0, £0,1) (90 f O F) 2 (9520 f O f)
/=1
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Hence by (2.1.1) we have

IV 1 gy~ 1081y | S [ 10117 d

For p odd we interpolate. This proves the case £k = 1. For k = 2,p = 2 we have in local

coordinates that
(V2f)ij = 03 f — Ffjaéf
where here Fé ; are the Christoffel symbols for (R*, g). We also have
V2] = g (2 ) (V2 e
Hence, using (2.1.1)-(2.1.2) and the Sobolev embedding we have

192122 g ) - ||a2f||iz(R4))

' / “fgﬂ — T%00f) O f —Thy0nf) — 9 3 (915.1) Opef) da

N

/Rﬁg’kg“ 96%65)( 0551 (e f) dz

—l—2)/R49ikgﬂ0ijfT%£8afda?

_|_

/R4 Zkgjéfa Oaf T8, 0 f da

S 2107132 gy + 192 F | p2qeeny T ey 19F N pa ey + 1913 gy 11 e

NOW, recall that F?j = %gab(ang] ‘I’ajglb —Obgw) Hence by (212), we have ||P||L4(R4) S €.

Using the Sobolev embedding H'(R*) < L*(R%) and the above inequalities we have

19212 g gy = 10 712 g0 | S €02 12 g

proving (2.9.2) in the case k =2, p = 2. O
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Intrinsic Approach

Next, we use the parallelizable structure on T'N to define “intrinsic” Sobolev spaces for maps
Y :TM — u*TN.

Let € = (é1,...,én) be a global orthonormal frame on T'N and let € = (éq,...,€"") be
the induced orthonormal frame on ©*T'N obtained via pullback. Now, let ¢ : TM — u*T'N
be a smooth map, i.e., 1 is a u*T' N valued 1-form on M. Then v can be written in terms of
the orthonormal frame € on «*T'N. The components of 1) in the frame é are then given by
P = (1, €q),+p, and each of these can be viewed as a 1-form on M, i.e., a section of T*M,
and can be written in local coordinates as ¢ = ¥ddx®.

One way to define the Sobolev norms of v is to ignore the covariant structure on u*7T' N
and say that 1) € Wik’p (M; N), (the index ¢ here stands for intrinsic), if all of the components,

Y@, are in WFHP(M;R). And we define

(2.9.3)

¢ k. alP
[ —ZW [ ;/M\w

n
— Z/M <92131...gm+1 I+ (Y w);ﬁ,...,ikﬂ(v 0, . Jk+1> Vgl dz
a=1

where V¥ denotes the kth covariant derivative on M. By the same argument as above, we
can show that in our case, with (M, g) = (R%,¢) and g as in (2.1.1)-(2.1.4), these spaces
are equivalent to the case where we have the Euclidean metric on R*, that is, there exist

constants ¢, C' such that

1054 Loty = IIV54° | Loan) (2.9.4)

The one glaring issue here, is that this construction will depend, in general, on the choice
of frame e. We can avoid this confusion though in the case where the frame e is the Coulomb

frame as in this case the intrinsic norms are equivalent to their extrinsic counterparts in the

84



cases we will be interested in. This issue was addressed in Section 2.3.2.

2.9.2 Density of C* x C®(M;TN) in H> x H*(M;TN)

We set (M, g) = (R*, g) with g as in (2.1.1)-(2.1.4). In the existence argument for wave
maps we claimed the existence of a sequence of smooth data (ulg , u]f) — (ug,u1) in H? x
H 1(]\/[ ;T'N). Here we show that such a sequence does, in fact, exist. That is, we show that
C>® x C®°(M;TN) is dense in in H? x H'(M;TN).

First, observe that C°(M; N) is dense in H2(M; N), see [7, Lemma A.12]. Hence we
can find a sequence of smooth maps ulg such that ulg — ug in H*(M; N).

Finding a sequence of smooth maps u]f : M — TN such that u]f(:c) € TUS(I)N ap-
proximating wy in H 1(M ;TN) is not as straightforward as we do not know a priori that
C®(M;TN) is dense in H}(M;TN). However, we can use the equivalence of the norms
HYM;TN) and H Zl(M ; TN) proved in the previous section to get around this issue.

Let e denote the Coulomb frame on uyT'N. Since uq is a section of ujT'N, we can find
one-forms ¢{ over M so that u; = gf'eq. By the equivalence of the norms He1 (M;TN) and
Hzl(M, TN), we see that vy € H(M;TN) if and only if ¢¢ € HY(TM;R). Since C* is dense
in HY(TM;R) ~ H'(R* R) we can find smooth (q%)l€ such that (qf)l€ — qf in HYTM;R).

Now, for each smooth map ulg : M — N we can find the associated Coulomb frame e¥ =
(e]f ,....el). We then define smooth sections ulf = (q%)kefj and by the equivalence of norms

explained in Section 2.3.2 we have u]f — up in H}(M;TN) as desired.

2.9.83 Lorentz Spaces

To prove the pointwise estimates for the connection form A associated to the Coulomb gauge

we need a few general facts about Lorentz spaces. We review these facts below. LP7(RY)
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functions are measured with the norm

< d
e = ([~ ror )

for 0 < r < oco. If r = 00, then

3=

1
1 f]lLp.oe = supt? f*(t)
£>0

where above we have

fH(t) = inf{a : dy(a) <t}

df(a) = meas{z : |f(z)| > a}

A consequence of real interpolation theory is that Lorentz spaces can also be characterized

as the interpolation spaces given by

LPT(RY) = (LP0, [PV, (2.9.5)
where 1 < pg < p1 < o0, pg <r < 0o and % = % + p%. We refer the reader to [4, Chapter

5.2] for more details.
Note that the LP>°° norm is the same as the weak-LP norm. Below we record some general

properties of Lorentz spaces that were needed in the proof of Proposition 2.3.2. We refer the

reader to [29], [4], [61], and [80] for more details.
Lemma 2.9.2. Suppose that 0 < p < oo and 0 <r < s < oo. Then

(i) LPP = [P
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(ii) If r < s then LP" C LP»®

1
(iii) If h: R% = R is defined by h(z) = —=, then h € L™,

|z
The proof of Lemma 2.9.2 follows easily from the definitions and can be found for example
in [29, Chapter 1.4.2]. We also needed the Lorentz space versions of Holder’s inequality and

Young’s inequality and the following duality statement.

Lemma 2.9.3. Suppose that f € LPU" and g € LP2"2 where 1 < p1,p2 < 00 and 1 <

r1,79 < 00. Then,
(i) 1l SUFlmeillglpmes if b =L+ L angd = 141

(i6) If * gllzor S Iflpovrillglzrars 0 < 3= L 4 L1 and

1 _ 1 1
P T

(iii) (LPTY = [PV for 1 < p < oo, 1 <r < oo and (LPY) = LPL™® for 1 < p < oo,

1, 1 _ 1,1 _
wher65+]3—1—1andT+Tl—1

To prove (i) above observe that (fg)*(t) < f*(%)g*(%), see [29, Proposition 1.4.5]. Then
apply Holder’s inequality. We refer the reader to [61] for the proof of (ii) above. And (iii)
is proved in [29, Theorem 1.4.17].

We also require Sobolev embedding theorems for Lorentz spaces which can be obtained

via real interpolation. A detailed proof can be found in [80, Chapter 32].

then

d 1 1
Lemma 2.9.4 (Sobolev embedding for Lorentz spaces). If 0 < s < — and — = —
q p q

QUl®

WSURTY) — LPURY) and By .(RY) < LP"(RY).

To give an idea of why Lemma 2.9.4 is true, we demonstrate a special case, namely that

H5(RY) — LP2(RY) (2.9.6)
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for % = % — 7. Observe that this is a strengthening of the standard Sobolev inequality which

says that H5(R?) — LP(R?) for 1% = % — 5 since LP2(RY) — LP(RY). The proof of (2.9.6)
relies on Plancherel’s theorem and real interpolation. Let F denote the Fourier transform.

Let f € H5(RY), which means that [£|* Ff € L?(R?). Also note that if 0 < s < % then
—s 4~ md
€177 € L™ (RY)
Hence, by Holder’s inequality for Lorentz spaces

I F W g2 = WHEF FLIET N2 S IHEF F Al 220 E

YISH

< 00
,00

for % = % + 5. Now recall that F~l. b 5 1% and F~1: L2 — L2 Therefore, by real

interpolation
F Lo L)ga = (L, L
which, by (2.9.5) is exactly the statement that
FLo a2y — LP2(RY)

where é =1- g and % = g and we notice that é —l—% = 1. Hence, with % = %—i—% we have

that Ff € L72(RY) which implies that f € LY 2(R?) where 4 =

5 — % which is exactly

D=

(2.9.6).

The LP and Besov space versions of this statement are slightly more complicated to prove
as they require additional facts from real interpolation theory and we refer the reader to [80]
for a detailed proof.

We also need the following version of the Calderon-Zygmund theorem for Lorentz spaces.

Theorem 2.9.5 (Calderon-Zygmund theorem for Lorentz spaces). Let T' be a Calderon-
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Zygmund operator. Then T : LP" — LP" for 1 <p < oo and 1 <r < oo,

1T fl Lo S (1 f]] o

where the constant above does not depend on 7.

This extension of the Calderon-Zygmund theorem is an easy consequence of the LP version

given the following interpolation theorem of Calderon, see [4, Theorem 5.3.4].

Theorem 2.9.6 (Calderon’s interpolation theorem). Let T be a linear operator and suppose

that

T . Lp17p — L(]l,OO

T . Lp27p — LQ2700

where p > 0. Then,

T:LP" — [9%
1 1-6 0 1 1-46 0
a510nga80<7"§8§00,p1#pz,q1#q2,—=( )+—, Cmd—zujL—for
p p1 P2 q Qn q2

g€ (0,1).
Proof of Theorem 2.9.5. Let T be a Calderon-Zygmund operator. To prove that T : LP9 —
(1-0) N 0

1
LP4 find py,po,0 so that 1 < p; < p < pg < 00 and — = —. Then we have
p p1 D2

T . [P1:P1 5 P10 gnd T : [P2:P1 — [P2:° gince

1T fllppree SNTfllzerer = T lzer S 1 fllzer = ([ f] Lpres

1T fllppzce ST fllzearve = T lze2 S 1 fllzpe = [[f]lr2we S NI f [ 2r2m

Therefore, by Theorem 2.9.6, we have T : LP9 — LP9 for every q > 0. O
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CHAPTER 3
3D WAVE MAPS EXTERIOR TO A BALL

3.1 Introduction

In this chapter, we begin our investigation of equivariant wave maps from 3 + 1-dimensional
Minkowski space exterior to a ball and with S® as target. To be specific, let B C R3 be the
unit ball in R3. We consider wave maps U : R x (R3\ B) — $3 with a Dirichlet condition on
OB, i.e., U(OB) = {N} where N is a fixed point on S3. In the usual equivariant formulation
of this equation, where 1 is the azimuth angle measured from the north pole, the equation

for the (-equivariant wave map from R3t! — §3 reduces to

Yt — Yrr — g@brw(ul)w =0 (3.1.1)
r 2r

We restrict to ¢ = 1 and r > 1 with Dirichlet boundary condition (1,¢) = 0 for all ¢ > 0.

In other words, we are considering the Cauchy problem

2 sin(2
wtt - ¢7’r - _¢7’ + (27/)) = 07 r > 17
r r

P(1,t) =0, Vt>0, (3.1.2)

—

¥(0) = (o, ¥1)

The conserved energy is

o0 02
E(W, i) :/1 %(w?+¢%+fﬁ#)r2dr (3.1.3)

Any 9(r,t) of finite energy and continuous dependence on t € I := (tg,t1) must satisfy
(00, t) = nm for all t € I where n > 0 is fixed.
The natural space to place the solution into for n = 0 is the energy space H := (H(% X
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L?)((1, 00)) with norm

1,912, = /1 T W20) + 92 2 dr (3.1.4)

Here H&((l, o0)) is the completion of the smooth functions on (1, 00) with compact support
under the first norm on the right-hand side of (3.1.4).

The exterior equation (3.1.2) was proposed by Bizon, Chmaj, and Maliborski [5] as a
model in which to study the problem of relaxation to the ground states given by the various
equivariant harmonic maps. In the physics literature, this model was introduced in [2] as
an easier alternative to the Skyrmion equation. Moreover, [2] stresses the analogy with the
damped pendulum which plays an important role in our analysis. Numerical simulations
described in [5] indicate that in each equivariance class and topological class given by the
boundary value nm at r = oo every solution scatters to the unique harmonic map that lies
in this class. In this chapter we verify this conjecture for ¢ = 1,n = 0. These solutions start
at the north-pole and eventually return there. For n > 1 we obtain a perturbative result
in this chapter. In the next chapter we prove the full conjecture for the higher topological

classes, n > 1.

Theorem 3.1.1. Consider the topological class defined by equivariance £ = 1 and degree
n = 0. Then for any smooth energy data in that class there exists a unique global and
smooth evolution to (3.1.2) which scatters to zero in the sense that the energy of the wave

map on an arbitrary but fixed compact region vanishes ast — 0o.

The scattering property can also be phrased in the following fashion: one has

(1, 1) (1) = (0, 1) (t) + oy (1) t — o0 (3.1.5)
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where (¢, p¢) € H solves the linearized version of (3.1.2), i.e.,

Ott — Prr — %@r + i—f =0,7r>1,¢(1,t)=0 (3.1.6)
We prove Theorem 3.1.1 by means of the Kenig-Merle method [36], [37]. The most novel
aspect of our implementation of this method lies with the rigidity argument. Indeed, in
order to prove Theorem 3.1.1 without any upper bound on the energy we demonstrate that
the natural virial functional is globally coercive on H. This requires a detailed variational
argument, the most delicate part of which consists of a phase-space analysis of the Euler-
Lagrange equation.

The advantage of this model lies with the fact that removing the unit ball eliminates the
scaling symmetry and also renders the equation subcritical relative to the energy. Both of
these features are in stark contrast to the same equation on 3 + 1-dimensional Minkowski
space, which is known to be super-critical and to develop singularities in finite time, see
Shatah [67] and also Shatah, Struwe [68].

Another striking feature of this model, which fails for the 2 + 1-dimensional analogue,
lies with the fact that it admits infinitely many stationary solutions @ (r) which satisfy
Qn(1) = 0 and lim; o0 @y () = nm, for each n > 1. These solutions have minimal energy in
the class of all functions of finite energy which satisfy the nm boundary condition at r = oo,

and they are the unique stationary solutions in that class. We denote the latter class by H,,.

Theorem 3.1.2. For any n > 1 there exists € > 0 small with the property that for any

smooth data (g, 1) € Hy such that

| (%0, ¥1) — (Qn,0)||3 <&

the solution to (3.1.1) with data (g,v1) exists globally, is smooth, and scatters to (Qn,0)

as t — oo.
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The same result applies as well to higher equivariance classes ¢ > 2, after some fairly
obvious modifications of the arguments in Section 3.5. However, for the sake of simplicity
we restrict ourselves to ¢ = 1. Scattering here means that on compact regions in space one

has (¢, ¥¢)(t) — (Qn,0) — (0,0) in the energy topology, or alternatively

(0, ) (t) = (Qn, 0) + (0, 01)(t) +03(1) t — 00 (3.1.7)

where ¢ solves (3.1.6). Bizon, Chmaj, and Maliborski [5] conducted numerical experiments
which suggest that Theorem 3.1.2 holds with ¢ = co. We prove this much stronger theorem
in the next chapter, completing the soliton resolution theory for this model. This requires
a completely novel approach however as the methods of this chapter do not seem to extend
to the cases n > 1. The main difficulty with this approach to a rigidity theory lies with the
coercivity of the virial functional centered at the harmonic maps @5,. Indeed, in Section 3.4,
we establish the global coercivity of the virial functional centered at zero. This hinges
crucially on the fact that the Euler-Lagrange equation of the associated variational problem
can be transformed into an autonomous system in the plane which we analyze by a rigorous
study of the phase portrait. For the nonzero (), we lose this reduction to an autonomous
system, making any rigorous statement about the Euler-Lagrange equation associated to the
virial functional centered at )y, very difficult. Furthermore, no explicit expression is known
for the @, which makes even the perturbative analysis — in and of itself useless for the
Kenig-Merle method — of this virial functional very non-obvious. Therefore the case n > 1

requires a different strategy from the one we employ here.
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3.2 Basic well-posedness and scattering

One has the following version of Hardy’s inequality in H'(1, c0):

/OO ¢2(r) dr < 4/00 ¢3(r)7’2 dr (3.2.1)
1 1

proved by integration by parts:

/OO V2 (r)dr +¢2(1) = =2 /OO iy (r)b(r) dr (3.2.2)
1 1

and an application of Cauchy-Schwarz. This shows in particular that & (J) ~ ||@E ||%_[ where

= (4, w) Another useful fact is the Strauss estimate:

) <20 2l gy V72 (323

which in particular implies that ||¢)|lcc < 2[[¢)|| 1. Since the nonlinearity in (3.1.2) is glob-
ally Lipschitz due to r > 1, energy estimates immediately imply the following global well-

posedness result. In what follows, ]Rfkl = R? \ B where B is the unit ball at the origin.

Proposition 3.2.1. For any (vg,v1) € H the Cauchy problem (3.1.2) has a unique global

solution

W e C(0,00); HY(1,00)), ¢ € C([0,00), L*(1,00)) (3.2.4)

in the Duhamel sense which depends continuously on the data. Moreover, E(1)(t)) = constant

and we have persistence of reqularity.

Proof. Just write the equation in Duhamel form and apply the standard energy estimate to
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obtain local well-posedness. To be more precise, we write

() = / Solt — (0, N())(s) ds.
sm(2¢(t r

7’

(3.2.5)
N@W)(t,r) == —

where Sy (t) is the linear evolution of the wave equation in Ry x R3, with a Dirichlet condition

at = 1 (everything can be taken to be radial, of course). By the conservation of energy

one has
150090 ll3 = 1(0) |4 (3.2.6)
whence
. . t
[Vl S 14(0) [l +/ [9(s)ll2 ds
0 (3.2.7)
SOl + 1 sup li(s)l2
O<s<t
So we can set up a contraction in the space L{°(I;H) where I = [0,7) and T is small

depending only on the size of ||@;(O)||7.[ The global statement therefore follows by energy

conservation. O

As in [68] we refer to these energy Duhamel solutions as strong solutions. For the scat-
tering problem the formulation (3.1.2) is less convenient due to the linear term in the non-

linearity:

sin(20) _ 20, sin(20) — 20 _ 2 0P (3.2.8)

2 2 2 2 2

The presence of the strong repulsive potential r% indicates that the linearized operator

of (3.1.2) has more dispersion than the three-dimensional wave equation. In fact, it has the
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same dispersion as the five-dimensional wave equation as the following standard reduction
shows.
We set ¢ = ru which leads to the equation

4 in(2 -2
Ut — Upp — ;UT + sin 7’1;25 = 0, 7>1,u(l,t)=0 (3.2.9)

The nonlinearity is of the form N(u,r) := u® Z(ru) where Z is a smooth function, and the
linear part is the d’Alembertian in Ry x R2.

To relate strong solutions of (3.1.2) with those of (3.2.9) we first note that
o o
/ V22 dr 2/ uZ(r)yrt dr (3.2.10)
1 1
via Hardy’s inequality and the relations
¢T:ru7~+u:rur+?

Therefore, the map H 2 1 — %J =€ H& x L2(R2) is an isomorphism and in what follows
we will use the notation H for both spaces without further comment. Second, there is the

following Strauss estimate in R2:

3
()] S Elul (3:2.11)

Proposition 3.2.2. The exterior Cauchy problem for (3.2.9) is globally well-posed in H& X

L2(]R£). Moreover, a solution u scatters as t — oo to a free wave, i.e., a solution v € H of

Ov=0,r>1,v(l,t)=0,Vt >0 (3.2.12)

if and only if ||u||g < co where S = L3([0,00); LS(RY)). In particular, there exists a constant
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d > 0 small so that if ||i(0)||g < 0, then u scatters to free waves as t — £o0.

Proof. By the global Strichartz! estimates of Smith-Sogge [72] for the free wave equation

outside a convex obstacle every energy solution of (3.2.12) satisfies

o] . S 7(0) [l (3.2.13)

1
.13
We claim the embedding W2 < LS for radial functions in 7 > 1 in R2. Indeed, one checks

via the fundamental theorem of calculus that W%,g — L3°. More precisely,

O <8 f 0 (3:2.14)

Interpolating this with the embedding L3 <+ L3 we obtain the claim. From (3.2.13) we infer

the weaker Strichartz estimate

1l 23 (ms L6 (m3)) S 19(0) 134 (3.2.15)

which suffices for our purposes. Indeed, applying it to the equation
Ou=u3Z(ru) = N(u), r>1

and estimating the inhomogeneous term in L% L%, implies for any time interval I > 0

- , 3
lell 3 z,28) + Nall Loz S N (O)lg + Mlullys 7.6 (3.2.16)

1. Due to the radial assumption and the simple geometry, one does not need to resort to the sophisticated
construction in [72]. Indeed, grazing and gliding rays cannot occur in this setting which is the main difficulty
in the general case and which is addressed by means of the Melrose-Taylor parametrix in [72]. For the radial
problem outside the ball one can instead rely on an elementary and explicit parametrix.
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By the usual continuity argument (expanding /) this implies
[@(0)]ly <6 = llulls <6

Moreover, the scattering is also standard. Indeed, denoting the free propagator in ]Ri with

a Dirichlet boundary condition again by Sy(t), we seek /(0) € H such that
u(t) = So(t)v(0) + 0g(1)

as t — o0o. In view of the Duhamel representation of @ and using the group property and

unitarity of Sy this is tantamount to

0(0) = @(0) + /000 So(—$)(0, N(u(s))) ds (3.2.17)

The integral on the right-hand side is absolutely convergent in H provided ||u||g < oco. The
necessity of the latter condition follows from the fact that free waves satisfy it, whence by
the small data theory (applied to large times) it carries over to any nonlinear wave that

scatters. ]

We remark that in the 1 formulation, the scattering of Proposition 3.2.2 means pre-
cisely (3.1.5), (3.1.6).

To prove Theorem 3.1.1 we therefore need to show that every energy solution ) of (3.1.2)
has the property that in the u-formulation ||u|g < co. This will be done by means of the

Kenig-Merle concentration-compactness approach [36], [37].

3.3 Concentration Compactness

In this section, we prove the following result.
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Proposition 3.3.1. Suppose that Theorem 3.1.1 fails. Then there exists a nonzero energy
solution to (3.1.2) (referred to as critical element) (t) for t > 0 with the property that the

trajectory

Ky = {4(t) | t >0}
15 precompact in H.

In the following section we then lead this to a contradiction via a virial-type rigidity
argument. To prove Proposition 3.3.1 we may work in the u-formulation of equation (3.2.9)
since the map u = 714 is an isomorphism between H in ]Ri and ]R::’, respectively.

To proceed, we need the following version of the Bahouri-Gérard decomposition [1]. As
before, “free” waves refer to solutions of (3.2.12). The following two lemmas are standard,

see in particular Chapter 2 of the book [59].

Lemma 3.3.2. Let {uy} be a sequence of free radial waves bounded in H = H& x L2(RD).
Then after replacing it by a subsequence, there exist a sequence of free solutions v/ bounded

in H, and sequences of times t‘% € R such that for %]?L defined by

un(t) = Y Wit +h) + k() (3.3.1)
1<5<k

we have for any j < k, ?fi(—tfl) — 0 weakly in H as n — oo, as well as
im [t — k| = 3.3.2
nll)néo [tn, — t,| = o0 ( )
and the errors %]?L vanish asymptotically in the sense that

10
. k

—00 N—0o0
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Finally, one has orthogonality of the free energy

linllF, = > 113, + 195115, + o(1) (3.3.4)
1<j<k

as n — 0.

: 10
Proof. Recall the Sobolev embeddings H(% (R2) < L3 NL>®(R2) for radial functions. More-
over, for any p € (%, 00) the embedding is compact. Since 75 is bounded in H&, interpolation
with these, as well as the Strichartz estimates from [72] implies that it suffices to bound the

remainder in L°LE for any fixed p € (—130, 00). Fix such a p. Let 40 := uy, and k = 0. If
k : k
" = limsu corp =0,
o p ||7n||Lt L

then we are done by putting 7£ = %Ii for all £ > k. Otherwise, there exists a sequence tffL eR
such that ny]n‘c(—t?]‘?b)HLg > vk /2 for large n. Since 7E(—tk) € H is bounded, after extracting
a subsequence it converges weakly in H, and 75(—@1‘:;) converges strongly in LQ(RE). Let v
be the free wave given by the limit

T N
ﬁEE;DVn( ty) ="(0)

> k. We repeat the same procedure inductively in £ > 1. As

By Sobolev ||Uk(0)||H&(R§) 2

before, let Sy(t) denote the free exterior propagator in H. If t% — tf:; — ¢ € R for some j < k,

then

FE(—tky = So(t), — t5)FE (—t),) — 0,
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weakly in H. To see this, it suffices to show that
(i) | #) =0 n— o0

for any Schwartz function 5 But one has

(Tr(—th) | ) = (Ah(=th) | So(th — th)@) — 0
since So(tf;; — t%)gg—> So(—c)gz; strongly in L2. Hence |t% — t7IfL| — 00 as long as @ # 0. Then

for all 7 <k,
TR (—th) = 7 (—th) — T (th — ) — 0

weakly in H. Indeed, if j < k then this follows from the inductive assumption, whereas for
7 = k it follows by construction.

To prove (3.3.4), expand (without loss of generality at t = 0)

a1 = || 3 @) +so)],
1<j<k

The cross terms are all o(1) as n — oo: for k > j # ¢, and with the scalar product in H,

(@ (th) | 7 () = (7 (0) | So(th — )7 (0)) — 0

o . , (3.3.5)
(@ (th) | 7E(0)) = (#7(0) | 7R (~th)) — 0

The first line of (3.3.5) vanishes as n — oo due to ||Sp(tt — t‘%)&”oo — 0 for any Schwartz
function gz; since \t% — t%\ — 00, by the pointwise decay of free waves with Schwartz data; as
usual this suffices since we can approximate @7 (0), 7¢(0) by Schwartz functions. The second

line vanishes by ?ﬁ(—t%) —0in H as n — oo.
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Finally, one uses (3.3.4) to conclude that v/ — 0:

limsup||ﬁn||’?q > g HWH%-[ 2 E (Vj)Q
n—00 - ;
j<k J<k

uniformly in k. The final inequality follows from the radial Sobolev embedding (in other
words, Sobolev embedding and compactness). Hence, lim sup,,_, o ||7Z| LR = VP 0, as

k — oo. O

Applying this decomposition to the nonlinear equation requires a perturbation lemma
which we now formulate. All spatial norms are understood to be on R2. The exterior

propagator Sy(t) is as above.

Lemma 3.3.3. There are continuous functions €y, Co : (0,00) — (0,00) such that the
following holds: Let I C R be an open interval (possibly unbounded), u,v € C(I; H&) N

CY(I; L?) radial functions satisfying for some A > 0

121 oo (r:30) + 191l oo (r20) + 0l L3(526) < A
llea(w)ll 23 (7, p2y + llea()l yr;r2) + lwoll p3r, sy < € < £0(A),
where eq(u) = Du+u3Z(ru) in the sense of distributions, and wy(t) := So(t —tg) (@ —¥)(tg)

with tg € I arbitrary but fived. Then

i =7 = ol ggecray + e ol gz, < ColA)e
In particular, ||“||L§(I~L6) < 00.
1=

Proof. Let X := L3LY and

wi=u—v, e:=0(u-—0v)+u3Z0ru)—v3Z(rv) =eq(u) — eq(v).
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There is a partition of the right half of I as follows, where dg > 0 is a small absolute constant

which will be determined below:

to <ty <---<tp<oo, Ij=(tj,tj11), InN(ty,o0)= (to,tn),

Il <0 (G=0....n—1), n<C(A5).

We omit the estimate on I N (—oco,ty) since it is the same by symmetry. Let w;(t) :=

So(t —t;)w(t;) for all 0 < j < n. Then

t
B(t) = Tp(t) + /t So(t — $)(0,e — (v+w)Z(r(v+w)) +v3Z(rv))(s) ds (3.3.6)

which implies that, for some absolute constant C7 > 1,

e = wollx (1) < 1w+ w)>Z(r(v +w)) = 02 Z(r0) = ell L 3 (337)

< C1(6% + Hw”%((jo))HwHX(Io) + (e

To estimate the differences involving the Z function we invoke its smoothness as well as the
fact that by radiality, ru and rv are bounded pointwise in terms of the energy of v and v,
respectively (which we assume to be bounded by A). Note that |wl| y(z,) < oo provided Ij
is a finite interval. If I is half-infinite, then we first need to replace it with an interval of
the form [tg, N), and let N — oo after performing the estimates which are uniform in N.
Now assume that C’15(2) < i and fix dg in this fashion. By means of the continuity method
(which refers to using that the X-norm is continuous in the upper endpoint of Ij), (3.3.7)

implies that [Jwl| x(z,) < 8C1e. Furthermore, Duhamel’s formula implies that

(31
W (t) — wp(t) = t So(t —$)(0,e — (v+w)Z(r(v +w)) + v3Z(rv))(s) ds
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whence also

1
w1 — woll x(r) S /t (e = (v + w)? Z(r (v +w)) + v° Z(rv)) (s) |2 ds (3.3.8)

which is estimated as in (3.3.7). We conclude that [|wi[|x®) < 8Cie. In a similar fashion

one verifies that for all 0 < j <n

lw —willx ) + lwjr1 —willx®) S lle = (v + w)>Z(r(v +w)) + UgZ(TU)HL%L%(Ij)
< 01(5(2) + ||w||%(([j))||w||X(I]) + Cie

(3.3.9)

where C1 > 1 is as above. By induction in j one obtains that

lewollx () + llwjllx@y < Cle V1<i<n

This requires that ¢ < £g(n) which can be done provided €¢(A) is chosen small enough.
Repeating the estimate (3.3.9) once more, but with the energy piece L{°H included on the

left-hand side, we can now bound the S(/)-norm on w. O

We can now apply standard arguments to prove the main result of this section. Without

further mention, all functions are radial.
Proof of Proposition 3.3.1. Suppose that the theorem fails. Then there exists a bounded
sequence iy, := (U, U1,,) € H with

ldnlly = Ex >0, ljunllg — o0

where u,, denotes the global evolution of @y, of (3.2.9). We may assume that E, is minimal

with this property. Applying Lemma 3.3.2 to the free evolutions of i, (0) yields free waves
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v) and times t% as in (3.3.1). Let U7 be the nonlinear profiles of (vj,t%), i.e., those energy

solutions of (3.2.9) which satisfy

lim |57 (t) — 07 (t) |l — 0

t—tlo
where limg;,_so0 t% = tgo € [—00,00]. The UJ exist locally around ¢t = tgo by the local
existence and scattering theory, see Proposition 3.2.2. Locally around ¢ = 0 one has the

following nonlinear profile decomposition

un(t) = 3 U3 (L +t)) + 45 () + k(1) (3.3.10)
j<k

where ||7%(0)|ly; — 0 as n — oo. Now suppose that either there are two non-vanishing v7,

say Ul, 1)2, or that

lim sup lim sup ||%]fb||% >0 (3.3.11)
k—oo N—00

Note that the left-hand side does not depend on time since %Ii is a free wave. By the

minimality of Ey and the orthogonality of the energy (3.3.4) each UJ is a global solution
d scatters with ||U7 < 00.

and scatters with || HL%”L?C 00

We now apply Lemma 3.3.3 on I = R with v = u,, and

vty =Y UI(t+1t) (3.3.12)
j<k

That ||eq(v)||L%L2 is small for large n follows from (3.3.2). To see this, note that with
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eq(v) = Ov +v3Z(rv)
=Y NWIE+H) +N(Y Ut +1)))
J<k j<k

The difference on the right-hand side here only consists of terms which involve at least one
pair of distinct j,j’. But then ”eQ(U)HL%H — 0 as n — oo by (3.3.2). In order to apply
Lemma 3.3.3 it is essential that

' J J

lim sup | Z U7t +tn)|| 30 <A <00 (3.3.13)

i<k

uniformly in k, which follows from (3.3.2), (3.3.4), and Proposition 3.2.2. The point here

is that the sum can be split into one over 1 < 5 < jg and another over jp < j < k. This

splitting is performed in terms of the energy, with jo being chosen such that for all k£ > jj

. 35 02T\ 112 2
limsup > |07 (#)[5, < &5 (3.3.14)
n (0. ¢] . .

Jo<j<k

where £ is fixed such that the small data result of Proposition 3.2.2 applies. Clearly, (3.3.14)

follows from (3.3.4). Using (3.3.2) as well as the small data scattering theory one now obtains

lim sup H Z UI(-+t)

e T jo<j<k

3 ) 3
PR jo<i<k

. 35,0\ 12
gChéri)solép( Z ||Uj(t‘7zb)“7-[>

Jo<j<k

(3.3.15)

oY)

with an absolute constant C'. This implies (3.3.13), uniformly in k.
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Hence one can take k and n so large that Lemma 3.3.3 applies to (3.3.10) whence
limsup ||un|| 73,6 < 00
n_mop | n”LtLg

which is a contradiction. Thus, there can be only one nonvanishing v/, say v!, and moreover

limsup [|72[j4 = 0 (3.3.16)
n—0o0
Thus, ||U* |3y = Ex. By the preceding, necessarily
Therefore, U =: uy is the desired critical element. Suppose that

Then we claim that

Ky = {@(t) | t > 0}

is precompact in H. If not, then there exists § > 0 so that for some infinite sequence ¢, — oo

one has

Applying Lemma 3.3.2 to UL(t,) one concludes via the same argument as before based on

the minimality of Fy and (3.3.17) that

@ (tn) = V(7n) + Fn(0) (3.3.20)
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where V, 9, are free waves in H, and 7, is some sequence in R. Moreover, ||Y,|l3 — 0 as
n — oo. If 7, = 700 € R, then (3.3.20) and (3.3.19) lead to a contradiction. If 7, — oo,

then

implies via the local wellposedness theory that [Ju«(- + t”)HL;;’)([O,oo);Lg) < oo for all large n,

which is a contradiction to (3.3.18). If 7, - —o0, then

||V< + Tn)HL?((—OO,O],Lg) —0 as n — o0

implies that |lux(- + tn)”L?(( 118) < C' < oo for all large n where C' is some fixed

—00,0

constant. Passing to the limit yields a contradiction to (3.3.17) and (3.3.19) is seen to be

false, concluding the proof of compactness of K. O

3.4 The rigidity argument

In this section we complete the proof of Theorem 3.1.1 by showing that a critical element as
given by Proposition 3.3.1 does not exist. This is based on the virial identity exterior to the
ball. The main novelty here lies with the fact that due to the radial assumption in R2 we are
able to show that the nonlinear functional arising in this virial identity is globally coercive on
the energy space. In contrast, for equivariant energy critical wave maps in the energy class,
Cote, Kenig, Merle [17] needed an upper bound on the energy in order to apply the virial

argument. In particular, we have the following proposition.

Proposition 3.4.1 (Rigidity Property). Let (¢, 1) € H, and denote by J(t) the associated
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global in time solution to (3.1.2) given by Proposition 3.2.1. Suppose that the trajectory

o= {0(t) | t >0}

1s precompact in H. Then ¢ = 0.

The proof of Proposition 3.4.1 relies on the following two results related to the virial
identity for solutions to (3.1.2). In what follows we let xy € CG°(R) be an even function

so that x(r) = 1 for |r| < 1, supp(x) € [-2,2] and x(r) € [0,1] for every r € R. Define

Lemma 3.4.2. Let J(t) € H be a solution to (3.1.2). Then, for every T € R we have

<XR¢|7°¢7°>’ _/ { / VPr2dr+ = / w 2dr} (3.4.1)
+/O { [ sty i+ oz} i
<XR¢|¢> }Z:/OT{/loowr?dr—/fwzr?dr—/lw@bsm(w)dr} At (3.4.2)
+/()T{0(5§0<*))+0</:¢2dr)} it

where here, the brackets (-|-) refer to the Lmd(]R?’) pairing {f|g) : / f(r)g(r)r 2dr and

ﬁ % /. 2
2 )::%/R <w2+¢3+2s‘%2(¢)) 2 dr (3.4.3)
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Proof. We first establish (3.4.1) for solutions () € Cy° % CSO(R:Z’)

% <XR¢ | T¢r> = <XR¢ | 7’¢r> + <XR¢ | T¢r>

= <XR (wrr + %wr - Siﬂ(gw)) |T¢T> + <XR¢ | T@br>
T

1 (0.0} 0.9}
—5 [ a2 [ puiitar

_ /OO 8T(sin2(w))XRr dr + % /OO ar(¢2)XRT3 dr
1 1

Integrating by parts, the preceding line can be further simplified as follows:

3 [ 99 L[ 99 2 L2
=2 [t 5 [ et [ st dr - ke
1 1 1
1[0 9 9 2sin?(1) r2
+§/1 <¢T_¢ +T rxgprodr

3 [ 1 [ > 1
:——/ w2r2d7’+—/ ¢3T2d7‘—|—/ sin?() dr — S92 (t, 1)
2 /i 2 /i 1 2

o0 2
[ (it b Y g

1 [ .5 2sin?
+5 / g2 g2 2N g,
2 1 T

Next, observe that

-,

0 02
[T (e e ) 2 < )
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And similarly, since supp(y’(R~)) N [1,00) C [R,2R], we have

1 [ o 2sin?
‘5/1 <¢3—¢2+ su;Q(w))TX}zrzdr

1 [ 5 2sin?(¥))
<<LA Qﬁ+¢?+—77—)31r

XI(R_lr) r2 dr

~2

SER W)
Putting this together, we obtain

i<XR¢|T’¢r> =—§/m¢2rzdr+1/00¢2T2dr+/oosin2(¢)d7“
dt 2 /1 2 1 " 1

~ SR 1) + OEF (W)

3 [ 9 9 L [ 9 9
< —= veredr + = Ve rodr
2 1 2 1

-,

+A sin? (1) dr + O(EX (V)

By integrating the above inequality in time from 0 to 7" we obtain (3.4.1) for smooth solutions.
Our well-posedness theory for (3.1.2) then allows us to extend (3.4.1) to all energy class
solutions J(t) € ‘H via an approximation argument.

We proceed in a similar fashion to prove (3.4.2). Thus, for smooth 1) we have by direct
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calculation,

% <XR¢ | w> = <XR@L | ¢> + <XR¢ | ¢>

) <XR (WT . %W B singw)) |¢> + <XR¢ | ¢>

= (%80, () 19~ (™2 1) + (10

Integrating by parts, the above simplifies as follows:

[ a9, [ 99, [T :
—/1 XRY ™ dr /1 XRYy rdr /1 XRY sin(2¢) dr
= [ it ar
:/100@b2r2dr—/100¢2r2dr—/loowsin(2w)dr
[T 202\ 24

[ (32 02) Par

+ [ xmwsineo) + 5020 0r?) | @

1

As before we have,

}Amu—ma@9~ﬁ)ﬂw

<EF W)
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And, since |1 sin(21))| < 2162, we can deduce that

[ {0 xmwsinen + Jo 0}

< 2 9 1 9
§/1 (1 XR)¢dr+/1 Y R rdr+/1 ()
< = 24
s [ v

Therefore, we see thatf

XI(R_IT) X”(R_lr) R~ 22 dr

& (it = [T ar— [T udear— [T osine) i
) (5;?(@5)) 40 </: 2 dr)

Integrating the above in time from 0 to 7" proves (3.4.2) for smooth solutions. Approximating

energy solutions by smooth solutions concludes the proof. O

From (3.4.1) and (3.4.2) we construct a nonlinear functional, £ : H — R, whose global
coercivity on H is a key ingredient in the proof of Theorem 3.4.1. Using Lemma 3.4.1 we

consider the following linear combination of (3.4.1) and (3.4.2):

: 29 \|T Trre/1 .5 19 5\ o
T %)
—l—/o /1 <sin2(w) — Z—Zw sin(2¢)) dr} dt

+/OT 0(5%0(*))+O</:¢2dr)} dt

We define £ : H — R as follows
- /1. 19 o0 29
L(Y) = —/1 <%¢2 + %w,?) 2 dr +/1 <sin2(¢) — %2/) sin(22/))> dr (3.4.5)

Lemma 3.4.3. Let L : H — R be defined as in (3.4.5). Then for every W= (1), ¥(t) € H
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we have

. 1 [ /. 1 -
L) < 55 /1 (42 +02) P2 dr < ——-£() (3.4.6)

We postpone the proof of Lemma 3.4.3, and first use it to prove Proposition 3.4.1.

-

Proof of Proposition 3.4.1. Suppose ¥ (t) € H satisfies the conditions of Proposition 3.4.1,

i.e., suppose that
Ky o= {(t) |t >0}

is pre-compact in H. Note that the pre-compactness of Ky in H implies, by Hardy’s in-

equality, that K4 is also pre-compact in L2(]Ri’, dr) where

6O sy = [ 0P ar

Then, for every € > 0 there exists R(¢) such that for every ¢t > 0 we have

ER5) (B(1) + /R Z)w(t)er <c (3.4.7)

Now, by (3.4.4) and Lemma 3.4.3, we have that for all T’
. 29 \ (T T
— <
(xwlron+ 3500 < |

< /O ! [—@w (8%(@5(t))+ °O¢<t>2dr)] dt

L) + O (51%0(15@)) + oow(t)erH dt
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Using (3.4.7), we fix R large enough so that

00/ 7 > 2 g(,lv;)
op O (6R EORY N0 dr) e
Therefore, we deduce that
. 29 T 1 -
(xwidlrir+ 20)| <~ @T (3.48)

for every T' > 0. However, we can use Hardy’s inequality and the conservation of energy to

estimate the left hand side of the above inequality as follows,

. 29 oo oo
(ot 30| <| [ xwivrar| 40| [~ xwir?ar

o0 2
,SR/l <¢2+w3+f—2>r2dr

-,

S RE(Y)

Combining the above with (3.4.8) we conclude that

1 - .
T £(0) S REW)

-

for all T > 0, which, since £(¢)) = const, implies that 7" < CR. And this contradicts the

fact that 1/7 exists globally in time. O
We can now complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Suppose that Theorem 3.1.1 fails. Then Proposition 3.3.1 implies

the existence of a critical element, i.e., a nonzero energy class solution ¥ (t) € H to (3.1.2)
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such that the trajectory K4 = {(¢)[t > 0} is pre-compact in . However, Proposition 3.4.1
implies that any such solution must be identically zero, which contradicts the fact that the

critical element is nonzero. O

3.4.1 Proof of Lemma 3.4.3

The remaining piece of the argument is the proof of Lemma 3.4.3. To begin we define

A H&(l,oo) — R by
9 [ 2 2 P2 29
AWW) == —— i redr + sin“(¢) — —=1sin(2¢) | dr (3.4.9)
10 /4 1 20
And we note that in order to prove Lemma 3.4.3, it suffices to show that
A(p) <0 for every o € H&(l, 00) (3.4.10)

Indeed, if (3.4.10) holds then

o) =55 | (82 +02) r2dr+ Aw)
L [ 79 9\ 2
< 50 \ <1P +¢T)T dr

which is exactly (3.4.6). For each R > 1, define
Ap = {v € H}(1,00) | 1(r) = 0 for every r > R}

Observe that Ap = H&(l, R) where the subscript 0 indicates Dirichlet boundary conditions

at both r =1 and r = R. We start by deducing (3.4.10) on Ap for each R > 1.

Lemma 3.4.4. For each R > 1 the restriction Al 5, : Agr — R satisfies A(y) < 0 for every
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Y e Ap.

Assuming Lemma 3.4.4, we can extend (3.4.10) to all of H&(l, 00) via an approximation

argument as follows. To simplify notation, set

F(p) = sin?(§) — > sin(29)
N(W) = /1 T F@(r) dr

B(W) = /1 020 2 dr
Then,
AW) = 3 B(W) + N(@)

Proof that Lemma 3.4.4 implies Lemma 3.4.3. We assume that Lemma 3.4.4 is true but

(3.4.10) fails. Then there exists ¢ € H&(l, o0) such that
AW) =6 >0 (3.4.11)

For each k € N define ¢, € C§°(R) so that ¢(r) =1 for 0 <r <k, ¢5, = 0 for r > 2k and

}gb%(r)‘ < % Then set 1. := ¢p. Note that for each k, ¢ € A9 and that

EWy) = E() ask — oo

N(p) = N(@) as k — oo

Hence, by (3.4.11), there exists ky € N such that

)
A(@Dk) > 5 >0
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for k > kg, and this contradicts Lemma 3.4.4. O

Therefore, it remains to establish Lemma 3.4.4. In what follows we fix R > 1. The goal
is to show via a variational argument that ¢» = 0 maximizes A[y4,. Since A(0) = 0, this
would prove Lemma 3.4.4.

We claim that A defines a bounded functional on Ap. To see this, observe that for every
x, we have |F(z)| < 2|z|. Hence by the Strauss estimate, (3.2.3), and the fact that we are

in Ap, we have

R
N() <2 /1 ()| dr < 8R\/E(®)

Therefore,

AW) < 3 B(W) + 8RVE) < C(R) (3.4.12)

Since A is bounded on Ap and A(0) = 0, we define 0 < u < C(R) by

pi= sup A(Y)
YeAR

Now, let {tn}>°; C Ag be a maximizing sequence, i.e., A(¢n) — p as n — co. We claim
that E(¢y,) < C. If not, then there exists a subsequence, {1y, } such that E(iy,) — oc.
But then, by (3.4.12), we would have A(vp, ) — —oo, which contradicts the fact that {¢,}

is maximizing and p > 0. Since E(¢y,) = %H@Dn < C we can extract a subsequence, still

2,
denoted by {¢y}, so that

U — Yoo € H(%
wn —>w00 S L120C

ty, — Yo pointwise a.e. on [1, R|

118



And, since Ap = H&(l, R), the boundary conditions are automatically satisfied and we have
oo € AR. Next, we claim that ¥ is in fact a maximizer, i.e., A(¢)oo) = p. On the one
hand, since p is the supremum, A(¢so) < p. To prove the other direction we remark that

by the lower semi-continuity of weak limits we have that

lim inf B(yn) > E()oo)

Also, since |F(1n)] < 302 < 6E(¢,) < C, by the bounded convergence theorem, we see

that

lim N(¢n) = N(¢oo).

n—oo

Putting this together we get

Atoo) —p = lim (A(too) = A(en))
, 9 9
= nll)rgo (_SE(wOO) + SE(%) + N(Yoo) — N(wn))
> 2 liminf(— B(oc) + E(tn) + Hminf(V(oc) ~ N(n))

> liminf(N(¢oc) = N(¢n)) =0

n—oo

Hence A(Yog) = p and so ¢ 1= 9o € Ap is our maximizer. Now, let n € C§°(1, R) and
consider compact variations 1z := ¥ + en of 1. Since ¥ is a maximizer for A| Ap» it follows

that

d 9 [ D) R
0= d_A(¢a)|5:O =z Yrne 7= dr + () dr
3 5.1 1

:/m(&”&v%m+pgvnﬂw
1 ) r
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This implies that ¢ satisfies the following Euler-Lagrange equation

5 F(Y)

9 r2

$(1) =0, ¥(R) =0

rr + iy = (3.4.13)

where the boundary conditions originate with the requirement that ¢» € Ap. Setting r = e

and defining ¢(x) := 1 (e*) we obtain the following autonomous differential equation for :

" +¢ = fp) (3.4.14)

©(0) =0, p(log(R)) =0

where f(yp) := —SF’(@) = %sin(2g0) + %—%ap cos(2p). We claim that ¢ = 0 is the only solution
to (3.4.14). Note that this implies Lemma 3.4.4 since then 1) = 0 would be the unique
maximizer for Al 4, and A(0) = 0. We formulate the claim as a general lemma about the

differential equation (3.4.14).

Lemma 3.4.5. Let f(z) := isin(2x) + %—gx cos(2x). Suppose that x(t) is a solution to
P+ i = f(x) (3.4.15)

and suppose that ©(0) = 0 and that there exists a T > 0 such that x(T) = 0. Then x = 0.

We note that the conclusion of Lemma 3.4.5 depends highly on the exact form the
function f. In fact, the lemma fails if we replace f with % f. Such a change would amount to
requiring a smaller fraction of (1)) to dominate N(¢) in (3.4.10). This subtlety necessitates
the careful analysis that is carried out in the proof.

The proof of Lemma 3.4.5 will consist of a detailed analysis of the phase portrait associ-
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ated to (3.4.15). Letting y(t) := &(¢), and setting

U= = =: N(v) (3.4.16)

We can make a few immediate observations about the behavior of solutions to (3.4.16). First
we note that since |N(v)| < C'|v|, Gronwall’s inequality implies that solutions are unique
and exist globally in time. Let ®; denote the flow.

Next observe that equilibria of (3.4.16) are all hyperbolic (following the terminology of
Wiggins [91]) and that they occur at the points v; := (;,0), where x; is a zero of f, i.e.,

f(z j) = 0. To see this we linearize about the equilibrium v;, which results in the the equation

£ = VN(v;)¢ (3.4.17)
where
0 1
VN(vj) =
flxy) -1

At (vj) = —% + % 1+ 4f/(z;) (3.4.18)
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To proceed, a more careful examination of the zeros of f is required. We can order the zeros

zj so that
<<z <0=rxp<ap <<y

We note that since f is odd one has x_; = —z; and it suffices to look at only those x; such
that x; > 0. Indeed, all properties of the phase portrait on the right-half plane are identical
to those on the left-half plane after a reflection about the origin.

First, observe that x( := 0 satisfies f(zg) = 0 and f/(zg) = % > 2. Hence, A (vg) >
—% + % =1>0and A_(vg) < —%. This means that (3.4.16) has a saddle at vy = (0,0).
Next, we see that due to the oscillatory nature of f and the fact that f/(0) > 0 we can
deduce that f’(atj) > 0 for j even, and f’(xj) < 0 for j odd. It is also straightforward to

show that ‘f’(atj)} > 1 for every j > 0. These facts, together with (3.4.18) imply that

Re (Ax(v;)) < 0if j is odd

A+(vj) >0, and A_(vj) < 0if j is even

Hence (3.4.16) has sinks at each x; for j even, and saddles at each z; for j odd. Also we
note that in a neighborhood V; 3 vj, the equilibira v;, for j even, each have a 1-dimensional

invariant stable manifold

W7 i={veV; [ ®(v) €V;Vt >0, ®(v) — vj exponentially as t — +oo}
and a 1-dimensional invariant unstable manifold

Witi={v eV | ®(v) € V;Vt <0, ®(v) — vj exponentially as t — —oo}

that are tangent to the respective invariant subspaces of the the linearized vector field corre-
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sponding to the right hand side of (3.4.17) at the point v;. For j even, the stable invariant
linear subspace at v; is spanned by {—(v;) = (1, A—(v;)) and the unstable invariant subspace
is spanned by {4 (vj) = (1, A+(v;)). The equilibria v, for j odd, each have a two dimensional
invariant stable manifold, (see, for example, [59], Chapt. 3.2).

Our goal is to demonstrate the impossibility of a trajectory v(¢) such that v(0) = (0, yg)
and v(T) = (0,yr) with yg # 0 and 7" € R. By symmetry considerations we can restrict
ourselves to the case yg > 0. We rule out such a trajectory by showing that solutions with
data on the unstable invariant manifolds at the equilibria v;, for j even, have the following

properties:

Lemma 3.4.6. Let j = 2{ be even. Denote by v;-L = (x;r,y;r) the unique trajectory with
data in Wju such that there exists a T > 0 large enough so that y;r(t) >0 forallt < —71.
And denote by vj_ = (atj_,yj_) the unique trajectory in Wj“ such that there exists a 9 > 0

large enough so that n (t) <0 for allt < —ro. Then, the following statements hold.
(i) There exists T1 € R such that v;r(Tl) = (pj,O) with pj € (Tj41,7j42)
(11) There exists Ty € R such that vj_(Tg) = (pj_,O) with p; € (Tj—2,mj-1).
We assume that Ty, Ty are minimal with the stated properties.

The conclusion of Lemma 3.4.6 is depicted in Figure 3.1.

Proof that Lemma 3.4.6 implies Lemma 3.4.5. Suppose we start with data v(0) = (0,yq)
with yg > 0. Then, since the right hand side of (3.4.16) is given by (y, —y)" on the line
{z = 0}, the trajectory v(t) enters the right-half plane in forward time. Note that v(t)
can never cross back into the left-half plane when y(t) > 0 since the line {x = 0,y > 0}
is repulsive with respect the forward trajectory of v. Hence, in order for there to be a
time 7' > 0 such that v(T") = (0,y(7T)) the trajectory must first cross into the lower-half

plane. However, v(t) must then either lie in the stable manifold VVJ‘-9 for some even j, or by
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Figure 3.1: The figure above represents a slice of the phase portrait associated to (3.4.16).
The red flow lines represent the unstable manifolds, W;»‘, associated to the v;, and the green
flow lines represent the stable manifolds, st, associated to the v;.

Lemma 3.4.6 (i) it crosses the z-axis between xj, and z 1 for some k odd. But then, if the
latter occurs, by Lemma 3.4.6 (i7), the flow must cross back into the the upper-half plane
again at some point strictly between z;_1 and zj. If we track the trajectory further, (7)
and (7i) will, in fact, force v(t) into the sink at z;., thus preventing it from ever reaching the
y-axis. By the reflection symmetry of (3.4.16), the same logic works if we begin with data

v(0) = (0,yp) with yg < 0. O

To simplify the picture we begin by dividing the phase plane into strips by defining
Q911 = [2j,2j40] x R for j € 2Z. We first verify Lemma 3.4.6 in 1 and in Q9 and then

we will renormalize (3.4.16) in order to treat cases (¢) and (ii) in €y for £ > 3.

Proof of Lemma 3.4.6 on €)1 and €23. The main tool in the proof of Lemma 3.4.6 in €21 and
9 will be the following identity which is obtained by multiplying equation (3.4.15) by & and

integrating from t =t to t = t.

t1 t1 t1
/ #(s)i(s) ds + / i(s)2ds= [ fa(s))i(s)ds (3.4.19)
t 0

0 to 4
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Figure 3.2: A schematic depiction of the flow in the first strip .

Substituting y = & this becomes

t1

%(yQ(tl) —42(t)) + /t y2(s)ds = F(x(t1)) — F(z(tp)) (3.4.20)

where F(x) := % cos(2x) + %x sin(2x) is a primitive for f.
We will also need to approximate the zeros xg,x1,...,24. We can do this to any degree
of precision, although a rather rough approximation will suffice. By inspection, the zero z;

is close to the point 2—‘741_—17T for 7 > 1. Indeed we have,
xg =0, r1 = 0.8733, z9 ~ 2.3886, r3 ~ 3.9466, x4 ~ 5.51186 (3.4.21)

First we show (i) on €;. We would like to show that there exists 7" € (—o0, o0] and
p € [z1,22] so that US'(T) = (p,0). In the process we will also show that xa'(t) < xj49 for
all t € R.

Note that on the line {x = x;} in the phase plane the right-hand side of (3.4.16) is equal

tr

to (y,—y)*". Hence, the trajectory va' (t) can never enter the left-half plane {x < 0} by
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) is repulsive along this line in

crossing the line {x = 0,y > 0} as the vector field (y, —y
forward time. Also, since |f(z)| < 3 on [0, x9] the vector field (y, —y -+ f(2))" prevents var (t)
from ever crossing above the line segment {0 < z < x9,y = 4}. Similarly, var (t) can never
cross from the upper into the lower-half plane through the line segment {0 < x < 21,y = 0},
since f(x) > 0 on (0,21) and thus the vector field (0, f(z))" repulses such a trajectory in
forward time.

Therefore, the only remaining possibilities for the forward trajectory var (t) are for
Lemma 3.4.6 (i) to hold, or for one of the following two scenarios to occur: the trajectory
crosses the line {z = x9,y > 0} in finite time, or it is heteroclinic connecting the saddles
(x0,0) and (x9,0). Suppose that either of the latter two cases occurs. Then, there exists
T € RU{oco} such that vaL(T) = (x9,y(T)) with y(T) > 0. But then, letting ty) — —oo in

(3.4.20) we would have
T
~2(T) +/ y2(s) ds = F(z9) — F(0) ~ —2.1799 < —2

which is a contradiction since the left hand side is strictly positive. This proves (i) for
Q1. The proof of (i) for Q9 is identical. One first shows that the only possibilities for the
trajectory v;(t) are for either (7) to hold, or for it to cross the line {x = 24, y > 0} in finite
time, or to be to heteroclinic. And the latter two scenarios are impossible by (3.4.20) since

then there would be a "€ R U {co0} so that

T
%?/2(T) —l-/ y2(8) ds = F(xy) — F(z9) = —2.52841 < —2

o0

which contradicts the positivity of the left-hand-side above.
We will also use (3.4.20) to prove (ii), although we will not get by as easily as in the
proof of (i), as we will need to estimate the size of the left hand side of (3.4.20) to obtain a

contradiction. This will be achieved via the construction of a Lyapunov functional. Unfor-
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tunately, this is somewhat delicate as can been seen by means of the blue line in Figure 3.2
which is the unstable manifold W3' as computed by Maple. While it does visibly fall into the
sink, it does so much less dramatically than Wj. For (i7), the relevant trajectory in €2y is
vy (t) which has data vy (—00) = (29,0) and satisfies y, () < 0 for t < —79. By symmetry,
we can instead consider the trajectory vfz(t) in W, so that yJ_FQ(t) > 0 for ¢t < —7. This
trajectory lies in Q_1.

Again one shows that either (i) holds, or the forward trajectory v',() reaches the line
{z = 0,y > 0} in finite or infinite positive time. In order to arrive at a contradiction, we
assume that the latter occurs. That is, we assume that there exists 7' € RU {oo} such that
v‘_LQ(T) = (0, yJ_FQ(T)) with yJ_r2(T ) > 0. In this case we are able to use the attractive nature
of the fixed point (x_1,0) to construct a subset ¥ C 2_1 so that the flow vf2(t) cannot
enter . In other words, the boundary of ¥ will be repulsive with respect to the forward
trajectory of vi’Z.

To construct ¥, we define three polynomials. First define p; as a function of z:

3110 43 89 43\% 23 43\ 3

pl(x)::—m+4—7(x+1—8)—@(z+l—8) —E(:L'—I—E)
7 43\* 8 43\° 1 43\% 1 43\
+%<x+1—8) +%(I+1—8) —m(x+1—8) —ﬁ(x+1—8)

N 1 +43 8 1 +43 9
[ x‘ [— R — [—
1035 18 13999 \* T 18
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Then, define po and p3 as functions of y as follows:
) = 6627 17913 19 21 17 21
P2WY) = 638000 29000 “ 75 \Y 22 80 \Y 22
29 21 36 21 9 21 19 21\ 7
106 \7 22 115 \Y 22 T\ ) TV

32 21 42 21
35 \Y 7 2 31 \Y 7 22

and

104159 9383 18 3\2 2 3\ 3
P3(¥) = ~ 577500 ~ Tos00¢ 113 (y - 3) T 365 (y - 5)
38 3\* 3 3\° 21 3\ 0
291<y_5> 50<y_5) _ﬁ@_ﬁ) *
2 3\% 7 3\? 31 3\ 10 3\ 1
15<y_5) 82<y_3) _2—78<y_5> +121<y_5>
Finally, we set ¥ = X1 U Y9 U X3 where,

43 3 3 3
21::{(x,y)eQ_1\ —1—8+m<x<—g,0<y<p1<—g>}

3 3 21
Sy = {(g;,y)eQ_ll —r<r<py), <Y< —}

3 3
23::{(x,y)e§2_1| —g<x<p3(y),0<y<—}

The region ¥ is pictured in Figure 3.3. A few words are required in order to explain how one

goes about constructing the region X, and in particular, about how one finds the functions

pg.- To choose p1, one begins by finding an approximate solution to (3.4.15) with data slightly

to the right of x_9 via power series expansions. This approximate solution is then shifted

3

downward by a small amount, here we take 1555 As we will see below, this downward

shift ensures that the resulting function forms a curve that is, at least initially, a Lyapunov

functional in that it is repulsive with respect to the true trajectory emanating from x_o,
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p1(z)

pQ(y) T %—%
21 Yo 3
BRI 5
= p3(y)
BRI
T_9 —% | 0

Figure 3.3: The region ¥ = ¥{UXoUX3 pictured above has the property that 9% is repulsive
with respect to the unstable manifold W,.

i.e., the unstable manifold W*,. We then define p; by approximating the coefficients of the
polynomial we found by rationals. We cease to use the graph of p; as the boundary of X
when it ceases to possess the desired Lyapunov properties. We then define py and ps3 in
similar fashions making sure that all of the respective graphs are eventually joined together
by curves that are also Lyapunov. In the case of the segment joining the graph of p; and p9
this is achieved with a vertical line as depicted in Figure 3.3. For po and p3 the matching is
done with a horizontal line.

We claim that the boundary of ¥ is repulsive with respect to the trajectory vf2(t). To

see this, it suffices to show that the outward normal v on 0¥ N {y > 0} satisfies
v-N2>0 (3.4.22)

where N := (y,—y + f(2))" is the vector field (3.4.16). There are five components to
0¥ N{y > 0}. Three components are given by the graphs of pi,...,p3, and we label
these components 0%1,...,0%3. The other two components are given by the vertical seg-

ment, 04, connecting the point (—%, %) to (—%,pl(—%)), and the horizontal segment, 0X5,
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connecting the point (pg(%), %) to (pg(%), %) We must check that (3.4.22) holds on each
component.

On 9% the outward normal v is given by 11 = (—p](z),1). On 9%, vo = (1, —ph(y)).
Similarly, v3 = (1, —p3(y)). Finally, v4 = (1,0) and v5 = (0,—1). And, it is elementary to
check that indeed,

43 3
vi - N = f(z) — p1(x)(1 + pj(x)) > 0 for every — m <z< %
3 21
vg - N =y +ph(y)(y = f(p2(y)) > 0 for every = <y < ==
3
vg - N =y +p5(y)(y = f(p3(y)) > 0 for every 0 <y < 2
as well as
3 21
N = Ty < o
vy - N y>0f0revery5 SYS o
s N= 2 — [a) > 0 for every pg (3/5) < = < p2 (3/5)
Now, by (3.4.20), we have that
Lo Ty
S+ [ yP(s)ds = F(0) = Fle_p) ~ 21799 < 2.18 (3.4.23)
—0o0
However, we claim that
T
/ y?(s) ds > Area(X) > 2.18 (3.4.24)
—0o0

To prove (3.4.24), we first make the claim that under our current assumptions, the integral on
the left-hand side of (3.4.24) is greater than the area of the region bounded by the trajectory

v‘_LQ(t) and the lines {x < 0} and {y = 0}. To see this recall that v‘_LQ(t) lies on the unstable
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manifold W, and hence locally we can either write yJ_r2(t) = y(z(t)) or z“:Q(t) = z(y(t)).

Assume that for 79 <t < 7| we can write y = y(z). Then, z(7y) < z(71) and

[t eas= [ enieras= [ i

0 0 z(79)

which, since y(t) > 0, is, in fact, the area of the region bounded by the trajectory v‘_LQ(t),
the line {y = 0}, and the lines {x = z(79)} and {z = z(r)}.

Next suppose we can write z = z(y) for 79 < t < 73 and that y(m9) > y(r3). Since all
vertical lines in {2_1 have the property that they cannot be crossed by the flow from right
to left in forward time we have that z(y(m2)) < x(y(73)). Observe that if = z(y(t)) then

i = 2/(y)y, and hence

T3 T3 (13)
/T i(s)2ds= [ y(s)a(y(s))ils) ds = /yf) ya'(y) dy

(12)
_ /y T ) dy + y(rs)aly(rs)) — y(m)aly(m)

but this can further be estimated from below by

y(m2)
> / 2(y) dy + (y(73) — y(m))a(y(m)
y(73)
y(72)
- / [2(y) + o(y(r2))] dy
y(73)

where the last line is exactly the area of the region bounded by vf2(t), and the lines {x =

z(12)}, and {y = y(73)}.
Therefore, since Ui_2(t) cannot enter 3 we have fz;o y2(s)ds > Area(X). The remaining

step is to compute the area of 3 which can be done explicitly since ¥ is defined entirely in
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terms of polynomials with rational coefficients. Indeed,
Area(X) = Area(X1) + Area(X2) + Area(X3) > 2.21

which proves (3.4.24) and provides a contradiction when combined with (3.4.23). This proves
(77) in Q. Note that small margin of error which is allowed here (after all the relevant
numbers are, respectively, 2.21 and 2.18) is a reflection of the “almost heteroclinic” nature
of the blue line in Figure 3.2 which is Wy'. This forces us to be very precise about the
Lyapunov functionals that we constructed above.

Next, we will establish (i) in Q9. The relevant trajectory is vy (t) which has data
vy (—00) = (74,0). As before, we can show that the only possibilities for v, () are either
that (77) holds, or that there exists a time 7" € R U {oo} such that v, (T) = (z2,y, (T))
where y, (t) < 0 for all —oo <t < T. We assume the latter holds and seek a contradiction.
As in the proof of (i) in Q1 we will construct a subset ¥ C 29 so that the boundary, 93, is

repulsive with respect to the forward flow vy (). To construct ¥ we define the polynomial

e 315, 1Y I8 TNE 186 0 LY
P =700 4 2 )89 2 181 2
and define

Y= {(z,y) € Q|18/5 <z < 11/2, p(x) <y < 0}

The function p is constructed in the same fashion as the Lyapunov functional for ©Q_q
except that here we need only a 3rd order approximation. Indeed, the trajectory v, is far
from heteroclinic and thus provides us with a much larger margin for error as we seek a
contradiction.

Again it suffices to show that the outward normal v on 0¥ N {y < 0} satisfies v- N > 0.
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Figure 3.4: A schematic depiction of the flow in the second strip (2o.

We have v = (p/(z), —1)". And one can show that
v- N =p(x)(1+p(z)) — f(z) > 0 for every 18/5 < x < 11/2
Again, we use (3.4.20) to obtain,
L9 Ty
5Y (T) + /_Ooy (s)ds = F(x9) — F(x4) ~ 2.52841 < 2.6

However, we have

T
/ y2(s) ds > Area(X) > 3.8
—0o0

(3.4.25)

(3.4.26)

which contradicts (3.4.25). This completes the proof of Lemma 3.4.6 in £ and in Q9. We

remark that the Lyapunov construction for 29 is considerably easier than for €2y as can

be seen by Figure 3.4. Indeed, the unstable manifold W}, which is depicted by the blue

trajectory in Figure 3.4, is very far from being heteroclinic.

133

O



To prove Lemma 3.4.6 on €y for ¢ > 3 we first shift and rescale (3.4.16) via the following

renormalization. For each j € N, ¢ € R we define ( and 7 via

2(t) = 234‘ Lt el

y(t) = et n(e M)

Define z; := 2—32—1%. Then (3.4.16) implies the following system of equations for (,n

¢ )

i) \cen+ i 40

Where s = 1. Observe that we have

where " =
;29 . j+1
flzj+¢)=(-1) 189 sin(2¢) + (1) g(¢)

where ¢(¢) := i s(2¢) — ggsin(%). Fix j = 2¢ with ¢ > 2 and set

72
297 (25 — 1)

Note that j > 4 implies that 0 < e < % Then (3.4.28) becomes

¢ n
7 sin(2¢) — en — £2g(¢)

(3.4.27)

(3.4.28)

(3.4.29)

(3.4.30)

Note that (3.4.30) is the equation governing the motion of a damped pendulum with a small

perturbative term e2¢(¢), and in the limit as ¢ — 0, (3.4.30) is exactly the the equation of

a simple pendulum.

Let’s rephrase the set-up of Lemma 3.4.6 in terms of this renormalization. First we
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examine how this affects the strip Q2 /241 We can write the zeros of f as

T =2j+ (o
™
Ti41 =z T =2+ 5 4G

Tjt2 = zj+2 + 0 =2zj + 7+
where 0 < (g < § + (1 < 7+ (o are the first three positive zeros of

h(¢) = sin(2¢) — £%9(¢)

Hence the strip Qj /241 becomes the strip = [Co, ™ + (2] x R. Note that the renormaliza-
tion (3.4.27) does not affect the topological properties of the dynamics of (3.4.16) and hence
the invariant manifolds associated to the equilibria of (3.4.16) in €2; /241 become invariant
manifolds associated to the equilibria of (3.4.30) in the strip Q. Denote by Wéf) and Wéé ,
the unstable invariant manifolds associated to the equilibria ({y,0) and (7 + (3,0). Thus
Lemma 3.4.6 in €, for ¢ > 3 is equivalent to the following result. For simplicity, we again

use t to denote time.

Lemma 3.4.7. Denote by v = ((T,n") the unique solution of (3.4.30) with data in Wég
such that there exists a 71 > 0 large enough so that n*(t) > 0 for allt < —711. And denote
by v™ = ((",n") the unique solution in Wé; such that there exists a 9 > 0 large enough so

that n=(t) < 0 for all t < —7o. Then, the following statements hold:

(i) There exists Ty € R such that v (T}) = (p1,0) with p1 € (7/2+ (1, 7).

(ii) There exists To € R such that v=(13) = (p2,0) with pa € (o, 7/2+ (1)-
Again, we let T1, Ty be minimal with these properties.

The proof of Lemma 3.4.7 will require a rather precise knowledge of the location of the

zeros (o and w + (o of h(().
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Lemma 3.4.8. Set h(¢) = sin(2¢) — 2g(¢C). Then

(a) There exists a function a : [0, 2%] — [—%, —%] such that h has a zero at {y = (y(e) =

3e29(0)(1 + a(e)e?).

(b) There exists a function c : [0, %] — [10,40] such that h has a zero at m + (o

T+ (e) =7+ %52g(7r)(1 - %%7‘(62 + c(e)e).

In particular, (g > 0 and (9 > 0.

We will momentarily postpone the proof of Lemma 3.4.8 and first establish Lemma 3.4.7.

Proof of Lemma 3.4.7. Again our main tool will be the following identity, which is deduced

in the same manner as (3.4.20),

(3]

t12 —tlin '3—2 s'ss
7M$@—£s<%xd e/g@mm>d (3.4.31)

St = o) +< [ )

to
= % (cos(2¢(tg)) — cos(2¢(t1)))

— (G (¢(h) — G(C (ko))

where G(x) := %—%x cos(2x) — 1% sin(2z) is a primitive of g.

First we prove (7). The only possibilities for the forward trajectory v™(¢) are for (i) to

hold, or for there to exist a time T', possibly infinite, such that v*(T) = (m,n™(T)) with

0 <n'(t) for all t < T. In this latter case, (3.4.31) implies that

T
@ e [0 ds—

< —%(G(m) - G(¢)) <0

(cos(2¢(t)) — 1)) — £%(G(m) — G(¢))

N —

which is a contradiction since the left-hand-side above is strictly positive.
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y1(z)

y2(z)

Figure 3.5: The region X = X U X9 pictured above has the property that 09X is repulsive

with respect to the unstable manifold Wé‘z .

Now, assume (éi) fails. Then there exists a time 7" € R U {oo} such that v_(T") =

(Co,n~ (1)) with n~(t) <0 for every ¢t < T'. As in the proof of Lemma 3.4.6 (ii) for 21 and

Q9 we construct a region ¥ in Q so that the boundary 0% is repulsive with respect to the

flow v~ (¢). Set

§1(Q) =~ sin(()
Q) =~ sn(2)1- (¢ 2

Define ¥ = ¥ U X9 by

The region ¥ is depicted in Figure 3.5.

(3.4.32)

(3.4.33)

(3.4.34)

(3.4.35)

Once again we need to check that the outward normal vectors 11 on 0%1 and 19 on 0%

satisfy vy, - N >0 for k = 1,2, where

N(¢n) = (n, sin(2¢) — en — e2g(¢))™
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Here 11 = (yi(g), —1)" and vy = (yé(:ﬂ), —1)¥ and we have

v - N = _yg;) Fi(z,¢) (3.4.36)
vy N = —52?%?2)1?2(:5, €) (3.4.37)

where, for a ;= g and § := 25[, Iy and Fy are defined by

Fi(z,¢) = 2g(z)e? — 2Bsin(z)e + (8% — 2) sin(2z) (3.4.38)
Fy(z,2) = gla)e? — gﬁ%“(?) 0? — (z—2)? (3.4.39)
B 32 sin?(2)(x — 2) 4 asin(2x)
a2

Observe that y1(z) < 0 for 2 < z < m, and y9(x) < 0 for Z7I < z < 2. Hence, the following

lemma will suffice to conclude that vy, - N > 0 for k = 1, 2.
Lemma 3.4.9. Define Fy, Fo as in (3.4.38) and (3.4.39). Then
(A) Fi(x,e) >0 for every (x,e) € [2,7] x |0, %]
(B) Fa(x,€) >0 for every (z,€) € [1,2] x [0, o).

For the moment we assume Lemma 3.4.9 and observe that it implies that the boundary

of ¥ is repulsive with respect to the flow v~ (¢). By (3.4.31) we have the following identity

T
%n2(T) + 5/ 772(5) ds = % (cos(2m + 2(¢9) — cos(2(p)) (3.4.40)

—00

— X(G(m + &) — G())

To arrive at a contradiction we carefully estimate the left and right-hand sides of (3.4.40).
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By Lemma 3.4.8, we can expand the right hand side in powers of ¢.

1 29 29
5 (cos(262) — cos(26y)) = X(Gm + G2) = G(G)) = Toe? = 10" + O (3.441)
297’(’ 2
<36°

7
forogagw.

On the other hand, as in the proof of Lemma 3.4.6 for €21 and {29, we have that

T 2 0
5/ n?(s)ds > eArea(X) = ¢ <_/Z yo(z) dx — /2 y1(x) dx) > e (3.4.42)

—00 I

Finally, (3.4.40) then implies that ¢ < 2??—552 which is a contradiction for 0 < e < 2—70 Hence,
assuming the results of Lemma 3.4.8 and Lemma 3.4.9, we have established Lemma 3.4.7

and therefore we have also completed the proof of Lemma 3.4.6. O
It remains to prove Lemma 3.4.8 and Lemma 3.4.9.

Proof of Lemma 3.4.8. For fixed a, we plug (g(a,e) = %62g(0)(1 + as?) into h and expand

in powers of € about € = 0. This gives

h((ola,€)) = ( L 9) 9 + 0(e10)

18 4
With this in mind we set a1 = —%, and obtain
1 1 6
h(Co(=3:€)) = =355 + Ro(e) (3.4.43)

where Rg(e) is the ninth remainder term in Taylor’s theorem. One can show that for 0 <
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e < 2%, we have

d\"" 1
miel< sw |(4) (.| a0yt <10
0<le|<e | \d€ 3
Hence,
Moty < Lo aoe Loy (7Y e
3 - 36 - 36 20 -
aslongas 0 <e < 2—70 Next we set a = —% and we obtain

h(Go(—g,€)) = 368+ Ro(c)

Again, one can show that |Rg(e)| < eV for 0 < e < % and hence

1 1 1
h(Co(=5:2)) = %66 — 0> %66 - (—

for 0 <e < % This proves (a). We carry out the same procedure to prove (b). First, fix

c and plug 7 + (2(c,e) = 7+ %€2g(7r)( — %m’:‘Q + ce?) into h and expand in powers of &

about ¢ = 0. This gives,

(72 + 324c — 84172)

8
1296 +0()

h(m + Ga(c,€)) =

Now, fix ¢ = 10. Then

2
h(m + (2(10,¢)) = (2—93 — 8;1215; ) 0+ Ry(e)
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One can show that |R7(e)| < 208 for 0 < e < 2% , and hence
h(m + (2(10,¢)) < —3.8¢5 +20e% < —3.8¢% +2.5¢8 < 0

aslongas 0 <e < QZG Finally, set ¢ = 40. Then

181 84172

h(m + (2(40,¢)) = (1—8 ~ 506

) 0+ Ry(e)
One can show that |R7(e)| < 608 for 0 < e < % , and hence
h(m + (2(40,¢)) > 3.66% — 60s% > 3660 — 0 > 0

as long as 0 < ¢ < % To conclude, we note that the positivity of h(m + (2(40,¢)) on the

compact interval € € [%, 2%] is readily checked. O

Proof of Lemma 3.4.9. Observe that for fixed, z, F}(x,¢) and Fy(x,¢) are quadratic func-
tions in € and hence have real zeros for ¢ € [0, %] if and only if their associated discriminants
are nonnegative. One can readily check that the discriminant associated to F(z,-) is neg-
ative for each 2 < 2 < 7. And the discriminant associated to Fs(x,-) is negative for each
z7£ < z < 2. Therefore, by continuity, F7 has a fixed sign on [2, 7] x [0, %] and Fy has a
fixed sign on [27I> 2] x [0, QZG] Hence checking the positivity of F} and Fb on their respective

domains reduces to checking that they are positive at a single point. And, for example

Fi(5, 1) ~ 054> 0 and Fy(, 1) ~ .41 > 0. m

This concludes the proofs of Lemmas 3.4.3-3.4.7.
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3.5 The higher topological classes

In this section we prove Theorem 3.1.2. By [5] we know that for each integer n > 1 there is
a unique solution () = @, to the stationary problem

2 sin(2Q)

—Q"-Q + =57 =0, Q1)=0,Q'(1)>0 (3.5.1)

with the property that lim,_oc Qn(r) = nm. Moreover, these @y, are strictly increasing and

satisfy

Qu(r) =nm —O(r2) as r — oo (3.5.2)

Now fix any such @y, for n > 0 and drop the subscript. Set ¢ (r) := 0\Q(Ar) N rQ'(r).
Then 1 (r) > 0 for all > 1 and (1) = O(r~2) as 7 — co. Furthermore, ¢ is a solution to

the linearized elliptic problem

2

() = 20/(r) + =5 con(2Q()(r) = 0 (353

in R3, but it does not satisfy the Dirichlet condition at r = 1. As before, the 5-dimensional

reduction reads

o(r) == %¢(T), (=As+V)p=0, V(r) = f—Q(cos(QQ(r)) —1) (3.5.4)

where Ag is the Laplacian in R®. By the preceding, V is a real-valued, radial, bounded and

smooth potential on R2 which decays like 76

as r — oo (and each derivative improves the
decay by one power of r).

The operator H := —A +V = —As + V is self-adjoint with domain D := (H% N
H&)(Ri’) Its essential spectrum coincides with [0, 00) and that spectrum is purely absolutely
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continuous. As observed in [5], H has no negative spectrum. Indeed, if it did, then by a
variational principle there would have to be a lowest eigenvalue —Ef < 0 which is simple and
with associated eigenfunction fi which is smooth, radial, and does not change its sign on
r > 1. We may assume that fi > 0 whence f/(1) > 0. Then, with (-|-) being the L?-pairing

in RE,

—E2(fulp) = (H filp) = |SHfL(1)p(1) > 0 (3.5.5)

which is a contradiction since the left-hand side is negative. It remains to analyze the
threshold 0, which generally speaking can be either a resonance or an eigenvalue. Since
we are in dimension 5, the former would mean that there exists f € D, f # 0, with
|f(x)] ~ ﬁ as * — oo (the decay here being that of the Newton kernel). However, in
that case f € L?, whence we recover the well-known fact that zero energy can only be an
eigenfunction, necessarily radial by our standing assumption. Thus, let Hf = 0, f € L?

radial. Then

0= (Hflo) = (fIHg) + |S*F (1o (1) =S4 (1) (1) (3.5.6)

which is a contradiction since f(1) = 0 precludes f’(1) = 0 (recall (1) # 0). In conclusion,
H has no point spectrum (as already noted in [5]). For future reference we remark that the
same argument as in (3.5.6) shows that there can be no solution f € L?*(R2) of Hf = 0,

unless

fl)+2f(1)=0 (3.5.7)

Of course @ satisfies this condition, as can be seen from the equation.

In order to prove Theorem 3.1.2 we need to establish Strichartz estimates for the wave
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equation exterior to the ball, perturbed by the radial potential V. Once this is done, Theo-
rem 3.1.2 is an immediate consequence via a standard contraction argument. Henceforth, the
free problem refers to the wave equation exterior to a ball in R® with a Dirichlet condition at
r =1 as considered by [72]. By an admissible Strichartz norm for the free problem we mean

any Strichartz norm as in [72] for solutions with H& x L*-data excluding the L%—endpoint.

Proposition 3.5.1. Let || - || x be an admissible Strichartz norm for the free problem. Let V

be a potential as above and assume that —A +V has no point spectrum. Then any solution

of

Du+Vu=F, (tz)e(0,00) xR
uw(l,t) =0, t>0, (3.5.8)

(u(0),4(0)) = (f,9) € Hy x L*(R)
with radial data satisfies
lullx < C(II(f, D grysere + 1F0 i p2) (3.5.9)

with a constant C = C(V).

Proof. The argument is a variant of the one in [64]. It suffices to consider F' = 0 by
Minkowski’s inequality. Let —A be the Laplacian on Ri with domain D := H2N H(% (]Ri) on
which it is self-adjoint (this incorporates the Dirichlet condition at » = 1). We claim that

A= (—A)% satisfies

451 = £l 3 (3.5.10)

for all f € C°°(R5) which are compactly supported in {z € R% | 1 < |#| < co}. Indeed,
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squaring both sides this is equivalent to
(=AL1) = V11l
for all such f, which is obviously true. For any real-valued u = (uy,u9) € H& x L2 we set
U := Auq + iuo
Then (3.5.10) implies that ||Ulj2 ~ ||(u1,u)||3y. Furthermore, u solves (3.5.8) if and only if

10U = AU +Vu
(3.5.11)

U0) = Af +ig € L*(R2)

Then
) t
U(#) = e AU(0) — i / =AYy (5) ds
0

By [72], with P := A~ IRe,
1P~ 4U(0)| x < C|IU0)]|

Factorize V = V; V5, where the factors decay like r—3. By the Christ-Kiselev lemma, see [72],

and our exclusion of L%, it suffices to bound

[P [~ et vivus) as| < 1K Vo uts)lze,
—o0 o (3.5.12)
(KF)(t):= P / i)y, P(s) ds

Now

. CXD .
IKFIx < [Pe ™| [ o Avipe)as],
—0o0
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The first factor on the right-hand side is some constant by [72]. We claim that the second

one is bounded by C||F | L2 - By duality, this claim is equivalent to the local energy bound

Vie™™ 2 < Cligll2 (3.5.13)

relative to L2(R2). This is elementary to prove for radial ¢ (which suffices for us), using the
distorted Fourier transform relative to —0y, + r% on L?((1,00)) with a Dirichlet condition at
r = 1. Indeed, map any smooth radial f = f(r) € L?(R2) onto the function f(r) = r2f(r) €
L?(1,00). Then

(~85)0) =1 2LoP)0), Lo = —Omr +

Associated with Ly there is a distorted Fourier basis ¢g(r; A) that satisfies
o0(LN) =0, Logo(rsA) = Mo(r; A),

and such that for all g € L2((1, 00))

g(r) = [ dolr; A)g(A) po(dA) (3.5.14)

where the integrals need to be interpreted in a suitable limiting sense. The real-valued
functions ¢g(r; A) and the positive measure pg(dA) = wg(A) dA are explicit, see Lemma 3.5.2

below. Moreover, it is shown there that

sup  [o(r; \)Pwo(A) < C < o0 (3.5.15)
r>1,A>0

Taking this for granted, we note that (3.5.13) is equivalent to the following estimate for
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f € L*((1,00))

/_ O; v /OOO e P0(r N () poldh) [ dt < O 713 (3.5.16)

Here we used that A = /L (in the half-line picture) is given by multiplication by A on the
Fourier side, and so e~ "4 hecomes e A, Expanding the left-hand side and carrying out

the t-integration explicitly reduces this to the following statement:

/ TV / h / ™ b0 \bor 1) FOVFGS( — ) po(dN)po(dis) dr < CILFI3 - (35.17)
1 0 0

The left-hand side above is

-/ TR / " bo(r N2 (V)2 dAdr
1 0

In view of (3.5.15), (3.5.14), and [ V12(r) dr < oo, we obtain (3.5.16), and thus (3.5.13).
This means that HKHL% _,x < C, some finite constant.

For the second factor in (3.5.12) we claim the estimate

IVau®)lgz < ClUO)ll2 = Cl 9l g2 (3.5.18)

valid for any solution of (3.5.8) with F' = 0. To prove it, we invoke the distorted Fourier
transform relative to the self-adjoint operator H := —A 4+ V on the domain D as defined
above, restricted to radial functions. As before, conjugation by r2 reduces matters to a
half-line operator £ := —0pr + T% +V on L?((1,00)) with a Dirichlet condition at r = 1.
In analogy with L, we show in Lemma 3.5.2 below that there exists a Fourier basis ¢(r; \)
satisfying for all A > 0

Lo(r;N) = No(r;A), - d(1:4) =0
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and the correspondences

ﬂM:A o(ri N f(r) dr
fmzf o1 N (V) p(dN) (3.5.19)
0
Hf||L2(1,oo) = HJEHL2((0,OO);p)

for a suitable positive measure p(d\) = w(A) dA on (0,00). It is here that the assumptions
on the spectrum of H enter crucially. Indeed, the absence of negative spectrum means that
p is supported on (0,00), and the absence of a zero eigenvalue implies that w exhibits the
same rate of decay as wg as A — 0+. The exact property which emerges from all this and

which underlies the proof of (3.5.18) is the following variant of (3.5.15), see Lemma 3.5.2,

sup (W) %6 (r; MPw()) < C < o0 (3.5.20)
r>1, A>0

The local energy estimate (3.5.18) reduces to
00 00 00 R D)
/ / ‘v2(r) / B(r; M) (cos(tA) F(A) + A sin(tA)g(\) p(d)\)’ drdt
— 1 0
e oA 2
<C [ 17 WE + o) PDar
Consider the case g = 0. Expanding and integrating out the left-hand side one obtains

1 00 0O 7“2 r 2,7 2w 9
5[ [ ePar R e i

o . (3.5.21)
scﬂxmwﬂmé NIFNIP pldd) < CIVEFIZ < ClLf'I3

where we used (3.5.20) to pass to the second inequality sign, and (3.5.10) to pass to the final
inequality. The calculation for f = 0 is similar.

Putting everything together we obtain (3.5.18) and therefore also (3.5.9). O
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Now we turn to the technical statements concerning the distorted Fourier transforms for
the half-line operators Ly = —0py + r% and £ = Lo+ V on L?((1,00)), respectively, with a
Dirichlet condition at » = 1. This is completely standard, see for example |28, Section 2], the
first two chapters in [10], or Newton’s survey [60]. But since these references do not treat
the specific half-line problem that we are dealing with, and in order to keep this chapter

self-contained, we include the details.

Lemma 3.5.2. The half-line operators Loy and L admit Fourier bases satisfying (3.5.14),
(3.5.15), and (3.5.19), (3.5.20), respectively. For L it is essential to assume that it has no

point spectrum.

Proof. For any z € C denote by ¢q(r; z) and 6y(r; z) the unique solutions of
Lodo(;2) = 22¢0(:2),  Lobo(+s2) = 2700 (5 2)
with initial conditions
d0(152) = 0,¢p(1;2) =1, fo(152) = 1,0p(1;2) =0

These are entire in z, and satisfy W (0y(-; 2), ¢g(+;2)) = 1 by construction. Here W(f, g) =
fg' — f'g is the Wronskian. Furthermore, since L is in the limit-point case at r = oo, for
any z € C with Im z > 0 there exists a unique solution vg(-; 2) € L?((1,00)) to Loty (; z) =

221 (+; 2) with g(1; 2) = 1. Writing

Yo(+52) = 0o(+; 2) +mo(2)do(-; 2)

one finds that mg is analytic in Im z > 0, as well as a Herglotz function (Imm(z) > 0 in the
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upper half plane) and the spectral measure is determined by

po(dX) = 2XIm mg (X + i0) dA (3.5.22)

It is common to refer to mqy as the Weyl-Titchmarsh function, and to i as the Weyl-
Titchmarsh solution.
For the specific case of £( a fundamental system is of Lof = 22f is given by weighted
Hankel functions r2 H ét(zr) These functions are explicit linear combinations of e*#?" with
2

rational (in r) coefficients. Indeed, one verifies that

¢o(r;2) = (3r) (1 + 2%r) sin(z(r — 1)) — 2(r — 1) cos(2(r — 1))]

Oo(r;2) = (23r) (1 + 22(r — 1)) sin(z(r — 1)) + (237 — 2(r — 1)) cos(z(r — 1))]
i) = L e

i(22—1) -2

mo(z) - zZ+1

Note that while the first two lines are entire in z, the third and fourth are meromorphic in C

and analytic in Im z > 0. For the spectral measure we find that

o\

Trae?

po(dA) =
To prove (3.5.15), we set u := A(r — 1) whence

do(r N) = A2 (u+ 27! [sinu—wcosu+ A(u+ A)sinu]

If A > 1, one checks that Agg(r; A) = O(1) uniformly in u > 0, whereas for 0 < A < 1 one

has A2¢4(r; \) = O(1) for all u > 0. In fact, in both cases one gains a factor of u for small u.
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These two bounds amount to

2
|¢0(r;)\)|1i\L—)\SCmin(l,)\(r—l)) Vr>1,A>0

which is precisely (3.5.15). Notice that this estimate contains the Lg-analogue of (3.5.20).
By standard perturbation theory we now transfer these results to £, see [10] for more

background. First, for A € R, X # 0, we set

T2 = o0 + | " ol WV A) di? (3.5.23)

r

with the Green function

G()(’r‘7 r/; )\) — ¢O(T; A)m — M)m

W (@o(5 A), ¥o(+5 )

Evaluating at r = oo one sees that W(ig(-;\), (5 \)) = —2iA3/(1 + X?) # 0. To be

specific,

2 1 . /
iy ALl oy N sinA( =) (3.5.24)
Go(r,r's \) = )\2(7"’ T)cos()\(r ) + 2 y
whence for all A # 0 and 1 < r <7/ < o0,
Go(r, s DI < Co(IA ™ xgags) + (0 =7+ (0 = 1)* )Xo pnj<1]) (3.5.25)

By Volterra iteration we see that (3.5.23) has a unique solution ¢ (r; A) even for A = 0 which

satisfies for all r > 1

[(r; A) — Yo (r; )] < exp (Co / h 3V (s)] ds) ~1 (3.5.26)

r

151



We used here that [|¢9(:; M) fo0(1,00) < 1 for all A. It follows that

b N) = oA +00™  r =0 (3.5.27)

uniformly in A. In particular, we conclude that

- - S iN3
W (36520, 36 0) = W (o (: ), Tl ) = ~ o (35.28)

whence (1, A) # 0 for all A #£ 0 and r > 1. Hence, we can find a (smooth) function ¢()) for

A # 0 such that ¥(r; X) := ¢(A)(r; A) satisfies ¢(1; A) = 1. Furthermore, the first estimate

in (3.5.25) implies that

DN = Yo A) 0N A5 oo (3.5.29)

uniformly in 7 > 1. This shows that ¢(\) = 1 + O(A™1) as A — oo and that

23
14 A2

2lmm(\) = W (5 N, (5 \)) +O(1) Ao oo

where m is the Weyl-Titchmarsh function for £. In view of the universal property (3.5.22)

one has for all 0 < A\g < A < o0

c1< ,\—1%(,\) <C (3.5.30)

for some constant C' = C'(\g). As far as the bounds on ¢(r; \) are concerned, one has

~ Imap(r; A)

o(r; ) = T (V) (3.5.31)
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which immediately shows that for A > Aq,

Ao(r; N < C

To gain a factor A\(r — 1), observe that (3.5.23) implies that [|0;¢(7; M) ]|cc < C(Ag)A. In
particular,

[T p(r; A)] < [ (r;A) = (L A)] < CA(r — 1)

where C' = C'(\g) as before. It remains to verify (3.5.19), (3.5.20) in the regime 0 < A < 1.
It is of course here that the assumption on absence of a zero energy eigenvalue enters.
We begin with the zero energy solution, i.e., a fundamental system of solutions to Lf = 0.

First, 1,72 form such a system for Lof = 0. Then

roro

[ee]
w(r) =1t = [ Golr o)V (s)uos) ds (3.5.32)
T
with Green function
173 — g3
GO(Tv 8) - g ST

defines a solution of Lug = 0. The Volterra iteration again converges and yields

up(r) =r11+00r™1) ro (3.5.33)

Here and in what follows, the O(-)-terms can be differentiated in r (and A where appropriate)
with the expected effect. We leave the detailed verification of this property to the reader.
By (3.5.7), both ug(1) # 0 and ug(1) # 0. Another solution is given by

u () = ug(r) / ' ug 2(s) ds (3.5.34)
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for all r > rg where rg > 1 is chosen such that ug(r) > 0 in that range. Inserting (3.5.33)

into (3.5.34) yields

up(r) = %7’2(1 +0>r™ %) r— 00

Clearly, {ug, w1} forms a fundamental system of Lu = 0 with W (ug, uq) = 1.

Next, define for all r > 1 and 0 < A < 1,
T
wa(ri ) =ua(r) + 32 [ Gl 0
1

where

G(r,r") = ui(r)up(r’) — uo(ryur (r')

Then (3.5.36) has a solution, which satisfies Lu1(-; \) = A2u1(-;\) and
ui(r; A) = up (r) + O\ (r — 1)?)

as long as A\2r? < 1. Similarly, we define ug(r; \) as

ex1

(3.5.35)

(3.5.36)

ug(r; ) = ug(r) + A2 ( /1T ug(r)ur(s)ug(s; \) ds + / up(r)ug(s)ug(s; A) ds) (3.5.37)

r

Here € > 0 is a small absolute constant, which is to be determined. Notice that (3.5.37) is

not a Volterra equation, but it can be solved by a contraction argument. Indeed, we set

ug(r; \) = ug(r) + )\2ru2(r; A)

and reformulate (3.5.37) in the form ug = Tug for some linear map 7' = T; y. Then one

checks that for all 0 < A < 1 and a small but fixed € > 0, the map 7" is a contraction in a
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ball of fixed size in the space C([1, 5)\_1]). Consequently, there is a unique solution satisfying
lug(r \)| < C V1<r<er™!

and all 0 < A < 1. Returning to (3.5.37), we see that this integral equation has a solution

foralll1 <r < 5>\_1, which is also a solution of Lug = )\2u0, and which is of the form
ug(r; ) = ug(r) + O(X*r) on [1,eA™}
Furthermore, {ug(-; \), u1(-; )} forms a fundamental system of Lu = \>u with
W (ug (-3 A), u1(5A) = 1+ O0(A?)

as A — 0, and ug(1; \) # 0 for small \ since ug(1) # 0.

Consequently, for all |A| < 1 one has (since uq(1; A) = uy(1))

o) = e (1) = 205y 1) (35.39)
where ¢()) is continuous with |c(A)| ~ 1. Indeed,
NN g
0= (A0 =03 0) = Wty e

By inspection, one has the bounds on 1 < r < A71,

G N < CA2 [9rg(r; A)| < OAT

Indeed, u; satisfies these bounds, and u( better ones as can be seen directly from the Volterra
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equations (3.5.37), (3.5.36). Hence,

A2|6(r N < Omin(1,A(r—1))  VY1<r<A (3.5.39)

as desired. To extend this bound to 7 > A™1, and in order to describe the spectral measure

for small )\, we use ¢ from (3.5.23). In fact, writing

6(r: X) = a(\)d(r: A) +a(\)i(r; ) (3:5.40)

one has

a()\) = 0 D) oA (3.5.41)

1
For the denominator we used (3.5.28), whereas the numerator is evaluated at » = A\™ 2, say

which reduces matters to

W (p(5A),0(5N) = e W (ur (5 N), o5 V) +0(1) =0(1) A =0 (3.5.42)

Inserting (3.5.41) into (3.5.40) one obtains sup,~; A2[¢(r; A)| = O(1) as A — 0. Together
with (3.5.39), this concludes the proof of (3.5.20).
Finally, in order to determine Im m(\) for small A, we use the relation (3.5.31), valid for

all » > 1. We use it at r = C a large constant to conclude that
G(rN) =1, Imo(r;N) =< Imayy(r; A) < A3

which implies Im m()\) =< A? and we are done. Here a =< b means C~! < 7 <C. O
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CHAPTER 4
3D WAVE MAPS EXTERIOR TO A BALL: RELAXATION TO
HARMONIC MAPS FOR ALL DATA AND FOR ALL
DEGREES

In this chapter we describe all possible asymptotic dynamics for the 1-equivariant wave-map
equation from

RiE3\ (R x B(0,1)) — &
with a Dirichlet condition on the boundary of the ball B(0, 1), and data of finite energy for

all degree classes, n > 0. To remind the reader, we are considering the Lagrangian

3
(= 1015 + 3 19;Ug) dide
R1+3\(Rx B(0,1)) j=1

L(U,0U) =

N —

where ¢ is the round metric on S, and we only consider functions for which the boundary
of the cylinder R x B(0,1) gets mapped to a fixed point on S3, say the north pole. Un-
der the usual l-equivariance assumption the Euler-Lagrange equation associated with this

Lagrangian becomes

Uit — Yrr — gwr + Sin(gz/)) =0 (4.0.1)
T T

where 1 (t, r) measures the angle from the north-pole on S3. The imposed Dirichlet boundary

condition is then ¥ (¢,1) = 0 for all £ € R. In other words, we are considering the Cauchy
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problem

2 sin(2
@btt - wrr - _?/fr + (2¢) =0, r=>1,
r r

P(t,1) =0, Vi, (4.0.2)

’QD(O, T) = ¢0(7“)> ¢t(07 T) =11 (T)

The conserved energy is

o0 2
E(Y, ¥r) =/1 %(¢?+w3+z%)r2dr (4.0.3)

Any (t,r) of finite energy and continuous dependence on ¢t € I := (tg,t1) must satisfy
(t,00) = nr for all t € I where n € Z is fixed. We can restrict to the case n > 0 since this
covers the entire range n € Z by the symmetry 1 — —. We call n the degree, and denote
by &, the connected component of the metric space of all ¢ = (o, 1) with € (J) < o0 and

fixed degree n (of course obeying the boundary condition at r = 1), i.e.,

En = {(to,¥1) | E(Wo, 1) < o0, Yo(1) =0, lim vg(r) = nr} (4.0.4)

The natural space to place the solution into for n = 0 is the energy space Hgy = (Hé X

L?)(R3) with norm

—

1712, = /1 T W) ) 2§ = () (4.0.5)

Here, R? := R3\ B(0,1) and H 6 (R3) is the completion under the first norm on the right-hand
side of (4.0.5) of the smooth radial functions on {z € R3 | |z| > 1} with compact support.

For n > 1, we denote Hy, := &, — (Qp,0) with “norm”

191134, == 11 = (Qn: 0) 24,
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The point of this notation is that the boundary condition at r = oo is 1 — (Qp,0)(r) — 0
as r — 00.

Our main result is as follows. It should be viewed as a verification of the soliton reso-
lution conjecture for this particular case and completes the study of this model initiated in

Chapter 3.

Theorem 4.0.3. For any smooth energy data in &, there exists a unique global and smooth

solution to (4.0.2) which scatters to the harmonic map (Qnp,0).

Scattering here means that on compact regions in space one has (¢, ¥¢)(t) — (Qn,0) —

(0,0) in the energy topology, or alternatively

(1, ) (t) = (Qn, 0) + (0, 01)(t) + 034, (1) t — o0 (4.0.6)

where (¢, ¢t) € Hy solves the linearized version of (4.0.2), i.e.,

2 2
Pit — Prr — ;807“ + 7“_290 =0,7r>1, p(t,1)=0 (4.0.7)

We would like to emphasize that only the scattering part of Theorem 4.0.3 is difficult.

In the previous chapter and in [53] the author, together with Wilhelm Schlag, established
this theorem for degree zero, and also proved asymptotic stability of the ), for n > 1. Here
we are able to treat data of all sizes in the higher degree case. As in [53] we employ the
method of concentration compactness from [36, 37]. The main difference from [53] lies with
the rigidity argument. While the virial identity was the key to rigidity in [53] for degree
zero (which seems to be impossible for n > 1), here we follow an alternate route which was
developed in a very different context in [23, 25] for the three-dimensional energy critical
nonlinear focusing wave equation. To be specific we rely on the exterior asymptotic energy

arguments developed there. A novel feature of our work is that we elucidate the role of
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the Newton potential as an obstruction to linear energy estimates exterior to a cone in odd
dimensions; in particular we do this for dim = 5, which is what is needed for equivariant
wave maps in R3. It is precisely this feature which allows us to adapt the rigidity blueprint
from [23, 25] to the model under consideration.

Finally, let us mention that we expect the methods of this chapter to carry over to higher

equivariance classes as well.

4.1 Preliminaries

In this section we discuss the harmonic maps @), as well as the reduction of the equivariant
wave maps equation to a semi-linear equation in R2 := R®\ B(0, 1) with a Dirichlet condition

at r = 1.

4.1.1 Exterior Harmonic Maps

In each energy class, &, there is a unique finite energy exterior harmonic map, (Q,0) =
(Qn,0). In fact (Qn,0) can be seen to have minimal energy in &,. An exterior harmonic

map is a stationary solution of (4.0.2), i.e.,

Qur + 2, = Y (4.1.1)
r r
Q1) =0, Tlggo Q(r) =nr (4.1.2)

Lemma 4.1.1. For all o € R there exists a unique solution Qo € HY(R3) to (4.1.1) with
Qu(r) =nm —ar 2+ 0%

The O(-) is determined by «, and vanishes for « = 0. Moreover, there exists a unique o

such that Qo (1) = 0, which we denote by agy. One has ag > 0.
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The proof of Lemma 4.1.1 is standard so we just sketch an outline below. In order to study
solutions to (4.1.1) it is convenient to introduce new variables s = log(r) and ¢(s) = Q(r).

With this change of variables we obtain an autonomous differential equation for ¢, viz.,

¢+ ¢ = sin(20) (4.1.3)

which is the equation for a damped pendulum. We can thus reduce matters to the phase
portrait associated to (4.1.3). Setting z(s) = ¢(s), y(s) = @(s) we rewrite (4.1.3) as the

system

T y — X(2,y) (4.1.4)
i —y + sin(2z)

and we denote by ®g the flow associated to X. The equilibria of (4.1.4) occur at points
Vg2 = (]—“QE,O) where k£ € Z. For each % = n € Z the flow has a saddle with eigenvalues
A+ = 1, A = =2, and the corresponding unstable and stable invariant subspaces for the
linearized flow are given by the spans of (1, A4+) = (1, 1), respectively (1,A\_-) = (1,—2). In a

neighborhood V' 3 v,, = (nm,0) one can define the 1-dimensional invariant unstable manifold
Wy ={(z,y) e V| ®s(z,y) = vy as s — —o0}

and the 1-dimensional invariant stable manifold
WSt = {(x,y) € V | Dg(x,y) — vy as s — 00}

which are tangent at vy, to the invariant subspaces of the linearized flow. In particular, for
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each n one can parameterize the stable manifold W5t by

Pn,a(s) =nm — e 25 ¢ 0(6—65)

with the parameter o determining all the coefficients of higher order. This proves the ex-
istence of the )y in Lemma 4.1.1. One can show that if the parameter « satisfies @ > 0
then ¢y q(s) lies on the branch of the stable manifold which stays below nm for all s € R,
ie., ona(s) < nmforall s € R. If @« = 0 then ¢y o(s) = nr for all s. Finally, if o < 0
then ¢p o (s) > nm for all s € R. Different choices of o correspond to translations in s along
the respective branches of the stable manifold, which is what we mean by uniqueness in the
statement of Lemma 4.1.1.

To prove the existence and uniqueness of ag, we note that an analysis of the phase
portrait shows that any trajectory with a > 0 must have crossed the y-axis at some finite
time sq, and once it has crossed can never do so again. Note that if the parameter « satisfies
a < 0 then the trajectory can never cross the y-axis since in this case ¢y o(s) > nn for all
s € R.

Now, fix any a4+ > 0 and a— < 0. Passing back to the original variables we have three

trajectories

Qn.os(r) =nm —agr 2+ 0(r~%)
(4.1.5)

Qn,o(r) = nm

where Qn o () is a trajectory on the branch of Wﬁt that increases to nm as r — 00, and
Qn,a_ (r) is a trajectory on the branch of Wﬁt that decreases to nm as r — o0o. Since the

trajectory Qp o, satisfies Qn o (r9) = 0 for some 79 > 0, we can obtain our solution @y ()
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to (4.1.1) which satisfies (4.1.2) by rescaling Qp, o, (1) by Ag > 0, i.e., we set

Qu(r) = Qi (r/Ao) = n — Mayr 2+ 09

where we note that Ag > 0 is uniquely chosen to ensure that the boundary condition @ (1) =
0 is satisfied. Note that such rescalings amount to a translation in the s-variable above.

Setting o := )\(2)@+, the unique harmonic map (Qn(r),0) € &, therefore satisfies

Qu(r) =nt — agr 2+ 0@~ (4.1.6)

as claimed above.

4.1.2 5d Reduction

In the higher topological classes, &, for n > 1, we linearize about ) = ), by writing

v=0Q+

where () = @)y, is the unique harmonic map and energy minimizer in &,. If J € &, is a wave

map, then ¢ € H,, satisfies

2 2 cos(2Q)
@n—ww—;w+~—%fl¢=2@¢)

_ co(2Q)(20 —sin(2)) + 25in(2Q)sin’ (o) @17

p(t,1) =0, 9(t,00) =0 Vt,  F0) = (Yo — Q,¢1)

Z(r )
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The standard 5d reduction is given by setting ru := ¢ and then @ solves

4
utt = Upr = —Ur +V(r)u=F(r,u) + G(r,u), r>1

u(t,1) =0 Vt, u(0)= (ug,ur)
~ 2(cos(2Q) — 1)

Vi(r):= 2 (4.1.8)
o sin? (ru)

F(r,u) := 2sin(2Q) 3

G(r,u) := cos(2Q) (2ru — i;n(2ru))

We will consider radial initial data (ug,u1) € H = H& x L2(R2) where R2 = R\ B(0,1),

||(u0,u1)||%[ = Am((aruo(r))2 + u%(?”)) 7"4 dr (4.1.9)

where H& (R2) is the completion under the first norm on the right-hand side above of all
smooth radial compactly supported functions on {z € R° | |z| > 1}. We remark that the

potential

V() = 28 = 1) (4.1.10)
is real-valued, radial, bounded, smooth and by (4.1.6) satisfies

V(r)=0(r"% as r - o (4.1.11)
Also, by (4.1.6) we can deduce that

F(ru)] S v ful?
(4.1.12)
G (r,u)| S Juf?
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For the remainder of the chapter we deal exclusively with w(t,7) in R2 rather than the
equivariant wave map angle (¢, 7). In fact, one can check that the Cauchy problem (4.0.2)

with data (¢g,1) € &, is equivalent to (4.1.8). To see this let J € &, and set

ri(r) := (Yo(r) = Qn(r), ¥1(r)) (4.1.13)

We claim that

191l = [l (4.1.14)
Indeed, setting () := ¥g(r) — Qn(r) we see that
o o
/ ©2(r)r? dr 2/ w2 (r)yrt dr (4.1.15)
1 1
via Hardy’s inequality and the relations
@r:rur%—u:rurjt%
Therefore for each topological class &, the map
- 1
Y= —(Yo(r) = Qn(r), ¥1(r))

is an isomorphism between the spaces &, and H respectively.
In particular, we will prove the analogous formulation of Theorem 4.0.3 in the u-setting
rather than the original one. Scattering in this context will mean that we approach a solution

of (4.1.8) but with V = F =G = 0.
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4.2 Small Data Theory and Concentration Compactness

4.2.1 Global existence and scattering for data with small energy

Here we give a brief review of the small data well-posedness theory for (4.1.8) that was
developed in the previous chapter; see also [53]. As usual the small data theory rests on
Strichartz estimates for the inhomogeneous linear, radial exterior wave equation with the

potential V|

4
Ut — Uy = ur +V(ru=nh
u(t,1)=0 Wt (4.2.1)

u(0) = (ug,u1) € H

where V(r) is as in (4.1.10). We define Sy/(t) to be the exterior linear propagator associated

to (4.2.1). The conserved energy associated to (4.2.1) with h = 0 is given by

1 0
Er(u,u) = 5/1 (u% + u% + V(r)u2) rd dr

This energy has an important positive definiteness property: one has

1
Er(u, up) = §(||ut||% + (Hulu)), H=-A+V (4.2.2)

It is shown in [5, 53] that H is a nonnegative self-adjoint operator in L2(R2) (with a Dirichlet
condition at 7 = 1), and moreover, that the threshold energy zero is regular; in other words,
if Hf =0 where f € H2N H(% then f = 0. It is now standard to conclude from this spectral

information that for some constants 0 < ¢ < C,

lfIGy < CHIIP) < CIAIGy v f € Hy(RY) (4.2.3)

166



We sometimes write ||ﬁ||% := &r,(10), which satisfies
lille ~ llully VieH (4.2.4)

In what follows we say a triple (p, q,~) is admissible if

For the free exterior 5d wave, i.e., the case V = 0 in (4.2.1), Strichartz estimates were
established in [33]. Although the estimates in [33] hold in more general exterior settings, we

state only the specific example of these estimates that we need here.
Proposition 4.2.1. [35] Let (p,q,7) and (r, s, p) be admissible triples. Then any solution

u(t) to

Uit — Uppr — ;UT =h
#0) = (f.9) € H(RY) (4.2.5)

v(t,1)=0 VteR

with radial initial data satisfies
119177 9ell g S I 9l + 1912 bl (4:26)

In the previous chapter, the author and Wilhelm Schlag showed that in fact the same

family of Strichartz estimates hold for (4.2.1).

Proposition 4.2.2. Let (p,q,v) and (r, s, p) be admissible triples. Then any solution wu(t)
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to (4.2.1) with radial initial data satisfies
VI Vullgprg S 1@ 3 + NNV Al (4.2.7)

With these Strichartz estimates the following small data, global well-posedness theory

for (4.1.8) follows from the standard contraction argument.

Proposition 4.2.3. The exterior Cauchy problem for (4.1.8) is globally well-posed in H :=
H& x L2(R2). Moreover, a solution u scatters as t — oo to a free wave, i.e., a solution

ur, € H of

COup, =0, r>1, up(t,1) =0, Vt >0 (4.2.8)

if and only if ||ul|s < oo where S = L3([0,00); LS(RY)). In particular, there exists a constant

d > 0 small so that if |i(0)||y < J, then u scatters to free waves as t — +oo.

Remark 7. We remark that in [53, Theorem 1.2], the conclusions of Proposition 4.2.3 were
phrased in terms of the original wave map angle 1) where here the result is phased in terms
of u(t,r) := %(w(t, r) — Qn(r)). As we saw in Section 4.1 this passage to the u—formulation
1
=

is allowed since the map @ = (¢ — Qp, ¥¢) is an isomorphism between the energy class &,

and H := Hol x L2(R2), respectively.

We refer the reader to the previous chapter for the details regarding Proposition 4.2.2
and Proposition 4.2.3. For convenience, we recall how the scattering norm L?Lg is obtained.

By Proposition 4.2.2; solutions to (4.2.1) satisfy

lull 1 S 1 O) |3 + (17 3 30 4.2.9
*(R3)) VL24+L2LYT (4.29)

t+x

1
. . . . L 5,3 . . .
As in the previous chapter, we claim the embedding W7 — Lg for radial functions inr > 1
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in R%. Indeed, one checks via the fundamental theorem of calculus that Wo%’?’ — L3°. More

precisely,

PO <8 f 0 (4:210)

Interpolating this with the embedding L3 < L3 we obtain the claim. From (4.2.9) we infer

the weaker Strichartz estimate

Il (g ey S 1Ol + 121 (1211)

3 30
L}(R;L2(RE)+LZ (R;LET (RF))

which suffices for our purposes. Indeed, using (4.2.11) on the nonlinear equation (4.1.8) gives
lll 13, p6 (may) S N€(0) g + [1E°(r, ) + G(r, w)] 3 30
Lt (RyLm (R*)) L%L%-ﬁ-L? LxTT

< |7 3,2 3
S Ol + 17242 g 50+l

t La

< ||@(0 1+ |lr3 u? SR PATE:
S a0) [l + [l . 579|| ||L§L% | ”L?Lg

- 2 3
S NaO)llae A+l s + llullys e

where we have estimated the size of the nonlinearity h = F(r,u) + G(r,u) using (4.1.12).
Thus for small initial data, ||@(0)]y < J, we obtain the global a priori estimate
(4.2.12)

HUHL;?(R;LQ,(RQ)) N ||ﬁ(0)||”ﬂ SO

from which the small data scattering statement in Proposition 4.2.3 follows.
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4.2.2  Concentration Compactness

We now formulate the concentration compactness principle relative to the linear wave equa-

tion with a potential, see (4.2.1) with A = 0. This is what we mean by “free” in Lemma 4.2.4.

Note that this is a different meaning of “free” than the one used in Proposition 4.2.3. How-

ever, observe that any solution to (4.2.1) with A = 0, which is in L?Lg must scatter to “free”

waves, where “free” is in the sense of Proposition 4.2.3.

Lemma 4.2.4. Let {un} be a sequence of free radial waves bounded in H = H& x L2(RD).

Then after replacing it by a subsequence, there exist a sequence of free solutions v/ bounded

in H, and sequences of times t% € R such that for %IYL defined by

un(t) = Y v+ ) + k()
1<j<k

we have for any j < k,
—»k ]
’Vn(_tgﬁ —0
weakly in H as n — oo, as well as
: J_ 4k _
i, fn = tn| = 00

and the errors 75 vanish asymptotically in the sense that

lim limsup [|7%|| =0 VE <p< oo
s M SIP (Lo LENLELS ) (RXRY) 3 =P
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Finally, one has orthogonality of the free energy with a potential, cf. (4.2.4),

linlld = D 51+ 17517 + o(1) (4.2.17)
1<j<k

as n — 0.

The proof is essentially identical with that of Lemma 3.3.2 in the previous chapter. In
fact, instead of the Strichartz estimates for [J in R® we use those from Proposition 4.2.2
above.

Applying this decomposition to the nonlinear equation requires a perturbation lemma
which we now formulate. All spatial norms are understood to be on R2. The exterior

propagator Sy (t) is as above.

Lemma 4.2.5. There are continuous functions €y, Cqy : (0,00) — (0,00) such that the
following holds: Let I C R be an open interval (possibly unbounded), u,v € C(I; H&) N

CY(I; L?) radial functions satisfying for some A > 0
||ﬁ||L°°(I;H) + HﬁHLOO(I;H) + ||UHL§(];L§,) <A
||eQ(U)||L%([;L%) + HQQ(U)HL%([;L%) + HwOHLg(];Lg) <e <ep(A),

where eq(u) = (O + V)u — F(r,u) — G(r,u) in the sense of distributions, and wy(t) :=

Sy (t —tg)(u — U)(tg) with tg € I arbitrary but fired. Then

1@ = v = ol Lgo(r34) + lu = vl z3(7.8) < Co(A)e.

In particular, HUHL;?(I;LQ) < 00.

The proof of this lemma is essentially identical with that of Lemma 3.3.3 in the previous

chapter. The only difference is that we use the propagator Sy, instead of .

171



4.2.8  Critical Element

We now turn to the proof of Theorem 4.0.3 following the concentration compactness method-
ology from [36, 37]. We begin by noting that Theorem 4.0.3 was proved in the regime of all
energies slightly above the ground state energy £(@y,0) in Theorem 3.1.2, see also Propo-
sition 4.2.3 above. As usual, we assume that Theorem 4.0.3 fails and construct a critical
element which is a non-scattering solution of minimal energy, Fy, which is necessarily strictly
bigger than £(Qp,0). This is done in the following proposition on the level of the semi-linear

formulation given by (4.1.8).

Proposition 4.2.6. Suppose that Theorem 4.0.3 fails. Then there exists a nonzero energy
solution to (4.1.8) (referred to as a critical element) Ux(t) for t € R with the property that

the trajectory

K = {@(t) | t € R} (4.2.18)

is pre-compact in H(R2).

Proof. Suppose that the theorem fails. Then there exists a bounded sequence of Jj =

(0,5, %1,5) € En with

E(hj) = B >0 (4.2.19)

(¢(r) — (Q(r), 0)) with

—

and a bounded sequence i := (ug j,uq ;) € H where u;(r) =

il

lujlls = o0

where uy, denotes the global evolution of @y, of (4.1.8). We may assume that E, is minimal

with this property. Applying Lemma 4.2.4 to the free evolutions Sy of u;(0) yields free
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waves v¢ and times té- as in (4.2.13). Let U’ be the nonlinear profiles of (v",t;'-), i.e., those

energy solutions of (4.1.8) which satisfy

lim () = U (#) 9 = 0

t—ti
where lim; té = téo € [—o00,00]. The U © exist locally around t = téo by the local existence
and scattering theory, see Proposition 4.2.3. Note that here and throughout we are using
the equivalence of norms in (4.2.4). Locally around ¢t = 0 one has the following nonlinear

profile decomposition

uj(t) = S Ut + 15 + AR (1) +nf (1) (4.2.20)
1<k

where ||ﬁ’;f (0)|lg — 0 as j — co. Now suppose that either there are two non-vanishing v/,

say vl v2, or that

lim sup lim sup || 7¥(|¢ > 0 (4.2.21)
k—oo  j—00

Note that the left-hand side does not depend on time since fyf is a free wave. By the
minimality of Fy and the orthogonality of the nonlinear energy—which follows from (4.2.15)
and (4.2.14)-each U" is a global solution and scatters with ||Ui||L§L6 < 0.

We now apply Lemma 4.2.5 on [ = R with u = u; and

vty =) Ut +1t%) (4.2.22)

i<k

That ||eq(v)||L%L2 is small for large n follows from (4.2.15). To see this, note that with

173



eq(v) = (O+ V)v— F(r,v) — G(r,v)

__E:Nlﬂt+¢l }:U“t+ﬂ

i<k i<k

The difference on the right-hand side here only consists of terms which involve at least one

-/

pair of distinct ¢,7". But then Heq(v)HLng — 0 as j — oo by (4.2.15). In order to apply

Lemma 4.2.5 it is essential that

hmsupHZUz t+tl HL3L6 <A<oo (4.2.23)
IO sk

uniformly in k, which follows from (4.2.15), (4.2.17), and Proposition 4.2.3. The point here
is that the sum can be split into one over 1 < ¢ < 79 and another over ¢ < ¢ < k. This

splitting is performed in terms of the energy, with ig being chosen such that for all k£ > i

limsup > [T/ (E9)13 < &5 (4.2.24)
J—0o0 ip<i<k

where ¢( is fixed such that the small data result of Proposition 4.2.3 applies. Clearly,
(4.2.24) follows from (4.2.17). Using (4.2.15) as well as the small data scattering theory one

now obtains

i 3
imsw| 3 U= 2 IOl
ig<i<k io<i<k
, (4.2.25)
. 71 ) j
< Crimsup (Y 10U(E)I3,)
J—00

10<i<k

with an absolute constant C'. This implies (4.2.23), uniformly in k.
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Hence one can take k and j so large that Lemma 4.2.5 applies to (4.2.20) whence
lim sup H“J'HL%”LQ < 00

J—00

which is a contradiction. Thus, there can be only one nonvanishing v*, say v!, and moreover

lim sup || 55|, = 0 (4.2.26)
J]—00

Thus, if we let @Zl be the wave map angle associated to U! then we have 5(1;1) = F,. By

the preceding, necessarily
1 = 4.2.27
U] L3LS o0 ( )
Therefore, U =: uy is the desired critical element. Suppose that
(4.2.28)

el £3(0,00):£8) =

Then we claim that

is precompact in H. If not, then there exists § > 0 so that for some infinite sequence t,, — oo

one has

Applying Lemma 4.2.4 to U 1(tn) one concludes via the same argument as before based on
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the minimality of Fy and (4.2.27) that

Tu(tn) = T(mn) + 7 (0) (4.2.30)

where U, 9, are free waves in #H, and 7, is some sequence in R. Moreover, ||7,|lg — 0 as
n — oo. If 7, = Too € R, then (4.2.30) and (4.2.29) lead to a contradiction. If 7, — oo,

then

v (- + 7”)||L§’([O,oo);L§) —0 as n — 0o

implies via the local wellposedness theory that ||us(- + t”)”Lg’([O,oo);Lg) < oo for all large n,

which is a contradiction to (4.2.28). If 7, - —o0, then

||U( + Tn)’|L%((_0070]7L2) — 0 as n — o0

implies that |us(- + t”)HLf’((—oo,O];Lg) < C < oo for all large n where C' is some fixed
constant. Passing to the limit yields a contradiction to (4.2.27) and (4.2.29) is seen to be
false, concluding the proof of compactness of K.

Finally, we need to make sure that us(t) is precompact with respect to both t — +oo
and t — —oo, see (4.2.18). To achieve the latter, we extract another critical element from
the sequence

{@(n)}pzy CH

Indeed, by the compactness that we have already established we can pass to a strong limit
Uy — Uso in H, which has the same energy FE,. By construction, the nonlinear evolu-
tion (4.1.8) with data i~ has infinite L?Lg—norm in both time directions. Therefore, the
same compactness argument as above concludes the proof. Indeed, the solution given by o

is now our desired critical element. O
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In Section 4.4 we will show that us cannot exist. In order to do so, we need to develop

another tool for the linear evolution.

4.3 The linear external energy estimates in R’

We now turn to our main new ingredient from the linear theory, which is Proposition 4.3.1.

In order to motivate this result, we first review the analogous statements in dimensions d = 1

and d = 3.

Suppose wy — Wy = 0 with smooth energy data (w(0),w(0)) = (f,g). Then by local

energy conservation

T

1 1 1
/ ~(w? +w2)(0,z) d:c—/ ~(w} +w2)(T, x) dx = —/ (wi +wz)?(t,t +a)dt
z>a 2 e>T+a 2 2 Jo

for any 7" > 0 and a € R. Since (0y — 0z)(wt + wy) = 0, we have that

1

T T
1
5/ (wt+wx)2(t,t+a)dt:§/ (wi + wy)2(0,a + 2t) dt
0 0

1 1

a+2T a+2T
1 wrwPend =g [ (o @

Consequently,

1 1
/ §(w% +w2)(0,z) do — Tlim ~(w? + w2)(T, x) dx
r>a —0 Jr>T+a

1 [P

and thus

: Lo 2 : L
min —((fr +97)0,z)dr — lim —(wi +wy)(T,z)dx
+ [/ar>a 2(( v )0.) T—+00 Jz>|T|+a 2( ! o)l )
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whence

(0.9]

1 1
li —2+2T,d>_/ 21 ) (a)d 3
mps tim [ SR aez g [T d@e g
Here we used that ¢t — —t leaves f unchanged, but turns g into —g.

Given Ou = 0 radial in three dimensions, w(t,r) = ru(t, r) solves wy — wypyr = 0. Conse-
quently, (4.3.1) gives the following estimate from [22, Lemma 4.2], see also [24, 23, 25]: for

any a > 0 one has

1 2

max lim —((ru); + (rug 2 T,r)dr
SO I (CUSRUTRIOE -,
. 3.
> [ @0R o) ar
r>a
where u(0) = f, @(0) = g. The left-hand side of (4.3.2) equals
max _lim 1(u%—i—u?)(T, ) r2dr (4.3.3)

£ T—=£00 Jy>|T|+a 2

by the standard dispersive properties of the wave equation. The right-hand side, on the

other hand, exhibits the following dichotomy: if a = 0, then it equals half of the full energy

Lo

However, if a > 0, then integration by parts shows that it equals (ignoring the constant from

the spherical measure in R3)

1 2, 2\ 2 [N 5
1 [ i = a0 = I ) gy
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where WC% = Id — 74 and 7, is the orthogonal projection onto the line
{(er™1,0) | ce R} c H' x L*(r > a).

The appearance of this projection is natural, in view of the fact that the Newton potential
r~1in R3 yields an explicit solution to Cu = 0, u(0,r) = r~1,4(0,7) = 0: indeed, one has
u(r,t) = r—1in 7 > |t| + a for which (4.3.3) vanishes. Since 7~ & L2(r > 1) no projection
appears in the time component. In contrast, the Newton potential in R, viz. r~3, does lie
in H 1(r > a) for any a > 0. This explains why in R® we need to project away from a plane

rather than a line, see (4.3.4) and the end of the proof of Proposition 4.3.1.

Proposition 4.3.1. Let Ou = 0 in R T with radial data (f,g) € H' x L*(R®). Then with

some absolute constant ¢ > 0 one has for every a > 0

O
max limsup/ u? + u? t,r r dr >c ik f,q 4.3.4
ax oy [ (0 )0 7 (D 120 (4.3.4)

where g = Id — 7T 15 the orthogonal projection onto the plane
-3 -3 R
{(err™,car™?) [ e1,c2 € R}

in the space H' x L?(r > a). The left-hand side of (4.3.4) vanishes for all data in this plane.

Remark 8. We note that by finite propagation speed Proposition 4.3.1 with @ > 1 holds as
well for solutions v(t) to the free radial wave equation in R x R? with a Dirichlet boundary

condition at r = 1.

4

Vit — Upp — —Up =0

T
7(0) = (f,9) (4.3.5)
U(t,l):() Vt € R
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Proof. By the basic energy estimate we may assume that f, g are compactly supported and
smooth, say. We first note that it suffices to deal with data (f,0) and (0,g) separately.
Indeed, reversing the time direction keeps the former fixed, whereas the latter changes to
(0, —g). This implies that we may choose the time-direction so as to render the bilinear
interaction term between the two respective solutions nonnegative on the left-hand side
of (4.3.4).

We begin with data (f,0) and set w(t,r) := r~1(r3u(t,r));, see [38]. Throughout this

proof, the singularity at = 0 plays no role due to the fact that » > a + [t| > a > 0. Then

4
;Uyr) =0

Wt — Wry = 7"281" (Utt - Uprr — ;Ur) + 3r (Utt = Upr —
From the d’Alembert formula,

limsup/ w=(t,r)dr > 1/ w=(0,r)dr
a

t—00 +t a
which is the same as

o

lim sup /OO (r2up(t,r) + 3ru(t,r))? dr > i / (r2f(r) + 3rf(r)) dr (4.3.6)

t—00 +t a

By our assumption on the data, we have the point wise bound

)
u(t, 7)| < Ct™"X[R—t<r<R+1]

for t > 1 and some large R. Hence, (4.3.6) equals

o0

o0 1
lim sup/ Wt ryrtdr > = (/ P (r)? dr — 3a3f(a)3) (4.3.7)
t—oo Ja+t 4 a
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where we integrated by parts on the right-hand side. Finally, one checks that

is the orthogonal projection perpendicular to =3 in H 1(7’ > a) in R® and that it satisfies

(0.9]

/OO A (r)? dr = / )2 dr — 33 f(a)?

a

which agrees with the right-hand side of (4.3.7) and concludes the proof of (4.3.4) for data
(f.0).

For data (0, g) we use the new dependent variable

u(t,r) = /TOO sOpu(t, s) ds (4.3.8)

By direct differentiation and integration by parts one verifies that v solves the 3-dimensional
radial wave equation, viz.

Vgt — Upp — —Up = 0
r
Moreover, v¢(0,7) = 0. From the exterior energy estimate in dim = 3, i.e., (4.3.2),

o0

lim sup / m((rv)§+(m)2)(t,7~) dr > % /a ((rv)? + (rv)2)(0,7) dr (4.3.9)

t—00 +t

where we have used the fact that for data (vg,0) or (0,v1) the estimate (4.3.2) holds in both

time directions. By our assumption on the data and stationary phase

()] < O N pers ot )] < CF 2 gy
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Hence (4.3.9) reduces to

o 1 (0 ¢]
lim sup/ w2t r)rdr > = / (rh (r) + h(r))? dr (4.3.10)
t—oo Ja+t 2 a

where h(r) := [ sg(s) ds. Inserting (4.3.8) on the left-hand side and integrating by parts

on the right-hand side yields

0 0
lim sup/ (t, ryrtdr > / K (r)%r? dr — ah®(a)

=ilmﬂﬂ%“ﬁ—a(/mpmmd@2

a

Finally, the right-hand side here is || §||%2 (r>a) where

is the orthogonal projection perpendicular to 73 in L2 (r >a)in R?.

3

For data (7’_3, 0) the solution equals 7~2 on r >t +a > a > 0 since 73 is the Newton

potential in R?. Similarly, data (0, r_3) produce the solution ¢r~3 on the same region. In

both cases, the left-hand side of (4.3.4) vanishes. O

4.4 Rigidity Argument

In this section we will complete the proof of Thereom 4.0.3 by showing that a critical element

as constructed in Section 4.2 does not exist. In particular, we prove the following proposition:

Proposition 4.4.1 (Rigidity Property). Let @(t) € H := H} x L?(R2) be a global solution

to (4.1.8) and suppose that the trajectory

=
i

() |t € R}

£y

{
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is pre-compact in H. Then u(t) = (0,0).

First note that the pre-compactness of K immediately implies that the energy of (t) on

the exterior cone {r > R + |t|} vanishes as |t| — oc.

Corollary 4.4.2. Let ii(t) be as in Proposition 4.4.1. Then for any R > 1 we have

Hﬁ(t)”H(TZRHtD —0 as |[t| — oc. (4.4.1)

The proof of Proposition 4.4.1 will proceed in several steps. The rough outline is to
first use Corollary 4.4.2 together with Proposition 4.3.1 to determine the precise asymptotic

behavior of ug(r) = w(0,7) and uy(r) = ut(0,7) as r — oco. Namely, we show that

rBug(r) =l + O(r™3) as r — oo

00 (4.4.2)
r/ u(p)pdp =0~ as r— o0

We will then argue by contradiction to show that (¢, r) = (0,0) is the only possible solution

that has both a pre-compact trajectory and initial data satisfying (4.4.2).

4.4.1 Step 1

We use the exterior estimates for the free radial wave equation in Proposition 4.3.1 together

with Corollary 4.4.2 to deduce the following inequality for the pre-compact trajectory (t).

Lemma 4.4.3. There exists Ry > 1 such that for every R > Ry and for all t € R we have

g @) < B2 mpi(t)3
7R ()H’H(TZR) 7R ()H%(TZR) (4.4.3)

Oy WO

where again P(R) = {(k17 73, kor™3) | k1,ka € R, 7 > R}, np denotes the orthogonal

projection onto P(R) and 7 L denotes the orthogonal projection onto the orthogonal com-
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plement of the plane P(R) in H(r > R;R2). We note that (4.4.3) holds with a constant that

s uniform int € R.

In order to prove Lemma 4.4.3 we need a preliminary result concerning the nonlinear
evolution for a modified Cauchy problem which is adapted to capture the behavior of our
solution #(t) only on the exterior cone {(¢t,r) | r > R+ |t|}. Since we will only consider the
evolution — and in particular the vanishing property (4.4.1) — on the exterior cone we can,
by finite propagation speed, alter the nonlinearity and the potential term in (4.1.8) on the
interior cone {1 < r < R+ |t|} without affecting the flow on the exterior cone. In particular,
we can make the potential and the nonlinearity small on the interior of the cone so that for
small initial data we can treat the potential and nonlinearity as small perturbations.

With this in mind, for every R > 1 we define Qp(¢,7) by setting

QR+ t|) for 1 <r < R+ |t
Qr(t,r) = (4.4.4)
Q(r) for > R+ |t|

Next, set
2R+ [t])"2(cos(2Qp(t, 7)) — 1) for 1<r < R+ |t
VR(t,r) =
2r~2(cos(2Q(r)) — 1) for r > R+ |t|
2(R + |t)) "3 sin(2Qp(t, 7)) sin?((R + [t|)h) for 1 <r < R+ |t
Fgr(t,r h) =

2r 3 sin(2Q(r)) sin?(rh) for r > R+ |t]

G(r,h) == r~3cos(2Q(r))(2rh — sin(2rh)) Vr > 1
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Note that for R large enough we have, using (4.1.6) and (4.1.11) that

(R+t))76 for 1<r <R+t
[Vr(t,r)| S (4.45)

r=6 for r> R+ |t
(R+ |t |ht,r)> for 1<r <R+t
|FR(t.r,h)| S (4.4.6)
=3 h(t,r)]? for r> R+ |t

IG(r,h)| < |h(t,r)]3 for r>1, VteR (4.4.7)

We consider the modified Cauchy problem in R x R3:

4
hit — hyr — ;hr = NR(tvru h)

NR(t,r,h) == =VR(t,r)h+ Fr(t,r,h) + G(r, h) (4.4.8)

h(1,)=0 VteR

h(0) = (ho, h1) € H

Lemma 4.4.4. There exists Ry > 0 and there exists 69 > 0 small enough so that for all

R > Ry and all initial data h(0) = (hg, h1) € H with
12(0)3; < 6o
there exists a unique global solution h(t) € H to (4.4.8). In addition h(t) satisfies

Hh”L?Lg(RxRi) S ||H(O)||”H S %0 (4.4.9)

Moreover, if we let hr(t) := So(t)h(0) € H denote the free linear evolution, i.e., solution
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to (4.3.5), of the data h(0) we have

sup 15 = Al < BIRO) 15 + BTV IRO)3, + 17013, (4.4.10)

Remark 9. Note that for each t € R,

Ng(t,r, h) = =V(r)h+ F(r,h) + G(r,h) Vr > R+ |{] (4.4.11)
where V(r), F(r,h), and G(r,h) are as in (4.1.8). By finite propagation speed it is then
immediate that solutions to (4.4.8) and (4.1.8) agree on the exterior cone {(¢,7) | r > R+|t|}.

Proof of Lemma /.4.4. The small data well-posedness theory, including estimate (4.4.9), fol-
lows from the usual contraction and continuity arguments based on the Strichartz estimates
in Proposition 4.2.1. To prove (4.4.10) we note that by the Duhamel formula and Strichartz

estimates we have
1A(8) = POl S INRC - W £1 12 (R xrs)
S HVRhHLgL%(RXRg) +I1FRr(, h>HL%L%(RxR§) +[IG(, h)HL%L%(RXRg)

We can now estimate the three terms on the right-hand side above. First, we claim that

< < p—11/3
Vit ragry S IVl g elgee S BP0 g

t xT

To see this, we can use (4.4.5) to deduce that for each t € R

3 R+t 18 4 00 18 4
mmﬁsf (Rﬂm‘rw+/ 18,4 g,
r 1 R+]t|

SB[
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Therefore,

2
3
IVl 2 5(/ (R+\t|)_13/2dt) < g3
L2113 R

t xT

Similarly, we can show using (4.4.6) and (4.4.7) that

—-11/6 2
IFRC. W2 @xrs) < B ORI, g

HG("h)HL%L%(RxRi) S/ ||h||?i§Lg
which proves (4.4.10). O

We can now prove Lemma 4.4.3.

Proof of Lemma 4.4.3. We will first prove Lemma 4.4.3 for time ¢ = 0. The fact that (4.4.3)
holds at all times ¢t € R for R > Ry, with Ry independent of ¢ will follow from the pre-
compactness of K.

For each R > 1, define truncated initial data @g(0) = (ug r,u1 g) given by

ug(r) for r> R
ug,R(r) =
\ u}%(_}i) (r—1) for r <R, i12)
ui(r) for r> R
uy,g(r) =
0 for r <R.

Observe that this truncated data has small energy for large R since

1iR(0)ll2¢ < 1E(0) 3> R)- (4.4.13)
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In particular, there exists Ry > 1 so that for all R > Ry we have

1R(0) ]l < do

where dg is the small constant in Lemma 4.4.4. Let @i (t) denote the solution to (4.4.8) given
by Lemma 4.4.4 with data @r(0) as in (4.4.12). Note that by finite propagation speed we

have

ug(t,r) =u(t,r) YteR, Vr> R+ |t

Also let @p 1,(t) = So(t)uR(0) denote the solution to free wave equation (4.3.5) with initial

data @ R(0). Now, by the triangle inequality we obtain for each ¢ € R

e, . = ||up(t r > ||la t r
||a( )HH( >R+t)) |4 R( )HH( >RA+|t|) @R, L( >HH( =R+[t]) (4.4.14)

— lar(t) = up ()]l

By (4.4.10) and (4.4.13) we can deduce that

sup lir(t) = dr Ol S B iar0) 5+ B OaR(0)13, + iz 0)13
S

S B0z my + BMOITO 2y

+ IIﬁ(O)H%(QR)
Therefore (4.4.14) gives
18 134 Rty = 17RO ll30(5 R ey — CoRT3(0) 1345 )
— CoR™M11(0) 13,5 gy — CollE(O) 3y )

Letting ¢t tend to either 00 — the choice determined by Proposition 4.3.1 — we can use

Proposition 4.3.1 to estimate the right-hand side above and use Corollary 4.4.2 to see that
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the left-hand side above tends to zero, which gives

I TRy ry S B2 100) 3,05 5y + B 2180) 1505 1) + 18O0) 15005 1)

after squaring both sides. Finally we note that by the definition of @g(0),

75z @R (O) 35> gy = 177 G013y )
Therefore,

Ik TNy < B2 (IR O ) + 175 7O 2 )
2
+ B3 (ag @)y + Ik A0y 1))

+ (ImR 8Oy ) + 175 TO) B )

where we have used the orthogonality of the projection mp to expand the right-hand side.
To conclude the proof, simply choose R large enough so that we can absorb all of the terms

on the right-hand side involving 7+ into the left-hand side and deduce that

|75 @Oy r) S B PIlrr @(0) 35 5y

+ R mp @03 gy + 17RO 82 )

This proves Lemma 4.4.3 for t = 0. To show that this inequality holds for all ¢ € R observe

that by the pre-compactness of K we can choose Ry = Ry(dg) so that

GO 13 r>r) < 90 (4.4.15)

uniformly in £ € R. Now simply repeat the argument given above with the truncated initial
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data for time t = tg and R > Ry defined by

;

u(tg,r) for » > R

uO,R,to(r) =
\ 7%;0_?) (r—1) for r <R,
ut(tg,r) for r > R

uy R to(1) =
0 for r < R.

This concludes the argument. O

4.4.2 Step 2

In this step we will deduce the asymptotic behavior of 4(0, ) as r — oo described in (4.4.2).

In particular we will establish the following result.

Lemma 4.4.5. Let (t) be as in Proposition 4.4.1 with @(0) = (ug,u1). Then there exists

ly € R such that

ug(r) =y as r— 0o (4.4.16)

o0
7’/ ui(p)pdp — 0 as r — oo (4.4.17)
T
Moreover, we have the following estimates for the rates of convergence,

’r?’uo(r) - ﬁo’ =0(r73) as r— (4.4.18)

o
7“/ ul(p)pdp‘ =00 Y as r— (4.4.19)
T
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To begin, we define

vo(t, r) == r3u(t,r) 1120)
Ul(ta T) = T/OO Ut(t, p)pdp N

and for simplicity we will write vg(r) := vy(0,7) and v (r) := v1(0,r). By direct computation
one can show that

00 /1 2 00
y|w§ﬁ(t)||§[@m: /R (;arvo(t,r)) dr + /R (Bpv1(t, )% dr (4.4.21)

IR ﬁ(t)||%[(r2 R = 3R3v3(t, R) + R~} (t, R) (4.4.22)

For convenience, we can rewrite the conclusions of Lemma 4.4.3 in terms of (vg, v1):

Lemma 4.4.6. Let (vg,v1) be defined as in (4.4.20). There exists Ry > 1 so that for all

R > Ry we have

(1 ? > 2 ~2 (3 9 1,2
—Orvg(t,r) | dr+ (Opvi(t,r))“dr S R™3 (3R vy(t, R) + R i (t, R))
R \T R
2

Y RT (3r733(t B) + R™'0}(t, R))

3
+ (33—%3@, R) + R3¢, R))
<R B3t R) + R T
v? ;

+ RT3 R) + R0t R) + R385t R)

31
5

vg(t, R) + R20S(t, R)
of

with the above estimates holding uniformly in t € R.

We will use Lemma 4.4.6 to prove a difference estimate. First, let 1 > 0 be a small

number to be determined below with 01 < dg where dg is as in Lemma 4.4.4. Let Ry be large
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enough so that for all R > Ry we have

()|l <0 <é VYR>Ry, VteR
2 E) (4.4.23)
01

[y

Ry

o
IN

We note again that such an Ry = Ry(d1) exists by the pre-compactness of K.

Corollary 4.4.7. Let Ry be as above. The for all v,r" with Ry < r < r' < 2r and for all

t € R we have

11 10
oo (t, ) —vo(t, )| S v Juo(t, )|+ 773 [ug(t,r)|? + 73 uo(t, 7) 2 it
_8 _4 ) 3 ( o )
73 oy (6, )| + 773 Jor () P+ Jur (4, 7))

and

14 13
vy (t,7) — o1 (t, )] S 73 Juo(t,r)| + 773 Jug(t,r) [+ uo(t,7) )2 s
~u 1 2, 1 3 (4.4.25)
+r 3 Jur(t, )|+ 3 ot )T+ fur(t )]

with the above estimates holding uniformly in t € R.

We will also need a trivial consequence of the preceding result which we state as another

corollary for convenience.

Corollary 4.4.8. Let Ry be as above. The for all v,r" with Ry < r < r' < 2r and for all

t € R we have

|vo(t, ) — vo(t, )| S 81 [vo(t,7)| + rdy [or (¢, 7)] (4.4.26)

and

vy (t,7) —or(t,7")| S 710 oo (t, )] + 61 [or (t,7)] (4.4.27)
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with the above estimates holding uniformly in t € R.

We remark that Corollary 4.4.8 follows immediately from Corollary 4.4.7 in light of

(4.4.22) and (4.4.23).

Proof of Corollary 4.4.7. This is a simple consequence of Lemma 4.4.6. Indeed, for r > Ry

and 1’ € [r,2r] we use Lemma 4.4.6 to see that

07410 t,p)

IN

4

(t,r)+r~ 3vo(t7”)+7“ Mg (t. )

2
}votr)—votr << |8rvotp|dp)

([ o) ([

31
57’3(7" 3w

OM

25 17
+ 73 (r 3 %(t r)+r 3 vl(t r)+r 3@?(1& r))
Similarly,
r 2
o1 (t,r) — v (t,7")]” < (/ |Orv1 (¢, p)| dp)
T
r !
< (/ dp) </ 0rv1 (¢, p)|? dp)
T T
<r (r_%v%(t, r)+ r_%_gvé(t, )+ r_9v(6)(t, r))
+ 7 (7"_23_51)%(15, )+ r_%vil(t, )+ r_?’v?(t, r))
as claimed. 0

The next step towards establishing Lemma 4.4.5 is to provide an upper bound on the

growth rates of vg(t,r) and vy (¢, 7).
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Claim 4.4.9. Let vy(t,r), v1(t,r) be as in (4.4.20). Then,

1
lvo(t,r)| S

o1 (t,7)] S8

uniformly in t € R.

(4.4.28)

(4.4.29)

Proof. First, note that it suffices to prove Claim 4.4.9 only for ¢t = 0 since the ensuing

argument relies exclusively on results in this section that hold uniformly in ¢ € R. Fix

ro > Ry and observe that by (4.4.26), (4.4.27)

00(2" o) | < (1+ C1d1) g (2"r0) | + (2"70)Cad1 [01(27r)

0127 r0)| < (1 C181) oa (2"70) | + (2"70) ™ Cun [0 (2"r0)|
To simply the exposition, we introduce the notation

an = [v1(2"r)|

b := (2"r0) ™ oo (2"r0)|
Then, combining (4.4.30) and (4.4.31) gives

3 1 3
ap+1 + bn+1 < <1 + 50151) an + (5 + 50151) bn

3
< <1 - 50151> (an + bp)

Arguing inductively we then see that for each n we have

3 n
(an +bn) < (1 + 50151) (ap + bo)
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Choosing d;1 small enough so that (1 + %0151) < 21_18 allows us to conclude that

L

ap < C(2"rg)18 (4.4.34)

where the constant C' > 0 above depends on rg which is fixed. In light of (4.4.32) we have
thus proved (4.4.29) for all r = 2"ry. Now define

cn = |vp(2"r)| (4.4.35)

By (4.4.22), (4.4.23), (4.4.24), and (4.4.34) we have

1
1 < (1+ Cro1)en + C(2r0)8
Inductively, we can deduce that

1 _
en < (1+C161) "o+ Cr§ S (1+Ciay)" k25
k=1

< C(2"rg)?

where we have used that (1 4+ C1d7) < 2%, and again the constant C' > 0 depends on 7,
which is fixed. This proves (4.4.28) for r = 2™rq. The general estimates (4.4.28) and (4.4.29)
follow from the difference estimates (4.4.24) and (4.4.25). O

Claim 4.4.10. For each t € R there exists a number (1(t) € R such that

o1(t,r) — ()] = O0(r™Y) as r — oo (4.4.36)

where the O(-) is uniform in t.

Proof. Again, it suffices to show this for ¢t = 0. Let rg > Ry where Ry > 1 is as in (4.4.23).
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By (4.4.25) and Claim 4.4.9 we have

9 7
v1 (2" L) — w1 (20)| < (270) 2 + (2770) T 4 (2"r0) "2

65 20 5
(2"rg) 718 4 (2"rg)” 9 + (2"rg) " ©

_'_
5
S (2"rg)" 6

This implies that the series

Z ‘v1(2n+1r0) —v1(2"rg)| < o0

n

which in turn implies that there exists /1 € R such that

. n .
nlgléo v1(2"rg) = 4;.

The fact that lgn v1(r) = 1 follows from the difference estimates (4.4.24), (4.4.25), and the
r—00

growth estimates (4.4.28), (4.4.29). To establish the estimates on the rate of convergence in

(4.4.36) we note that by the difference estimate (4.4.25) and the fact that we now know that

|v1(r)| is bounded, for large enough r we have
012" ) =0 (27)| S (277

Hence,

or(r) = 1] = > (1@ ) =0y (@) | Sty 2 <!
n>0 n>0

as desired. O

Next we show that the limit ¢1(¢) is actually independent of t.
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Claim 4.4.11. The function ¢1(t) in Claim 4.4.10 is independent of t, i.e., {1(t) = {1 for
all t € R.

Proof. By the definition of vy (t,r) we have shown that

ni) =r / Tt podp + O

Fix t1,t9 € R with t1 # to. We will show that

l1(te) — l1(t1) =0

To see this observe that for each R > Ry we have

2R
l1(t2) — l1(t1) = 11_{/ (L1(t2) — £1(t1)) ds
2R 0
:_/ ( / (ug(to, 7 )—ut(tl,r))rdr> ds+O(R™)

:_/2R</ /t g (£ 7) dtrdr) ds + O(R™1)

Using the fact that w is a solution to (4.1.8), we can rewrite the above integral as

/tt2 : /2R< /OO (rurr(t,7) +4UT(t,r))dr) ds dt+

/t . / 2R< / . rV(r)u(t,r)+7“N(r,u(t,r)))dr) ds dt .

+O(R™)

=1 +I11+O0(R™)
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To estimate I we integrate by parts:

to 1 2R 00
I —/ / ( / Ay (rtus(t, r))dr) ds dt
t
to 1 2R 00 to 1 2R
—3/ / ( / up(t,r) r) dsdt—/ —/ sup(t,s)ds dt
t tn RJR

oy o o (4.4.38)
= —3/ / u(t,r) drdt —/ / 2 up(t,r) drdt
t t R
to 1 2R t2
__ / 1 / rult, ) dr dt + / (Ru(t, R) — 2Ru(t, 2R)) dt
t1 R R 31
Finally, we note that (4.4.28) and the definition of vy(t,7) give us
r fult, )] = [uo(t, )] S 78 (4.4.39)

Using this estimate for |u(¢,r)| in the last line in (4.4.38) shows that
11
T=lt ~ 11 O(R%)

To estimate 11 we can use (4.4.39) to see that for r > R large enough

=V (r)ult,r) + N(r,ult,r)] < r S ult, r)| + =3 Jult, r))? + Jut, r)]3

17 17 17
=% L33 L7

Hence,

to 1 2R 00
Hg/’—/ ﬂ/r”m@ﬁ:@—mom4)
t R R s

1
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Putting this together we get

61(t2) — L1(t1)| = O(R™)

which implies that ¢1(to) = ¢1(t1). O
We next show that ¢1 is necessarily equal to 0.
Claim 4.4.12. (1 = 0.

Proof. Suppose /1 # 0. We know that for all R > R; and for all £ € R we have

(0 ¢]
R/ wp(t,r)rdr =0 + O(R™1)
R

where O(+) is uniform in ¢. Hence, for R large, the left-hand side above has the same sign

as f1, for all t. Thus we can choose R > R; large enough so that for all ¢t € R,

0
‘R/ ug(t,r)rdr| > @
R 2

Integrating from t = 0 to t =T gives

T 141
‘ R ut(t,r)rdrdt‘ >T—
0 R 2

However, we integrate in ¢ on the left-hand side and use (4.4.39) to obtain

oo T
R/ / ut(t,r) rdtdr :‘
R JO

© _u
,SR/ r-6dr SR

R/OO[U(T, r) — u(0,r)]rdr

R

=
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Therefore for fixed large R we have

14l
2

=

Tl < R

which gives a contradiction by taking T large. O

Now that we have shown that v1(r) — 0 as 7 — 0o, we can prove that vg(r) also converges

and complete the proof of Lemma 4.4.5.

Proof of Lemma 4.4.5. It remains to show that there exists /5 € R such that

log(r) — o] = O(r™3) as r — oo (4.4.40)
Using the difference estimate (4.4.24) as well as (4.4.28) and the fact that |vq ()] < r~! for
r > Ry we have for rqg > R

11 1 10 1 1
vo(2" rg) — v (2"0)| S (2770) T3 (2770)8 + (279) T (2779)3 + (2r) 3 (2"rg) 2

wloo

+(2r0)F(2r0) 1+ (2rg) 3 (270) 2+ (27r0)

(2"rg)”

N
N[Ot

Hence,

Z ‘v0(2n+1r0) —v9(2"rg)| < o0
n>0

and therefore there exists ¢y € R so that

lim vy(2"rg) = £y

n—o0

By the difference estimate (4.4.24) and the fact that vy (r) — 0 we can conclude that in fact

lim wvg(r) = ¢y. To establish the convergence rate, we note that since we now know that

r—00
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lvg(r)| is bounded we have the improved difference estimate

vo(2" ) — wp(27r)| < (27) 73 (4.4.41)

which holds for all » > R. Therefore,
wo(r) = lol = | (wo(2" 1) —v(27r))| S 73 ) 273" (4.4.42)
n>0 n>0

as claimed. 0

4.4.8 Step 3

Finally, we complete the proof of Proposition 4.4.1 by showing that «(t) = (0,0). We divide
this argument into two separate cases depending on whether the number ¢y found in the

previous step is zero or nonzero.
Case 1: (g = 0 implies 4(0) = (0,0):
In this case we show that if /g = 0, then u(¢) = (0,0).

Lemma 4.4.13. Let u(t) be as in Proposition 4.4.1 and let £y be as in Lemma 4.4.5. Suppose
that £y = 0. Then t(t) = (0,0).

We begin by showing that if £y = 0 then (ug,u1) must be compactly supported.

Claim 4.4.14. Let {y be as in Lemma 4.4.5. If lo = 0 then (ug,u1) must be compactly

supported.

Proof. The assumption ¢y = 0 means that

luo(r)] = O(r™3) as r —
(4.4.43)
o1 ()] =00~ as r—
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Therefore, for rg > R1 we have

lug(2"r0)| + v1(2"r0)| < (270) 73 + (2"rg) L < (2"rg) (4.4.44)

On the other hand, using the difference estimates (4.4.24)—(4.4.27) as well as our assumption
(4.4.43) we obtain

002" r0)| = (1= Cad1) fug(2"r0)| — C1(2"rg) 2 [ur (2")]

v1(2”+17“0)‘ > (1= C161) [o1(2"70)] — C1(2"rg)~* Jug(2"70)|

This means that
n+1 n+1 -2 n n
o0 (2 1rg)| 4 [01 (27 1) | = (1= Croy = Curg®) (Jup(2"r0) | + o (2"70) )

Choose 7 large enough and 1 small enough so that C(d1 + 7y 2) < 21£ Arguing inductively

we can conclude that

@)l + ) = () (en(ro)l + ox (o))

Estimating the left hand side above using (4.4.44) gives

(3) oot + entrol) 52775

which means that

(3) teotrol +ertrol) 1
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Hence U(rg) := (vg(rg),v1(rg)) = (0,0). But then (4.4.22) implies that

7y (0) 35 = 0

Using Lemma 4.4.3 we can also deduce that

I735(O) 1) = O

and hence

Hﬁ(O)HH(rZro) =0

which concludes the proof since lim wug(r) = 0. O
r—00

Proof of Lemma 4.4.13. Assume that ¢y = 0. Then by Claim 4.4.14, (ug,u1) is compactly
supported. We assume that (ug,u1) # (0,0) and argue by contradiction. In this case we can

find pg > 1 so that

oo = int{p  [70)]lzrp) = O}
Let £ > 0 small to be determined below and find 1 < p1 < pg, p1 = p1(e) so that
0 < ||@(0)]|3 <e< 6}
< OBy < = < 67

where d; > 0 is as in (4.4.23). With (vg,v1) as in (4.4.20) we have

00 /1 2 00 B B
/ (;0741()(7“)) dr + / (&«211(7“))2 dr 4 3p; 3”(2)(P1) + 1 1“%(P1) =
p p

1 1

= I @(0) 3y + 1701 EO) By ) = NEO 5y < & (4:445)
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By Lemma 4.4.6 we also have

/p (r)>2 dr—l—/p

o0 e}

1

;

- 87"1]0

1 1

_2
+pp °

Arguing as in Corollary 4.4.8 and using the fact

[vo(p1)] = lvo(p1) — volpo)| S

and

Plugging (4.4.47) into (4.4.48) gives

lv1(p1)] < pyte? [vo(p)|

which means that for € small enough we have

(Oror(r))*dr S py

31 2 B
Sud(p1) + 1 P ug(o1) + oy uh (1)

17
3

vi(p1) +py P ot(or) + 38 (p1)  (4.4.46)

that vo(po) = v1(po) = 0 gives

e lvo(p1)| + pie Jur(p1)] (4.4.47)

[v1(p1)| = [v1(p1) = v1(p0)| S py e [o(p1)] + < [or (1) (4.4.48)
+e(l+e) v (pr)

[o1(p1)| S o1 '€ [vo(p1))| (4.4.49)

Putting this estimate back into (4.4.47) we obtain

[vo(p1)| S & [vo(p)| + € [vo(p1)] S (1 +€2) [uo(p1))|

which implies that vg(p1) = 0 as long as € is chosen small enough. By (4.4.49) we can
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conclude that v1(p1) = 0 as well. By (4.4.46) and (4.4.45) we then have that

||ﬁ(0)||7{(7‘2p1) =0

which is a contradiction since p; < py. O
We next consider the case £g # 0.
Case 2: {y # 0 is impossible.

In this final step we show that the case £y # 0 is impossible. Indeed we prove that if £y #£ 0
then our original wave map ¥(t) is equal to a rescaled solution Qq, to (4.1.1) that does
not satisfy the Dirichlet boundary condition, Qy,(1) # 0, which is a contradiction since
P(t,1) =0 for all t € R.

We have shown that
rug(r) = o+ O0(r™?)
Recall that rug(r) = ¢o(r) = ¢o(r) — Q(r) and that
Q(r)=nm — a_g + O(T’_G)
T
where ag > 0 is uniquely determined by the boundary condition (1) = 0. Hence,

o(r) =nm — 0407; fo +0(r™?) (4.4.50)

By Lemma 4.1.1 there is a solution Q,,_¢ € HY(R3) to (4.1.1) satisfying

ag— 4 _
0040675 (4.4.51)

Qoz(]—ﬁ(] (T) =nm— r
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and from here out we write @y, := Qq,—¢,- Note, by Lemma 4.1.1, £y # 0 implies that

Qp,(1) #0

Indeed, recall from the discussion following Lemma 4.1.1 that if ag — ¢y > 0 then Qy, is
a nontrivial rescaling of the harmonic map ) and hence no longer satisfies the boundary
condition. If ag — £y = 0 then Qg (r) = n for all r. Finally, we recall that ag — fy < 0

implies that Qg,(r) > nr for all r. Now set

1
ufo,O(r) ==
" (4.4.52)
1
r

ug, 1(r) ==

For each t € R define uy (t,7) := %(w(t, ) — Qg (1)). We record a few properties of iy, :=

uy., Oruy ). Note that by construction we have
lo lo

Vg 0(7) = 7’3u€0(7’) =03 as r—

x 1 (4.4.53)
o1 (1) i=7 [ gy (0)dp = O as 1 o
T
Also, iy, (t) satisfies
4 4.4.54
Oty — Orptigy — ;87”u€0 = Vi (r)u+ Ny (r,ug,) (4.4.54)
where
2(cos(2Qy,) — 1)
Vi, (r) == 2 0
4.4.55
(2rug, — sin(2ruy,)) ' sin2(ru[0) ( )
Ny, (r,ug,) = cos(2Qy,) 3 +2 SIH(QQEO)T
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Crucially, we remark that iy, (t) inherits the compactness property from J(t) Indeed, the

trajectory
K = {i,(t) | t € R}

is pre-compact in H! x L2(Ri’). However, since we have assumed that {5 # 0 we see that

ufo(t’ 1) = ¢O(t’ 1) - Qéo(l) = _Qfo(l) 7é 0. (4456)

On the other hand, below we will show that iy, = (ug,,dsug,) = (0,0) which contra-
dicts (4.4.56).

Lemma 4.4.15. Suppose {y # 0. Let u(t) be as in Proposition 4.4.1 and define iy, as

in (4.4.52). Then iz, = (0,0).

The argument that we will use to prove Lemma 4.4.15 is nearly identical to the one
presented in the previous steps to reach the desired conclusion for £g = 0 and we omit many
details here.

We start by showing that (OTWO,O, Ugo,l) must be compactly supported. As before we
can argue as in the proof of Lemma 4.4.3, by modifying (4.4.54) inside the interior cone
{(t,r) | 1 < r < R+ |t|}, and using the linear exterior estimates in Proposition 4.3.1 to

produce the same type of inequality as (4.4.3).

Lemma 4.4.16. There exists Ry > 1 so that for all R > Ry we have

s @ |12 S B2\ np iy |3
R Uol13(r>R) olH(r=R) (4.4.57)

—11/3 - 14 7, 116
+ BB mp ity gy 0s ) + 7R T 155005 1)

where again P(R) = {(k17 73, kor™3) | k1,ka € R, 7 > R}, np denotes the orthogonal

projection onto P(R) and mp L denotes the orthogonal projection onto the orthogonal com-
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plement of the plane P(R) in H(r > R;R3).

We remark that the proof of Lemma 4.4.16 follows exactly as the proof of Lemma 4.4.3
where we simply replace () with Qg, and u with «, in the arguments given for the proof

of Lemma 4.4.3. We note that since the trajectory K is pre-compact in H1 x LQ(RE), Uy,

satisfies the conclusions of Corollary 4.4.2, namely for each R > 1 we have

16, (Dl (r> R4ty = 0 as [t = o0

where the condition R > 1 allows the interchange of the norms H = H& x L2(RY) and
H' x L*(R2). With (Veg,05 Vey,1) defined as in (4.4.53) we can then conclude that for all

R > Ry large enough we have

/R (?87"%,0(7“)) dr+/R (Orvgy 1 (r) 2 dr S R 3“@ o(R) + R 3w o(R)

_25 o9
+ R o(R)+ R™5vj | (R) (4.4.58)
+R™ u%ﬂm+Rﬂﬂﬂm)

S R0 o(R) + v, 1 (R))

where the first inequality follows by rewriting (4.4.57) in terms of vy, = (vy, 0, vg,,1) and the
last line following from the known decay estimates in (4.4.53). Next, mimicking the proof
of Corollary 4.4.7 we can again establish difference estimates using (4.4.58). Indeed, for all
Ry < r < 7' < 2r we have

Vi 0(r) = vge ()2 Sr w2 o (r) + 02 4 (r
[v0.0(r) = 00 ()" £ 77 (g 0(r) + 0 1 () (4.4.59)

2 —6/.2 2
|09 1() = v 1 ()" Sr70E o(r) + 03 1 ()
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In terms of the vector ¥y, = (vy, 0,v¢,,1) We then have

— — —2 —

‘Uﬁo (T> - Uéo (T/>‘ 5 r ‘Uéo (T)‘ (4460)
Hence for fixed rg > Ry large enough we can deduce that

3
— 1 —
¥, (2"F To)‘ 21 |T7,(2"70)|

Therefore for each n,

@)l 2 (3) ()

On the other hand, by (4.4.53) we have
| (270)| S (2"r0) ™
Combining the last two lines we see that

3\" .
(5) |T,(ro)| S 1,

which implies that vy, (rg) = (0,0). By (4.4.58) we can deduce that

0 /1 2 00
/ (;({%WO’O(T)) dr + / (8rvgo,1(r))2 dr =0
T r

0 0

Therefore,

0 /1 2 00 B B
= (;8TU€0,O(T>) dr + / (8TU€0,1(T>)2 dr + 37’0 31}%0,0(7"0) + TO 1’(]%071(7"0) =0
To
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which means that (9rug, o, us, 1) is compactly supported. We conclude by showing that
(0,0).

Uéo

Proof of Lemma 4.4.15. The proof is nearly identical to the proof of Lemma 4.4.14. Suppose

(87»1%070, uéo,l) 7& (Ov 0)

and we argue by contradiction. By the preceding arguments (8TU€0,O=WO,1) is compactly

supported. Then we can define pg > 1 by

po = inf{p : HﬁfQH’H(TZp) =0}

Let € > 0 small to be determined below and find 1 < p; < pg, p1 = p1(e) so that

0< ||ﬁf0||7-[(7‘2p1) <e€

We then have

0 /1 2 00 B B
[ (o) e+ [~ @roga(r)ar +30743, oo0) + 7, (01) -
p p

1 1

- 112 - 112
_ ||77p1u€0”7-l(r2p1) + ||7rp1u€0||H(T2p1) = ”WoHH(rzpl) <e (4.4.61)

By (4.4.58) we also have

0 /1 2 00 5 31 29
[ (Gorvnon)) ar [~ (@) ar < oY o glor) + o1 ¥ ok olon)+
p p

1 1
25 17

-9 6 4
+ 10l o(p1) + py P g1 (1) + oy v 1 (1) + pr vl (1) (4.4.62)
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Arguing as in Corollary 4.4.8 and using the fact that vg(pg) = v1(pg) = 0 gives

00,0 (P1)| = [vi,0(01) = veg,0(p0)| < € [veg.0(p1)] + p1e [vgg.1(p1)] (4.4.63)

and

(00,1 (p1)| = [veg,1(P1) = v, 1 (p0)| S 21" e [vrg,0(p1)| + € [vgg 1 (p1)] (4.4.64)

Plugging (4.4.63) into (4.4.64) gives

lvgg1(p1)] S oy e vy 0(p1)| + (L + ) gy 1(p1)]

which means that for € small enough we have

o1 (p1)| S P12 v 0(p1)] (4.4.65)

Putting this estimate back into (4.4.63) we obtain

vge 0(01)| S € |veg0(p1)| + % |vgy 0(p1)| S (1 + %) vy, 0(p1)]

which implies that vy, o(p1) = 0 as long as € is chosen small enough. By (4.4.65) we can

conclude that vy, 1(p1) = 0 as well. By (4.4.62) and (4.4.61) we then have that

Hﬁéo HH(T‘Zpl) =0

which is a contradiction since p; < pg. Therefore, (9ruy, o, 1z, 1) = (0,0) Since ug,(r) — 0

as 7 — 0o we can also conclude that (ug, o, ug, 1) = (0,0). O
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4.4.4  Proof of Proposition 4.4.1 and Proof of Theorem 4.0.3

For clarity, we summarize what we have done in the proof of Proposition 4.4.1.

Proof of Proposition 4.4.1. Let @(t) be a solution to (4.1.8) and suppose that the trajectory

K ={adt)|teR)

is pre-compact in H. We recall that

Tﬁ(t> T) = "E(ta T) - (Qn(r)> 0)

where J(t) € Hy, is a degree n wave map, i.e., a solution to (4.0.2). By Lemma 4.4.5 there

exists ¢y € R so that

r3ug(r) — eo‘ =03 as r— oo (4.4.66)

r/ ul(p)pdp‘ =00 as r— o (4.4.67)
T

If £y # 0 then by Lemma 4.4.15, 1(0,7) = Qy, where Qy, is defined in (4.4.51). However,
this is impossible since Qg (1) # 0, which contradicts the Dirichlet boundary condition
P(t,1) =0 for all t € R.

Hence, ¢y = 0. Then by Lemma 4.4.13 we can conclude that %(0) = (0,0), which proves

Proposition 4.4.1. O
The proof of Theorem 4.0.3 is now complete. We conclude by summarizing the argument.

Proof of Theorem 4.0.3. Suppose that Theorem 4.0.3 fails. Then by Proposition 4.2.6 there
exists a critical element, that is, a nonzero solution ux(t) € H to (4.1.8) such that the

trajectory K = {u«(t) | t € R} is pre-compact in H. However, Proposition 4.4.1 implies that
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any such solution is necessarily identically equal to (0,0), which contradicts the fact that

the critical element () is nonzero. O
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CHAPTER 5
CLASSIFICATION OF 2D EQUIVARIANT WAVE MAPS TO
POSITIVELY CURVED TARGETS: PART 1

5.1 Introduction

In this chapter we consider energy critical equivariant wave maps. We restrict out attention
to the corotational case ¢ = 1, and study maps U : (R1+2, n) — (SQ, g), where g is the round

metric on S2. In spherical coordinates,

(1, w) > (sin ) cos w, sin ¢ sin w, cos 1),

on S?, the metric g is given by the matrix ¢ = diag(1, sin?(¢)). In the l-equivariant setting,

we thus require our wave map, U, to have the form

Ult,r,w) = (¢(t,r),w) — (siny(t, r) cosw, siny(t,r)sinw, cos(t,r)),

where (r,w) are polar coordinates on R2. In this case, the Cauchy problem (1.1.8) reduces

to

sin(2¢)
212

(v, ¥e)lt=0 = (Y0, ¥1)-

Vit — Yrr — %¢7’ + =0 (5.1.1)

cp flat In this equivariant setting, the conservation of energy becomes

00 in2
EWU,U)(t) = E(W,dy)(t) = /0 (w,? + 2 + %) rdr = const. (5.1.2)
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Any (r,t) of finite energy and continuous dependence on t € I := ({g,t1) must satisfy
¥ (t,0) = mm and 1(t,00) = nw for all t € I, where m, n are fixed integers. This requirement
splits the energy space into disjoint classes according to this topological condition. The wave
map evolution preserves these classes.

In light of this discussion, the natural spaces in which to consider Cauchy data for (5.1.1)

are the energy classes

Humn = {00, ¥1) | E(o, 1) < oo and  9p(0) = mm, Yg(o0) = nr}. (5.1.3)

We will mainly consider the spaces H, and we denote these by Hy := Hg . In this case
we refer to n as the degree of the map. We also define H = |J,,c7 Hn to be the full energy
space.

In the analysis of 1-equivariant wave maps to the sphere, an important role is played by
the harmonic map, @), given by stereographic projection. In spherical coordinates, () is given
by Q(r) = 2arctan(r) and is a solution to

sin(2Q)

S (5.1.4)

1
Qrr + ;Qr =

One can show via an explicit calculation that (Q,0) is an element of Hq, i.e., @ has finite
energy and sends the origin in R? to the north pole and spacial infinity to the south pole.
In fact, the energy £(Q) := £(Q,0) = 4 is minimal in H; and simple phase space analysis
shows that, up to a rescaling, (@, 0) is the unique, nontrivial, 1-equivariant harmonic map to
the sphere in . Note the slight abuse of notation above in that we will denote the energy
of the element (@,0) € H1 by £(Q) rather than £(Q,0).

It has long been understood that in the energy-critical setting, the geometry of the tar-
get should play a decisive role in determining the asymptotic behavior of wave maps. For

equivariant wave maps, global well-posedness for all smooth data was established by Struwe
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in [76] in the case where the target manifold does not admit a non-constant finite energy
harmonic sphere. This extended the results of Shatah, Tahvildar-Zadeh [70], and Grillakis
[30], where global well-posedness was proved for targets satisfying a geodesic convexity con-
dition. Recently, global well-posedness, including scattering, has been established in the full
(non-equivariant), energy critical wave maps problem in a remarkable series of works [49],
[74], [75], [79], for targets that do not admit finite energy harmonic spheres, completing the
program developed in [81], [78].

However, finite-time blow-up can occur in the case of compact targets that admit non-
constant harmonic spheres. Because we are working in the equivariant, energy critical setting,
blow-up can only occur at the origin and in an energy concentration scenario which amounts
to a breakdown in regularity. Moreover, in [76], Struwe showed that if a solution is C*°
before a regularity breakdown occurs, then such a scenario can only happen by the bubbling
off of a non-constant harmonic map.

In particular, Struwe showed that if a solution, ¥ (¢, 7), with smooth initial data 1(0) =
(1(0),1(0)), breaks down at t = 1, then the energy concentrates at the origin and there is a

sequence of times ¢; 1 and scales A\; > 0 with A\; < 1 —¢; so that the rescaled sequence

of wave maps

—

Gitr) = (6l + At Am) At (1 + At Ajr) )

converges locally to +£Q(r/)g) in the space-time norm Hl ((—1,1) x R?;S?) for some Ay >

loc
0. Further evidence of finite time blow up for equivariant wave maps to the sphere was
provided by Cote, [14]. Recently, explicit blow-up solutions have been constructed in [63]
for equivariance classes ¢ > 4 and in the 1l-equivariant case in [50], [51] and [62]. In [50],
Krieger, Schlag, and Tataru constructed explicit blow-up solutions with prescribed blow-up
rates A(t) = (1—1)™ for v > % although it is believed that all rates with v > 0 are possible

as well. In [51], a similar result is given for the radial, energy critical Yang Mills equation. In

[62], Rodnianski and Raphaél give a description of stable blow-up dynamics for equivariant
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wave maps and the radial, energy critical Yang Mills equation in an open set about () in a
stronger topology than the energy.

Our goal in this chapter is twofold. On one hand, we study the asymptotic behavior
of solutions to (5.1.1) with data in the “zero” topological class, i.e., J(O) € Hp, below a
sharp energy threshold, namely 2£(Q). Additionally, we seek to classify the behavior of
wave maps of topological degree one, i.e., those with data J € Hq, that blow up in finite
time with energies below the threshold 3€£(Q). In particular, we show that blow-up profiles
exhibited in the works [50], [63] and [62] are universal in this energy regime in a precise sense

described below in Section 5.1.2.

5.1.1 Global existence and scattering for wave maps in Hy with energy

below 2E(Q)

We begin with a description of our results in the degree zero case. In [76], Struwe’s work im-
plies that solutions 9(¢) to (5.1.1) with data 1(0) € H are global in time if £(4(0)) < 2£(Q).
This follows directly from the fact that wave maps in Hy with energy below 2£(Q) stay
bounded away from the south pole and hence cannot converge, even locally, to a degree
one rescaled harmonic map, thus ruling out blow-up. Recently, the Cote, Kenig, and
Merle, [17], extended this result to include scattering to zero in the regime, J(O) € Hy
and £(1) < E(Q) +  for small § > 0. It was conjectured in [17] that scattering should also
hold for all energies up to 2£(Q). This conjecture is a refined version of what is usually
called threshold conjecture, adapted to the case of topologically trivial equivariant data. It
is implied by the recent work of Sterbenz and Tataru in [74], [75] when one considers their
results in the equivariant setting with topologically trivial data. Here we give an alternate
proof of this refined threshold conjecture in the equivariant setting based on the concentra-

tion compactness/rigidity method of Kenig and Merle, [36], [37]. In particular, we prove the

following;:
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Theorem 5.1.1 (Global Existence and Scattering in Hg below 2£(Q)). For any smooth
data 4(0) € Ho with E((0)) < 2E(Q), there exists a unique global evolution 1 € CO(R; Hy).
Moreover, J(t) scatters to zero in the sense that the energy of @E(t) on any arbitrary, but

fized compact region vanishes as t — oo. In other words, one has
O(t) = G(t) +oy(l) as t— oo (5.1.5)

where ¢ € H solves the linearized version of (5.1.1), i.e.,

1 1
Pt —rr = —pr + 59 =0 (5.1.6)

Furthermore, this result is sharp in Ho in sense that 2E(Q) is a true threshold. Indeed for
all § > 0 there exists data 1(0) € Hg with E() < 26(Q) + 0, such that ¥ blows up in finite

time.

—,

Remark 10. Characterizing the possible dynamics at the threshold, ¢ € Hg, & (v) = 2E(Q)

-,

and above (1) > 2£(Q), remain open questions.

Remark 11. We briefly remark that Theorem 5.1.1 holds with the same assumptions and
conclusions for data J € Hppn where Hy, p is defined as in (5.1.3). Indeed, the spaces H
and My are isomorphic via the map (v, v1) — (Yo + nm,¢1). Also, we can replace the
words “smooth finite energy data” in Theorem 5.1.1 with just “finite energy data” using the

well-posedness theory for (5.1.1), see for example [17].

As mentioned above, Theorem 5.1.1 is established by the concentration compactness —
rigidity method of Kenig and Merle in [36] and [37]. The novel aspect of our implementation
of this method lies in the development of a robust rigidity theory for wave maps U (t) with
trajectories that are pre-compact in the energy space up to certain time-dependent modula-
tions. We note that the following theorem is independent of both the topological class and

the energy of the wave map.
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Theorem 5.1.2 (Rigidity). Let U(t,r,w) = (((t,r),w), (U(t,r),0)) € H be a solution to
(5.1.1) and let Imax () = (T—(¥), T+ (¢)) be the mazimal interval of existence. Suppose that

there exists Ay > 0 and a continuous function X : Imax — [Ag, 00) such that the set

e [ (0 () o (o)) et o1

is pre-compact in H' x L2(]R2; SQ). Then, Imax = R and either U =0 or U : R2 = S? is an

equivariant harmonic map, i.e., U(t,r,w) = (£Q(r/\),w) for some A > 0.

Remark 12. To establish Theorem 5.1.1 we only need a version of Theorem 5.1.2 that deals
with data in Hg below 2£(Q). This rigidity result in H is given in Theorem 5.4.1 below, and
states that any solution J € Ho with a pre-compact rescaled trajectory must be identically
zero. The full result in Theorem 5.1.2 is established for its own interest. In fact, we use the
conclusions of Theorem 5.1.1 in order to deduce the full classification of pre-compact solutions
given in Theorem 5.1.2. Alternatively, we can prove Theorem 5.1.2 using the scattering
result of [17, Theorem 1], and deduce Theorem 5.4.1 as a corollary. We have chosen the
former approach here to illustrate the independence of our stronger rigidity results from the

variational arguments given in [17, Lemma 7].

5.1.2  Classification of blow-up solutions in Hy with energies below 3E(Q)

We now turn to the issue of describing blow-up for wave maps in Hq, i.e., those maps J(t)
with ¥ (¢,0) = 0 and ¢ (t,00) = 7. From here on out, any wave map that is assumed to
blow-up will be also be assumed to do so at time ¢ = 1. As mentioned above, the recent
works [50] and [62] construct explicit blow-up solutions ¢ (t) € Hi. In [50], the blow up

solutions constructed there exhibit a decomposition of the form

W(t,r) = Q(r/A(t)) + e(t,r) (5.1.8)
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where the concentration rate satisfies A(t) = (1 — t)1T¥ for v > %, and €(t) € Ho is small
and regular. Here we consider the converse problem. Namely, if blow-up does occur for a
solution J(t) € H1, in which energy regime, and in what sense does such a decomposition
always hold?

The works of Struwe, in [76] for the equivariant case, and Sterbenz, Tataru in [75] for the
full wave map problem, give a partial answer to this question. As mentioned above, they
show that if blow-up occurs, then along a sequence of times, a sequence of rescaled versions of

the original wave map converge locally to @ in the space-time norm H! ((—1,1) x RZ; SQ).

loc
However working locally removes any knowledge of the topology of the wave map, which
is determined by the behavior of the map at spacial infinity. In this chapter we seek to
strengthen the results in [76] and [75] in the equivariant setting by working globally in space
in the energy topology. Here we are forced to account for the topological restrictions of a
degree one wave map, and in fact we use these restrictions, along with our degree zero theory,
to our advantage.

In particular, we make the following observation. If a wave map ¢ (t) € Hq blows up at
t = 1 then the local convergence results of Struwe in [76] allow us to extract the blow up
profile £Q) = +Q(-/A\n) at least along a sequence of times ¢, — 1. If o has energy below
3€(Q) the profile must be +Q(-/Ay), and since @ € H; as well we thus have ¢(t,) — Q) €
Hp. Since this object should converge locally to zero, the energy of the difference should
be roughly the difference of the energies, at least for large n. Hence, if ¢(¢) has energy
below 3£(Q) the difference ¥ (t,) — @), is degree zero and has energy below 2£(Q). By
Theorem 5.1.1, we then suspect that the blow-up profile already extracted is indeed universal
in this regime and that a decomposition of the form (5.1.8) should indeed hold, excluding the
possibility of any different dynamics, such as more bubbles forming. We prove the following

result:

Theorem 5.1.3 (Classification of blow-up solutions in H; with energies below 3€(Q)). Let
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U(t) € Hy be a smooth solution to (5.1.1) blowing up at time t = 1 with

-,

E(W) = E(Q) +n < 3E(Q).

Then, there exists a continuous function, A : [0,1) — (0,00) with A(t) = o(1 —t), a map

-

G = (¢o,p1) € Ho with E(F) =n, and a decomposition

V(1) = G+ (Q (/). 0) + &) (5.1.9)

such that €(t) € Hy and €(t) — 0 in Hgy ast — 1.

Remark 13. In the companion work [16] we address the question of global solutions (t) € H;
in the regime £(¥) < 3£(Q). We can show that in this case we have a decomposition and
convergence as in (5.1.9) with A(t) < ¢ as t — oo. This will give us a complete classification
of the possible dynamics in H; for energies below 3£(Q). Of course, our results do not give
information about the precise rates A(t). We also would like to mention the recent results of
Bejenaru, Krieger, and Tataru [3], regarding wave maps in H1, where they prove asymptotic

orbital stability for a co-dimension two class of initial data which is “close” to @) with

respect to a stronger topology than the energy.

Remark 14. Theorem 5.1.3 is reminiscent of the recent results proved by Duyckaerts, Kenig,
and Merle in [22], [21], for the energy critical focusing semi-linear wave equation in R173,
In fact, the techniques developed in these works provided important ideas for the proof of
Theorem 5.1.3. The situation for wave maps is somewhat different, however, as the geometric
nature of the problem provides some key distinctions. The most notable of these distinctions
is that the underlying linear theory for wave maps of degree zero is not nearly as strong as
that of a semi-linear wave in R1*3, which causes serious problems. Indeed, as demonstrated
in [18], the strong lower bound on the exterior energy in [22, Lemma 4.2| fails for general

initial data in even dimensions. This difficulty is overcome by the fact that there is no self-
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similar blow-up for for energy critical equivariant wave maps, see e.g., [68], which can be
shown directly due to the non-negativity of the energy density.

In addition, our degree zero result and the rigid topological restrictions of the problem
allow us to extend the conclusions of Theorem 5.1.3 all the way up to 3(Q) instead of just
slightly above the energy of the harmonic map £(Q) + §, for 6 > 0 small, as is the case in
[22], [21]. This large enegy result is similar in nature to the results for the 3d semi-linear

radial wave equation in [24], when, in the notation from [24], Jy = 1.

Remark 15. The results in [22], [21] have recently been extended by Duyckaerts, Kenig, and
Merle in [24] and [23]. In [23], a classification of solutions to the radial, energy critical,
focusing semi-linear wave equation in R1*3 of all energies is given in the sense that only
three scenarios are shown to be possible; (1) type I blow-up; (2) type II blow-up with the
solution decomposing into a sum of blow-up profiles arising from rescaled solitons plus a
radiation term; or (3) the solution is global and decomposes into a sum of rescaled solitons

plus a radiation term as t — oo.

5.1.8 Remarks on the proofs of the main results

In addition to the methods originating in [36], [37] and [22], [21], the work in this chapter
rests explicitly on several developments in the field over the past two decades. Here we

provide a quick guide to the work on which our results lie:

Results used in the proof of Theorem 5.1.1

e Theory of equivariant wave maps developed in the nineties in the works of Shatah,
Tahvildar-Zadeh, [70], [71], including the use of virial identities to prove energy decay

estimates.
e The concentration compactness decomposition of Bahouri-Gérard, [1].
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e Lemma 2 in [17] which relates energy constraints to L® estimates for equivariant
wave maps. In particular, if a degree zero map has energy less than 2€(Q), then the
evolution, ¢ (t,r), is bounded uniformly below 7. In addition, although only a weaker
small data result such as [68, Theorem 8.1] is needed, we use the global existence and
scattering result for degree one wave maps with energy below £(Q)+ 0 for small § > 0,

which was established in [18, Theorem 1].

e Hélein’s theorem on the regularity of harmonic maps which says that a weakly harmonic

map is, in fact, harmonic, [32].

Results used in the proof of Theorem 5.1.3

e The virial identity and the corresponding energy decay estimates in [70].

e Struwe’s characterization of blow-up, [76, Theorem 2.2], which gives Hllo . convergence
along a sequence of times to @) if blow-up occurs. This allows us, a priori, to identify
and extract the blow-up profile () ~along a sequence of times, 5, which is absolutely
crucial in our argument since we can then work with degree zero maps once () has

been subtracted from the degree one maps ¥(ty,).
e The concentration compactness decomposition of Bahouri-Gérard, [1].

e The new results on the free radial 4d wave equation established by the Cote, Kenig

and Schlag in [18].

e The decomposition of degree one maps which have energy slightly above () and the
stability of this decomposition under the wave map evolution for a period of time
inversely proportional to the proximity of the data to () in the energy space established

by Cote [14].

223



As we outline in the appendix, the proofs of Theorem 5.1.1, Theorem 5.1.2, and Theo-
rem 5.1.3 extend easily to energy critical 1-equivariant wave maps with more general targets.
In addition, the proofs of Theorem 5.1.2 and Theorem 5.1.1 apply equally well to the equiv-
ariance classe ¢ = 2 and the 4d equivariant Yang-Mills system after suitable modifications.
One should also be able to deduce these results for the equivariance classes ¢ > 3 once a
suitable small data theory is established for these equations, which are similar in nature to
the even dimensional energy critical semi-linear wave equations in high dimensions treated
in [8] — the difficulty here resides in the low fractional power in the nonlinearity.

However, the method we used to prove Theorem 5.1.3 only works, as developed here,
for odd equivariance classes, { = 1,3,5,..., and does not work when one considers even
equivariance classes, £ = 2,4,6, ..., or the 4d equivariant Yang-Mills system in this context.
This failure of our technique arises in the linear theory in [18] for even dimensions, which
provides favorable estimates for our proof scheme only when /¢ is odd. Since the 4d equivariant
Yang-Mills system corresponds roughly to a 2-equivarant wave map, this falls outside the
scope of our current method as well. To be more specific, one can identify the linearized
(-equivariant wave map equation with the 2¢ + 2-dimensional free radial wave equation. In
the final stages of the proof of Theorem 5.1.3, and in particular Corollary 5.5.8, we require

the exterior energy estimate

111 SISO Ol 12y forall £20

where S(t) is the the free radial wave evolution operator. In [18], this estimate is shown
to be true in even dimensions 4,8,12,..., and false in dimensions 2,6,10,.... Without
this estimate, our proof would show compactness of the error term in our decomposition in a
certain suitable Strichartz space but not in the energy space. Therefore, the full conclusion of
Theorem 5.1.3 remains open for the 4d equivariant Yang-Mills system and the f-equivariant

wave map equation when ¢ is even.
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5.1.4 Structure of this Chapter

The outline of this chapter is as follows. In Section 5.2 we establish the necessary prelimi-
naries needed for the rest of the work. We include a brief review of the results of Shatah,
Tahvildhar-Zadeh, [70] and Struwe [76]. We also recall the concentration compactness de-
composition of Bahouri, Gérard [1] and adapt their theory to case of equivariant wave maps
to the sphere. In particular, we deduce a Pythagorean expansion of the nonlinear wave
map energy of such a decomposition at a fixed time. This type of result is crucial in the
concentration compactness/rigidity method of [36], [37]. We also establish an appropriate
nonlinear profile decomposition.

In Section 5.3 we give a brief outline of the concentration compactness/rigidity method
that is used to prove Theorem 5.1.1. In Section 5.4 we prove Theorem 5.1.2, which allows
us to complete the proof of Theorem 5.1.1.

Finally, in Section 5.5 we establish Theorem 5.1.3, which relies crucially on the linear

theory developed in [18].

5.1.5 Notation and Conventions

We will interchangeably use the notation (¢, r) and (¢, ) to refer to the derivative with
respect to the time variable ¢ of the function (¢, r).
The notation X < Y means that there exists a constant C' > 0 such that X < CY.

Similarly, X ~ Y means that there exist constants 0 < ¢ < C so that cY < X < CY.

5.2 Preliminaries

We define the energy space
H={UcH x L’ (R%:S*) |Uop=pol, ¥pe SO@2)}.
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H is endowed with the norm

ET ) = TN, 2(gege) = / (02 + VUL (5.2.1)

As noted in the introduction, by our equivariance condition we can write U(t,r,w) =

(¢(t,r),w) and the energy of a wave map becomes

sin? (1)
7,2

EWU,U)(t) = E(W,dy)(t) = /0 - (w,? + 2 + ) rdr = const. (5.2.2)

We also define the localized energy as follows: Let r1,79 € [0,00). Then we set

ezt = [ (s + 7+ 20 o

Following Shatah and Struwe, [68], we set
/(Z) .
G() ::/O |sin p| dp. (5.2.3)
Observe that for any (¢,0) € H,, and for any r1,r9 € [0,00) we have

(5.2.4)

P(ra)
IG(ra)) — C(r1)] = ‘ /w bl dp

1

/T Sin($ ()] g (r) dr

5.2.1 Properties of degree zero wave maps

As in [17], let o € [0,2E(Q)] and define the set V(a) C Hop:

V() == {(Yo,91) € Ho | E(Wo, ¥1) < a}
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We claim that for every o € [0,2€(Q)], V(«) is naturally endowed with the norm

00 2
(o, )l 2 = /0 <¢%+<wo>%+%) rdr (5.2.5)

To see this, we recall the following lemma proved in [17].

Lemma 5.2.1. [17, Lemma 2] There exists an increasing function K : [0,2£(Q)) — [0,7)

such that

-,

()| < K(EW)) <n Y eHy with E) < 28E(Q) (5.2.6)

Moreover, for each a € [0,2E(Q)] we have

5(¢0ﬂ/’1) = ||(¢O>¢1)||HxL2 (527)

for every (g, ¥1) € V(a), with the constant above depending only on «.

When considering Cauchy data for (5.1.1) in the class Hg the formulation in (5.1.1) can
be modified in order to take into account the strong repulsive potential term that is hidden

in the nonlinearity:

sin(2¢) Y N sin(2¢)) — 2¢ _ ﬂ n O(¢3)

w2 2 22 r2 r2

Indeed, the presence of the strong repulsive potential %2 indicates that the linearized operator
of (5.1.1) has more dispersion than the 2-dimensional wave equation. In fact, it has the same

dispersion as the 4-dimensional wave equation as the following standard reduction shows.
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Setting ¢ = ru we are led to this equation for u:

3 sin(2ru) — 2ru

i(0) = (ug, u1).

The nonlinearity above has the form N(u,r) = u3Z(ru) where Z is a smooth, bounded, even
function and the linear part is the radial d’Alembertian in R1T4. The linearized version of

(5.2.8) is just the free radial wave equation in R namely
3
'Utt - U/r"r' - _'U'r' - 0 (529)
r

Observe that for ¢/(0) € Hg we have that

E(W(0)) < [1¥]13 “—/w<ﬁ+¢9+£37dw—/mw2+ﬁw3m (5.2.10)
= HxL? "~ 0 t r o2 = 0 t r . 2.

If, in addition, we assume that £(1/(0)) < 2€(Q) then, by Lemma 5.2.1 we also have the

opposite inequality

[0, o = [F(0)2 12 S EB(O)). (5.2.11)

Therefore, when considering initial data (¢, 1) € V(«) for a < 2£(Q) the Cauchy problem
(5.1.1) is equivalent to the Cauchy problem for (5.2.8) for radial initial data (g, r¢q) =:
@(0) € H' x L*(RY).

The following exterior energy estimates for the 4d free radial wave equation established

by Cote, Kenig, and Schlag [18] will play a key role in our analysis:

Proposition 5.2.2. [18, Corollary 5] Let S(t) denote the free evolution operator for the 4d
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radial wave equation, (5.2.9). There exists oy > 0 such that for all t > 0 we have

ISEF.0) 1 2rm = a0l Fllp (5.2.12)

for all radial data (f,0) € H' x L2.

The point here is that this same result applies to the linearized version of the wave map

equation:

1 1
it —rr — —pr + 59 =0 (5.2.13)
T T

with initial data ¢(0) = (g, 0). Indeed we have the following:
Corollary 5.2.3. Let W (t) denote the linear evolution operator associated to (5.2.13). Then

there exists fo > 0 such that for all t > 0 we have

IW(0) (00 Ol s2r50) > Bollolln (5.2.14)

for all radial initial data (po,0) € H x L.

Proof. Let J(t) = W (t)(y0,0) be the linear evolution of the smooth radial data (¢q,0) €
H x L?. Define #(t) by @(t,r) = ro(t,r). Then ¥(t) € H' x L*(R*) and is a solution to
(5.2.9) with initial data (vg,0) = (£2,0). Next observe that for all A > 0 we have

(0.9] 00 2
or(t,r) (t,r)
o0y = [, )= [ ( ) s,

< 2o ) 3501

Similarly we can show that ||(‘O(t)’|%’[(7°214) < 2||v(t )|| (r>A) Therefore using (5.2.12) on
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v(t) we obtain

1 o Q

= 2 2 2 2

BBy 1205ty > 511 my = Ll = llgoly

which proves (5.2.14) with gy = ok O

5.2.2  Properties of degree one wave maps

Now, suppose ¢ = (10,11) € H1. This means that ¥(0) = 0 and ¢(c0) = 7. The H x L?

norm of J is no longer finite, but we do have the following comparison:

Lemma 5.2.4. Let ) = (¢g,0) € Hy be smooth and let rg € [0,00). Then there exists o > 0

such that

—,

(a) If E° (V) < a, then

—,

03 ) S E5°(8D). (5.2.15)

(b) If & (W }) < a, then

-,

() — 7T||Hr>r0 S E (). (5.2.16)

Proof. We prove only the second estimate as the proof of the first is similar. Since G(7) = 2,

by (5.2.4) we have for all r € [rg, c0) that

GU) ~ 2] < 5E°(,0) <

ro| 2

Since G is continuous and increasing this means that ¢(r) € [1 — e(a), 7 + ()] where
(p) — 0as p — 0. Hence for a small enough we have the estimate sin?(¢)(r)) > % l(r) — )2

for all r € [rg, o0] and the estimate (5.2.16) follows by integrating this. O
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Let Q(r) := 2arctan(r). Note that (@Q,0) € H; is the unique (up to scaling) time-
independent, solution to (5.1.1) in #H;. Indeed, @ has minimal energy in H; and £(Q,0) =
4. One way to see this is to note that @ satisfies rQ,(r) = sin(@)) and hence for any

0<a<b< oo we have

b
G(Q®) ~GQ) = [ (@)l dr = 3ei@.0) (217

Letting a — 0 and b — oo we obtain £(Q,0) = 2G(w) = 4. To see that £(Q,0) is indeed

minimal in H1, observe that we can factor the energy as follows:

00 00 : 2 00
S(Wpt):/() w,?rdr+/() (wT—Smﬁw) rdr+2/0 sin(¢)r dr

_ [T > sin(1) ) ? Vo)
_/0 wtrdr+/0 (%«— . ) rdr+2/w(0) sin(p) dp

Hence, in H1 we have

E(, ) > /()Oo¢t2rdr+4:/000w,52rdr+8(62) (5.2.18)

We shall also require a decomposition from [14] which amounts to the coercivity of the

energy near to ground state (), up to the scaling symmetry.

Lemma 5.2.5. [14, Proposition 2.3] There ezists a function § : (0,00) — (0, 00) such that

d(a) = 0 as @« — 0 and such that the following holds: Let J: (1,0) € Hi. Define

-,

a:=E(Y) - &(Q) >0

Then there ezists A € (0,00) such that

[ = QC/MH < d(a)
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—,

Note that one can choose A\ > 0 so that 56‘(1&) = 5&(@) =£(Q)/2.
We will also need the following consequence of Lemma 5.2.5 that is also proved in [14].

Corollary 5.2.6. [14, Corollary 2.4] Let pp,on — 00 be two sequences such that p, < op,.

Let Uy (t) € Hq be a sequence of wave maps defined on time intervals [0, pp] and suppose that

7 1
||7vbn(0) - (Q70>’|H><L2 < O'_n

Then

sup [|¥n(t) = (Q,0)ll o2 = 0n(1) as n— oo
te[0,pn]

Remark 16. We refer the reader to the proof of [14, Corollary 2.4] and the remark immediately
following it for a detailed proof of Corollary 5.2.6. We have phrased the above result in terms
of sequences of wave maps because this is the form in which it will be applied in Section 5.5.
Also, we note that in [14] the notation || - H%I is used to denote the nonlinear energy, £(-), of
a map, whereas here || - | g is defined as in (5.2.5). Both Lemma 5.2.5 and Corollary 5.2.6

hold with either definition.

5.2.3 Properties of blow-up solutions

Now let J (t) € H be a wave map with maximal interval of existence

-, -, -,

Inax () = (T_(), T4(D)) # R.

—,

By translating in time, we can assume that 7' (¢)) = 1. We recall a few facts that we will
need in our argument. From the work of Shatah and Tahvildar-Zadeh [70], we have the

following results:
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Lemma 5.2.7. [70, Lemma 2.2] For any A € (0,1] we have

sin2(w(t, T))

r2

., 1-¢
ity = [ (en+iden+

) rdr—0 as t—1
(1-1)

(5.2.19)

-

Lemma 5.2.8. [70, Corollary 2.2] Let O(t) € H be a solution to (5.1.1) such that Imax (1)

is a finite interval. Without loss of generality we can assume Ty (1) = 1. Then we have

1

1 1-s
1—t/ / ¢2(s,7’)rdr ds—=0 as t—1 (5.2.20)
- t 0

As in [22], we can use Lemma 5.2.8 to establish the following result. The proof is identical

to the argument given in [22, Corollary 5.3] so we do not reproduce it here.

—,

Corollary 5.2.9. [22, Corollary 5.3] Let ¢(t) € H be a solution to (5.1.1) such that T+ (¢) =
1. Then, there exists a sequence of times {tn} , 1 such that for every n and for every

o€ (0,1—ty), we have

1 thto pl—t
E/t i G2t ) rdrdt < (5.2.21)

SI= 3=

1—ty
/ A (ty,r)rdr < (5.2.22)
0

Note that (5.2.22) follows from (5.2.21) by letting ¢ — 0 in (5.2.21) and recalling the
continuity of the map t — @ﬁ(t, -) from [0,1) — L2,

We now recall a result of Struwe, [76], which will be essential in our argument for degree 1.

Theorem 5.2.10. [76, Theorem 2.1] Let 1)(t) € H be a smooth solution to (5.1.1) such that

-,

Ty (v) = 1. Let {tp} /1 be defined as in Corollary 5.2.9. Then there ezists a sequence
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{An} with A, = o(1 —ty,) so that the following results hold: Let
Un(t,7) = ((tn + Mty AnT), At (tn + Ant, AnT)) (5.2.23)

be the wave map evolutions associated to the data @Zn(r) = J(tn,)\nr). And denote by

Un(t,r,w) := (Yn(t,r),w) the full wave maps. Then,
Un(t,r,w) = Uso(r,w) in HE ((—1,1) x R?%;S?) (5.2.24)

where Uso i a smooth, non-constant, 1-equivariant, time independent solution to (1.1.8),
and hence Uxo(1,w) = (£Q(1r/Xg),w) for some Ay > 0. We further note that after passing
to a subsequence, Uy (t,r,w) — Uso(r, w) locally uniformly in (—1,1) x (R? — {0}).

Moreover, with the times t,, and scales Ay, as above, we have

1 tnt+An 1-¢
= G2, r) rdr dt = o, (1). (5.2.25)
n Jin 0

Remark 17. We note that we have altered the selection procedure by which the sequence
of times ¢, is chosen in the proof of Theorem 5.2.10. In [76], after defining a scaling factor
A(t), Struwe uses Lemma 5.2.8 to select a sequence of times ¢, via an argument involving
Vitali’s covering theorem, and he sets A\, := A(¢;). Here we do something different. Given
Lemma 5.2.8 we use the argument in [22, Corollary 5.3] to find a sequence ¢, — 1 so that
(5.2.21) and (5.2.22) hold. Now we choose the scales A(t) as in Struwe and for each n we set
0 = Ap := A(tp) and we establish (5.2.25), which is exactly [76, Lemma 3.3]. The rest of the

proof of Theorem 5.2.10 now proceeds exactly as in [76].

We will also need the following consequences of Theorem 5.2.10:

—

Lemma 5.2.11. Let ¢(t) € H be a solution to (5.1.1) such that T+ (¢)) = 1. Let {t,} /1
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and {\p} be chosen as in Theorem 5.2.10. Define ¥y (t,r), £Q(r/Xg) as in (5.2.23). Then
Un FQ(/X) =0 as n—oo in L((—1,1); Hy,p) (5.2.26)

where H is defined as in (5.2.5).

Proof. We prove the case where the convergence in Theorem 5.2.10 is to +Q(r/)\g). Let
Q) (1) = Q(r/Xo). By Theorem 5.2.10, we know that

/}RH—? (Iatwn(t, )2+ |0r (Wn(t,r) — on(r))ﬁ) x(t,r)rdrdt

+/1 2Wn(tﬂ’)—Q,\O(T)‘Qx(t,r)rdrdt—>0 as n—oo (5.2.27)
R1+

for all x € C3°((—1,1) x R?), radial in space. Hence to prove (5.2.26), it suffices to show

that

5 x(t,r)rdrdt -0 as n— oo (5.2.28)
,

/ |Un(t,7) — Qx (r)]?
R1+2

for all y as above. Next, note that if for fixed 6 > 0, x(t,r) satisfies supp(x(t,-)) C [0, 00),

we have

5 X(t,r)rdrdt
r

/ [n(t,r) — Qpg (1)
R1+2
<5’ /Rm [nlt,r) = Qo (1) x(tr) rdrdt 50 as 0 — oo,

with the convergence in the last line following from (5.2.27). Hence, from here out we only
need to consider x with suppx(t,-) C [0, 1]. Referring to Struwe’s argument in [76, Proof of

Theorem 2.1, (ii)], we note that by construction, A, and Ag are such that

E Wn(1) <e1, EHQy,) < e
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uniformly in |[¢| < 1 and uniformly in n, where 1 > 0 is a fixed constant that we can choose
to be as small as we want. Recalling that for each t, 1(¢,0) = Q(0) = 0 and using (5.2.4),

this implies that

€1

N~

Gt )] < 501, 6@ <

for all r € [0,1]. In particular, we can choose 1 small enough so that

n(t )l <50 @] <5

for all r € [0, 1]. Using the above line we then can conclude that there exists ¢ > 0 such that

(Wnlt,r) = Q(r/X0))(sin(2¢n(t,7)) = sin(2Qx, (1)) = c(¥n(t,r) = Q(r/Xo)*  (5.2.:29)

for all r € [0,1], and |¢| < 1. Consider the equation

(=0t + Orr + %8T>(¢n(t, r) = Qa (1) = sin(2¢n (t, 7“))7; sin(QQ/\O(r))'

Now, let x € C§°((—1,1) x R?) satisfy supp(x(t,-)) C [0,1]. Multiply the above equation
by (¥n(t,r) —Qx,(r))x(t,7), and integrate over R2Z. Then, integrating by parts and using

the strong local convergence in (5.2.27) we can deduce that

5 x(t,r)rdrdt—0

/ (sin(2¢n(t, 7)) = sin(2Q, (1)) (Yn(t,r) — Q(r/ o))
R1+2

r

as n — 0o. The lemma then follows by combining the above line with (5.2.29). O

Lemma 5.2.12. Let ¢(t) € H be a wave map that blows up at time t = 1. Then, there
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exists a sequence of times t, — 1 and a sequence of points ry, € [0,1 — ty,) such that
Y(tp,rn) = £ as n— oo (5.2.30)

Proof. 1f not, then there exists a dg > 0 such that for every time ¢ € [0, 1) we have |¢(t,7)] €
R — [r — &g, 7 + dg] for all r € [0,1 —t). Now let tn, Ay and 9p(t,7) and +Q), be as in
Theorem 5.2.10 and Lemma 5.2.11. Choose 0 < R} < R9 < oo so that }Q)\O(r)‘ > — 570
for r € [R1, Ro] and choose N large enough so that [\, R, A\pRa] C [0,1 — ¢, — Ayt) for all

t € [0,1] and for all n > N. This implies that
90
| n(t,r) F Qx(r)] > 5 V=N, Vre [R1, Ra], (5.2.31)
and for all ¢ € [0, 1]. But this provides an immediate contradiction with the convergence in

(5.2.26). O

Corollary 5.2.13. Let ¥(t) € Hi be a wave map that blows up at time t = 1 such that

—,

t)
E(p) < 38(Q). Recall that ¥(t) € Hi means that 1(t,0) = 0,v(t,00) = 7. Then we have
Un—Q(/A) =0 as n—oo in LZ((—1,1); Hpp), (5.2.32)

with Py (t,r), tn, and Ay defined as in Theorem 5.2.10. In addition, there exists another

sequence of times ty, — 1 and a sequence of points ry, € [0,1 — ty,) such that

Y(tp,rn) =T as n— o0 (5.2.33)

-

Proof. We use the energy bound £(¢) < 3£(Q) to eliminate the possibility that the con-
vergence in Theorem 5.2.10 is to —Q(r/)\g) instead of to +Q(r/Ag). Suppose that in fact

we had in (5.2.26) that 1, + Q(-/An) — 0 in L2((—1,1); Hyoe). Lemma 5.2.12 then gives a
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sequence of times ¢, — 1 and a sequence r, € [0,1 — ¢,,) such that
U(tp,rn) — —m (5.2.34)
as n — oo. Now recall that @E(t) € H1. Using the above along with (5.2.4) we see that

28(Q) =8+ 2|G(Y(tn,m)) — 2| < 579,?(7/’(571)7 0))

On the other hand, we can use (5.2.34) and (5.2.4) again to see that

5(@) =42 |G(w(fn>7’n))| < 56”(7/’(571)7 0)

-,

Putting this together we see that we must have £(v) > 3€£(Q)) which contradicts our initial

assumption on the energy. ]

5.2.4 Profile Decomposition

Another essential ingredient of our argument is the profile decomposition of Bahouri and
Gerard [1]. Here we restate the main results of [1] and then adapt these results to the case of
2d equivariant wave maps to the sphere of topological degree zero. In fact the results for the
4d wave equation stated here first appeared in [9] as the decomposition in [1] was performed

only in dimension 3. In particular, we recall the following result:

Theorem 5.2.14. [1, Main Theorem] [9, Theorem 1.1] Consider a sequence of data iy, €
H' % L?(R*) such that lunll g1y ;2 < C. Then, up to extracting a subsequence, there exists a

sequence of free 4d radial waves VZ‘Z e H' x L2, a sequence of times {t%} C R, and sequence
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of scales {\,} C (0,00), such that for @k defined by

k
no(r) = 3 7 VL (=th/ X /M) + (1) (5.2.35)
Jj=17n
k 1 .. . . .
U1 (r) =Y ——VI(=th/ Ny, r/M) +wf 1 (r) (5.2.36)
i ()2 ’
we have, for any j < k, that
N wEOLEL ML), D 20ROV M) =0 weakly in - Y x L2(RY). (5.2.37)
In addition, for any j # k we have
; J _ 4k J_ 4k
Mook [t -t ‘ th—t ‘
—Z+—7.1+ oy kn—>oo as n — oo. (5.2.38)
A M A A

Moreover, the errors @k vanish asymptotically in the sense that if we let wa p(t) € H' % L?

denote the free evolution, (i.e., solution to (5.2.9)), of the data @k € H' x L2, we have

lim sup —0 as k— oo. (5.2.39)

v
w,
s 00 H L[ Lo LANLI LS (RxRY)

Finally, we have the almost-orthogonality of the HY x L? norms of the decomposition:
> 12 3] j N =k 12
lilZ, o= S NIt/ %0 o+ %o +on(D) (5.2.40)
1<j<k

as n — 0.

The norms appearing in (5.2.39) are dispersive and examples of Strichartz estimates,
see Lindblad, Sogge [55] and Sogge’s book [73] for more background and details. For our

purposes here, it will often be useful to rephrase the above decomposition in the framework
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of the 2d linear wave equation (5.1.6). Using the right-most equality in (5.2.10) together

with the identifications

U (r) = rup(r)

o1 (=th/Mn.r/An) = ;VE(—%/%T/W
n

) = rwf,

we see that Theorem 5.2.14 directly implies the following decomposition for sequences Jn €

Ho with uniformly bounded H x L? norms. In particular, by (5.2.11), the following corollary

holds for all sequences @Zn € Ho with £ (Jn) < C < 28(Q).

Corollary 5.2.15. Consider a sequence of data Jn € Ho that is uniformly bounded in

H x L2. Then, up to extracting a subsequence, there exists a sequence of linear waves

QBJL € Hy, (i.e., solutions to (5.1.6)), a sequence of times {t%} C R, and a sequence of scales

{)\%} C (0,00), such that for 7% defined by

I
Kl

Uno(r) (—th/ N,/ + Ak (1)
j=1

Upa(r) =" ;%(—t%/%, /XL + Ak ()
j=1"n

we have, for any j < k, that

(R Oty Xy ) Xy (Nyth, X)) = 0 weakly in - H x L.

In addition, for any j # k we have

M—%)\%—%\
-+ - -+
k
pYA pYA A%
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— 00 as n — oQ.

(5.2.41)

(5.2.42)

(5.2.43)

(5.2.44)



Moreover, the errors ?ﬁ vanish asymptotically in the sense that if we let vﬁ 1(t) € Ho denote

the linear evolution, (i.e., solution to (5.1.6)) of the data 7% € My, we have

—0 as k— oo (5.2.45)

L g
LPLANLILE (RxRY)

lim su
p , L

n—oo

Finally, we have the almost-orthogonality of the H x L% norms of the decomposition:
T2 =] j NP k(12
HwnHHx[ﬂ = Z H(’D]L(_t%/)\%)HHxL2 + ||7”||H><L2 + On(l) (5'2'46)
1<j<k
as n — oo.
In order to apply the concentration-compactness/rigidity method developed by Kenig

and Merle in [36], [37], we need the following “Pythagorean decomposition” of the nonlinear

energy (5.2.2):

Lemma 5.2.16. Consider a sequence Jn € Ho and a decomposition as in Corollary 5.2.15.

Then this Pythagorean decomposition holds for the energy of the sequence:

k

E(n) =Y E(F)(—th/ X)) + EFE) + on(1) (5.2.47)
j=1

as n — oo.
Proof. By (5.2.46), it suffices to show for each k that

00 - s0 sin? j—% % oo sin? 113
/O 81112(1%) dr:zk:/o (SDL( tn/ )> d7’+/0 ﬂdrjuon(l),

r r

J=1
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We will need the following simple inequality:

sin?(z + y) — sin?(z) — sin2(y)’ = '—2 sin? (z) sin?(y) + % sin(2x) sin(2y) (5.2.48)

S lelfyl-

Since at some point we will need to make use dispersive estimates for the 4d linear wave
equation the argument is clearer if, at this point, we pass back to the 4d formulation. Recall

that this means we set

Un(r) = rup(r)

w1 (—th/Xn,m/Xh) = VVE(—%/A%,T/A%)

n

(1) = g,

Since we have fixed k, we can, by an approximation argument, assume that all of the profiles
V7(0,-) are smooth and supported in the same compact set, say B(0, R). We seek to prove

that

sin2 (Ljvg(—tf; I, r/v;))

. k in2 k
/oo sin2 (rup) o Z /oo \ o /oo Sin (rwn> 0
0 r =1 0 r 0 r

Using the inequality (5.2.48) k—1 times, we can reduce our problem to showing the following
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two estimates:

VL (=t /Xo.m/20)]

/oo VI (=t X,/ X)
0

()\%) (\0) rdr=op(l) fori#j (5.2.49)
oo VI NN | |
/0 () wn(r)| rdr=on(1) forj <k (5.2.50)

From here the proof proceeds on a case by case basis where the cases are determined by

which pseudo-orthogonality condition is satisfied in (5.2.44).
Case 1: \i ~ )\%.

In this case we may assume, without loss of generality, that )\% = A% = 1 for all n. By

(5.2.44) we then must have that

th — t%’ — 00 as n — 00. This means that either ‘tm or
; 3
’t%’, or both tend to co as n — co. To prove (5.2.49) we rely on the (t)~ 2 point-wise decay

of free waves in R?. Indeed, we have

rdr

o0 . .
| Vit

| 1 |
R+‘t%‘ . . 2 : R+t
/0 Vg(—t%,r)‘ rdr /0

(o) () = ot

1

2 2
Vi(—t%,r)‘ rdr)

IN

Next we prove (5.2.50). First suppose that

t%‘ — 00. Then we have

2

o R+’t%’
/ ’Vz(—t%,r)‘ ‘wﬁj(r)‘ rdr < /
0 0

4
S Ikl (Hh) 7 =oa(1)
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Vg(—t‘%,r)‘ rdr

L 2 2
wy (1) ‘ rdr
1
2



where the second inequality follows from the point-wise decay of free waves in R?* and Hardy’s
inequality. Finally consider the case where ‘t%‘ < C. Then we can assume, after passing

to a subsequence and translating the profile, that t% = 0 for every n. In this case, then we

3

lOC(R4) as n — oo.

know that wﬁ — 0 weakly in ! and hence wﬁ — 0 strongly in, e.g., L

And we have

i &) | 1l
Case 2: juy; :F—>O(md7+)\—i§0asn—>oo.
n n mn

We can assume, by translating the profiles, that t% = t‘% = 0 for all n. We begin by
establishing (5.2.49).

Changing variables we have

V0, uid r)

rdr

oo [V, 7/ Vi (0,r/20)]
h "o

1 1
R, . 2 2 R . _ .2 2
<( [T Vion| rar) ([P viouin] rar
0 0
- 1
Ry
sc/
0

2
. 2
Vi(O,r)‘ rdr) = on(1),
where the last line follows from the fact that Ru%j — 0 as n — 0o. Next we prove (5.2.50).

R . .
rdr:/ VI(0,7)|
0
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Again, we change variables to obtain

/00 ‘Vg(—t%/%, r/N,
0 (M)

([ of! o) ([ ot ot ) =

where the last line tends to 0 as n — oo since (5.2.37) implies that )\%wﬁ()\%) — 0 in

)‘ R, | . :
‘w,]fb(r)‘ rdr :/O ‘VLJ(O,T)‘ M, }wﬁ()\%r)‘ rdr

IA

3 4
Lloc(R )
X o Bl
Cases 3: [iy, _)\—Z_>0; 7 + )\Z o

This remaining case can be handled by combining the techniques demonstrated in Case 1
and Case 2 using either the point-wise decay of free waves or (5.2.37) when applicable. We

leave the details to the reader. O

We will state the remaining results in this section in the 4d setting for simplicity. The
transition back to the 2d setting is straight-forward and is omitted.

Next, we exhibit the existence of a non-linear profile decomposition as in [1]. We
will employ the following notation: For a profile decomposition as in (5.2.35) with pro-
files {V]‘Z} and parameters {t%, )\‘771} we will denote by {V7} the non-linear profiles associ-
ated to {VLJ(—t%/)\%),Vg(—t%/)\%)}, i.e., the unique solution to (5.2.8) such that for all
—t%/)\% € Imax(V7) we have

lim_{|V7(~th /) — Vi (~th/ )|

n—oo

. =0

Hlx L2

The existence of the non-linear profiles follows immediately from the local well-posedness
theory for (5.2.8) developed in [17] in the case that —t%/)\% — Tgo eR.If —t%/)\% — +00
then the existence of the nonlinear profile follows from the existence of wave operators for

(5.2.8).
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We will make use of the following result on several occasions.

Proposition 5.2.17. Let i@, € H' x L? be a uniformly bounded sequence with a profile
decomposition as in Theorem 5.2.14. Assume that the nonlinear profiles V7 associated to the

linear profiles VLj all exist globally and scatter in the sense that
J

Let @y (t) denote the solution of (5.2.8) with initial data @y. Then, for n large enough,

Un(t,r) exists globally in time and scatters with

hg;solép ||u””L§’(R;L§) < 0.

Moreover, the following non-linear profile decomposition holds:

i .
1 (t—t]
unt,r) = > —V < -, %) +uk () + 2R ) (5.2.51)
j=1 An Ap Ap
with waL,L(t,r) as in (5.2.39) and
lim lim sup <||zk|| N - 2) —0. (5.2.52)
b0 m—so0 nULY Ly nULPH XL

The proof of Proposition 5.2.17 is similar to the the proof of [22, Proposition 2.8] and we
give a sketch of the argument below. In the current formulation, the argument is easier than
the one given in [22] since here we make the simplifying assumption that all of the non-linear
profiles exist globally and scatter. We also refer the reader to [53, Proof of Proposition 3.1]
where the essential elements of the argument are carried out in an almost identical setting.

The main ingredient in the proof of Proposition 5.2.17 is the following non-linear pertur-

bation lemma which we will also make use of later as well. For the proof of the perturbation
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lemma we refer the reader to [37, Theorem 2.20], and [53, Lemma 3.3]. In the latter reference
a detailed proof in an almost identical setting is provided which can be applied verbatim

here.

Lemma 5.2.18. [37, Theorem 2.20] [53, Lemma 3.3] There are continuous functions g, Cy :
(0,00) — (0,00) such that the following holds: Let I C R be an open interval, (possibly
unbounded), u,v € CO(I; HY(RY))NCH(I; L2(RY)) radial functions satisfying for some A > 0

||ﬁ||LOO(I;H1XL2) + ||27||L°°(I;H1><L2) + HUHL?(I;LQ) <A

||69(u)||L%(];L%) + HQQ(U)HL%(];L%) + Hw()HLgv(];Lg) < e <egp(4)

where eq(u) := Ou+u3Z(ru) in the sense of distributions, and wo(t) := S(t — to) (@ — 7)(tg)
with ty € I arbitrary, but fized and S denoting the free wave evolution operator in R1T4.

Then,
16— 7~ oll o1 1 g2y + 1t — vl 35 < Co(A)e

In particular, HUHL%”(I;LQ) < 00.

Proof of Proposition 5.2.17. Set

, .
1L (t—t]
ok (t,r) :Z & ( n ' )

—— 0 ’_.
=N N

We would like to apply Lemma 5.2.18 to u, and Uﬁ for large n and we need to check that
the conditions of Lemma 5.2.18 are satisfied for these choices. First note that eq(uy,) = 0.

We claim that |eq(vF)]| 397 is small for large n. To see this, observe that



; . J
where we have used the notation Vi (¢,r) = V7 (t_l-f”, L) and N(v) = v3Z(rv) as in
A X An

(5.2.8). Using the simple inequality

sin(2ru) 4 sin(2rv) — sin(2r(u + v))
2r3
2 sin(2ru) sin?(rv) + 2sin(2rv) sin? (ru)
2r3

< W o]+ 0% |u| (5.2.53)

together with the pseudo-orthogonality of the times and scales in (5.2.38) and arguing as in
the proof of Lemma 5.2.16 we obtain HQQ(Uﬁ)HLgp — 0 as n — oo for any fixed k. Next it

is essential that

k
lim sup Z Vil <A< oo (5.2.54)
n—o0 .
7=t grs
uniformly in k, which will follow from the small data theory together with (5.2.40). The
point here is that the sum can be split into one over 1 < j < jg and another over jo < j < k.
The splitting is performed in terms of the free energy, with jy being chosen so that
: j ' N 2
limsup Y [V (=t0/ X050 0 < 65

T Go<i<k

where 0 is chosen so that the small data theory applies. Using again (5.2.38) as well as the
small data scattering theory one now obtains

3

limsup || Y VY = > V75
n— 00 . . . - t+x
Jo<j<k L3rs  Jo<jsk

oY)

. ' WAVAYIE:
< Climsup g ||V£(—t%/)\%)||g1xlj2
Jo<j<k

with an absolute constant C'. This implies (5.2.54). Now the desired result follows directly
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from Lemma 5.2.18. ]

In Section 5.5 we will require a few additional results from [18]. We restate these re-
sults here for completeness. First, we note that for a profile decomposition as in Theorem
5.2.14, the Pythagorean decompositions of the free energy remain valid even after a space

localization. In particular we have the following:

Proposition 5.2.19. [18, Corollary 8] Consider a sequence of radial data iy, € Hlx L2(R4)
such that ||U"HH1><L2 < C, and a profile decomposition of this sequence as in Theorem 5.2.14.

Let {rp} C (0,00) be any sequence. Then we have

= 12 — 7 J /\J
121, 22 = j{jknvf< BN, s2rmm iy 1T 2y + 0n(D)
1<5<

as n — Q.

Next, we will need a fact about solutions to the free 4d radial wave equation that is also
established in [18]. The following result is the analog of [22, Claim 2.11] adapted to R*. In

[22] it is proved in odd dimensions only.

Lemma 5.2.20. [18, Lemma 11] [22, Claim 2.11] Let w0, (0) = (wy, 0, wp 1) be a uniformly
bounded sequence in H' x L2(R*) and let @y, (t) € H' x L2(R*) be the corresponding sequence

of radial 4d free waves. Suppose that
Juwnl g = 0

asn — 0o. Let x € CSO(R4) be radial so that x =1 on |z| <1 and suppx C {|x| < 2}. Let

{\} € (0,00) and consider the truncated data

i (0) 1= p(r/An)wn(0),
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where either ¢ = x or ¢ = 1 — x. Let Up(t) be the corresponding sequence of free waves.

Then

||U”“L§’Lg_>0 as mn — oo.

5.3 Outline of the Proof of Theorem 5.1.1

The proof of Theorem 5.1.1 follows from the concentration-compactness/rigidity method
developed by the Kenig and Merle in [36], [37]. This method provides a framework for
establishing global existence and scattering results for a large class of nonlinear dispersive
equations. We begin with a brief outline of the argument adapted to our current situation.
For data 1(0) € Ho denote by ¢(t) the nonlinear evolution to (5.1.1) associated to 1(0).

Define the set
S = {1(0) € Ho | ¥(t) exists globally and scatters to zero as ¢ — +o0} (5.3.1)

Our goal is then to prove that

— —,

{(0) e Ho[E(p) <28(Q)} C S

This will be accomplished by establishing the following three steps. First, we recall the

following global existence and scattering result proved in [17], for data in Hy with energy

< E(Q).

Theorem 5.3.1. [17, Theorem 1 and Corollary 1] There exists a small 6 > 0 with the
following property. Let @5(0) = (Yo,v1) € Ho be such that S(J) < E(Q) + 6. Then, there
exists a unique global evolution ¢ € CO(R; Ho) to (5.1.1) which scatters to zero in the sense

of (5.1.5).
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This shows that S is not empty. We remark that Theorem 5.3.1 gives more than what
is needed for the rest of the argument. A small data global existence and scattering result
such as [17, Theorem 2| would suffice to show that S is not empty. In fact, the proof of
Theorem 5.1.1, and in particular Theorem 4.1 provide an independent alternative to the
proof of scattering below £(Q) + d given in [17].

Next, we argue by contradiction. Assume that Thereom 5.1.1 fails and suppose that
E(Q) < & < 2£(Q) is the minimal energy level at which a failure to the conclusions of
Theorem 5.1.1 occurs. We then combine the concentration compactness decomposition given
in Corollary 5.2.15, the nonlinear perturbation theory in Lemma 5.2.18, and the nonlinear
profile decomposition in Proposition 5.2.17 to extract a so-called critical element, i.e., a
nonzero solution ¥, € C’O(Imax(@;*);Ho) to (5.1.1) whose trajectory in Hq is pre-compact
up to certain time-dependent scaling factors arising due to the scaling symmetry of the
equation. Here [max(@;) is the maximal interval of existence of J* To be specific, we can

deduce the following proposition:

Proposition 5.3.2. [17, Proposition 2 and Proposition 3] Suppose that Theorem 1 fails
and let £ be defined as above. Then, there exists a nonzero solution Uy (t) € Hg to (5.1.1),
(referred to as a the critical element), defined on its mazimal interval of existence Imax (Us) 2
0, with

E(i) = " < 26(Q)

Moreover, there exists Ay > 0, and a continuous function X\ : Imax — [Ag, 00) such that the

set

o {(o o) () ) e

18 pre-compact in H X L2

—

Remark 18. As noted above, the Cauchy problem (5.1.1), for data (0) € V() with a <
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2€(Q) is equivalent to the Cauchy problem for the 4d nonlinear radial wave equation, (5.2.8),
via the identification ru = 1. Hence, it suffices to carry out the small data global existence
and scattering argument, as well as the concentration compactness decomposition and the
extraction of a critical element on the the level of the 4d equation (5.2.8) for u. We remark
that in this setting, scattering in the sense of (5.1.5) is equivalent to [lu| y(g1+1) < 0o where

X is a suitably chosen Strichartz norm. For example, X = L?Lg will do.

-

Remark 19. In the proof of Theorem 5.1.1, the requirement that £((0)) < 2£(Q) arises
in the concentration compactness procedure. Indeed, in order to ensure that the critical
element 1;* described in Proposition 5.3.2 lies in H( one needs to require that any sequence
of data {1, (0)} with energies converging from below to the minimal energy level &, also
have uniformly bounded H x L? norms. This is only guaranteed when & < 2& (Q) by
Lemma 5.2.1. In this case, one obtains a sequence of data ,(0), via the identification
Fup = ¥y, that is uniformly bounded in H' x L2(R4) and on which one is free to perform
the concentration compactness decomposition as in [1] and extract a critical element iy as

in [37], [17]. We can then define 4y := riis.

Remark 20. For the proof that the function A(t) described in Proposition 5.3.2 can be taken
to be continuous, we refer the reader to [37, Lemma 4.6] and [36, Remark 5.4]. The fact that

we can assume that A is bounded from below follows verbatim from the arguments given in

[22, Section 6, Step 3]. See also, [37, Proof of Theorem 7.1] and [36, Proof of Theorem 5.1].

The final step, referred to as the rigidity argument, consists of showing any solution
J(t) € Hgy with the aforementioned compactness properties must be identically zero, which
provides the contradiction. This part of the concentration compactness/rigidity method is
what allows us to extend the result in [17] to all energies below 2€(Q) and we will thus carry

out the proof in detail in the next section.

252



5.3.1 Sharpness of Theorem 5.1.1 in H,

Before we begin the rigidity argument, we first show that Theorem 5.1.1 is indeed sharp in
Hp by demonstrating the following claim: for all § > 0 there exist data J(O) € Hy with
E() <2E(Q) + 9, such that the corresponding wave map evolution, 1 (t), blows up in finite

time. This follows easily from the blow-up constructions of [50] or [62].

Fix d9 > 0. By [50] or [62] we can choose data %(0) € H; such that
E(U(0)) <EQ)+46, d<Kdp

such that the corresponding wave map evolution (t) € H; blows up at time ¢t = 1. In
other words, the energy of (t) concentrates in the backwards light cone, K(1,0) := {(t,7) €

[0,1] x [0,1] | » < 1 — t}, emanating from the point (1,0) € R x [0, oc], i.e.,

lim £ 7)) > Q)

. 2 —
where £2(u,v) = ff(u% + 02+ Smr#) rdr. Now define ¢(0) € Hq as follows:

w(0,7r) if r<2
¥(0,7) = (5.3.3)
T—Q\r) if r>2

where A > 0 is chosen so that 7 — Q(2\) = u(0,2). We note that the existence of such a A
follows form the fact that we can ensure that «(0,7) > 0 for » > 1. To see this, observe that
since 4(t) blows up at time ¢ = 1 and thus must concentrate at least £(Q)) inside the light
cone we can deduce by the monotonicity of the energy that 5&(6(0)) > £(Q). Now choose
J < E(Q). If we have u(0,7) < 0 for any r > 1 we would need at least £°(u(0),0) > £(Q)
to ensure that u(0,00) = 7. This follows from the minimality of £(Q) in H;. However
£r°(u(0),0) <0 < £(Q).
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Now observe that
E((0)) = E3(i#(0)) + £3°(r — Q) < £(10) + £(Q) < 2E(Q) + 6. (5.3.4)

Let J (t) denote the wave map evolution of the data J(O) By the finite speed of propagation,
we have that ¢(t,r) = @(t,r) for all (¢,7) € K(0,1) and hence

limm & () = Jimn & "(i(t) > Q) (5.3.5)

which means that J(t) blows up at ¢ = 1 as desired. Note that if one wishes to construct
blow-up data in Hg that maintains the smoothness of u(0), one can simply smooth out
’J(O,T’) in a small neighborhood of the point r = 2 using an arbitrarily small amount of
energy.

We again remark that the questions of determining the possible dynamics at the thresh-

-, —,

old, £(¢) = 2£(Q), and above it, E(1p) > 2E(Q), are not addressed here and remain open.

5.4 Rigidity

In this section we prove Theorem 5.1.2 and complete the proof of Theorem 5.1.1. We begin
by establishing a rigidity theory in Hy which will allow us to deduce Theorem 5.1.1. We then
use the conclusions of Theorem 5.1.1 together with the proof of Theorem 5.4.1 to establish
Theorem 5.1.2.

Theorem 5.4.1 (Rigidity in Ho). Let 1(t) € Ho be a solution to (5.1.1) and let Inax(¢) =
(T—(¢), T (v)) be the mazimal interval of existence. Suppose that there exist Ag > 0 and a

continuous function X\ : Imax — [Ag, 00) such that the set

(ot ) [ B

254



18 pre-compact in H X L2 Then, Imax = R and ¢ = 0.
We begin by recalling the following virial identity:

Lemma 5.4.2. Let xp(r) = x(r/R) € Cj°(R) satisfy x(r) = 1 on [~1,1] with supp(x) C
[—2,2]. Suppose that J is a solution to (5.1.1) on some interval I 5 0. Then, for all T € I

we have

<XR¢|T¢T> ‘Z: —/OT/OoowrdrdH/()TO(eg(qZ(t)))dt. (5.4.2)

Proof. Since 1) is a solution to (5.1.1) we have

% <XR¢ \ T¢r> = <XR15 \ T¢r> + <XR¢ \ T¢r>
sin(2¢))
o 2

= <XR(¢TT + lwr - 7’¢T> + <XR¢ | T¢r>
= [ 5w dr+/ g dr
_ /OO lar(81n2(¢)) Rd’r’—|— /OO §8r(¢ )XR"Q dr

/ ¢2rdr+/ (1 —xp)?rdr

2
_5/0 (¢2+¢r Smr(w)>X/R7’2d7’~

Observe that

/O T = xRy rdr

S Ex (¥).

Finally, noting that x5 (r) = %X, (r/R), we obtain

00 2
/0 1 <¢ +¢T SIHT(w))XjQTQdT
2R s 2
9 9, sinf(Y)\ r >
< (e ) () e
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Hence we can conclude that

& (i) == [ e + o5 )

An integration from 0 to T proves the lemma. O

With the virial identity (5.4.2), we can begin the proof of Theorem 5.4.1. This will be
done in several steps and is inspired by the arguments in [22, Proof of Theorem 2]. To begin,
we recall from [37] that any wave map with a pre-compact trajectory in H x L? as in (5.4.1)
that blows up in finite time is supported on the backwards light cone.

Lemma 5.4.3. [37, Lemma 4.7 and Lemma 4.8] Let O(t) € Ho be a solution to (5.1.1)
such that Imax(lﬁ) is a finite interval. Without loss of generality we can assume T+(IE) =1.

Suppose there exists a continuous function A : Imax — (0,00) so that K, as defined in (5.4.1),

is pre-compact in H x L%. Then

0< CLO(_[? < A1) (5.4.3)
And, for everyt € [0,1) we have
supp(¥(t)) € [0,1 —t). (5.4.4)

We can now begin the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1.

Step 1:

-,

First we show that I;ax (1) = R. Assume that T (¢)) < oo and we proceed by contradiction.

)
Without loss of generality, we may assume that T (¢)) = 1. By Lemma 5.4.3, we can deduce

that 0 < Cg(ft{) < A(t) and supp((t)) € [0,1 —¢). In addition, we know, by [76] or an
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argument in [71, Lemma 2.2], that self similar blow-up for 2d wave maps is ruled out. This

implies that there exists a sequence {r,} C (0,1) with 7, — 1 such that

1

N =) <1l as n— 0. (5.4.5)

Hence, we can extract a further subsequence {t,} — 1 and apply Corollary 5.2.9 with

o= )\(t j to obtain, for every n, the bound

tn+~+—
)\(tn)/ e / B2 trrdrdt<l (5.4.6)

Note that above we have used the fact that supp(i(t)) € [0,1 —t). Next, with ¢, as above,

define a sequence in Hg by setting

Gn(0) = (W0, ) = (w (tn, W) Tk (tn, m)) .

The nonlinear evolutions associated to our sequence

3= (v (04 55705 ) 5% (0 35507 ))

-

are then solutions to (5.1.1) with £(¢,) = £(¢¥). Observe that

1 00 |
/ / ¢%(t, r)yrdrdt -0 as n— oo. (5.4.7)
0 0

Indeed, by (5.4.6) we have that

t"+)\(tn
wnrdrdt A(t ) w (t,r)rdrdt —0 as n— oo.

We now proceed as follows. By the compactness of K we can find ¢ (0) = (2, 9L) € Hg
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and a subsequence of {,(0)} such that we have strong convergence
Yn(0) = ¥o(0) as n — oo (5.4.8)

in H x L2. Note that this also implies strong convergence in the energy topology, i.e.,

Un(0) = oo (0) in Ho. In particular, we have

E(1o0(0)) = E(Wn(0) = E(¥). (5.4.9)

Now, let 1o (t) € Hg denote the forward solution to (5.1.1) with initial data 1s(0) on its
maximal interval of existence [0, T (10)). Choose Ty € (0, T4+ (¢x0)) with Ty < 1.

Using Lemma 5.2.18 for the equivalent 4-dimensional wave equation (5.2.8), the strong
convergence of Jn(O) to 1;00(0) in H x L? implies that for large n, the nonlinear evolutions

Un(t) and Yo (t) remain uniformly close in H x L% for t € [0, 7). Indeed, we have

sup [ $n(t) = Yoo(t)ll gy 2 = on(1). (5.4.10)
t€[0,To]

Hence, combining (5.4.7) with (5.4.10) we have

1 poo | Ty oo |
0« / / D2 (t,7)rdrdt > / / D2 (t, ) rdrdt
0 JO 0 0

T 00
:/ 0/ 2 (8, ) rdr dt + on(L).
0 0

Therefore we have ¢so = 0 on [0,Tp]. Since ¢» = 0 is the unique harmonic map in Hy we
necessarily have that ¢se = 0. But, by (5.4.9) we then have 0 = (o) = E(Un) = E(¥).

Hence 1; = 0, which contradicts our assumption that i) # 0 blows up at time ¢t = 1.

Step 2: By Step 1, we have reduced the proof of Theorem 5.4.1 to the case Ihax = R, and

hence A : R — [Ap, o). By time symmetry we can, without loss of generality, work with
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nonnegative times only and thus consider A(t) : [0,00) — [Ag, ).

First note that since K is pre-compact in H x L? and since \(t) > Ag we have that for

all € > 0 there exists an R = R(e) such that for every ¢ € [0, 00)

ERi (D) <e.
Also, observe that for all 7" > 0 we have

S RE(Y).

'<XR¢|T¢T> ’Z

—,

(5.4.11)

(5.4.12)

Now, fix e > 0 and fix R large enough so that sup;>9 &7’ (¥)) < . Then, Lemma 5.4.2

together with (5.4.12) implies that for all 7" € [0, 00) we have
1 T oo 5 R -
= drdt < = :
T/O /0 e rdr NTS(w)—l—é‘
This shows that

1 [T oo .
T/ / ¢2rdrdt—>0 as 1T — oo.
0 0

Next, we claim that there exists a sequence {t,} with t,, — oo such that

b+ 0 |
lim A(ty) / Aim) ( / wzrdr) dt = 0.

To see this, we begin by defining a sequence 7, as follows. Set

1 "1

(5.4.13)

(5.4.14)

First we establish that 7, — 0o as n — oo. If not, then up to a subsequence we would have
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Tn — Too < 00. This would imply that

which means that lim
k—o00 )\(7‘ k)

= 0. But this is impossible since A(73.) — A(7o00) < 00 by the
continuity of A.
Now, suppose that (5.4.14) fails for all subsequences {t,} C {7,}. Then there exists

€ > 0 such that for all £,

Th+1 S 9 1
/Tk (/0 Y rdr) dtZé‘)\(Tk).

Summing both sides above from 1 to n gives

Tn+1 o0 9 n 1
wrdr)dtze = ETpt1
[V D iy 7

which contradicts (5.4.13). Hence there exists a sequence {t,} such that (5.4.14) holds.

Moreover, since A(t) > Ag > 0 for all £ > 0 we can extract a further subsequence, still

denoted by {¢,}, such that (5.4.14) holds and all the intervals [t;, t, + ﬁ] are disjoint.

Next, with ¢, as above, define a sequence in Hg by setting

n(0) = (¥, ) 1= (¢ (t”’ m) ’ﬁqﬁ (t”’ @)) |

The nonlinear evolutions associated to our sequence

0= (oo s 5) i (o)
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are then global solutions to (5.1.1) with (¢ ) = £(1). Observe that

1 poo |
/ / w%(t, ryrdrdt —0 as n — oo. (5.4.15)
0 JO

Indeed, by (5.4.14) we have that

1 poo | tn—l—ﬁ 0o
/ / w%rdrdtzk(tn)/ </ w2rdr) dt =0 as n— oo.
0 JO tn 0

We now proceed as follows. By the pre-compactness of K we can find @EOO(O) = (@Dgo, wclx)) €

Ho and a subsequence of {t,(0)} such that we have strong convergence
Un(0) = P (0) as n — oo (5.4.16)

in H x L?. Note that this also implies strong convergence in the energy topology, i.e.,

—

Un(0) = Yo (0) in Ho. In particular, we have

-

E(os(0)) = E(Wn(0)) = E(). (5.4.17)

Now, let ¢ (t) € Hg denote the forward solution to (5.1.1) with initial data so(0) on
its maximal interval of existence [0, T (1)x0)). Choose Ty € (0,14 (¢ )) with T < 1.

Using Lemma 5.2.18 for the 4-dimensional wave equation (5.2.8), the strong convergence
of ¥(0) to ¥no(0) in H x L? implies that for large n the nonlinear evolutions 1, (¢) and

Joo(t) remain uniformly close in H x L2 in t € [0, 7). Indeed, we have

sup |9 (t) = Yoo (1) pr 2 = 0n(1)- (5.4.18)
t€[0,7p)
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Hence, combining (5.4.15) with (5.4.18) we have

L poo Ty oo |
0 <_/ / GE(t,r)rdrdt > / / V2 (t,r) rdrdt
0 JO 0 0

T 00
:/ 0/ O (1) rdr dt + on(1).
0 0

Therefore we have lboo = 0 on [0,Tp]. Since ¢» = 0 is the unique harmonic map in Hgy we
necessarily have that 1/s = 0. But, by (5.4.17) we then have 0 = & (1o, 0) = E(1by,) = E ().

Hence J = 0 as desired. O
We can now complete the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. Suppose that Theorem 5.1.1 fails. Then by Proposition 5.3.2 there
would exist a nonzero critical element 15* that satisfies the assumptions of Theorem 5.4.1.

But by Theorem 5.4.1, J* = 0, which is a contradiction. O
To conclude, we prove Theorem 5.1.2.

Proof of Theorem 5.1.2.

—

Step 1: First we show that Inax(U) = R. We argue by contradiction. Assume that

T (U) < co. Without loss of generality, we may assume that 7'y (U) = 1.

Applying the exact same argument as in Step 1 of the proof of Theorem 5.4.1 up to (5.4.7)

we can construct a sequence of solutions Uy (t) € H' x L2(R2; $2) to (5.1.1) such that
= 1 r
U,(0) = (U9, ULy .= (U (t ,L,w) U (t —w))
(0= (O O] 3 ) 2 M\ 3w
with £(Uy) = £(U) and

1
/ /2 QU(t)dxdt — 0 as n — . (5.4.19)
0 JR
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From this we obtain the following conclusions:

(i) Extracting a subsequence we have U, = Uy weakly in Hllo ([0, 1] x R2: 52) and hence

Uso(t) is a weak solution to (5.1.1) on [0, 1].

(ii) By the pre-compactness of K we can, in fact, ensure that Uy, (0) — Uso(0) strongly in

H' x L2(R?; 5?). This implies that
EUx) = E(U,) = E(U) (5.4.20)

(iii) By (5.4.19) we can deduce that Use = 0 on [0, 1].

Putting this all together, we have a time independent weak solution Us, € H to (5.1.1)
for t € [0,1]. By Hélein’s Theorem [32, Theorem 1] we know that Us, is, in fact, harmonic.
Since U = 0 and U = (£Q,w) are the unique harmonic maps up to scaling in H we
necessarily have that either Us, = 0 or Uso(r,w) = (Q(X-),w) for some A > 0. Hence, by
(5.4.20), we can deduce that either £(U) = 0 or £(U) = £(Q,0). The former case implies
that U = 0. If the latter case occurs, then U(t) can either be an element of Hg, Hy, or
of H_1 since all the higher topological classes, H, for |[n| > 1, require more energy. If
U(t) € Hg then it is global in time and scatters by Theorem 5.1.1. If U(t) € Hy or H_1
then we have U(t,r,w) = (:EQ(S\T),M) for some A > 0 since (@,0), respectively (—@Q,0),

uniquely minimizes the the energy in Hip, respectively H_1. In either case, this provides a

contradiction to our assumption that I # R.
Step 2:

Again we apply the exact same argument given in Step 2 of the proof of Theorem 5.4.1

and we construct a sequence of solutions Uy, (t) € H* x L%(R2; 52) to (5.1.1) such that
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with &(Uy) = £(U) and
1
/ , OUZ(t)dzdt — 0 as n — oco. (5.4.21)
0 JR

We thus obtain the following conclusions:

(i) Extracting a subsequence we have U, — Uy weakly in Hllo [0, 1] x R2: 52) and hence

Uso(t) is a weak solution to (5.1.1) on [0, 1].

(ii) By the pre-compactness of K we can extract a further subsequence with ﬁn(O) —

Uso (0) strongly in H' x L2(R?; §?). This implies that

EUs) = E(Uy) = E() (5.4.22)

(iti) By (5.4.21) we can deduce that Uso = 0 on [0, 1].

Putting this all together, we have a time independent weak solution Uy, € H to (5.1.1) for
t € [0, 1]. By Hélein’s Theorem [32, Theorem 1] we know that Uy is, in fact, harmonic. Since
U =0and U = (£Q,w) are the unique harmonic maps up to scaling in H we necessarily
have that either Uso = 0 or Uso(r,w) = (£Q(X-),w) for some A > 0. Hence by (5.4.22) we
can deduce that either £(U) = 0 or £(U) = £(Q,0). The former case implies that U = 0.
Arguing as in the conclusion to Step 1, the latter case implies that either U(t) € Hy or
Ut) € Haq. I U) € Haq, then U(t,r,w) = (£Q(Ar),w) for some A > 0. If U(t) € Hy
with £(U) = £(Q), then Theorem 5.1.1 shows that U () is global in time and scatters to 0
ast — oo in H' x L2(R2; 52) in the sense that the energy of U (t) goes to 0 as t — co on any
fixed but compact set V € R2. Finally, we observe that the pre-compactness of K renders
such a scattering result impossible.

We thus conclude that either U = 0 or U(t,r,w) = (£Q(Ar),w) for some A > 0 proving

Theorem 5.1.2. O
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5.5 Universality of the blow-up profile for degree one wave maps

with energy below 3£(Q)

In this section we prove Theorem 5.1.3. We start by first deducing the conclusions of Theo-

rem 5.1.3 along a sequence of times. To be specific, we establish the following proposition:

Proposition 5.5.1. Let J(t) € Hq be a solution to (5.1.1) blowing up at time t = 1 with

-,

E() =&(Q) +n < 3(Q)

Then there exists a sequence of times t, — 1, a sequence of scales \p = o(1 — ty,), a map

3= (¢o,v1) € Ho, and a decomposition

(0lta)odlta)) = (o) + (@ () 10) + 2t (5.5.1)

such that £(tp) € Ho and £(ty) — 0 in H x L? as n — oo.

Most of this section will be devoted to the proof of Proposition 5.5.1. We will proceed in

several steps, the first being the extraction of the radiation term.

5.5.1 FEaxtraction of the radiation term

In this subsection we construct what we will call the radiation term, ¢ = (¢q, 1), in the
decomposition (5.5.1).

To begin, let ¢, — 1 and 7y, € (0,1 — t,] be chosen as in Corollary 5.2.13. We make the
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n r

(0. ¢]

Figure 5.1: The solid line represents the graph of the function ¢! (-) for fixed n, defined in
(5.5.2). The dotted line is the piece of the function v (%y,-) that is chopped at r = ry, in
order to linearly connect to 7, which ensures that ¢, € Hy 1.

following definition:

0 — 7#—1/;7(3,1"”)7” if 0<r<mry,
0(r) = (5.5.2)
U(ty,r) if rpy<r<oo

\
(

) 0 if 0<r<m,
On(r) = . (5.5.3)

U(ty,r) if rp<r<oo

\

We claim that gz% = (gb%, gb,ll) forms a bounded sequence in the energy space H—in fact, the

sequence is in Hq 1 which is defined in (5.1.3). To see this we start with the claim that
5195(571) = S?S(J(fn)) <n+on(1). (5.5.4)

Indeed, since ¢ (tp,rn) — ® we have G(¢Y(ty,rn)) — 2 = %E(Q) as n — oo. Therefore, by
(5.2.4) have

56"(¢(fn)a0) > 2G(Y(tn, ) > E(Q) — on(1)

for large n which proves (5.5.4) since E°(¢(f)) = (4 (En)) — E47 (¥ ().
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We can also directly compute Egn(gb%, 0). Indeed,

Tn (F 2 rp Sin® | ——22 12
56n(¢2,0) :/ <7T w(tnﬂ”n)) Td?“—l—/ Tn .
0 n 0 r

<Clr =l r)> >0 as n— oco.

Hence &(¢y) < n+o0n(1). This means that for large enough n we have the uniform estimates
E(dn) < C < 2€(Q). Therefore, by Theorem 5.1.1, (which holds with exactly the same
statement in 1 1 as in Ho = Ho,o), we have that the wave map evolution gz%(t) € Hi with

initial data ¢y, is global in time and scatters to 7 as t — +o00. We define ¢ = (0, ¢1) € H11

by
T if r=0
po(r) == (5.5.5)
On(1 —tp,r) if r>2(1—1ty)
0 if r=0
o1(r) := (5.5.6)

on(1—tp,r) if r>2(1—1ty)

\

We need to check first that gz; is well-defined. First recall that by definition

—

on(r) = (tn,7) Vr>1—1,

since 1, < 1 —ty,. Using the finite speed of propagation of the wave map flow, see e.g., [68],

we can then deduce that for all ¢ € [0, 1) we have

—

Gt —tn, ) =(t,r) Vr>1—1, + |t — i
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Now let m > n and thus ¢, > t,. The above implies that

—

Therefore, using the finite speed of propagation again we can conclude that
On(1 —Tn, 1) = (1 — T, ) V7 > 2(1 — 1)

proving that gz; is well-defined. Next we claim that

-

E(P) <n (5.5.7)

Indeed, observe that by monotonicity of the energy on light cones, see e.g. [68], we have

—, -

55(01_{n)(¢) = 55(01_{n)(5n(1 - En)) < 5?3{”(@571(0)) < 5(5,1(0)) < n+ On(l)

—

and then (5.5.7) follows by taking n — oo above. Now, let ¢(t) € H1 1 denote the wave map
evolution of 5 Since gz; € H1,1 and 5(5) < n < 2&(Q) we can deduce by Theorem 5.1.1 that
(t) is global in time and scatters as ¢ — £o0. Our final observation regarding ¢(t) is that

for all t € [0,1) we have

-

ot r)=(t,r) Vr>1—t

This follows immediately from the definition of gg and the finite speed of propagation. To be
specific, fix tg € [0,1) and 19 > 1 —¢. Since ¢, — 1 we can choose n large enough so that

rg > 2(1 — ) + 1 — tg. Then observe that by finite speed of propagation and the fact that
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&(r) = ¢n(1 — Iy, 7) for all 7 > 2(1 — £,) we have
d(to, ™) = dn(to — tn,7) = D(to,m) Y7 >19>2(1—1,) +1—1tg

and in particular for r = rq.

Finally, we define our radiation term @ = (g, 1) € Ho by setting

po(r) ==¢p—m (5.5.8)

p1(r) = é1. (5.5.9)

We denote by @(t) € H the global wave map evolution of ¢. We gather the results estab-

lished above in the following lemma:

Lemma 5.5.2. Let g be defined as in (5.5.8), (5.5.9). Then, ¢ € Hg and E(F) <n < 2E(Q).
Denote by g(t) the wave map evolution of . Then J(t) € Hg is global in time and scatters

to zero as t — +oo and we have
Bt,r)+m= J(t,r) V(t,r)e{(t,r)|te[0,1),r e (1—t00)} (5.5.10)
Now define

at,r) ==t r) — 3t r). (5.5.11)

We use Lemma 5.5.2 to show that @(t) has the following properties:

Lemma 5.5.3. Let d(t) be defined as in (5.5.11). Then a(t) € Hy for allt € [0,1) and

supp(ar(t),a(t)) € [0,1 —1). (5.5.12)
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Moreover we have

-

lim £(@(t)) = E(&) — E(). (5.5.13)

t—1

Proof. First observe that (5.5.12) follows immediately from (5.5.10). Next we prove (5.5.13).

First observe since J(t) € H is a global wave map with £(g) < 26(Q) we have
sup |G grwr2(r<s) =0 as 6 =0,

t€[0,1]

which implies in particular that

1PN 2(r<1-8) = 0 (5.5.14)

as t — 1. Next we see that

sm%ww—wm)rw

72

1—t
e - | (m@—wwﬁﬂww—wwﬁ+

—

1—t
= & 'W() + / (=20 (t)o(t) — 2y (t)or (1)) 7 dr
1 " 1 2 9
-t ~t gin — — sin
o [ () o [N ) 200,

-
= 57U W0) + CEDNFDN 12011 + CIFD I L2021 o

= &) +o(1) as t— 1,

where on the last line two lines we used (5.5.14) and the fact that

sin?(z + y) — sin(z)| < 2 Jsin(2)| |y| + 2 |y|?. (5.5.15)
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Finally, by Lemma 5.5.2 we observe that for all ¢ € [0,1) we have

EP%4(4(1)) = ET24(B(1)).

Hence,

on
—~
S
—~
~
S—
S—
I
)
—~
<
—~
~
S—
S—
|
on
—_
N
—~
Al

(1)) +o(1) as t—1,

which completes the proof. O

5.5.2  Ezxtraction of the blow-up profile

Next, we use Struwe’s result, Theorem 5.2.10, to extract a sequence of properly rescaled
harmonic maps. At this point we note that we can, after a suitable rescaling and time
translation assume, without loss of generality, that the scale Ay in Theorem 5.2.10 satisfies

Mg = 1. We prove the following result:

Proposition 5.5.4. Let d(t) € H; be defined as in (5.5.11) and let oy, be any sequence
with a, — 00. Then there exists a sequence of times 7, — 1 and a sequence of scales

An = o(1 — 1) and anhy, < 1 — 7y, such that

(a) Asn — oo we have

/OO a2(rp,r)rdr < l (5.5.16)
0 n
(b) Asn — oo we have
ann 2 — 2
/ (ar(%r)_ Qr(r/An) N la(Tp,7) 2¢2(r/An)l ) rdr < X (5.5.17)
0 An " "
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(c) Asn — oo we also have

E(d(n) — (Q(-/Mn),0)) < n+on(1), (5.5.18)

which tmplies that for large enough n we have
E(d(mn) — (Q(-/Mn),0)) < C < 28(Q).

Proof. We begin by establishing (5.5.16) and (5.5.17). The basis for the argument is Theo-
rem 5.2.10. Indeed, by Theorem 5.2.10 and Corollary 5.2.13 there exists a sequence of times

tn, — 0 and a sequence of scales A\;, = o(1 — t5,) such that for any B > 0 we have

1 tn+An pl—t |
o G2t ) rdrdt — 0
n

n

tn+An /B)\n (

as n — oo. Next observe that since F(t) € H is a global wave map with £(g) < 2£(Q), we

) <r/An> L Lt n) —Tgwn)\?) rdrdt =0

can use the monotonicity of the energy on light cones to deduce that

sup €é_t(<ﬁ(t)) —0 as n— oo. (5.5.19)
tn<t<l

The above then implies that

sup ||95(t)||H><L2(r§1—t) —0 as n — oo. (5.5.20)
t<t<1
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By (5.5.11), Lemma 5.5.3 we then have

tntAn thtAn le t .
/ (t,r)rdrdt = / Y(t,r) — o(t, 7’) rdrdt

1 tn—i-/\n —

< w (t,r)rdrdt

M Ju, 0
1 tnt+An 1—t

+ — / ¢2(t,r)rdrdt—>0.
An

Using (5.5.20) it is also immediate that

tn"—)\n /B/\n (

Now, define

1 tnt+An 00
s(B,n) = )\—/t / a?(t,r)rdrdt
n n

tn+An /B/\n
n

We know that for all B > 0 we have s(B,n) — 0 as n — oo. Let oy, — oo. Then there

QT (r/An)
An

9 2
+ la(t, ) _TCQQ(T/)\H)‘ ) rdrdt — 0.

Q)P atr) - Q(r/mﬁ) drdL

An r2

exists a subsequence o(n) such that s(an,o(n)) — 0 as n — 0o with and, () < 1=t
To see this let N(B,d) be defined so that for n > N(B,d) we have s(B,n) < ¢ and then
set o(n) := N(ap,1/n). Note that we necessarily have anAy(,) < 1—{5(,). Then we can

extract 7, (,) € [lo(n) to(n) + Ag(n)] S0 that after relabeling we have

0
/ dz(Tn, r)rdr
0

Qn /\n
/
O

for every n which proves (5.5.16) and (5.5.17).

ar(Tn, T) -

(/A 2 a(mp,r) — 7’>\n2 1
Qulr )|, o) = Q) >|)

N rdr < —

S
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Lastly, we establish (5.5.18). To see this, let 7, and Ay, be as in (5.5.16) and (5.5.17).

Observe that

E(@(1n) — (Q(-/An). 0) = " (@(m) — (Q(-/An), 0))
+EL @) — (Q(-/An), 0))
+ 2 (@(mn) — (Q(-/An), 0)).

First, observe that (5.5.16) and (5.5.17) directly imply that
5 (@) — (Q(-/An), 0)) = 0n(1) (5.5.21)
as n — 0o. Next we observe that
o, (Q(/2n)) = E3(Q) = on(1). (5.5.22)

Using (5.5.22) and the fact that @(m,,r) = (7, 0) for every r € [1 — 7, 00), we have that

ET2 7, (A@(7n) = (Q(-/An), 0)) = €72, ((m,0) = (Q(-/An), 0))

< €2, (Q(/An)) = onlL).
Hence it suffices to show that

E0 M) = (Q(-/An),0)) < 0+ on(1). (5.5.23)
Applying (5.5.22) again we see that the above reduces to showing that

£ () <+ on(1).

o Ap
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Now combine the following two facts. One the one hand, for large n, (5.5.13) implies that

-,

E(a(mn)) < E(Y) + on(1).

On the other hand, (5.5.16) and (5.5.17) give that 58‘")‘"(6(7'71)) = &(Q) — op(1). Putting

this all together we obtain (5.5.23). O

In the next section we will also need the following consequence of Proposition 5.5.4.

Lemma 5.5.5. Let ap, Ay, and 7, be defined as in Proposition 5.5.4. Let 8, — oo be any

other sequence such that By, < coay for all n, for some co < 1. Then for every 0 < ¢1 < Co

such that Cocq < 1 there exists By, with c16n < Bn < 98y such that
U(Tn, Bndn) = T as n— oo (5.5.24)
Proof. We first observe that we can combine (5.5.17) and (5.5.14) to conclude that

1) = (Q(/X0), )l g L2(r< ) = O (5.5.25)

as n — 0o. Now, suppose (5.5.24) fails. Then there exists dg > 0, £, — oo with £, < coan,

and c; < U9, and a subsequence so that
Vo (mp, Anr) & [m— 8o, ™+ o] Vr € [c18n, Cofn)
Now, since (3, — oo we can choose n large enough so that

Q(r) € [r —09/2,7) Vr € [c18n, C2fhn)
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Putting this together we have that

/@%wvam—mmPW><@—q)gz

lﬁn r

But this directly contradicts (5.5.25) since Cs95,, < ay, for every n. O

5.5.8 Compactness of the error

For the remainder of this section, ay,, 7, and A, will all be defined by Proposition 5.5.4.

Next, we define by, € Ho as follows:

bpo(r) = a(mn, 1) — Q(r/An) (5.5.26)

b 1(r) = a(tn,7) = 0p(1) in L2 (5.5.27)

Our goal in this section is to complete the proof of Proposition 5.5.1 by showing that

l;n — 0 in the energy space. Indeed we prove the following result:

Proposition 5.5.6. Define by = (by 0,bp1) as in (5.5.26), (5.5.27). Then
||gn||H><L2 —0 (5.5.28)

as n — Q.

The first step in the proof of Proposition 5.5.6 is to show that the sequence by, does not
contain any nonzero profiles. The proof of this step is reminiscent of an argument given in
[22, Section 5] and in particular [22, Proposition 5.1]. Here the situation has been simplified
as we have already extracted the large profile Q(-/\p) by means of Struwe’s theorem.

Observe that by Proposition 5.5.4 we have

E(by) < C < 28(Q)
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for n large enough. Denote by gn(t) € Ho the wave map evolution with data l;n € Hp. Since
E(by) < C < 28(Q) for large n, we know from Theorem 5.1.1 that by () € Hg is global and

scatters to zero as t — +o0.

Proposition 5.5.7. Let by, € Ho and the corresponding global wave map by(t) € Hq be

defined as above. Then there exists a decomposition
bn(t,r) = by (8, 7) + Op(t,7) (5.5.29)
where l;n,L(t, ) satisfies the linear wave equation
1

1

with initial data En,L(O, ) = (bp,0,0). Moreover, by, 1, and 0,, satisfy

1
by 0 (5.5.31)
r 0 i )
- 1
1l oo o+ || 26 0 (5.5.32)
MRS T L g )

as n — 0.

Before beginning the proof of Proposition 5.5.7 we deduce the following corollary which

will be an essential ingredient in the proof of Proposition 5.5.6.

Corollary 5.5.8. Let gn(t) be defined as in Proposition 5.5.7. Suppose that there exists a
constant &y and a subsequence in n so that (b, ol > do. Then there ewists ag > 0 such

that for all t > 0 and all n large enough we have

||gn(t)||H><L2(r2t) > apdp (5.5.33)

Proof. First note that since gn, 1, satisfies the linear wave equation (5.5.30) with initial data
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bp,1,(0) = (bn,0,0) we know by Corollary 5.2.3 that there exists a constant 3y > 0 so that

for each ¢ > 0 we have

1, (Ol 57 x £2(r>1) = Pollon,oll 1

On the other hand, by Proposition 5.5.7 we know that

1bn(8) = b, L ¢ 22050y < 10| g1 2 = 0n(1)

Putting these two facts together gives

15 ()17 2205y = I, Ol 73 2(00) — 0n(1)

> ﬁOan,OHH - On(l)

This yields (5.5.33) by passing to a suitable subsequence and taking n large enough. O

To prove Proposition 5.5.7 we will first pass to the standard 4d representation in order
to perform a profile decomposition on the sequence I;n Up to extracting a subsequence,
by € Ho forms a uniformly bounded sequence with £ (l;n) < C < 28(Q). By Lemma 5.2.1

and the right-most equality in (5.2.10), the sequence iy = (uy 0, Uy 1) defined by

p o(r) = b”f@ (5.5.34)
U1 (r) = b”’i(r) —on(1) in L2(RY (5.5.35)

is uniformly bounded in H! x L2(R4). By Theorem 5.2.14 we can perform the following
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profile decomposition on the sequence y,:

1 —tj T
uno(r) =Y FVI{ (A—j” F) +w570(0,r) (5.5.36)
j<k '\n n n
1 j —t% T k
1 (r) =Y Vil ) twna.r) (5.5.37)
jﬁk (>\n) >\n >\n

where each Vg is a free radial wave in 4d and where we have for j # k:

+ —— 00 as n — 0o (5.5.38)

Moreover, if we denote by zﬁffb 1 (t) the free evolution of zﬁ,lij we have for j < k that

(AnwnL(AiLt%, o), (N)2ak L (Mth, A%-)) S 0eH'XL? as n—ooo  (5.539)

liﬁsolép Hwﬁ,L”L?Lg —0 as k— o0 (5.5.40)
Finally,
AN P
Nl %, 2= D |[VE (—f‘) + 15 (0)|%,, . + 0n(1) (5.5.41)
i<k A HlxI2

It is also convenient to rephrase the above profile decomposition in the 2d formulation. We

have
k
<p —_—, + 75 o(r) (5.5.42)
1 5 —tj T
b (r) = > —¢] (—j”, —j) +10r), (5.5.43)
jgk)‘n A A,
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where

and similarly for the time derivatives.
We make the following crucial observation about the scales )\%. By Proposition 5.5.4 we

have as n — oo that

E8mM (b, 0,0) — 0, (5.5.44)

Efim(bn,(), 0) = 0. (5.5.45)
Note that we also have that if 3, — oo is any other sequence with (5, < ay, then
ETM (b0, 0) — 0. (5.5.46)

We can combine (5.5.44) and (5.5.45) with Proposition 5.2.19 to conclude that for each scale

)x% corresponding to a nonzero profile goj we have
A <N <1—1, (5.5.47)
at least for n large. In particular,
)\‘ZL —0 as n— oo foreveryj. (5.5.48)

The proof of Proposition 5.5.7 will consist of a sequence of steps designed to show that

each of the profiles Vg (or equivalently the (53L) must be identically zero.
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Our first goal is to show that all of the time sequences {t,, ;} can be taken to be = 0 and
that then the initial velocities of the profiles vanish, i.e., VLj(O, r) = 0 for each j. This is an

easy consequence of the following lemma:

Lemma 5.5.9. In the decomposition (5.5.36), (5.5.37) we must have

+
limsup || < oo VjeN (5.5.49)
n—00 )\%

Corollary 5.5.10. In the decomposition (5.5.36), (5.5.37) we can assume, without loss of

generality, that t% =0 for every n and for every j. And, in addition we then have
Vg(O, r)=0 forevery j.

Proof of Corollary 5.5.10. Since all of the sequences t% / >\% are bounded, we can assume (by
translating the profiles) that ¢, ; = 0 for all j and for all n. In the case when t% = 0 for all

J, it is easy to see that, besides (5.5.41) the following Pythagorean expansion also holds

g 2
on(1) = funll3z = D2 ||VZO)| , + Ik 10)132 + on(D). (5.5.50)
i<k
from which it is immediate that Vlj = Vg (0) = 0 for every j. O

We now move to the proof of Lemma 5.5.9. We follow closely the argument in [20],
however since there are a few technical differences, we reproduce the proof here.

Note that one way of viewing Corollary 5.5.10 is that, under the hypothesis, one has
ability to pass from (5.5.41) to (5.5.50). For a profile decomposition of a general sequence
(Vn,0,Up,1) in H' x L2(R*) with |vn, 1]l 72 = on(1) this is not possible due to the following

example: Let VL (t) be any nonzero free wave and let s,, — 0o be any sequence of times. Let
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Up,0 = 2V (sp) and vy, 1 = 0. Then

vn0 = Vi (=sp) + VE(=s2), vp1=0 (5.5.51)
where
Vl%@) = VL(0), 5711 = —Sn, Vf(t) = Vi (—t), 87% = Sp,
is a profile decomposition which does not satisfy
0= llunllF2 # IVE(=sp)ll72 + IVE(=sp)ll72 + on(1)

With this example in mind, the first step towards proving Lemma 5.5.9 is to show that
such time-symmetric profiles are the only type that can arise with diverging parameters
t%/)\% — o0, for a sequence (v, 0, vy,1) in H' x L2(R%) with lvn1llr2 = on(1).

First we establish the following claim. Denote by S (t) the free wave propagator in R+,

i.e., for data (f, g) we set

S()(f.g) = cos(tv/=B)f + M%—A)g

St)(f.g) == (SH)(f.9), HSH)(f.9))

Claim 5.5.11. /20, Claim 2] Let {fn,gn} be a bounded sequence of radial functions in

H' x L2(RY) and let A, > be any sequence so that

Hg”HL2(r2An) —+0 as n— o0 (5.5.52)
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Let ty, be a time sequence so that |ty| /Ay, — 00 as n — oo. If
S(=tn)(fr gn) = (Vo, Vi) € H' x L?
then,
S(tn)(fns gn) = (Vo, =V1) € H' x I?

Proof. The proof follows closely the argument given in [20], but here we crucially use [18,
Theorem 4] in place of [22, Lemma 4.1]. Denote by (-, '>H1><L2 the inner product in B! x L2

Given any radial (hg, h1) € C§° x C’(C)’O(R4) we have

<§(_tn)(fnagn)a (ho’h1)>H1xL2 = <(fn>9n)> §(tn)(h0,h1)>

= ((fs=gn). S(tn)(ho.h)) .\, +on(1) as n— oo

Hlx L2

We note that the last inequality above is due our assumptions on gy,. Indeed, by [18, Theorem
4] (which says roughly that radial free waves radiate most of their energy near the light cone)

and since [t,| /An — oo, we have

((0,gn), S(ta) (ho, 1))

g2 on(l) as n — o

Using the fact that for any data (f, g) we have

S(=0)(f.—9) = (S()(f, 9). =S (t)(f. 9))
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we obtain

(SCtn)(ngn). (o)) 1,y = (S(=tn) (e =gn). (o, 1))
= (S(tn)(fs gm). (o, ~h1) )

HlaL? + on(1)

1 L2+0n(1) as n — oo
X

which completes the proof. O

Claim 5.5.12. Let (vy0,vp,1) be a bounded sequence of radial functions in H % L2(R4)

such that

lvn1llz2 =0 as n — oo. (5.5.53)

Then, after passing to a subsequence, there exists a profile decomposition with free waves Vg

and parameters {t%, A%} so that for a fived 7 € N we have either

th=0, Vo and Vi(0)=0 (5.5.54)
or
th
— — £00 as n — o0 (5.5.55)
X
and there exists k # j so that
VE6) =Vi(—t) and Vi) =ik, A=\ (5.5.56)

Proof. Fix and j € N. Recall from [1] that the profile ‘7]% with parameters {t%, )\%} is defined
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by the weak limit

S(th/ M) N0 (W), (W) Pom1 (M) = V7 (0) € B x L2 (5.5.57)

Now, we can assume without loss of generality that either t% = 0 for all n or that (5.5.55)
holds. If ¢, ; = 0 then (5.5.53) and (5.5.57) show that 0;V7,(0) = 0. In the latter case, we

can use Claim 5.5.11 to extract the weak limit

S(=th/ M) Mrvn o), (M) o1 (W) = (V(0), =0V (0)) € H' x L7 (5:5:58)

This gives us the existence of the kth profile Vf for some k precisely as in (5.5.56). O
We can now prove Lemma 5.5.9.

Proof of Lemma 5.5.9. We argue by contradiction. Passing to the 2d formulation, assume

that there exists a jo > 1 so that <p% # 0 and —t%o/)\ — +00. By Claim 5.5.12 and after

1,70

reordering the profiles we can assume that
jo+1 ] jo+1 ] jo+1 j
e () = P (—t) and )7 ==}, AT =AY
Recall that in Proposition 5.5.4 the time sequence 7, was chosen so that for every n we have

/ a”(rp,r)rdr < —
0 n

Our first observation is that there is considerable flexibility in the choice of 7, in Proposi-

tion 5.5.4. In fact, we claim that there exists a number 7 € (0, 1] so that

o .
/ a® (7 4+ M079,r) rdr — 0 as n — oco. (5.5.59)
0
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To prove (5.5.59), we first show that there exists a sequence £, — 0 so that

1 Tn—l-/\zlo o0
- / G2(t,7) v dr dt = e (5.5.60)
An I 0

Recalling that @(t) = 1(t) — @(t) and using the global regularity of ¢ we see that it suffices

to show that

1 Tat X0 1t
N 2t r)rdrdt = o,(1) as n — oo (5.5.61)
An 0

Note from the proof of Proposition 5.5.4 that 7, € [t,,ty, + A\p], where £, is as in Corol-

lary 5.2.9. We also have 7, + )x%o < 1. From this we infer that
T+ MO <t +min{l — £, MO + Ay}

Setting oy, = min{1 — ¢, )\‘ZLO + A} we see that

1 [t -t 1 fteton pl—t
— G2t r)rdrdt < — D2 (¢, r) rdrdt
)\%0 n 0 )\%0 tn 0
1 tn+on 1-t
<= 2, r) rdr dt = on(1)
On Jt, 0

where we have used Corollary 5.2.9 and (5.5.47) in the last line.

Next, let

00 . 1
E, = {T €[0,1] | / a2 (7 + NO7, 1) rdr > 57%}
0
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We have

En

00 1 poo .
= — / a2(t,r)rdrdt:// a2 (7 + X0, 1) v dr dt
)\%0 Tn 0 0 Jo
1
> |En|eq;

This implies that |E,| — 0 as n — oo. Passing to a subsequence, we can assume that

|Ep| < 2772 5o that
1
U £n| <5 (5.5.62)
n>0

It follows that 50% of all 7y € (0, 1] satisfy (5.5.59). Choosing any such 7y proves (5.5.59).

Now, recall the from the definition of by, we have

D) = Q(-/An) + @) + Y ], (0) + 70 (5.5.63)
i<k

where we write g, 1, for the modulated linear profiles, i.e.,

: t—th e\ 1 (t—t)
4 (t,?”)— SO y ) y ) = y ) y
L <L< X, A%) X L( X, A%))

Now, using (5.5.44), (5.5.47) and [22, Appendix B], choose a sequence \,, — 0 such that

o < Moor My« Ny V> L
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Now set

and we note that 3,, < a, and A, = 3,\n. Therefore, up to replacing j3,, by a sequence
~n ~ En and M\, by in = Bn)\n, we have by Lemma 6.3.11 and a slight abuse of notation

that

V(Tn, A\p) — T as n — oo. (5.5.64)
We define the set

The =121 M < M}

Note that by construction jg € jelxt’

Next, with A, as above we define (771,07771,1) as follows:

_ ™ — 77T_¢(XT"’X")T if 0<r<i,
fn,()(ﬂ = " B
U(rp,r) it Ay <r

Fna(r) = ()

Then (fy, 0, fn1) € Hi,1- Now let x € C§° be defined so that x(r) = 1 for all r € [2,00)

and supp(y) C [1,00). We define in = (Vn.0:¥n1) € Ho as follows:

U0 = X2r/3n)(Fno(r) =)

En,l = X(2T/S‘n)?n,1(r)
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By construction for n large enough we have &£ (7;”) < C < 2£(Q) (for a proof of this fact we
refer the reader to the proof of Lemma 5.5.13 for a similar arguement which applies verbatim
here). It follows from Theorem 4.0.3 that for each n, the wave map evolution in(t) € Hg of
the data in is global in time and scatters to zero as t — 4+o00. And by the finite speed of

propagation, it is immediate that for all ¢ such that 0 < 7, +¢ < 1 we have

-

D (t,r) + (7,0) = (m +t,7) Vr > A+ [t]. (5.5.65)
We also define

=k T\,
Vn,0.(0,7) == X(27’/An)%’§,L(0, r)

Now observe that we can combine (5.5.63) and Proposition 5.2.19 to obtain the following

decomposition:

= - = =k
Un(r) = Fmnr) + Y P 0)+ T (0,7) + on(1) (5.5.66)
JE€T ey » i<k

where the oy,(1) above is in the sense of H x L2. Using Proposition 5.2.17, Lemma 5.2.18,

and Lemma 5.2.16 we can find a corresponding nonlinear profile decomposition

- =k

= . i -k
ntr)=@(m+tr)+ > Gh(tr) +7n0(0.7) + 0, (t,7) (5.5.67)
j€j01xt ,jSk

where

=k
9, —0

Loo(H x L2)

lim lim sup
k—00 n—o0

For the precise details on how to deduce (5.5.67) we again refer to the proof of Lemma 5.5.13.
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Next, we evaluate (5.5.67) at the time ¢t = A%OTO note that one can extract a linear profile

:j s = .
decomposition (V7% )\%) from the sequence (A} 1)) where the parameters are given by
o=t — XY, X{l =\, (5.5.68)

Note that the profiles corresponding to the indices jgj and jo+ 1 are precisely @%0 (t) = cp%o (t)

and @%H(t) = go%“(t) = go%(—t). In addition to this we note that by (5.5.65)

G (N0, 1)+ (7,0) = (7 + N070,7)  ¥r > An + X070,

Next we apply Claim 5.5.11 with A, = A,/ MO 4 7 and ¢, = t%o/ A9 and

(Fs gm) = (BOO70, M), %315@()\%070, X)),

n

By our choice of A, we see that |t,| /A, — oo and hence

weak — lim S(H0 /M) (fn, gn) = weak — lim S(r0)S(E? /%) (fn, g0)

n—oo

= (P (10), O’ (70))

as well as

G g0 g GG+l o+l
weak — lim S(=t1) /X0 (fn, gn) = Weak—nlggo S(TO)S(%OJA/)‘%WL )(fns gn)

n—oo

—_jo+1 —_jo+1 ] ]
= (@ (70), 070 (70)) = (& (—70), =02 (—10))
But the above implies that
e (t) = 7 (t + 27m).
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Since @% is a solution to the linear wave equation the above implies that w%) can only be

identically 0, which contradicts the assumption that gpﬁ] is nonzero. O

Now, using Corollary 5.5.10 we can rewrite our profile decomposition in the 2d formulation

as follows.
. T
bno(r) = ¢ (0, —j> + R () (5.5.69)
i<k An
bp1(r) =on(1) in L% (5.5.70)
where

j r L r j r
(2 0,—. = —V: 0,—-
( %> A%L< %>

W (r) = rwf o (r).

Note that in addition to the Pythagorean expansions given in (5.5.41) we also have the

following almost-orthogonal decomposition of the nonlinear energy given by Lemma 5.2.16:

E(bn) =Y E(£7(0),0) + E(y1, 0) + on(1). (5.5.71)
j<k

Note that ¢’ ,%li € Ho for every j, for every n, and for every k. Using the fact that
E(by) < C < 26(Q), (5.5.71) and Theorem 4.0.3 imply that, for every j, the nonlinear wave

map evolution of the data (7 (0, r/)\%), 0) given by

. . t r 1 . t T
=] — | 5
%@ﬂ—(¢(fvf>f*¢<fwf>> (5.5.72)
Mo )N N,

is global in time and scatters as t — £00. Moreover we have the following nonlinear profile
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decomposition given by Proposition 5.2.17:

bu(t,r) =D Gh(t.r) + 7% L(t,r) + 05 (t,7) (5.5.73)
i<k

where by, (t,7) are the global wave map evolutions of the data b, and ?ffb 7 (t,7) is the linear

evolution of (v#,0). Finally, by (5.2.52), we have

Lk
-0
TTL

lim sup ||5£||L§O(HX]J2) + —0 as k— oo, (5.5.74)
oo L}(R;LE(RY))

Now, recall that our goal is to prove that ¢/ = 0 for every j. Now, let kg be the index
corresponding to the first nonzero profile goko. Without loss of generality, we can assume

that kg = 1. Using (5.5.44), (5.5.47) and [22, Appendix B], we can find a sequence Ay — 0

such that

An < A < A

M < Mot Mo« Ay V> 1.
Now define

and we note that 8, < oy and A\, = BpAn. Therefore, up to replacing 38, by a sequence

Bn ~ B, and n by in = Bn)\n, we have by Lemma 5.5.5 and a slight abuse of notation that

U(Tn, An) = T as  n — oo, (5.5.75)
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We define the set

Text = {] >1 | 5\n < )\%}

Note that by construction 1 € Jext. The next step consists of establishing the following

claim:

Lemma 5.5.13. Let ¢!, )\711 be defined as above. Then for all € > 0 we have

AL ,
/1 gb](t,r)+%]§,L(t,r) rdrdt = of
eAy+1 jejzt]<k

where lim limsup o,lfb = 0. Also, for all j > 1 and for all € > 0 we have
k—oo0 n—oo

/\1
/1 (¢, r)rdrdt =0 as n— .
)\—i—t

Note that (5.5.76) and (5.5.77) together directly imply the following result:

Corollary 5.5.14. Let o' be as in Lemma 5.5.13. Then for all e > 0 we have

1 n 2
—1/ / ‘gb}l(t,r)—l—‘yﬁL(t,r) rdrdtzoﬁ
)‘n 0 8/\%~H§ ’

where lim limsup 07]3 = 0.
k—o0 n—oo

(5.5.76)

(5.5.77)

(5.5.78)

Proof of Lemma 5.5.13. We begin by proving (5.5.76). First recall that by the definition of

by, we have the following decomposition

DT, 1) = (Q(r/An), 0) + @, 1) + D (7 (0,7/X%), 0) + 7% 1 (0,7)
i<k
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Next, with A, as above we define ﬁl = (fn,0, fn,1) as follows:

W—%WT if OSTSS\n
fn,O(T) = " B
U(rp,r) if Ay <r

fn1(r) == (70, 7)

Then f, € Hi1. Now let x € C§° be defined so that x(r) = 1 for all 7 € [2,00) and

supp(x) C [1,00). We define Uy, = (@En,o, @En,l) € H as follows:

U0 = X(2r/xn)(fno(r) — )
&n,l = X(Qr/j‘n)fn,l(r)

-

We claim that for n large enough we have £(¢y,) < C' < 2E(Q). To see this, observe that

— —

E(n) = N1 () + E5° (). (5:5.50)

Using (5.5.75) and (5.2.4), we note that we have 58‘"(@5(7‘71)) > £(Q) — op(1) which in turn

implies that
£3°(i(7n)) <0+ on(L)

We can again use the fact that (7, Ap) — 7 and (5.5.44) to deduce that 5/3\‘"/2(1%) = op(1).
Putting these facts into (5.5.80) we obtain the claim since, by assumption, n < 2£(Q).
Now, since ¢, € Hq satisfies E(1p) < C' < 2E(Q), Theorem 5.1.1 implies that for each

n, the wave map evolution in(t) € Hg of the data an is global in time and scatters to zero

as t — +o0o. And by the finite speed of propagation, it is immediate that for all ¢ such that
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0 <7, +t<1we have

—

Un(t,7) + (m,0) = (1 + t,7)  Vr > el + 1 (5.5.81)
as long as n is large enough to ensure that \, < 5)\711. We also define

5 (0,7) == x@r/An)7E 1 (0,7)

Now observe that we can combine (5.5.79) and Proposition 5.2.19 to to obtain the following

decomposition:

—

Un(r) = Elmm,r) + > (@ 0,1/N),0) + 3K 1 (0,7) + 0n(1) (5.5.82)
JE€EText ,j<k

where the 0,(1) above is in the sense of H x L?. By Lemma 5.2.20 we have that

—0 as k— o

. 1 &
lim sup ~n,L
LIy

n—oo

since if the above did not hold we could find subsequences ny and k; such that for all ¢ we

have

1 ke

Lk
Tfy’ng,L

Tfyng,L - O

B

>e¢ and lim
L3L6(R1+4) {—00

which would directly contradict Lemma 5.2.20. Hence, if we ignore the o, (1) term, the right-
hand side of (5.5.82) is a profile decomposition in the sense of Corollary 5.2.15. Therefore,

by Proposition 5.2.17, and Lemma 5.2.18, we can find élfL(t, r) with

éﬁ(t, T

lim limsup

k—00 m—o00 )HLSO(HXL%
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such that the following nonlinear profile decomposition holds:

- -

Unlt,r) = @(m+tr)+ D Fhtr) +AE L)+ 0t (5.5.83)
jEJext 7]§k

To be precise, (5.5.83) is proved as follows: Define

Un(r) = Fmm,r) + D (H(0,1/N),0) +3F L (0,7) (5.5.84)
jejextngk

As mentioned above, this is a profile decomposition in the sense of Corollary 5.2.15 and
E(y) < C < 2£(Q). By Proposition 5.2.17 we then have the following nonlinear profile

decomposition for the wave maps evolutions ¢y (t,-) € H:

— —.
9,

Un(t,r) =@ +tr)+ > @htr)+ 38 (L) + 05t r)
jejOXt ;.]Sk

lim lim sup Héffj(t =

,
k—00 n—00 ’ )HL§O(H><L2)

Now, by our perturbation theory, i.e., Lemma 5.2.18, we can deduce (5.5.83) since ||, (0) —

—

in(O)HHxH = on(1).
Next, we combine (5.5.83) with (5.5.81) to conclude that

=

Ul +t7) = (m,0) = F(m+t,r) = Y Fht,r)+75 (1) +05(t,7)
jejOXtijk

forallt+71, <1and r > 5)\711 + t for n large enough so that An < 5)\711. Using the above we
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can finally conclude that

AL .
By / / X oh(t,r) + ﬁﬁ,L(t, r)| rdrdt
At JE€Text 7]<k

1 AL oo X
< / / a> (T 4+ t,r) rdrdt + of
A Jo e+t

1 AL poo
<)\_1 / ‘2(Tn+tr)rdrdt+on
n
1 Tn+)\
)\1 / / (t,r)rdrdt+ o
Tn
< ) ) w (t,r)rdrdt+ tS;lp 51 HB) + o = o (5.5.85)
ZTn

To justify the last line above we need to show that

1 Tn"')\}b 1-t |
" G2t ) rdrdt = o,(1)
n

On the one hand, by our construction in the proof of Proposition 5.5.4 we have 7, € [tn, tn+
An| where t,, is as in Corollary 5.2.9 and Theorem 5.2.10. On the other hand, note that

Tn + M o<1 Putting these facts together we infer that
n
Tn + )‘111 <tp+ min{l —tn, )\711 + )\n}

Therefore, if we define o := min{1 — t,, AL + A\, } we have

1 [Tt -t 1 [tnto pl—t

— w t,r)rdrdt < — ¢2 t,r)rdrdt
S T A

tn—l—a 1-¢
< —/ G2t ) rdr dt = o, (1)
g Jt, 0

where the last line above follows from Corollary 5.2.9. Note that we have used the fact that

297



An < AL in the second inequality above. This proves (5.5.76).
Next we prove (5.5.77). Recall that for j # 1 we have either i}, := % — 0 or ), = oo.

Suppose the former occurs. Then

AL AL oo
/ tr rdrdt = il/ / i L rdrdt
An JooJo PYADYA
1 )\ oo
)\ / / —., Td?“dt
0 0
1 / / ) rdrdt

—>/O (@)% (0,7) rdrdt =0

Now suppose that ,u% — 00. Then, changing variables as above, we have

)\1 /Ln
)\1 /}\1 SOn) (t,r)rdrdt = / goj) (t,r) rdrdt (5.5.86)
+t n+t

,un

Now note that by monotonicity of the energy on exterior cones we have that for all § > 0

there exists M > 0 such that for all ¢ € [0, c0) we have

/OO (¢7)* (t,r) rdr <6

M+t
This implies that the right-hand side of (5.5.86) tends to 0 as n — oo. O
We can now conclude the proof Proposition 5.5.7.

Proof of Proposition 5.5.7. We first show that all of the profiles ¢/ in the decomposition
(5.5.69) must be identically 0. We argue by contradiction. As above we assume that ¢! # 0.

By Corollary 5.5.14 we know that for all £ > 0 we have

LM e " 2 .
_1 ‘Spn(t?r) +’}/n L(t,'f’) Tdrdt: On
An Jo e+t ’
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as n — oo for any £ > 1. Changing variables this implies that

1, 4142 k
Lt r) + )\nvn 1 (Ant, Apr)| rdrdt = o,
+t

Now consider the mapping H x L? — R defined by

1 .
(fo, f1) = /O /€+t @1(t,7’)f(t,r)rdrdt

—

where f(t,r) is the solution to the linear wave equation

1 1
ftt‘frr—_fr“‘_Qf:O
r r

(5.5.87)

with initial data (fp, f1). This is a continuous linear functional on H x L2. Now, by (5.5.39)

we have

(vﬁ’L()\l s )\nan()\}l-)> —~0in HxL? as n— oo

Hence, for all € > 0 we have

lim / / Yt r) )\nan()\},Lt, Aryrdrdt =0
g

n—oo

Combining the above line with (5.5.87) we conclude that for all € > 0 we have

1 proo 2
/ / )gbl(t,r)) rdrdt =0
0 Je+t

Letting € tend to 0 we obtain

// tr rdrdtzO
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Therefore pl(t,r) = 0if r > ¢ and ¢ € [0,1]. Let Q denote the region in [0, 1] x R? exterior

to the light cone
Q={(t,z) € [0,1] x R*| |z| > 1}

If we let UL(t, ) = ('(t,),w) denote the full equivariant wave map (here z = (r,w) in
polar coordinates on R2) then we have (t,z2) € Q = Ul(t,2) = U&(:)s) Hence U&(:)s) is a
finite energy equivariant harmonic map on R —{0}. By Sacks-Uhlenbeck [65] we can extend
U& to a smooth equivariant harmonic map from R? — S2. But since ¢! € Hy, U& must be
identically equal to 0, since 0 is the unique harmonic map in the topological class Hy. But
this contradicts the fact that we assumed ¢! # 0.

To complete the proof of Proposition 5.5.7 we note that we have now concluded that
all the profiles in the decomposition (5.5.69) must be identically zero. Hence, we have

vE(r) = bno(r), f‘y’ffb 7 = by 1, and g% = 0, and we can rewrite (5.5.73) as follows:
bu(t,) = by, 1,(t,7) + On(t,7) (5.5.88)

Finally, (5.5.31) and (5.5.32) are satisfied because of (5.5.40) and (5.5.74). O
We can now prove Proposition 5.5.6.

Proof of Proposition 5.5.6. Assume that Proposition 5.5.6 fails. Then up to extracting a

subsequence, we can find oy > 0 so that
1bn,0ll 5 = do (5.5.89)

for every n. With this assumption we seek a contradiction. We begin by rescaling. Set

An
1_7—”'
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Since Ay, = o(1 — 7,) we have p, — 0 as n — co. Now define the rescaled wave maps

gn(t,r) = U(m + (1 — m)t, (1 — m)7)

hn(t,r) == p(th + (1 — m)t, (1 — 7)7).

Then G, (t) € Hi is a wave map defined on the interval [—22—, 1), and hin(t) € Ho is global

1-—m

in time and scatters to 0. We then have
a(typ + (L = 1)t, (1 = m)1) = gn(t,r) — hn(t,r).

Similarly, define

and the corresponding rescaled wave map evolutions

En(t,r) =bn((1 = m)t, (1 — m)7)

Orbn(t, 1) = (1 — )b (1 — m)t, (1 — )7).

Observe that we have the decomposition

9(0,7) = By (0,7) + © (?) () (5.5.90)
gn(0,7) = Tn (0,7) + by 1 (). (5.5.91)
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Note that by (5.5.12) we have l;np =7 —Q(-/pn) on [1,00) and hence

16,00l r(r>1) = 0 (5.5.92)

as n — o0.

Now, observe that the regularity properties of ¢(t) imply that

lim sp [ (Ol 11 L2(r<p/ (1 7)) = O (55.93)

Hence, for fixed large K, (to be chosen precisely later), we can find rg > 0 so that

je %)

Fin (0 <2 5.5.94
Sup [ an >HHxL2(r§(1—3_T0n—)) S K ( )

where d is as in (5.5.89). Now, recall that a;, — oo has been fixed. Using Lemma 5.5.5 we
can choose vy, — oo with

Tn K ap

such that
gn(077nﬂn) — T as Nn— o0
Now define ¢, — 0 by

|gn (0, yppn) — 7| =: 0 — 0
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Finally we choose (3, — 0o so that

B < min{y/Fm, 6 /%, V)

n(0, Bppin/2) = as n — oo (5.5.95)

We make the following claims:

(1) As n — oo we have
|Gn (—=Bntin/2) — (Q(-/pn), 0)||H><L2(7°§5nun) — 0 (5.5.96)

(77) For each n, on the interval r € [B),up, 00) we have

(-2 ) = o) = (-2 ) 4 (<) o)

+§n (—571;”,7“) ’

||9n||L§°(H><L2) —0

We first prove (5.5.96). Note that by Proposition 5.5.4 we have

s 1
10000, ) i x £2(r<appin) < 7 = 0- (5.5.98)

Using (5.5.93) together with ap\, < 1— 7, — 0 as well as (5.5.98) and the decomposition

(5.5.90) we can then deduce that

S 2
152(0) = (QC/1n): )l i1 2 ) < = — O
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Unscale the above by setting g (¢,7) = gn(unt, unr) and observe that,

10 0),240(0)) ~ (@), 0l 25 < = = 0.

Now using Corollary 5.2.6 and the finite speed of propagation we claim that we have

||(§n(_ﬁn/2)a atf]n(‘ﬁn/%) - (Q(), O)||H><L2(r§ﬂn) = On(l)- (5-5-99)

To see this, we need to show that Corollary 5.2.6 applies. Indeed define

4

m it r>2y,

Gno(r) =7+ %&?’%)(r —29p) i oy <r <2y,

gn(0,r) if 7 <~y

\

A Kign(0,7) i <
gn,l(r) =
0 if r>v,

Then, by construction we have §n € H1, and since

19n = (7, O 1 22 <r<2) < O

we then can conclude that

lin = (@ 0)llzrz2 < 19m = (@O a1 275y + i = (T Ol 2203, <r<200)
+ (7, 0) = (@ 0l g« L2(r,)

1
s0(5+5n+%§1)

Now, given our choice of gy, (5.5.99) follows from Corollary 5.2.6 and the finite speed of
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propagation. Rescaling (5.5.99) we have

||(gn(_5n,un/2)> atgn(_ﬁn,un/m) - (Q(/,Un)> 0)||H><L2(r§[3nun) — 0.

This proves (5.5.96). Also note that by monotonicity of the energy on interior cones and the
comparability of the energy and the H x L? in H for small energies, we see that (5.5.98)

implies that

BBt /2), Db~ Brtin/ D) 205,y — 0 (5.5.100)
Next we prove (5.5.97). First we define
W_gn(ov,unﬂn/2)

%Mnﬁn

gn(O,’/‘) if r> ﬁn,un/2

T — roif < Bpun/2

gn,O(T) =

gn,l (T) = gn(ov T)

Then, let x € C°°([0,00)) be defined so that x(r) = 1 on the interval [2,00) and suppy C
[1,00). Define

Gn(r) = x(4r/Bnpn) (Gn(r) — (7,0))

Zn(r) = X(47’/ﬁn/in)gn(r)

and observe that we have the following decomposition

-

Gn(r) = hu(0,7) + by (r) + on(1).
where the 0y, (1) is in the sense of H x L2 — here we also have used that BnAn — 0 together
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with (5.5.93). Moreover, the right-hand side above, without the o, (1) term, is a profile de-
composition in the sense of Corollary 5.2.15 because of Proposition 5.5.7 and Lemma 5.2.20.
We can then consider the nonlinear profiles. Note that by construction we have En € Ho
and as usual, we can use (5.5.95) to show that £(g,) < C < 2£(Q) for large n. The corre-
sponding wave map evolution gn (t) € Hg is thus global in time and scatters as t — 00 by
Theorem 5.1.1. We also need to check that £ (gn) < O < 28(Q). Note that by construction

and the definition of by, we have

- - 00 T2 2 )
5@mggwm+o< —é—ﬂyﬁum@wm%ﬁL_ijJ
0 5n7()lun r

+/5nﬂn sin2(X(47“/ﬁnun)bn,0((1 —)r))
Brtin /2 "

o ﬁn)\n b2 T
gg(bn)+0</ Mdr>
Ban/2 T

—

dr

where the last line follows from Proposition 5.5.4 and the definition of by, o, since 8, < ap,.
Arguing as in the proof of (5.5.83), we can use Proposition 5.5.7, Proposition 5.2.17 and

Lemma 5.2.18 to obtain the following nonlinear profile decomposition

Gn(t,7) = hp(t,r) + bu(t,r) + O (L, 7)

HenHLfo(HxL?) —0

Finally observe that by construction and the finite speed of propagation we have

—
v —

gn(t,r) = gn(t,r) —m

b (t,7) = bp(t,r)

306



t N
hn(0) + b (0);
t=20 k ,11 1 T
Bn no o~ 7 3571 n
T'“ = p T:“ Qp lin
\\\\Bnﬂn////
Bnin N
t=- ¢
2
Q-/n) o (—Znfn) 4§, (—Bgim

Figure 5.2: A schematic depiction of the evolution of the decomposition (5.5.90) from time
t=0uptot= —B"—QM". At time t = —ﬁ"% the decomposition (5.5.101) holds.

forall t € [—7,/(1 —m,),1) and r € [Bpun/2 + ||, 00). Therefore, in particular we have

gn(_ﬁnﬂn/Qa 7") - (71', 0) = En(_ﬁnﬂn/z T) + gn(_ﬁn,un/z T) + gn(ﬁn/in/z T)

for all r € [Bypn, 00) which proves (5.5.97).
We can combine (5.5.96), (5.5.97), (5.5.100), and (5.5.93) together with the monotonicity

of the energy on interior cones to obtain the decomposition

Gn(=Brbin/2,7) = (Q(r/n), 0) + hp(—Bnpin/2,7) (5.5.101)
+ b= Bt /2,7) + On (1)

16l g7 2 — 0 (5.5.102)

Now define
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Figure 5.3: A schematic depiction of the evolution of the decomposition (5.5.101) up to time
sp. On the interval [|sy|, +00), the decomposition (5.5.103) holds.

The next step is to prove the following decomposition at time s;,:

-

G(sn,7) — (7,0) = hp(sn, ) + bp(sn,7) + Culr)  Vr € [|sn], 00) (5.5.103)

Gl rxcp2 = 0 (5.5.104)

We proceed as in the proof of (5.5.97). By (5.5.96) we can argue as in the proof of

Lemma 5.5.5 and find p, — oo with p, < ), so that

gn(=Bntin/2, puin) = T as n — 00 (5.5.105)

Define

_’I’L_TL’I’L271’L’I’L :
) B o — T=gn( Bpn/;m/ Pnfin) . i r < pntin
fn,O(T)_

gn(_ﬁnﬂn/zr) if r > Pnlin

fn,l(r) = gn(—Pnin/2,7)
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Let x € C° be as above and set

—

Fa(r) == X(2r/ papn) (f(r) = (7,0))

;
b () = X(2r ) putin) b (— Bugin/2.7)

Observe that we have the following decomposition:
Fn(r) = hn(=Bupin/2,7) + bu(r) + on(1).

where the o,(1) above is in the sense of H x L?. Moreover, the right-hand side above,
without the oy, (1) term, is a profile decomposition in the sense of Corollary 5.2.15 because
of Proposition 5.5.7 and Lemma 5.2.20. We can then consider the nonlinear profiles. Note
that by construction we have ﬁl € Ho and, as usual, we can use (5.5.105) to show that
E(fn) < C < 28(Q) for large n. The corresponding wave map evolution fp,(¢) € H is thus
global in time and scatters as t — 0o by Theorem 5.1.1.

As in the proof of (5.5.97) it is also easy to show that S(gn) < C < 28(Q) where here
we use (5.5.100) instead of Proposition 5.5.4.

Arguing as in the proof of (5.5.83) we can use Proposition 5.2.17 and Lemma 5.2.18 to

obtain the following nonlinear profile decomposition

—
— =

Falt, ) = Fon(=Bupin/2 + £,7) + bn(t,7) + o, )

ICnll oo (1 £2) = O

In particular, for
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we have

By the finite speed of propagation we have that

—

fn(Vm T) =

l

n(sm 7’)

I @

—
~

bn(l/na T) = Bn(sna T)

as long as r > ppun + |vn|. Using the fact that p, < B, we have that |sp| > pppn + |vn

and hence,

— —

gn(sn, ) — (m,0) = an(sn,r) +bn(sn, ) + Cu(vn, ) Yr € lsp|,00).

Setting C, = Cn(vn) we obtain (5.5.103) and (5.5.104). Now, combine (5.5.104), (5.5.94),

and the monotonicity of the energy on light cones for the evolution of i_in, we obtain:

o 7 Cg
|Gn(sn) — (m,0) — bn(s”)’|H><L2(|sn|§r§2|sn|) < e (5.5.106)

for n large enough. By Corollary 5.5.8 and (5.5.89), there exists 5y > 0 so that for all ¢ € R

we have

B () 5 221y = Bodo

By (5.5.92) and the monotonicity of the energy on cones we have

100 (Dl ¢ 225 41) = 0
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as n — 0o. Therefore we have

- ﬁ()é()
16O E s £2(1t < r<1412]) = 9

for n large enough and for all t € R. Hence setting ¢t = s,, we see that the above and (5.5.106)

imply in particular that

. Bodo
1Gn(sn) — (W’O>’|H><L2(|Sn|§r§1+|sn|) > e >0

for n, K large enough. Un-scaling this we obtain

7 Bodo
[3(70 — 10) — (T, 0)||H><L2(T0§T§To+(1—m)) > 4 0.

However this contradicts the fact the (¢,r) cannot concentrate any energy at the point
(1 —rg,7m9) € [0,1) x [0,00) with 79 > 0. This concludes the proof of Proposition 5.5.1. [
We can now finish the proof of Theorem 5.1.3.

Proof of Theorem 5.1.3. Let @(t) be defined as in (5.5.11). Recall that by Lemma 5.5.3 we

have

-

lim £(@(t)) = E(&) — E(F) (5.5.107)

t—1

Over the course of the proof of Proposition 5.5.1 we have found a sequence of times 7, — 1

so that

E(a(mn)) = €(Q)

-,

as n — 00. Since £(¢) = £(Q) + n this implies that £(F) = n since the right hand side of
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(5.5.107) is independent of ¢. This then implies that

lim £(a(t)) = £(Q)

t—1

We now use the variational characterization of @ to show that in fact ||a(t)| ;2 = 0ast — 1.

To see this observe that since a(t) € H1 we can deduce by (5.2.18) that

£(Q) « E(a(t), a(t)) > /OOO a2(t,7) rdr + E(Q)

Next observe that the decomposition in Lemma 5.2.5 provides us with a function A : (0, 00) —

(0,00) such that
la(t, ) = Q(/AW)a < 6(E(a(t),0) - £(Q)) — 0
This also implies that
E(a(t) — (Q(-/A(1),0)) = 0 (5.5.108)

as t — 1. Since t — a(t) is continuous in H for ¢t € [0,1) it follows from Lemma 5.2.5 that

A(t) is continuous on [0, 1). Therefore we have established that
O(t) — @) — (Q(-/A(t)),0) =0 in HxL?> as t—1

It remains to show that \(¢) = o(1—t). This follows immediately from the support properties
of V¢ ra and from (5.5.108). To see this observe that a(t,r) — Q(r/A(t)) = 7 — Q(r/A(t)) on
[1 —t,00). Thus,

!

120 (Q) = &%y (m — Q(/A(1))) < &(

A()

() = (Q(-/A1)),0)) = 0.

312



But this then implies that % — o0 as t — 1. This completes the proof. O

5.6 Appendix: Higher Equivariance classes and more general

targets

5.6.1 1-equivariant wave maps to more general targets

Theorem 5.1.1, Theorem 5.1.2, and Theorem 5.1.3 can be extended to a larger class of
equations, namely equivariant wave maps to general, rotationally symmetric compact targets.
To be specific, each of these theorems holds in the case that the target manifold M is a
surface of revolution with the metric given in polar coordinates, (p,w) € [0,00) x S L by
ds® = dp® + g*(p)dw? where g : R — R is a smooth, odd, function with ¢(0) = 0, ¢’(0) = 1.
In addition, in order to ensure the existence of stationary solutions to the corresponding
equivariant wave map equation we need to require that there exists C' > 0 such such that
g(C) = 0 and we let C* be minimal with this property. We also assume that ¢'(C*) = —1
and that ¢ is periodic with period 2C*. In this case, the nonlinear wave equation of interest

is given by

Ytt — Yrr — lwr + f(;b) =0 (5.6.1)
r r
(¥, ) [t=0 = (Y0,%1)

where f(¢) = g(¥)g'(1)). The conserved energy for this problem is given by

00 2
E(J(t)) = /0 (%2 +¢3 + gr(;D)) r dr = const.

To see how this extension works, we note that the small data well-posedness theory for
(5.6.1) is given in [17, Theorem 2]. One then needs replacements for the estimates involving

the sin function in the proof of the orthogonality of the nonlinear energy, the proof of the
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nonlinear perturbation theory, and later in estimates involving the energy of @(t), namely
(5.2.48), (5.2.53), and (5.5.15). But, the same type of estimates for g are easily established
using the assumptions we have made on ¢ and its derivatives and simple calculus.

For more details regarding more general metrics we refer the reader to [17]. Note that

since we do not rely on [17, Lemma 7] we are able to eliminate their condition [17, (A3)].

5.0.2 Higher equivariance classes and the 4d-equivariant Yang-Mills system

We can also consider higher equivariance classes, ¢ > 1. Restricting our attention again to

the case g(p) = sin(p), the Cauchy problem for ¢ equivariant wave maps reduces to

98in(2¢))

oz =0 (5.6.2)

1
wtt _@brr - ;@Dr +/

(¥, ¥e)lt=0 = (¢0,%1)

For /-equivariant wave maps of topological degree zero we can, as in the 1-equivariant case,

1

consider the reduction ¢ =: r*u and we obtain the following Cauchy problem for w:

20 +1
Ut — Upp — %ur = u1+2/€Z(r£u) (5.6.3)
with
(2 sin(2p) — 2p

a bounded function. In [17, Theorem 2| a suitable local well-posedness/small data theory for
such a nonlinearity is addressed when ¢ = 2 and thus Theorem 5.1.1 follows from the same
arguments in this chapter. For ¢ > 2, one would need to develop a suitable well-posedness
theory for (5.6.3). This presents some difficulties due the fractional power, 1+ 2/¢, in the

nonlinearity.
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One can also consider the 4d equivariant Yang-Mills system:

Faﬁ = 0aAB - aﬁAa + [Aa, AB]

aBFaB—G—[AB,Faﬁ]:O, a,f=0,...,3

for the connection form Ay and the curvature F, 3. After, making the equivariant ansatz:

1—(t,r)

Ad = (F60! — Fha')——3

one obtains the following equation for ¢:

o2
@btt_wrr_lwr_wzo
T T

which can be written in the form

Uit — Yrr — %¢r + 62% =0 (5.6.4)

(¥, ¥t)|t=0 = (o, 1)

for f(p) = g(p)g'(p) and g(p) = 1/2(1 — p?) and ¢ = 2. This equation is of the same form
as (5.6.2) with ¢ = 2 and a more general metric g. The local well-posedness/small data
scattering theory for (5.6.4) is addressed in [17, Theorem 2]. The proof and conclusions of
Theorem 1.1 thus hold for solutions of this equation with suitable modifications as in the
case of l-equivariant wave maps to more general targets addressed above.

As we mentioned in the introduction, modulo a suitable local well-posedness/small data
theory, one should be able to apply our methods to prove the analog of Theorem 5.1.3 for the
odd higher equivariance classes, £ = 3,5,7,...,. The reason is that if £ is odd, the linearized

version of equation (5.6.2) is a 2¢ + 2 dimensional free radial wave equation with 2¢+2 =0

315



mod 4 for ¢ odd, and in these dimensions Proposition 5.2.2 holds, see [18, Corollary 5].
However, as demonstrated in [18], Proposition 5.2.2 failsfor ¢ = 2,4,6, . .., since 2(+2 = 2
mod 4 for ¢ even. Therefore it is impossible to prove Corollary 5.5.8 in these cases and our
contradiction argument for the compactness of the error term by, does not go through. So
our method is not suited to prove the complete conclusions of Theorem 5.1.3 for either the
even equivariance classes or the 4d Yang-Mills system, which corresponds roughly to the case
¢ = 2. However, the rest of the argument preceding the proof of Proposition 5.5.1 should
go through and in particular one should be able to deduce Proposition 5.5.7. This would
allow one to conclude that the error terms by, contain no profiles and converge to zero in a
Strichartz norm adapted to the nonlinearity in (5.6.2). This is a slightly weaker result than

showing that the by’s vanish in the energy space, but on its own, it is already quite strong.
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CHAPTER 6
CLASSIFICATION OF 2D EQUIVARIANT WAVE MAPS TO
POSITIVELY CURVED TARGETS: PART 11

6.1 Introduction

We continue our study of the equivariant wave maps problem from 1 + 2 dimensional
Minkowski space to 2-dimensional surfaces of revolution.

Recall that in spherical coordinates,

(1, w) > (sin ) cosw, sin ¢ sin w, cos 1),

on S?, the metric, g, is given by the matrix g = diag(1,sin?(¢)). In the case of 1-equivariant

wave maps, we require our wave map, U, to have the form

Ult,r,w) = (¢(t,r),w) — (siny(t, r) cosw, siny(t,r)sinw, cos(t,r)),

where (r,w) are polar coordinates on R2. In this case, the Cauchy problem reduces to

sin(2¢)

272

(¥, ) t=0 = (o, Y1)

Uit — Ypr — %wr + =0 (6.1.1)

Wave maps exhibit a conserved energy, which in this equivariant setting is given by

00 in2
EWU,U)(t) = EW,Yy)(t) = /O <¢§ + 2/)3 42 Tzw)) rdr = const.,
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and they are invariant under the scaling

—

¢(t> T) = (¢(ta T)a ¢t(t> T)) = (¢(At> )\’l“), )‘@Dt()‘t)‘r))

The conserved energy is also invariant under this scaling which means that the Cauchy
problem under consideration is energy critical.

We refer the reader to the previous chapter for a more detailed introduction and history
of the equivariant wave maps problem.

As in Chapter 5, we note that any wave map J(t,r) with finite energy and continuous
dependence on t € [ satisfies 1(t,0) = mm and ¥(t,00) = nw for all ¢ € I for fixed integers

m,n. This determines a disjoint set of energy classes

Himon = {(%0, Y1) [E(W, 1) < oo and  9y(0) = mm, p(00) = nr}. (6.1.2)

We will mainly consider the spaces H, and we denote these by Hy := Hg . In this case
we refer to n as the degree of the map. We also define H = |J,,c7 Hn to be the full energy
space.

In our analysis, an important role is played by the unique (up to scaling) non-trivial
harmonic map, Q(r) = 2arctan(r), given by stereographic projection. We note that @

solves

sin(2Q))

—z (6.1.3)

1
Qrr + ;Qr =

Observe in addition that (@Q,0) € H; and in fact (@),0) has minimal energy in H; with
E(Q) := £(Q,0) = 4. Note the slight abuse of notation above in that we will denote the
energy of the element (Q,0) € H; by £(Q) rather than £(Q,0).

—

Recall that in Chapter 5 we showed that for any data ¢(0) in the zero topological class,
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—,

Ho, with energy £(1) < 2E(Q) there is a corresponding unique global wave map evolution
J(t, r) that scatters to zero in the sense that the energy of J(t) on any arbitrary, but fixed
compact region vanishes as t — oo, see Theorem 5.1.1. An equivalent way to view this

scattering property is that there exists a decomposition
O(t) = Gr(t) +oy(l) as t— oo (6.1.4)

where @1 (t) € Hg solves the linearized version of (6.1.1):

1 1
Pt —rr = —pr + 59 =0 (6.1.5)

This result was proved via the concentration-compactness/rigidity method which was devel-
oped by the Kenig and Merle in [36] and [37], and it provides a complete classification of all
solutions in H with energy below 2€(@Q), namely, they all exist globally and scatter to zero.
We note that this theorem is also a consequence of the work by Sterbenz and Tataru in [75]
if one considers their results in the equivariant setting.

In the previous chapter we also study degree one wave maps, J(t) € Hq, with energy
E) = £(Q) + 1 < 3£(Q) that blow up in finite time. Because we are working in the
equivariant, energy critical setting, blow-up can only occur at the origin in R? and in an

energy concentration scenario. We show that if blow-up does occur, say at t = 1, then there

exists a scaling parameter A(t) = o(1 — t), a degree zero map ¢ € H(y and a decomposition

O(t,r) = )+ (Q (r/A(1)),0) + oy(1) as t— 1. (6.1.6)

Here we complete our study of degree one solutions to (6.1.1), i.e., solutions that lie in
Hy, with energy below 3£(Q), by providing a classification of such solutions with this energy

constraint. Since the degree of the map is preserved for all time, scattering to zero is not
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possible for a degree one solution. However, we show that a decomposition of the form (6.1.6)

holds in the global case. In particular we establish the following theorem:

Theorem 6.1.1 (Classification of solutions in # with energies below 3£(Q)). Let ¢(0) € H;

and denote by J(t) € Hq the corresponding wave map evolution. Suppose that J satisfies

-,

E(W) = E(Q) +n < 3E(Q).

Then, one of the following two scenarios occurs:

(1) Finite time blow-up: The solution J(t) blows up in finite time, say at t = 1, and
there exists a continuous function, X : [0,1) — (0,00) with A(t) = o(1 —t), a map

-

G = (¢o,p1) € Ho with E(F) =n, and a decomposition

V(1) = G+ (Q /A1), 0) + &) (6.1.7)

such that €(t) € Hg and €(t) — 0 in Hg ast — 1.

(2) Global Solution: The solution @E(t) € Hq exists globally in time and there exists
a continuous function, X : [0,00) — (0,00) with \(t) = o(t) as t — oo, a solution

Br(t) € Hy to the linear wave equation (6.1.5), and a decomposition

U(t) = GL(t) + (Q (/A1) 0) + &(t) (6.1.8)

such that €(t) € Ho and €(t) — 0 in Hy as t — oo.

Remark 21. One should note that the requirement A(¢) = o(t) as ¢ — oo in part (2) above
leaves open many possibilities for the asymptotic behavior of global degree one solutions to
(6.1.1) with energy below 3£(Q). If A(t) — A9 € (0,00) then our theorem says that the

solution () asymptotically decouples into a soliton, @ Ao+ Plus a purely dispersive term,
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and one can call this scattering to Qy,. If A(t) — 0 as ¢ — oo then this means that the
solution is concentrating £(Q) worth of energy at the origin as ¢t — oo and we refer to this
phenomenon as infinite time blow-up. Finally, if A(f) — oo as t — oo then the solution can
be thought of as concentrating £(Q)) worth of energy at spacial infinity as ¢ — oo and we
call this infinite time flattening.

We also would like to highlight the fact that global solutions of the type mentioned
above, i.e., infinite time blow-up and flattening, have been constructed in the case of the
3d semi-linear focusing energy critical wave equation by Donninger and Krieger in [19]. No
constructions of this type are known at this point for the energy critical wave maps studied
here. In addition, a classification of all the possible dynamics for maps in H; at energy levels

> 3£(Q) remains open.

Remark 22. We emphasize that Chapter 5 goes hand-in-hand with this chapter. In fact, part
(1) of Theorem 6.1.1 was established in Chapter 5. Therefore, in order to complete the proof
of Theorem 6.1.1 we need to prove only part (2) and the rest of this chapter will be devoted
to that goal. The broad outline of the proof of Theorem 6.1.1 (2) is similar in nature to the
proof of part (1). With this is mind we will often refer the reader to the previous chapter

where the details are nearly identical instead of repeating the same arguments here.

Remark 23. We remark that Theorem 6.1.1 is reminiscent of the recent works of Duyckaerts,
Kenig, and Merle in [22, 21, 24, 23] for the energy critical semi-linear focusing wave equation
in 3 spacial dimensions and again we refer the reader to the previous chapter for a more

detailed description of the similarities and differences between these papers and this work.

Remark 24. Finally, we would like to note that the same observations in appendix of the
previous chapter regarding l-equivariant wave maps to more general targets, higher equiv-
ariance classes and the 4d equivariant Yang-Mills system hold in the context of the global

statement in Theorem 6.1.1.
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6.2 Preliminaries

For the reader’s convenience, we recall a few facts and notations from [15] and the previous
chapter that are used frequently in what follows. We define the 1-equivariant energy space
to be

H={UcH x L’ (R%:S*)|Uop=pol, Ype SO@2)}.

H is endowed with the norm

= [ (ot + [9Ul . 6.2.1)

As noted in the introduction, by our equivariance condition we can write U(t,r,w) =

(¢(t,r),w) and the energy of a wave map becomes

00 in2
EWU,U)(t) = E(W,dy)(t) = /0 (w,? + 2 + %) rdr = const. (6.2.2)

We also define the localized energy as follows: Let 71,79 € [0,00). Then

T2

ey = [ (s 02+ ) rar

1

Following Shatah and Struwe, [68], we set
/(Z) .
G(y) ::/O |sin p| dp. (6.2.3)
Observe that for any (¢,0) € H and for any 1,72 € [0, 00) we have

(o)
IG(ra)) — ()] = i /w bl dp (6.2.4)

1

/ ? lsin((r))] () dr

1
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We also recall from Chapter 5 the definition of the space H x LZ.
2 2 > Yo
0,00 ge = [ 07+ @07 +23 ) rav (6.2.5

We note that for degree zero maps (¢, 1) € Hg the energy is comparable to the H X L?
norm provided the L° norm of 7 is uniformly bounded below 7. This equivalence of norms
is detailed in Lemma 5.2.1, see also [17, Lemma 2|. The space H X L? is not defined for maps
(10,11) € H1, but one can instead consider the H x L? norm of (19 — Q),0) for A € (0, o),

and Qy(r) = Q(r/)). In fact, for maps 1 € Hp such that £(¢)) — £(Q) is small, one can

choose \ > 0 so that

-

(o — Q. )3, 12 = EW) — £(Q).

This amounts to the coercivity of the energy near () up to the scaling symmetry. For more

details we refer the reader to [14, Proposition 4.3|, Lemma 5.2.5, and [3].

6.2.1 Properties of global wave maps

We will need a few facts about global solutions to (6.1.1). The results in this section consti-
tute slight refinements and a few consequences of the work of Shatah and Tahvildar-Zadeh in
[71, Section 3.1] on global equivariant wave maps and originate in the work of Christodoulou

and Tahvildar-Zadeh on spherically symmetric wave maps, see [12].

Proposition 6.2.1. Let ¢(t) € H be a global wave map. Let 0 < X\ < 1. Then we have

limsup £ A(W(E) =0 as A — o (6.2.6)

t—00
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In fact, we have
ECAWR) =0 as t, A= oo for A<(1-Mt (6.2.7)

We note that Proposition 6.2.1 is a refinement of [71, (3.4)], see also [12, Corollary 1]
where the case of spherically symmetric wave maps is considered. To prove this result, we

follow [12], [71], and [68] and introduce the following quantities:

e(t,r) == @Dg(t, r)+ wf(t, r)+ M

m(t,r) = 2 (t, r)er(t, 7).
Observe that with this notation the energy identity becomes:
Dpe(t, ) = %ar (rm(t, 1), (6.2.8)
which we can conveniently rewrite as
O(re(t,r)) — Op(rm(t,r)) = 0. (6.2.9)
Using the notation in [12], we set

a2(t,r) ==r(e(t,r) + m(t,r))

B(t,r) = r(et,r) — m(t,r))
and we define null coordinates

u=t—r, v=t+r.
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Next, for 0 < X < 1 set

0

E\(u) = ﬁﬂ o (u,v) dv (6.2.10)
T U
T w

o P 3

F(ug,uy) == Ulggo y (u,v) du. (6.2.11)

Also, let %”3[ denote the interior of the forward (resp. backward) light-cone with vertex at
(t,r) = (p,0) for p > 0 in (¢, 7) coordinates.

As in [71, Section 3.1}, one can show that the integral in (6.2.10) and the limit in (6.2.11)
exist for a wave map of finite energy, see also [12, Section 2| for the details of the argument

for the spherically symmetric case.

By integrating the energy identity (6.2.9) over the region (%&S\%&E) N €py> Where 0 <
ug < up < vg, we obtain the identity
uy vo vo
/ B2 (u,v) du = / o (ug, v) dv — / a?(ug,v) dv.
uQ uQ u1
Letting vg — oo we see that
0 < F(ug,u1) = &o(ug) — &plur), (6.2.12)

which shows that & is decreasing. Next, note that

F(u,ug) = F (u,u1) + F(ur,u2) > F(u,uq)

for ug > wuy, and thus % (u, uq) is increasing in uy. % (u,uq) is also bounded above by & (u)

SO

F(u) := u1h_r>noo F(u,uy)
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exists and, as in [71], [12], we have
F(u) —0 as u— oo. (6.2.13)
Finally note that the argument in [12, Lemma 1] shows that for all 0 < A < 1 we have
E\(u) -0 as u— oo, (6.2.14)

which is stated in [71, (3.3)]. To deduce (6.2.14), follow the exact argument in [12, proof of
Lemma 1] using the relevant multiplier inequalities for equivariant wave maps established in

[68, proof of Lemma 8.2] in place of [12, equation (6)]. We can now prove Proposition 6.2.1.

Proof of Proposition 6.2.1. Fix A € (0,1) and § > 0. Find Ay and Ty large enough so that
0<F(A)<§ 0<E(1=Nt) <0
for all A > Ay and t > T. In (u,v)—coordinates consider the points

X1 =((1=NMt,(1+Nt), Xo=(A2t—A)

X3 =(A4,0), X4=((1-Nt,0)

where 0 is very large. Integrating the energy identity (6.2.9) over the region 2 bounded by

the line segments X X9, XoX3, X3X, X4X| we obtain,

1=\t v
Y BQ(U,@) dU—I-/ a2((1 — AM)t,v) dv.

(1+\)t

v

A1) = - /

2t—A

o?(A,v) dv + /

A

Letting © — oo above and recalling that % (u, u1) is increasing in u; we have
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1
r

above.
ECAW) < E((L— Nt + F (A, (1 - M)
< &E((1=Nt) +.Z(A).

The proposition now follows from (6.2.14) and (6.2.13).

We will also need the following corollaries of Proposition 6.2.1:

Corollary 6.2.2. Let @E(t) € H be a global wave map. Then
T rt—A

/ / ?ﬂ?(t,r)rdrdtﬁo as A — oo
A JO

li !
imsup —
T—o0 T

Proof. We will use the following virial identity for solutions to (6.1.1):

Oy(r*m) — Op(r*vf + r*y2 — sin® ¥) + 2r = 0
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Now, fix § > 0 so that § < 1/3 and find Ag, Ty so that for all A > Ay and t > Ty we have
& AWit) < 6.
Then,

ot
/ e(t,r)r? dr < E(Y(t))ot
0
and as long as we ensure that A < 1/3t, we obtain

2t /3
/ e(t,r)r? dr < 6t.
ot

This implies that
2t/3 2t/3
/ e(t,r)r?dr < C8t, and / e(t,r) 3 dr < Ct2.
0 0

Let x : R — [0, 1] be a smooth cut-off function such that x(x) =1 for |z| < 1/3, x(z) =0
for |x| > 2/3 and \/(z) < 0. Then, using the virial identity (6.2.16) we have
d 0.9}

G L e a = [ atmt - [T ot e

= [ o2t + o) = st/
i /OO V2(t,1)x(r/#) 1 dr + O(5)
0

1
=z,

-2 /OO Y2t ) x(r/t) rdr 4+ O(0)
0

T 0262 + 02) — sin2 () (r/t) rdr

=2 /OO V2, r)x(r/t) rdr 4+ O(6).
0
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Integrating in ¢ between 0 and 7' yields

T roo
/ / W2t )X (r/t)rdrdt < C6T
0 JO
with an absolute constant C' > 0. By the definition of x(z) this implies
t/3
/ Y2(t,r)rdrdt < CST.
0 JO

Next, note that we have

/ / wt (t, ) rdrdt</ dt—l—/ / e(t,r)rdrdt
To

—,

< (To = A)E(W) + (T = Tp)o.
Therefore,

1 T rt—A TO .,
—/ / Yt ) rdrdt < C6 4+ —E(1)
T Ja Jo T

Hence,

T rt—A
lim sup % / / Y2t r)rdrdt < C§
A JO

T—o00

for all A > Ay, which proves (6.2.15).

Corollary 6.2.3. Let J(t) € H be a smooth global wave map. Recall that J(t) € H implies

that there exists k € Z such that for all t we have ¥(t,00) = kmw. Then for any A > 0 we

have

||¢( ) (t OO)HLOO T>)\t) —0 as t— oo.

329



Before proving Corollary 6.2.3, we can combine Proposition 6.2.1 and Corollary 6.2.3 to

immediately deduce the following result.

Corollary 6.2.4. Let J(t) € H be a global wave map. Let 0 < X\ < 1. Then we have

lim sup ||¢(t) — (¥(t, 00), O)H.%JXL?()\tgrgt—A) —0 as A— oo (6.2.18)

t—0o0

Proof. Say (t) € Hj.. Observe that Corollary 6.2.3 shows that for ¢ large enough we have,
say,

™
_ <

for all t >ty and » > At. This in turn implies that for ¢ > t3 we can find a C' > 0 such that
[(t,r) — kr|? < Csin®((t,r)) Vi >tg, r > .

Now (6.2.18) follows directly from (6.2.6). O
The first step in the proof of Corollary 6.2.3 is the following lemma:

Lemma 6.2.5. Let J(t) € H be a smooth global wave map. Let R > 0 and suppose that the
initial data @E(O) = (Yo, 11) € Hq satisfies supp(0y1g),supp(1) C B(0, R). Then for any

t >0 and for any A <t we have

9(6) = (8, 00) | pra—a) < VEWN 22 (6.219)

Proof. By the finite speed of propagation we note that for each ¢t > 0 we have supp(¢,(t)) C
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B(0, R +t). Hence, for all £ > 0 we have

(o]
it~ v(t.oo) < [ fun(e. )]
' 1 1
R+t 2 R+t 1 2
< </ W2t dr') (/ - dr')
r r r
< Ve o ().
Next observe that if »r > ¢t — A then

log (—t+R) < log (1+7A+R) < log <1+7?+§) < ?ij)
r r — —

This proves (6.2.19). O

Proof of Corollary 6.2.3. Say ¥(t) € H},, that is ¥ (¢, 00) = km for all ¢t. First observe that

by an approximation argument, it suffices to consider wave maps J (t) € H;, with initial data

G(0) = (¢, ¢1) € Hy, with
supp(9rp), supp (1) C B(0, R)

for R > 0 arbitrary, but fixed. Now, let t,, — oo be any sequence and set

Then, for each r > At,, we have

[W(tn,r) = k| < [[Y(tn) — k7l Loty <r<tn—an) + 10(E0) = kTl oo (>, —a,,)-
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By Lemma 6.2.5 we know that

[9(tn) = k7l poo(r>t,—4,) < VEW)
Hence it suffices to show that
[¥(tn) = k7l Loy <r<tn—a,) — 0 as n— oo,
To see this, first observe that (6.2.20) implies that
U(tn, tn — Ap) — kr
as n — 00. Therefore it is enough to show that

||7/)(tn) - ’l/)(tTh tn - An)HLOO(/\tnS"’Stn—An) — 0 as n — OoQ.

—0 as n— .

(6.2.20)

(6.2.21)

With G defined as in (6.2.3) we can combine (6.2.4) and Proposition 6.2.1 to deduce that

for all » > \t,, we have

|G ((tn, 7)) — G(p(tn, tn — An))| < %Ei’Z;A"(IE(tn)) —0.

asn — 0o0. This immediately implies (6.2.21) since G is a continuous, increasing function. [J

6.3 Profiles for global degree one solutions with energy below

38(Q)

In this section we carry out the proof of Theorem 6.1.1 (2). We start by first deducing the

conclusions along a sequence of times. To be specific, we establish the following proposition:
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Proposition 6.3.1. Let (t) € Hy be a global solution to (6.1.1) with

-,

EW) = E(Q) +n < 3E(Q).

Then there exist a sequence of times T, — 00, a Sequence of scales A\, <K Tn, a solution

Gr,(t) € Hg to the linear wave equation (6.1.5), and a decomposition

D(7n) = GL(m) + (Q (-/An) ,0) + &) (6.3.1)

such that €(m,) € Ho and &) — 0 in H x L? as n — oo.

To prove Proposition 6.3.1 we proceed in several steps. We first construct the sequences
Tn, and Ay, while identifying the large profile, Q(-/Ay). Once we have done this, we extract

the radiation term ¢ . In the last step, we prove strong convergence of the error

é(rn) == V() — GL(7n) = (Q (-/An) ,0) = 0

in the space H x L2.

6.3.1 The harmonic map att = 400

Here we prove the analog of Struwe’s result [76, Theorem 2.1] for global wave maps of degree
different than zero, i.e., ¥(t) € H\Hg for all ¢ € [0,00). This will allow us to identify the

sequences Ty, Ap and the harmonic maps Q(-/A,) in the decomposition (6.3.1).

Theorem 6.3.2. Let 0)(t) € H\Hg be a smooth, global solution to (6.1.1). Then, there exists
a sequence of times t, — oo and a sequence of scales A\, < ty so that the following results

hold: Let

—

Dn(t,r) = (wn 4 Ak, M) At + Ant, )xnr)) (6.3.2)
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be the global wave map evolutions associated to the initial data

—

Yn(r) == (Y(tn, Anr), )\n@b(tn, An,T)).

Then, there exists \g > 0 so that

Jn — (£Q(-/X0),0) in L%([O’ 1); H' x L2)10C‘

We begin with the following lemma, which follows from Corollary 6.2.2 and is the global-
in-time version of Corollary 5.2.9 from the previous chapter. The statement and proof are

also very similar to [24, Lemma 4.4] and [22, Corollary 5.3].

Lemma 6.3.3. Let ¢(t) € H be a smooth global wave map. Let A : (0,00) — (0,00) be any
increasing function such that A(t) /oo ast — oo and A(t) <t for allt. Then, there exists

a sequence of times t, — oo such that

tnto  pt—A( tn '
lim sup — / / 2(¢,r)rdrdt = 0. (6.3.3)
tn

n—oo o>00

Proof. The proof is analogous to the argument given in [22; Corollary 5.3]. We argue by
contradiction. The existence of a sequence of times ¢, satisfying (6.3.3) is equivalent to the

statement

VA(t) /oo with A(t) <tast— oo, Vd >0, VIy >0, 37 > Tj so that

t—A(r
sup — / / tr rdrdt <90.
o>00
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So we assume that (6.3.3) fails. Then,

JA(t) /oo with A(t) <tast— oo, 36 >0, 3Ty > 0, V7 > T, Jo > 0 so that

—A(r) |
/ / 2(t,r) rdrdt > 6. (6.3.4)

Now, by Corollary 6.2.2 we can find a large A1 and a T} = T1(A;) > Ty so that for all

T > T1 we have

1 T pt—A1
?/ / G2 (t, ) rdrdt < 6/100. (6.3.5)
A1 JO

Since A(t) /oo we can fix T > T7 large enough so that A(t) > Ay for all ¢ > T. Define the

set X as follows:

T+o pt—A(T) .
X :=<o>0": / / trrdrdt>5

Then X is nonempty by (6.3.4). Define p := sup X. We claim that p < T. To see this

assume that there exists o € X so that o > T'. Then we would have
T+ o < 20.

This in turn implies, using (6.3.5), that

T+o rt—A(T
/ tr rdrdt<

T+o rt—A; .
/ / D2, r) rdrdt < 6/100
0

where we have also used the fact that A(T") > A;. This would mean that

T+o pt—A(T
/ / 2(¢,7) rdrdt < §/50,
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which is impossible since we assumed that o € X. Therefore p < T'. Moreover, we know

that

T+p pT—-A(T) .
/ / 2(¢,7)rdrdt > ép. (6.3.6)

Now, since T'+ p > T > T1 > Ty we know that there exists ¢ > 0 so that

T+pto pt—A(T+p) .
/ / G2, r) rdrdt > bo.
T+p

Since A(t) is increasing, we have A(T) < A(T + p) and hence the above implies that

T+p+o t—A(T
/ / 2(¢,7)rdr dt > éo. (6.3.7)
T+p

Summing (6.3.6) and (6.3.7) we get

T+pt+o t—A(T) |
/ / 2(¢,7) rdrdt > 6(0 + p),

which means that p 4+ o € X. But this contradicts that fact that p = sup X. O

The rest of the proof of Theorem 6.3.2 will follow the same general outline of [76, proof
of Theorem 2.1]. Let 9(t) € H; be a smooth global wave map.
We begin by choosing a scaling parameter. Let g > 0 be a small number, for example

dp = 1 would work. For each t € (0, 00) choose A(t) so that
5 < & V(W) < 26, (6.3.8)

Then using the monotonicity of the energy on interior cones we know that for each |7| < A(?)
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we have
0@t + 7)) < DM+ 7)) < €2 (e < 260, (6.3.9)
Similarly, we have
5o < E2OTT Gt 1 7)) < 2D (WGt + 7)), (6.3.10)

Lemma 6.3.4. Let ¢(t) € H\Hgy and A(t) be defined as above. Then we have \(t) < t as

t — 0.

Proof. Suppose J € H;, for k > 1. It suffices to show that for all A > 0 we have \(t) < Mt

for all ¢ large enough. Fix A > 0. By Corollary 6.2.3 we have

[(t) = kx|l Lo ae) = 0 (6.3.11)

as t — oo. For the sake of finding a contradiction, suppose that there exists a sequence

tn — oo with A(t,,) > Aty for all n € N. By (6.2.4) and (6.3.11) we would then have that

& (1) = €3 (F(tn) = 26 (tn, ) > 2G(kr) = 4> 28,

which contradicts (6.3.8) as long as we ensure that dy < 2. O
We can now complete the proof of Theorem 6.3.2.

Proof of Theorem 6.3.2. Let A(t) be defined as in (6.3.8). Choose another scaling parameter
A(t) so that A(t) — oo and A(t) < A(t) < t for t — oo, for example one could take A(t) :=

max{A(t), t/2} where A(t) := supg<s<t¢ A(s). By Lemma 6.3.3 we can find a sequence
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tn, — oo so that by setting A\, := A(t,) and A,, := A(t,) we have

1 tn+An t—A,, .
lim — / / G2 (t, ) rdrdt = 0.
t 0

n—00 \p, .

Now define a sequence of global wave maps ¢, (t) € H\Hg by

—

Dt 1) = <¢(tn 4 Ak, M) At + Ant, )xnr)) .

and write the full wave maps in coordinates on S? as Up(t,r,w) := (¢n(t,7),w). Observe

that we have

1 prry
/ / V2t r)rdrdt —0 as n— oo (6.3.12)
0 Jo

where 7, := (t, — An)/A\n — 00 as n — oo by our choice of A,. Also note that

— —,

E(Wn (1)) = EW(tn + Mnt)) = EW) = C.

This implies that the sequence v, is uniformly bounded in L¥(H' x L?). Note that (6.2.4)
implies that 9, is uniformly bounded in Ly°LZ2°. Hence we can extract a further subsequence

so that
Un — P weakly in  LE(H' x L?)},.
and, in fact, locally uniformly on [0,1) x (0,00). By (6.3.12), the limit
oot 1) = (Yoo (r),0) V(t,7) € [0,1) x (0,00

and is thus a time-independent weak solution to (6.1.1) on [0,1) x (0,00). This means that
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the corresponding full, weak wave map Uso(t,m,w) = Uso(r,w) := (1hoo(r),w) is a time-
independent weak solution to (1.1.8) on [0,1) x R\ {0}. By Hélein’s theorem [32, Theorem
2,

Uso : R2\ {0} — S?

is a smooth finite energy, co-rotational harmonic map. By Sacks-Uhlenbeck, [65], we can
then extend Uso to a smooth finite energy, co-rotational harmonic map U : R? — S2. Writing
U(r,w) = (Voo(r),w), we have either oo = 0 or 1se = £Q(-/Ng) for some Ay > 0.

Following Struwe, we can also establish strong local convergence
Un = (150,0) in - LE([0,1); H' x L) (6.3.13)
using the equation (1.1.8) and the local energy constraints from (6.3.9):

which hold uniformly in n for [t| < 1. For the details of this argument we refer the reader to
[76, Proof of Theorem 2.1 (ii)]. Finally we note that the strong local convergence in (6.3.13)
shows that indeed 1o #Z 0 since by (6.3.10) we have

50 < gg(Jn(t))

uniformly in n for each |¢| < 1. Therefore we can conclude that there exists A\g > 0 so that

Poo(r) = £Q(r/ o). -

As in the previous chapter, the following consequences of Theorem 6.3.2, which hold for

global degree one wave maps with energy below 3£(Q), will be essential in what follows.

—,

Corollary 6.3.5. Let 1(t) € Hq be a smooth global wave map such that E(v) < 3E(Q).
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Then we have
Un —Q(-/Xg) =0 as n—oo in L2([0,1); H)je, (6.3.14)

with ¥y (t,7), {tn}, {M}, and Ao as in Theorem 6.5.2.

Corollary 6.3.5 is the global-in-time analog of Corollary 5.2.13. For the details, we refer
the reader to the proof of Lemma 5.2.11, Lemma 5.2.12, and Corollary 5.2.13. At this point
we note that we can, after a suitable rescaling, assume, without loss of generality, that Ay in
Theorem 6.3.2, and Corollary 6.3.5, satisfies \g = 1.

Arguing as in the proof of Proposition 5.5.4 we can also deduce the following consequence

of Theorem 6.3.2.

—,

Proposition 6.3.6. Let ¢)(t) € Hy be a smooth global wave map such that E(1p) < 3E(Q).
Let oy, be any sequence such that oy, — 0o. Then, there exists a sequence of times T, — o0

and a sequence of scales Ay, < 1, with apAy, <K T, so that

(a) Asn — oo we have

Tn—An

lim V2 (mn, ) 1 dr — 0, (6.3.15)

n—oo 0

where Ay — 00 satisfies Ay < Ay < .

(b) Asn — oo we have

anAp
lim
n—oo 0

Remark 25. Proposition 6.3.6 follows directly from Lemma 6.3.3, Corollary 6.3.5 and a

(/M) [P ) = QUr/ M)l

An r2

() —

) rdr=0. (6.3.16)

diagonalization argument. As mentioned above, we refer the reader to Proposition 5.5.4,

parts (a) and (b) for the details. Also note that 7, € [tn,ty, + Ap] where t,, — oo is the
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sequence in Proposition 6.3.6. Finally A, := A(ty) is the sequence that appears in the proof
of Theorem 6.3.2.

As in the previous chapter we will also need the following simple consequence of Propo-

sition 6.3.6.

Corollary 6.3.7. Let ay, Ap, and 7, be defined as in Proposition 6.5.6. Let B, — oo be
any sequence such that By, < coay for some cg < 1. Then, for every 0 < ¢; < C9 such that

Coco < 1 there exists Bn with ¢16n < By < C9By, such that

@D(Tn,Bn)\n) — T as n — 0. (6.3.17)

6.5.2 Eaxtraction of the radiation term

In this subsection we construct what we will refer to as the radiation term, ¢y (t) € Hp in
the decomposition (6.3.1).

—,

Proposition 6.3.8. Let ¢(t) € H1 be a global wave map with £(¢) = E(Q) +n < 3E(Q).
Then there exists a solution ¢r(t) € Hg to the linear wave equation (6.1.5) so that for all

A >0 we have

19(t) = (m,0) = Bl g L2(rmg—a) = 0 as t— 0. (6.3.18)
Moreover, for n large enough we have
E(Pr(m)) < C <28(Q). (6.3.19)

Proof. To begin we pick any «, — oo and find 7,, \;, as in Proposition 6.3.6. Now let
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Bn — oo be any other sequence such that 3, < ay. By Corollary 6.3.7 we can assume that

U(Tn, BnAn) = 7 (6.3.20)

as n — 0o. We make the following definition:

r
0( ) T W_q/}g")’\ﬁ”)‘n)r if 0<r< 5’n)\n ( )
o (1) = e 6.3.21
U(rp,r) it BpAp <r < oo

r

) 0 if 0<r<pBpip
n(r) = < (6.3.22)

@b(TmT) lf 671)\1], S r < Q.

\

We claim that ¢, = ((Z)%,gb(l)) € Hi1 and E(dn) < C < 26(Q). Clearly ¢Y(0) = 7 and

gb%(oo) = 7. We claim that

552,\n (571) = gE:)\n (@E(Tn)) <n-+op(l). (6.3.23)

Indeed, since (7, BnAn) — m we have G(¢Y (T, BnAn)) = 2 = %E(Q) as n — 0o. Therefore,
by (6.2.4) we have

EG M (1), 0) = 2G (1 (7s Bun)) = E(Q) — on(1)

for large n which proves (6.3.23) since £3°, (4h(rn)) = E5°(4h(mn)) — ETmAn (7).
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We can also directly compute 563 "/\”(gb%, 0). Indeed,

W_Q/J(Tnaﬁn/\n) r

Badn (1 — 4, Bun) \ 2 Bdn sin? (T s
- [ () [,

< Clr =¥, Badn)? = 0 as n— oo.

Hence &(¢p) < 17+ 0,(1). This means that for large enough n we have the uniform estimates
E (q;n) < C < 26(Q). Therefore, by the degree 0 global existence and scattering result for
energies below 2£(Q)), (which holds with exactly the same statement in #H; 1 as in Hy =
Ho,0), we have that the wave map evolution gz%(t) € H1,1 with initial data én, is global in
time and scatters to m as t — £o0o. The scattering statement means that for each n we
can find initial data an,L so that the solution, S(t)gn,L, to the linear wave equation (6.1.5)

satisfies

16n(t) = (7,0) = S()Gn.Lllgrepz =0 as t— oo,

Abusing notation, we set

(gn,L(t) = S(t— Tn)(gn,L-
By the definition of gz;n and the finite speed of propagation observe that we have
On(t — T, ) =(t, 1) Vr >t — 1+ Bnin.

Therefore, for all fixed m we have

() — (7, 0) — 5m,L(t)||H><L2(7»Zt_7m+ﬁm,\m) —0 as t— o0, (6.3.24)
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and, in particular

lpn, — (7,0) — ¢m,L(7n)||H><L2(r2m—rm+ﬂm)\m) —0 as n— 0. (6.3.25)

Now set @n = (¢, 0b) == (¥, oL) — (7,0) € Hy. We have E(F,) < C < 28(Q) by
construction. Therefore the sequence S(—7,)@, is uniformly bounded in H x L?. Let

gL = (QD%, QOIL) € Hy be the weak limit of S(—7,)@, in H x L? as n — oo, i.e.,
S(—7p)@n — @ weakly in  H x L?

as n — 00. Denote by @r(t) := S(t)F, the linear evolution of Fj at time ¢. Following the

construction in [1, Main Theorem]| we have the following profile decomposition for ¢y:

k
. . . . . . 1 i . . . .
Balr) = Frlmm. ) + Y <s03;(t%/%,7‘/%), Wﬂ;(t%/A%,r/A%)) TR0 (63.26)
=2 n

where if we label ¢ =: <pi, Tn =: t}l, and )\711 = 1 this is exactly a profile decomposition as
in Corollary 5.2.15. Now observe that for each fixed m we can write

-

(pn(T) - (Em,L(Tnv T) = @»L(Tnv T) - (gm,L(T?% T)

J
n

k
S T B j .
+3° <¢]L(t%/)\%,r/)\%), A—%(]ﬁ%/%ﬁ/%)) +n(r) (63.27)
=2

and (6.3.27) is still a profile decomposition in the sense of Corollary 5.2.15 for the sequence

—

Gn(r) — 5m7 7.(Tn, 7). Since the pseudo-orthogonality of the H x L? norm is preserved after
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sharp cut-offs, see [18, Corollary 8] or Proposition 5.2.19, we then have

|@n — om L(Tn)||H><L2(T'>Tn—7'm+ﬂm/\m) = [|Fr(mn) — ¢m,L(Tn)’|H><L2(T2m_7m+gm)\m)

] ]

Note that (6.3.25) implies that the left-hand-side above tends to zero as n — co. Therefore,

since all of the terms on right-hand-side are non-negative we can deduce that

= 7 2
||S0L(T7’L) - ¢m’L(Tn)||H><L2(7‘Z7_n_7—m+6m)\m) — O as n — Q.

Since,

-

A1) — 5m,L(7'n) = S(m)(F — S(—Tm)¢m,L)

is a solution to the linear wave equation, we can use the monotonicity of the energy on

exterior cones to deduce that

= g 2
|PL(t) — gbm’L(t)||H><L2(r2t—7m+6m)\m) —0 as t— oo

Combining the above with (6.3.24) we can conclude that

[9() = (7,0) = GLON G 2151 —r s o) — 0 88 €= 00,

The above holds for each m € N and for any sequence 3, — oo with (5, < cgau,. Taking
Bm < ayy and recalling that 7,,, — oo and A, are such that oA\, < 7, we have that
— BmAm — o0 as m — 0o. Therefore, for any A > 0 we can find m large enough so that

Tm — BmAm > A, which proves (6.3.18) in light of the above.
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It remains to show (6.3.19). But this follows immediately from the decomposition (6.3.26)
and the almost orthogonality of the nonlinear wave map energy for such a decomposition,

see Lemma 5.2.16, since we know that the left-hand-side of (6.3.26) satisfies

E(Pn) < € <28(Q)

for large enough n. O

Now that we have constructed the radiation term @ (f) we denote by ¢(t) € Hq the
global wave map that scatters to the linear wave gy (t), i.e., g(t) € H is the global solution
to (6.1.1) such that
The existence of such a ¢(t) € Hg locally around t = +oo follows immediately from the
existence of wave operators for the corresponding 4d semi-linear equation. The fact that
©(t) is global-in-time follows from Theorem 5.1.1 since (6.3.19) and (6.3.28) together imply
that £(&) < 2£(Q).

We will need a few facts about the degree zero wave map J(t) which we collect in the

following lemma.

Lemma 6.3.9. Let J(t) be defined as above. Then we have

lim sup ||(‘5(t>HH><L2(|T—t|>A) =0 as A— oo, (6329)
t—o00 -

li A (p(t 7] A . 3.

Jim EZAP() = E(P) as — 00 (6.3.30)
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Proof. First we prove (6.3.29). We have

- 2 = - 2 2
IEOI2 s p2(gr—ema) < 160 = BLOIZ g2 + 1oL p2(r—5.0)

By (6.3.28) the first term on the right-hand-side above tends to 0 as t — oo so it suffices to

show that

- P
lim sup ’|30L(t)||H><L2(|r—t|>A) —0 as A— oo
t—00 -

Since @y (t) is a solution to (6.1.5) the above follows from [18, Theorem 4] by passing to the

analogous statement for the corresponding 4d free wave vy, (t) given by

rop(t,r) == pr(t,r).

To prove (6.3.30) we note that the limit as ¢ — oo exists for any fixed A due to the mono-

tonicity of the energy on exterior cones. Next observe that we have

tg%f%ﬂﬂau»gtganaamgxpvgpAy+o as A — 0o (6.3.31)
by (6.3.29) and then (6.3.30) follows immediately from the conservation of energy. O

Now, observe that we can combine Proposition 6.3.8 and (6.3.28) to conclude that for all

A > 0 we have
[6() = (7,0) = GOl g p2(rray > 0 as t— oo, (6.3.32)
With this in mind we define a(t) as follows:

at) = v(t) — @) (6.3.33)



and we aggregate some preliminary information about a in the following lemma:
Lemma 6.3.10. Let d(t) be defined as in (6.3.33). Then d(t) € Hy for all t. Moreover,

e for all A > 0 we have

|a(t) — (m, O)HHxL?(rz/\t) —0 as t— oo, (6.3.34)

o the quantity £(d(t)) has a limit ast — oo and

-,

lim E(@(t)) = (W) — £(J). (6.3.35)

t—00

Proof. By definition we have a(t) € Hy for all ¢ since
a(t,0) =0, a(t,o0) = .
To prove (6.3.34) observe that for every A < (1 — \)t we have

l@(t) = (0, 03 2o aey < 190 = (0,03 22 0<r<i— )
+ ||95(t)||%{><[,2()\t§r§t—z4)

1) — (5, 02 2y

Then (6.3.34) follows by combining (6.3.32), (6.3.29), and (6.2.18). To prove (6.3.35) we first

claim that

lim  lim €2 ,(¢(t)) = E(F). (6.3.36)

A—o0 t—00
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Indeed, we have

X al(n) = /t fo [(Ve(t) = e(t) + (D) + (W (t) = @r(t) + or(1)?] 7 dr
> sin?(4(t) — 7 — p(t) + (1))
ol

—A r

dr

= £ 4 (1) + [[(t) — (7, 0) — (¢ )||H1><L2 r>t—A)

+0 (I190) = (7,0) = 0 1 2y 19O e 2t

o sin2((t) = 7 — p(t) + (1)) — sin>((t))
t—A r

dr

= £2°4(8(0)) + 0 (I90) ~ (,0) = GOy, p2(rmr )
+0 (WHJ(:&) —(m,0) — @(t)HHxL?(rzt—A)) ’

which proves (6.3.36) in light of (6.3.30) and (6.3.32). In the third equality above we have

used the simple trigonometric inequality:
. . . 2
sin*(z — y +y) —sin*(y)| < 2sin(y)| |z — y| + 2|z — y|*.

Now, fix 6 > 0. By (6.3.29), (6.3.36), and (6.3.32) we can choose A, Tj large enough so that

for all t > Ty we have

1PN < L2(r<t— 1) < 05

A1) — E(B)| <6,

la(t) ~ (m O 2rmp ) < 0
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Then for all ¢ > T{y and A as above we can argue as before to obtain

£((t)) = £~ @) + 0(lat) — (.03, 25—

= ES_A(J(t)) +0 ( 5(J)||S5(t)||H><L2(r§t—A))

O (IO p2irer—ay) + O (136 = (7.0 1rmi— )
= E($) = EZ4(1(1) + 0()

-,

= &) = E(P) +0(9),

which proves (6.3.35). O
We will also need the following technical lemma in the next section.

Lemma 6.3.11. For any sequence oy, > 0 with A\, < oy < 7, we have

Tn+0on
lim —/ / (t,r)rdrdt=0. (6.3.37)
Tn

n—00 gy,

Proof. Fix 0 < A < 1. For each n we have

Tn+on Tnton At
/ (t,7) rdrdt<— / (t,r)rdrdt

On n

TTn+on
/ (t,r)rdrdt.
™ At

By (6.3.34) we can conclude that

0.}
lim sup/ a®(t,r)rdr = 0.
A

n—00 t>1h J At

Hence it suffices to show that

Tnton A
lim —/ / trrdrdt—O
n—00 on Jr.



Observe that for every n we have

(t,r)rdrdt < — G2t ) rdr dt (6.3.38)

nrn

Tn+0on /)\t Tn+0on At .

on ™

Tn+0n by
/ t r)rdrdt.

We first estimate the first integral on the right-hand-side above. Let A, — oo be the
sequence in Proposition 6.3.6, see also Remark 25, and let ¢, — oo be the sequence in
Theorem 6.3.2. Recall that we have 7, € [tp,tn + Ap] and A, < Ay < By

Observe that for n large enough we have that for each t € |7, 7, +0y,] we have A\t < t—A,.

Hence,

1 Tn+0on A 1 Tnton rt—An
— Pt ) rdrdt < — / G2 (t, ) dr dt.
0

on Jr, 0 on Jry,

Next, note that since A\, < oy, we can ensure that for n large enough we have A\, +o0y, < 20y,.

Therefore,
1 Tnton rt—An 2 tntAnton pt—An
— / G2t r) rdrdt < 7/ / 2, r)rdrdt — 0

as n — oo by Lemma 6.3.3.
Lastly we estimate the second integral on the righ-hand-side of (6.3.38). For each A > 0

we can choose n large enough so that \t <t — A for each t € |1y, 7, + op]. So we have

Tnton At Tnton rt—A
/ 2(t,7) rdrdt < / G2 (t,r) rdr dt.
0

O'n Tn

Taking the limsup as n — oo of both sides and then letting A — oo on the right we have by

(6.3.29) that the left-hand-side above tends to 0 as n — oo. This concludes the proof. O
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6.5.3 Compactness of the error

For the remainder of this section, we fix o, — o0 and find 7, — oo and \;, <€ 7, as in

Proposition 6.3.6. We define by, = (bn,0,bn,1) € Ho as follows:

bn,O(r> = CL(Tn, 7") - Q(T/ATL>7 (6.3.39)

bp1(r) == a(mp,r). (6.3.40)

As in Section 5.5.3 of the previous chapter, our goal in this subsection is to show that by, — 0

in the energy space. Indeed we prove the following result:

Proposition 6.3.12. Define b, € Hg as in (6.3.39), (6.3.40). Then,
||gn||H><L2 —0 as n— oo. (6.3.41)

Remark 26. In light of (6.3.28), it is clear that Proposition 6.3.12 implies Proposition 6.3.1.

We begin with the following consequences of the previous sections.
Lemma 6.3.13. Let gn € Ho be defined as above. Then we have

(a) Asn — oo we have

[bn,1ll 2 — 0. (6.3.42)

(b) Asn — oo we have

16n,0ll 7 (r<ainrn) — O- (6.3.43)
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(c) For any fized X > 0 we have

1bn,0ll z7(r> A7) — 0 as n— oo (6.3.44)

(d) There exists a C > 0 so that
E(bn) < C < 28(Q) (6.3.45)

for n large enough.

Proof. To prove (6.3.42) fix 0 < A < 1 and observe that we have

ATy

00 AT,
/ bil(r)rdr < ¢2(Tn,r)rdr—|—/ gb2(7'n,r)rdr
0 ’ 0

0
o
+ / a(ty, 7")2 rdr.
A

Tn

Then (6.3.42) follows from (6.3.15), (6.3.29), and (6.3.34).

Next we prove (6.3.43). To see this, observe that for each n we have

an,OH%{(rgan/\n) < ||w(7'n) - Q('/)‘”)”%{(rgan)\n) + HSO(T”)H%I(TSCM)W)'

The first term on the right-hand-side tends to zero as n — oo by (6.3.16). To estimate the
second term on the right-hand-side we note that for fixed A > 0 we can find n large enough

so that apM, < 7, — A and so we have

() ||12q(7~§an,\n) < lle(mn) H%{(TSTn—A)'

Taking the limsup as n — oo on both sides above and then taking A — oo on the right and

recalling (6.3.29) we see that the limit as n — oo of the left-hand side above must be zero.
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This proves (6.3.43).
To deduce (6.3.44) note that

15003 amy < 12) = 12y + 1QC/An) = 73 am-

The first term on the right-hand-side above tends to zero as n — oo by (6.3.34). The second
term tends to zero since A7, /Ay, — 00 as n — oo.

Finally, we establish (6.3.45). First observe that for any fixed A > 0, (6.3.44) implies that

E(Bn) = E0 (bn) + € (bn)

— £ (by) + on(1)

as n — oo. So it suffices to control 56\T"(l;n) Next, observe that for n large enough, (6.3.31)

gives that

’|¢(Tn) HHxLz(TS)\Tn) S ||6(Tn)||HXL2(TSTn—A)

and the right-hand side is small for n, A large. This means that the contribution of J(7,) is

negligible on r < A1, and thus

€07 (B) = £ ($(7) = (Q(/An), 0)) + 0a(1).
Next, recall that Proposition 6.3.6 implies that

G (D7) — Q(-/An). 0) = on(1), (6.3.46)
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which shows in particular that

EX, (W) <+ on(1) (6.3.47)

-,

where 1 := E(¢) — £(Q) < 26(Q). Also, (6.3.46) means that it suffices to show that

EXTR ((7n) — (Q(-/An),0)) < C < 28(Q).

Note that since oy, — oo we have

20, (QC/A) = EX(Q) = on(D).

Hence,

ENS () — (Q(/An),0)) = EX8 (W) + 0n(1) < 17+ on(1),

which completes the proof. O

Next, we would like to show that the sequence by, does not contain any nonzero profiles.
This next result is the global-in-time analog of Proposition 5.5.7 and the proof is again,
reminiscent of the the arguments given in [22, Section 5.

Denote by I;n(t) € Hp the wave map evolution with data b, By (6.3.45) and Theo-
rem 5.1.1 we know that gn(t) € H is global in time and scatters to zero as t — fooc.

The statements of the following proposition and its corollary are identical to the corre-

sponding statements, Proposition 5.5.7 and Corollary 5.5.8 in the finite time blow-up case.

Proposition 6.3.14. Let b, € Ho and the corresponding global wave map evolution l;n(t) €
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Ho be defined as above. Then, there exists a decomposition
bu(t, 1) = by, 1,(t,7) + On(t,7) (6.3.48)

where gn,L satisfies the linear wave equation (6.1.5) with initial data gn,L(OJ’) = (bpn0,0).

Moreover, b, 1, and O, satisfy

1
_bn,L 0 (6.3.49)
r L?(R;L%(R4))
. 1
||9 H 0 (. 2y + || -0 — 0 (6.3.50)
NI L (R;H x L?) "t Lg(R;Lg(R‘l))
as n — o0.
cbbgl

Before beginning the proof of Proposition 6.3.14 we use the conclusions of the proposi-
tion to deduce the following corollary which will be an essential ingredient in the proof of

Proposition 6.3.12.

Corollary 6.3.15. Let gn(t) be defined as in Proposition 6.3.14. Suppose that there exists
a constant &y and a subsequence in n so that ||by ol g > d9. Then there exists ag > 0 such

that for all t > 0 and all n large enough along this subsequence we have

5Ol g 251) = 0%0. (6.3.51)

Proof. First note that since l;m 1, satisfies the linear wave equation (6.1.5) with initial data

—

bn,1,(0) = (bp0,0) we know by [18, Corollary 5] and Corollary 5.2.3, that there exists a

constant By > 0 so that for each ¢t > 0 we have

16, (Ol 77 x £2(>1) = Bollbn,oll -
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On the other hand, by Proposition 6.3.14 we know that
16n.() = by, L < 2(r>t) < MO ()l g 2 = 0n(1).
Putting these two facts together gives

160l 220 = 100, L O i1 £2(r50) — 0n(1)

> Bollbnoll g — on(1).

This yields (6.3.51) by passing to a suitable subsequence and taking n large enough. O

The proof of Proposition 6.3.14 is very similar to the proof of Proposition 5.5.7. Instead

of going through the entire argument again here, we establish the main ingredients of the

proof and we refer the reader to the previous chapter for the remainder of the argument.

Since by, € Hg and S(l;n) < C < 28(Q) we can, by Corollary 5.2.15, consider the following

profile decomposition for by

g,
bno(r) =Y _ 7 (—” ) ko),

ik AP
1 5 —t)
bn,l(r) = Z _]SD%'J <—jn> _j) + 7]';71(76)9
i<k An An An

where each QJL is a solution to (6.1.5) and where we have for each j # k:

AP i B

g
LSV

Ak X,

+ - — 00 as n — oo.

(6.3.52)

(6.3.53)

(6.3.54)

Moreover, if we denote by ?fi 7 (t) the linear evolution of 7k ., solution to (6.1.5), we have

357



for j < k that

(vﬁ,L()\%t%’ A%)a )\‘77171]37[,()\%#77% )\gL)) —0in H x L2 as  n— 00

Lk
;me

—0 as k— oc.
L3LS(R)

lim sup
n—oo

Finally we have the following Pythagorean expansions:

: 2
. _t]
2 k 12
lbnolizr = [l#1, <—jn) ‘ + 7,0l 7r + 0n(1)
i<k A ) i
; 2
. _t]
2 . k 2
lonill72 =D &7, <—]n) + [, ll72 + on(1).
i<k An 12

(6.3.55)

(6.3.56)

(6.3.57)

(6.3.58)

As in the previous chapter, the proof of Proposition 6.3.14 will consist of a sequence of steps

designed to show that each of the profiles gp‘i must be identically zero. Arguing exactly as in

Lemma 5.5.9 and Corollary 5.5.10 we can first deduce that the times t% can be taken to be

0 for each n, 7 and that the the initial velocities @%(O) must all be identically zero as well.

We summarize this conclusion in the following lemma:

Lemma 6.3.16. In the decomposition (6.3.52), (6.3.53) we can assume, without loss of

generality, that t% =0 for every n and for every j. In addition, we then have

@%(O,r) =0 forevery j.

The proof of Lemma 6.3.16 is identical to the proof of Lemma 5.5.9 and Corollary 5.5.10.

We refer the reader to the previous chapter for the details.
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By Lemma 6.3.16 we can rewrite our profile decomposition as follows:

bno(r) = 3 ¢, (0.7/3) + k() (6.3.59)
i<k
bp,1(r) = op(1) in L? asn — oo, (6.3.60)

Note that in addition to the Pythagorean expansions in (6.3.57) we also have the fol-
lowing almost-orthogonality of the nonlinear wave map energy, which was established in

Lemma 5.2.16:
E(bn) =D E(],(0),0) + E(1E 5, 0) + op(1). (6.3.61)

J<k

Note that 7 ,750 € Hy for every j, for every n, and for every k. Using the fact that
E(by) < C < 26(Q), (6.3.61) and Theorem 5.1.1 imply that, for every j, the nonlinear wave

map evolution of the data (%(0, 7‘/)\%), 0) given by

; St 7 1 [t r

=] . J £l

Gn(t,r) = | ¢ - — |, —=¢ - — (6.3.62)
" ( <A£L A%,) N, (A%, A%))

is global in time and scatters as t — f00. Moreover we have the following nonlinear profile

decomposition guarranteed by Proposition 5.2.17:

bu(t,r) =3 @hit,r) + 35 [ (t.r) + 0 (tr) (6.3.63)
<k

where the I;n(t, r) are the global wave map evolutions of the data l;n, iﬁ 7 (t,7) is the linear

evolution of (v£,0), and the errors 6% satisfy

Lk
-0
TTL

—0 as k— oo (6.3.64)
L}(R;LE(R*))
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Recall that we are trying to show that all of the profiles ¢/ must be identically equal to
zero. As in the previous chapter we can make the following crucial observations about the
scales )\%. Since we have concluded that we can assume that all of the times t% = 0 for all

n,j we first note that the orthogonality condition (6.3.54) implies that for j # k:

N, AE
—k—l——j%ooasn—M)o.
)\TL )\n

Next, recall that by Lemma 6.3.13 we have

16n,0ll 77 (r<aprn) — 0 @s n— o0, (6.3.65)

16n,0ll 77 (r>Ar) = 0 a8 1 — 00, VA > 0 fixed. (6.3.66)

Combining the above two facts with Proposition 5.2.19 we can conclude that for each )\‘ZL

corresponding to a nonzero profile ¢/ we have
A < N, <7 as n— oo (6.3.67)

Now, let kg be the index corresponding to the first nonzero profile <pk0. We can assume,
without loss of generality that kg = 1. By (6.3.65), (6.3.67) and [22, Appendix B] we can

find a sequence A, so that

An < Ap < A

Ay < Xor Mo« Xy V> L
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Define

and we note that 8, < oy and A, = BpAn. Therefore, up to replacing 38, by a sequence
Bn ~ (3, and 5\n by i\n = Bn)\n, we have by Corollary 6.3.7 and a slight abuse of notation

that

U(Tn, An) = T as n — oo. (6.3.68)
We define the set

Toxt = {1 > 1| An < M, }.

Note that by construction 1 € Jext.
The above technical ingredients are necessary for the proof of the following lemma and

its corollary. The analog in the finite-time blow-up case is Lemma 5.5.13.
Lemma 6.3.17. Let ¢!, )\711 be defined as above. Then for all € > 0 we have
AL ,
/ Gh(t,r) + 4% L (t,r)| rdrdt= ok (6.3.69)
e+t ’
JE€EText 7]<k

where lim limsup o,lfb = 0. Also, for all j > 1 and for all € > 0 we have
k—oo n—oo

/\1
pv / /)\1 +t 2(t,r)rdrdt = 0 as n— oo. (6.3.70)

Remark 27. We refer the reader to the proof Lemma 5.5.13 for the details of the proof of

Lemma 6.3.17. The proof of (6.3.69) is nearly identical to the proof of (5.5.57) the one
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difference being that here we use Lemma 6.3.11 in place of the argument following equation

(5.5.66). The proof of (6.3.70) is identical to the proof of (5.5.58) and we omit it here.

Note that (6.3.69) and (6.3.70) together directly imply the following result:

Corollary 6.3.18. Let o' be as in Lemma 6.3.17. Then for all e > 0 we have
1 A [ 2
—/ / ‘sb}l(t, r) 4+ ﬁs (t,r)| rdrdt= o,lfb (6.3.71)
AL Jo eENL+t ’

where lim limsup 07]3 = 0.
k—oo n—oo

The proof of Proposition 6.3.14 now follows from the exact same argument as the proof
Proposition 5.5.7. We refer the reader to the previous chapter for the details.

We can now complete the proof of Proposition 6.3.12.

Proof of Proposition 6.3.12. We argue by contradiction. Assume that Proposition 6.3.12

fails. Then, up to extracting a subsequence, we can find a dg > 0 so that

[1bn,0ll 2 = 00 (6.3.72)
for every n. Next, we rescale. Set
An
Hn = —
Tn

Since \,, < 7, as n — 00, our new scale u, — 0 as n — co. We next define rescaled wave

maps:

gn(t> T) = @D(Tn + Tnt, an), (6.3.73)

hn(t, 1) == (70 + Tnt, TaT). (6.3.74)
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Since gy (t) and an(t) are defined by rescaling J and @ we have that g, (t) € H; is a global-in-
time wave map and the wave map @(t) € Hg is global-in-time and scatters to 0 as t — F00.

We then have
a(Tn + Tt Tr) = gn(t,r) — hp(t, 7).

Similarly, we define

Z~)n,O (T) = bn,O(an)a

by, 1(7) := Tnbp 1(Tar)

and the corresponding rescaled wave map evolutions

bn(t,r) := bp(mnt, Tnr),

8t(~)n(t, r) = Tnbn(Tnt, TnT).

After this rescaling, our decomposition becomes

9 (0,7) = hn(0,1) + Q (?) () (6.3.75)
gn(0,7) = Tn (0, 7) + by 1 (r). (6.3.76)

We can rephrase (6.3.44) and (6.3.43) in terms of this rescaling and we obtain:

VA > 0 fixed, |bp,0ll (=) = 0 as n— oo, (6.3.77)

||(~7n,0||H(r§O<nMn) — 0 asn — oo. (6.3.78)
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Also, (6.3.29) implies that

lim Tim sup [[25(0) g £2(<1— 4 /my) = 0 (6.3.79)

A—00 n—oo

lim Timsup (|2 (0) g 120514 4/m,) = O- (6.3.80)

A—00 n—oo

Next, we claim that for every n a decomposition of the form (6.3.75) is preserved up to a
small error if we replace the terms in (6.3.75) with their respective wave map evolutions at
some future times to be defined precisely below.

By Corollary 6.3.7 we can choose a sequence 7y, — oo with
Tn K ap
so that
gn(0,yppin) — ™ as n — oo.
Define 4, — 0 by
191 (0, Ynpin) — 7| =: 6p, — 0.
Using (6.3.16) we define g, — 0 by

1620 = (Q(-/110). O}l 51 120 <) = En = 0.

Finally, choose (8, — oo so that

B < min{y/. o 2 e %)
gn(0, Bppin/2) = as n — oo. (6.3.81)
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As in the previous chapter, we make the following claims:

(1) As n — oo we have

|Gn (Brpin/2) — (Q(/ pn), 0)||HXL2(T§ﬂnun) — 0. (6.3.82)

(77) For each m, on the interval r € [B),un, 00) we have

g% (ﬁnéuna?“) - (71'70) = }_in (ﬁnéunjr) + gn <5n2’un>r) (6383)
Oy (B"QM”,T) :

||9nHLt°°(H><L2) — 0.

We first prove (6.3.82). The proof is very similar to the corresponding argument in the finite-
time blow-up case, see the proof of (5.5.94). We repeat the argument here for completeness.

First note that we have

||£7n(0) - (Q(/Nn)a O)||H><L2(r§7nun) <en—0.

Unscale the above by setting g, (t,7) = gn(pnt, nr), which gives

||(§n(0)a atgn(o)) - (Q()> 0)||H><L2(T§~yn) S En — 0.

Now using Corollary 5.2.6 and the finite speed of propagation we claim that we have

||(§n(5n/2)a atf]n(ﬁn/%) - (Q()> 0)||H><L2(r§ﬁn) = On(l)- (6-3-84)
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To see this, we need to show that Corollary 5.2.6 applies. Indeed define

;

m it r>2y,

Gno(r) =7+ %&?’%)(r —29p) i oy <7 <2y,

gn(0,r) if 7 <.

\

. 8t§n(0,7’) if r < Tn
gn,l(r) =
0 if r>v,

Then, by construction we have §n € H1, and since
||§]TL - (7T, O) ||H><L2('yn§'r§2fyn) S C(Sn

we then can conclude that

[ Gn — (QaO)HHxL? < [lgn — (Q>0)||H><L2(r§%) + lgn — (WaO)HHxL?(%grgQ%)
+ 117, 0) = (Q. 0 g L2,

< Clen+0n+770).

Now, given our choice of g, (6.3.84) follows from Corollary 5.2.6 and the finite speed of

propagation. Rescaling (6.3.84) we have

1(9n(Brttn/2), Orgn(Bnpn/2)) — (Q(-/1n), O)HHXLQ(rSﬂn;Ln) — 0.

This proves (6.3.82). Also note that by monotonicity of the energy on interior cones and

the comparability of the energy and the H x L? norm in H,, for small energies, we see that
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(6.3.42) and (6.3.78) imply that

BBt /2), BebButtn /2 L2 < ) — O (6.3.85)

Next we prove (6.3.83). First we define

W_gn(ov,unﬂn/2)
%/Lnﬂn

gn(O,T) if r Zﬁn#n/Q

T — roif < Bpun/2

gn,O(r) =

gn,l (T) = 9n(0> T)'

Then, let x € C°°([0,00)) be defined so that x(r) = 1 on the interval [2, 00) and suppy C
[1,00). Define

and observe that we have the following decomposition
In(r) = hn(0,7) + by (r) + on(1),

where the 0,,(1) is in the sense of H x L? — here we also have used (6.3.79). Moreover, the
right-hand side above, without the 0,(1) term, is a profile decomposition in the sense of
Corollary 5.2.15 because of Proposition 6.3.14 and [18, Lemma 11] or Lemma 5.2.20. We
can then consider the nonlinear profiles. Note that by construction we have gn € Hp and
as in the previous chapter, we can use (6.3.81) to show that £(g,) < C < 2&(Q) for large
n. The corresponding wave map evolution gn(t) € Hg is thus global in time and scatters as

t — +00 by Theorem 5.1.1. We also need to check that £(b,) < C' < 2£(Q). Note that by
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construction and the definition of by, we have

- - 00 r2 2 — )T
( I (X')2(4r/ﬁnun)Mdr>

E(by) < E(by) + O B2 2
(bn) < E(bn) + Bgv(),u%
N /Bnﬂn sin2(X(4r/ﬁnMn)bn,O((1 —a)r)) dr
B r

nﬂn/2
= ﬁn)\n b2 T
Sg(bn)—i-O(/ Mdr)
Brnin/2 T

—

5@”) +op(1) £ C <28(Q),

where the last line follows from (6.3.43) since 5, < ap,.

Arguing as in the previous chapter, we can use Proposition 6.3.14, Proposition 5.2.17,

and
Lemma 5.2.18 to obtain the following nonlinear profile decomposition

Gn(t,7) = hn(t,r) + bu(t,r) + O, (t, 1),

105l Lo (1 x £2) = O-
Finally observe that by construction and the finite speed of propagation we have

—
v

an(t,T) (t,r)—m,

= E_fn
b (t,7) = b (£,7).

for all t € R and 7 € [Bppun/2 + |t|, 00). Therefore, in particular we have

Gn(Bnpin/2,7) — (7,0) = En(ﬁﬂﬂﬂ/l )+ gn(ﬁn,un/Qa )+ 5n(5nﬂn/2v )

for all r € [Bypn, 00) which proves (6.3.83).
We can combine (6.3.82), (6.3.83), (6.3.85), and (6.3.79) together with the monotonicity
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Figure 6.2: A schematic description of the evolution of the decomposition (6.3.75) from time
t =0 until time t = % At time t = B"—2“" the decomposition (6.3.86) holds.

of the energy on interior cones and the fact that [|Q(-/1n) = 7l (>, 4,,) = 0n(1), to obtain

the decomposition

Gn(Brtin/2,7) = (Q(r/pn), 0) + hn(Bppin/2.7) (6.3.86)
+ gn(ﬁnﬂn/z )+ 5n(7),
||5n||HxL2 — 0. (6.3.87)

Now, let s, — oo be any sequence such that s, > S, /2 for each n. The next step is

to prove the following decomposition at time s,:

—
— =

gn(sn, 1) — (m,0) = hp(sp,7) + bn(sp, ) + 5n(7“) Vr € [sp, 00), (6.3.88)

||5n||H><L2 —0 as n— oo (6.3.89)

We proceed as in the proof of (6.3.83). By (6.3.82) we can argue as in Corollary 6.3.7 and

find p, — oo with p, < By so that

gn(Bniin/2, pniin) — ™ as n — oo. (6.3.90)
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Define

T — T—gn(Bntin/2, priin)
7 Pnfin
fn,()(r) =

gn(ﬁnﬂn/Qar) if r>pppn

roif r < ppun

fn,l(r) = gn(Bnpin/2,7).

Let x € C°° be as above and set

Fn(r) = X(2r/papn)(fu(r) = (x,0)),

b () = X(2r/ prutin )b (Bufin/ 2. 7).

Observe that we have the following decomposition:

Far) = o (Buttn/2,7) + b(r) + on(1).

where the o,(1) above is in the sense of H x L?. Moreover, the right-hand side above,
without the oy, (1) term, is a profile decomposition in the sense of Corollary 5.2.15 because
of Proposition 6.3.14 and [18, Lemma 11] or Lemma 5.2.20. We can then consider the
nonlinear profiles. Note that by construction we have ﬁl € Hp and, as usual, we can use
(6.3.90) to show that £(f,) < C < 2£(Q) for large n. The corresponding wave map evolution
ﬁl(t) € Hg is thus global in time and scatters as ¢ — +o0o by Theorem 5.1.1.

As in the proof of (6.3.83) it is also easy to show that S(gn) < C < 28(Q) where here
we use (6.3.85) instead of (6.3.43).

Again we can use Proposition 6.3.14, Proposition 5.2.17 and Lemma 5.2.18 to obtain the
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2 Pnlin / Bnpin "2“ n
h

Figure 6.3: A schematic depiction of the evolution of the decomposition (6.3.86) up to time
sp. On the interval [s;,, +00), the decomposition (6.3.88) holds.

following nonlinear profile decomposition

Fult,7) = hon(Bugin/2 + £, 7) + bu(t,7) + Calt, ),

||§n||L§O(H><L2) — 0.

In particular, for

Vp = Sp — 571#71/2

we have

— -
— — ~ ~

fn(wn, 1) = hn(sn, 1) + bn(vn, 1) + Cnlvn, 7).

By the finite speed of propagation we have that

ﬁ”b(yn> T) =

—
~

bn(l/na T) = Bn(sna T)

l

n(sn, ) — (m,0),

I @
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as long as r > ppun + vn. Using the fact that p, < 3, we have that s, > ppun + v, and

hence,

— —

Gulsn, ) — (7,0) = hp(sp, ) + bp(sn,7) + Cu(vn, 7) Vr € [sn, 00).

Setting (, := Cn(vn) we obtain (6.3.88) and (6.3.89). With this decomposition we can now
complete the proof.
One the one hand observe that by rescaling, (6.3.34), and the fact that 27,5, > 7, + ™ sn

for n large we have

’|§n(8n) - En(&l) - (777 O)HHxLQ(TZSn) - HC?(Tn + Tnsn, Tn') - (ﬂ-’ O)HHXLz(TZSn)
= HC?(Tn + Tnsn) - (7T7 0)||H><L2(T27n5n)
< ||l@(rn + Tnsn) — (T, 0)||H><L2(T2%(Tn+7'n5n))

— 0 as n— oo.
Combining the above with the decomposition (6.3.88) and (6.3.89) we obtain that
||Z~)n(8n)||H><L2(Tan) —0 as n— oo. (6.3.91)

On the other hand, combining our assumption (6.3.72) and Corollary 6.3.15 we know

that there exists ag > 0 so that

’|Z~7"(8”)||H><L2(7’25n) = an(TnSn)||HxL2(TZTnSn) > 04050.

But this contradicts (6.3.91). O

We can now complete the proof of Theorem 6.1.1.
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Proof of Theorem 6.1.1. Let d(t) be defined as in (6.3.33). Recall that by (6.3.35) we have

—

lim £(@(t)) = () — E(F). (6.3.92)

t—00

By Proposition 6.3.1 we have found a sequence of times 7, — 0o so that

E(a(m)) = €(Q)

as n — 0o. This then implies that

lim £(@(t)) = £(Q).

t—00

We now use the variational characterization of @ to show that in fact ||a(t)||;2 — 0 as

t — 0o. To see this observe that since a(t) € H; we can deduce by (5.2.18) that

£(Q) « E(alt),a(t)) > /OOO a(t,r)rdr+ £(Q).

Next observe that the decomposition in Lemma 5.2.5 provides us with a function A : (0, 00) —

(0, 00) such that

la(t,-) = QC/A)IH < 6(E(a(t), 0) = E(Q)) = 0.

This also implies that
E(dt) — (Q(-/A(t)),0)) =0 (6.3.93)

as t — 0o. Since t — a(t) is continuous in H for ¢ € [0, 00) it follows from Lemma 5.2.5 that
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A(t) is continuous on [0,00). Therefore we have established that
O(t) — @) — (Q(-/A(t)),0) = 0 in HxL®> as t— oo.

It remains to show that A\(¢) = o(t). This follows immediately from the asymptotic vanishing
of Vi ra(t) outside the light cone and from (6.3.93). To see this observe that by (6.3.34)
with A = 1 we have that a(t,r) — (7,0) = o(1) in H x L2(r > t) as t — co. Therefore we

have

€% (Q) = &7 (r = Q(/A1)) < &(a(t) — (Q(-/A(1)),0)) + o(1) = 0

A(®)

as t — oco. But this then implies that ﬁ — o0 as t — oo. This completes the proof. O
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