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ABSTRACT

We study wave maps equation in three distinct settings.

First, we prove a small data result for wave maps on a curved background. To be specific,

we consider the Cauchy problem for wave maps u : R×M → N , for Riemannian manifolds

(M, g) and (N, h). We prove global existence and uniqueness for initial data, (u0, u1), that

is small in the critical norm Ḣ
d
2 × Ḣ d

2−1(M ;TN), in the case (M, g) = (R4, g), where g is

a small perturbation of the Euclidean metric. This part of the thesis has appeared in print

in [52].

Next, we establish relaxation of an arbitrary 1-equivariant wave map from R
1+3
t,x \ (R ×

B(0, 1)) → S
3 of finite energy and with a Dirichlet condition at r = 1, to the unique

stationary harmonic map in its degree class. This settles a recent conjecture of Bizoń,

Chmaj, and Maliborski who observed this asymptotic behavior numerically, and can be

viewed as a verification of the soliton resolution conjecture for this particular model. The

chapters concerning these results are based on joint work with Wilhelm Schlag [53], and with

Carlos Kenig and W. Schlag, [35].

In the final two chapters, we consider 1-equivariant wave maps from R1+2 → S2. For

wave maps of topological degree zero we prove global existence and scattering for energies

below twice the energy of harmonic map, Q, given by stereographic projection. This gives a

proof in the equivariant case of a refined version of the threshold conjecture adapted to the

degree zero theory where the true threshold is 2E(Q), not E(Q). The aforementioned global

existence and scattering statement can also be deduced by considering the work of Sterbenz

and Tataru in the equivariant setting.

For wave maps of topological degree one, we establish a classification of solutions blowing

up in finite time with energies less than three times the energy of Q. Under this restriction

on the energy, we show that a blow-up solution of degree one decouples as it approaches the

blow-up times into the sum of a rescaled Q plus a remainder term of topological degree zero

x



of energy less than twice the energy of Q. This result reveals the universal character of the

known blow-up constructions for degree one, 1-equivariant wave maps of Krieger, Schlag,

and Tataru as well as Raphaël and Rodnianski.

Lastly, we establish a classification of all degree one global solutions whose energies are

less than three times the energy of the harmonic map Q. In particular, for each global energy

solution of topological degree one, we show that the solution asymptotically decouples into

a rescaled harmonic map plus a radiation term. Together with the degree one finite time

blow-up result, this gives a characterization of all 1-equivariant, degree one wave maps in the

energy regime [E(Q), 3E(Q)). The last two chapters are based on joint work with Raphaël

Côte, C. Kenig, and W. Schlag, [15, 16].

xi



CHAPTER 1

INTRODUCTION

1.1 The Wave Maps Equation

This thesis consists of various results on the wave maps equation. In physics, wave maps

arise as a model in both particle physics as what are called nonlinear σ–models, see [27],

[56], and in general relativity, see [11]. From a purely mathematical perspective, wave maps

are the natural hyperbolic analogs of harmonic maps in the elliptic case, and harmonic map

heat flow in the parabolic case.

We begin with a definition. Let (M, g) be a Riemannian manifold of dimension d. Denote

by (M̃, η) the Lorentzian manifold M̃ = R × M , with the metric η represented in local

coordinates by η = (ηαβ) = diag(−1, gij). Let (N, h) be a complete Riemannian manifold

without boundary of dimension n.

A map u : (M̃, η) −→ (N, h) is called a wave map if it is, formally, a critical point of the

functional

L(u) = 1

2

∫

M̃
〈du, du〉

T ∗M̃⊗u∗TN dvolη.

Here we view the differential, du, of the map u as a section of the vector bundle (T ∗M̃ ⊗

u∗TN, η⊗u∗h), where u∗TN is the pullback of TN by u and u∗h is the pullback metric. In

local coordinates this becomes

L(u) = 1

2

∫

M̃
ηαβ(z)hij(u(z))∂αu

i(z)∂βu
j(z)

√
|η| dz.

1



The Euler-Lagrange equations for L are given by

1√
|η|
Dα

(√
|η|ηαβ∂βu

)
= 0, (1.1.1)

where D is the pull-back covariant derivative on u∗TN . In local coordinates on N , writing

u = (u1, . . . , un), we can rewrite (1.1.1) as

�ηu
k = −ηαβΓkij(u)∂αui∂βuj, (1.1.2)

where �ηu := −∂ttu+∆gu, and

∆gu :=
1√
|g|
∂α(
√
|g|gαβ∂βu)

is the Laplace-Beltami operator on M . Γkij =
1
2h
kℓ(∂ihℓj + ∂jhiℓ− ∂ℓhij) are the Christoffel

symbols associated to the metric connection on N . We will often study the Cauchy problem

for wave maps in local coordinates. That is, given smooth, finite energy initial data

u0 :M → N,

u1 :M → u∗0TN, such that ∀x, u1(x) ∈ Tu0(x)N.
(1.1.3)

a solution to the Cauchy problem is a smooth map u(t) satisfying (1.1.2) with

~u(0) := (u(0), ∂tu(0)) = (u0, u1).

We remark that we often use the notation ~u(t) to denote the pair ~u(t) = (u(t), ∂tu(t).

Wave maps can also be defined extrinsically. This approach is equivalent to the intrinsic

approach, see for example [68, Chapter 1]. By the Nash-Moser embedding theorem there

exists m ∈ N large enough so that we can isometrically embed (N, h) →֒ (Rm, 〈·, ·〉), where

2



〈·, ·〉 is the Euclidean scalar product. We can thus consider maps u : (M̃, η) → (Rm, 〈·, ·〉)

such that u(t, x) ∈ N for every (t, x) ∈ M̃ . Wave maps can then be defined formally as

critical points of the functional

L(u) = 1

2

∫

M̃
ηαβ

〈
∂αu, ∂βu

〉 √
|η| dz.

One can show that u is a wave map if and only if

�ηu ⊥ TuN. (1.1.4)

From this we can deduce that u satisfies

�ηu = −ηαβS(u)(∂αu, ∂βu), (1.1.5)

where S is the second fundamental form of the embedding N →֒ Rm. For the Cauchy

problem in the extrinsic formulation, we consider initial data

(u0, u1) : (M, g)→ TN,

by which we mean

u0(x) ∈ N →֒ R
m,

u1(x) ∈ Tu0(x)N →֒ R
m ∀ x ∈M.

One can formally establish energy conservation from the extrinsic definition (1.1.4). De-

fine the energy

E(u, ∂tu)(t) :=
1

2

∫

M

(
|∂tu|2 + |dMu|2

)√
|g| dx, (1.1.6)

3



where by dMu we mean the differential of the map u(t) :M → R
m. Observe that�ηu ⊥ TuN

implies that
〈
�ηu, ∂tu

〉
= 0. Hence we have

0 = −
∫

M

〈
�ηu, ∂tu

〉
u(x)

√
|g| dx

=

∫

M
〈∂t∂tu, ∂tu〉u(x)

√
|g| dx−

∫

M

〈
∂α(
√
|g|gαβ∂βu), ∂tu

〉
u(x)

dx

=
1

2

∫

M

d

dt
|∂tu|2

√
|g| dx+

∫

M

〈
gαβ∂βu, ∂α∂tu

〉
u(x)

√
|g| dx

=
d

dt

(
1

2

∫

M

(
|∂tu|2 + |dMu|2

)√
|g| dx

)
.

Integrating in time then gives E(u, ∂tu)(t) = E(u, ∂tu)(0) for any time t.

1.1.1 Wave Maps on a Flat Background and Criticality

The case of wave maps on a Euclidean background (M, g) = (Rd, 〈·, ·〉) has received much

attention in recent years. Here, η is the Minkowksi metric on R1+d and the intrinsic formu-

lation (1.1.1) simplifies to

ηαβDα∂βu = 0 (1.1.7)

For convenience we rewrite the Cauchy problem,

�uk = −ηαβΓkij(u)∂αui∂βuj ,

~u(0) = (u0, u1)

(1.1.8)

with the conserved energy given by

E(~u)(t) = 1

2

∫

Rd
|∂tu|2h + |∇u|2h dx = constant.

4



In this setup, we note that wave maps are invariant under the scaling

~u(t, x) 7→ ~uλ(t, x) = (u (λt, λx) , λ∂tu (λt, λx)) for λ > 0

On the other hand, we have

E(~uλ) = λ2−dE(~u)

In light of the above, the Cauchy problem is called energy critical when d = 2, since the

energy is unaffected by the rescaling of the solution. When we have d > 2, wave maps are

referred to as energy supercritical. Here it is energetically favorable for the solution to shrink

to a point and hence finite time blow-up is expected. The lone energy subcritical case is

d = 1.

The scaling critical norm in d spacial dimensions is Ḣ
d
2 × Ḣ d

2−1(Rd) as we have

‖~uλ(0)‖
Ḣ

d
2×Ḣ

d
2−1(Rd)

= ‖~u(0)‖
Ḣ

d
2×Ḣ

d
2−1(Rd)

.

Thus, the Cauchy problem for (1.1.8) is called critical in Ḣ
d
2 × Ḣ d

2−1(Rd) and called energy-

critical when d = 2.

1.1.2 Equivariant Wave Maps

In the presence of symmetries, such as when the target manifold (N, h) is rotationally sym-

metric, one often singles out a special class wave maps called equivariant wave maps. For

example, for the sphere N = Sd one requires that u ◦ ρ = ρℓ ◦ u where ℓ is a positive integer

and ρ ∈ SO(d) acts on both the domain Rd and target Sd by rotation, in the latter case

about a fixed axis. Equivariant wave maps have been extensively studied, see for example

Shatah [67], Christodoulou, Tahvildar-Zadeh [13, 12], Shatah, Tahvildar-Zadeh [70, 71]. For

5



a summary of these developments, see the book by Shatah and Struwe [68].

In the latter chapters of this thesis we will focus on the case when the target manifold

is the d-sphere, (Sd, h) where h is the round metric on Sd, d = 2, 3, and equivariance class

ℓ = 1. However, several of the results hold in more general settings as will be explained

later. To illustrate how an equivariance assumption leads to a simplification of the Cauchy

problem, we outline the 2d case below. In spherical coordinates,

(ψ, ω) 7→ (sinψ cosω, sinψ sinω, cosψ),

on S2, the metric g is given by the matrix g = diag(1, sin2(ψ)). In the 1-equivariant setting,

we thus require our wave map, u, to have the form

u(t, r, ω) = (ψ(t, r), ω) 7→ (sinψ(t, r) cosω, sinψ(t, r) sinω, cosψ(t, r)),

where (r, ω) are polar coordinates on R2. In this case, the Cauchy problem (1.1.8) reduces

to an equation for the azimuth angle ψ, namely,

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0 (1.1.9)

(ψ, ψt)|t=0 = (ψ0, ψ1).

The conservation of energy reads

E(~u)(t) = E(ψ, ψt)(t) =
∫ ∞

0

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr = const. (1.1.10)

Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(t, 0) = mπ and ψ(t,∞) = nπ for all t ∈ I, where m,n are fixed integers. This requirement

splits the energy space into disjoint classes according to this topological condition. The wave

map evolution preserves these classes.
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1.1.3 History

Wave maps have been studied extensively over the past few decades and we give a brief

and noninclusive overview of some of the significant developments here. In the subsequent

chapters we will review the relevant history in more detail.

In the energy super-critical case, d ≥ 3, Shatah [67] showed that self-similar blow-up can

occur for solutions of finite energy. In the energy critical case, d = 2, there is no self similar

blow-up as demonstrated by Shatah and Struwe [68]. In the equivariant, energy critical

setting, Struwe [76] proved that if blow-up does occur then the solution must converge, after

rescaling, to a non-constant, co-rotational harmonic map. Recently, Krieger, Schlag, and

Tataru [50], Rodnianski-Sterbenz [63] and Raphael Rodnianski [62] have constructed finite

energy wave maps u : R1+2 → S2 that blow up in finite time.

The well-posedness theory for critical, spherically symmetric wave maps was developed

by Christodoulou and Tahvildar-Zadeh [13, 12], and in the equivariant setting by Shatah and

Tahvildar-Zadeh [70, 71]. In the non-equivariant case, Klainerman and Machedon [39, 40,

41, 42], and Klainerman and Selberg [44, 45], established well-posedness in the subcritical

norm Hs ×Hs−1(Rd) with s > d
2 by exploiting the null-form structure present in (1.1.8).

The first breakthrough in the non-equivariant critical theory, s = d
2 , was accomplished

by Tataru [84, 81], where he proved global well-posedness for smooth data that is small

in the scaling critical Besov space Ḃ
d
2
2,1 × Ḃ

d
2−1
2,1 (Rd) for d ≥ 2. Then, in the ground-

breaking works, [77, 78], Tao proved global well-posedness for wave maps u : R1+d → Sk

for smooth data that is small in the critical Sobolev norm Ḣ
d
2 × Ḣ

d
2−1(Rd) for d ≥ 2.

Later, this result was extended to more general targets by Klainerman and Rodnianski [43],

Krieger [46], [47], [48], Nahmod, Stefanov and Uhlenbeck [58], Shatah and Struwe [69], and

by Tataru [82], [83].

Finally, the difficult large data, energy critical case has been undertaken in a remarkable

series of papers by Krieger and Schlag [49], Sterbenz and Tataru [74], [75], and Tao [79]. In
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particular, these papers show that all smooth finite energy data leads to a unique global and

smooth evolution which scatters to zero in the energy space when the target manifold does

not admit finite energy harmonic maps. Moreover, [74, 75] establish the so-called threshold

conjecture, which states that all wave maps with energy below that of a minimal energy

harmonic map are global in time and scatter. These results will be explained in more detail

in Chapters 5 and Chapter 6 where a refined version of the threshold conjecture is considered

in the case of equivariant energy critical wave maps to S2.

1.1.4 Outline of the Thesis

In this thesis we study the Cauchy problem for wave maps in three distinct settings. The

main results have all appeared in research articles, several of which have been written in col-

laboration with Raphaël Côte, Carlos Kenig, and Wilhelm Schlag in different combinations.

In Chapter 2, we examine wave maps on curved backgrounds. In this case the left-hand-

side of (1.1.2) involves variable coefficients and this makes the problem more challenging.

Indeed, many of the main tools used in the study of dispersive equations, in particular

Strichartz estimates, have their roots in sophisticated techniques from harmonic analysis and,

unfortunately, these tools do not extend easily to the case of variable coefficient equations.

Recently, using phase-space transformations, Metcalfe and Tataru [57] established Strichartz

estimates for free waves on curved backgrounds in the case that the domain is a small

perturbation of Minkowski space. After deducing a slight refinement of these estimates, we

prove small data global well-posedness and scattering in the critical Ḣ
d
2 × Ḣ d

2−1 norm for

wave maps on curved backgrounds in dimension d = 4. The domains considered are small

perturbations of Euclidean space and our results hold for a general class of targets, namely

those with bounded geometry. In particular, we prove the following theorem:

Theorem 1.1.1. [52] Let (N, h) be a smooth, complete, n-dimensional Riemannian man-

ifold without boundary and with bounded geometry. Let (M, g) = (R4, g) with g satisfying
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the asymptotic flatness and smallness conditions to be made precise in (2.1.1)-(2.1.4). Let

(M̃, η) = (R×M, η) with η = diag(−1, g). Then there exists an ε0 > 0 such that for every

(u0, u1) ∈ H2 ×H1((M, g);TN) with

‖(u0, u1)‖Ḣ2×Ḣ1 < ε0, (1.1.11)

there exists a unique global wave map, u : (M̃, η)→ (N, h), with initial data ~u(0) = (u0, u1),

such that ~u ∈ C0(R;H2(M ;N)) × C0(R;H1(M ;TN)). Moreover, u satisfies the global

estimates

‖du‖
L∞
t Ḣ

1
x
+ ‖du‖L2

tL
8
x
. ε0. (1.1.12)

In addition, any higher regularity of the data is preserved.

The proof proceeds via the outline provided by Shatah-Struwe [69] in the case of a flat

background by working in the Coulomb frame. The approach in [69] constituted a significant

simplification of the method used by Tao who established the first global well-posedness

results in the critical norm in high dimensions in [77]. The cases of lower dimensions,

d = 2, 3 are significantly more difficult as the structure, as opposed to only just the size, of

the nonlinearity plays a crucial role in the analysis, see [78]. The content of Chapter 2 has

appeared in [52].

In the remaining chapters, we restrict our attention to equivariant wave maps. The

equations in the equivariant setting are greatly simplified and provide an ideal environment

in which to attempt to understand possible large data dynamics in the presence of stationary

solutions, which are called harmonic maps.

Over the last several years, Kenig and Merle have employed their innovative version of

Bourgain’s induction on energy principle, [6], to obtain global existence and scattering results

for both focusing and defocusing semi-linear wave equations, with additional conditions
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needed in the focusing case as finite time blow-up can occur, see [36], [37]. A fundamental

part of their strategy, which has come to be known as the Kenig-Merle method, involves the

use of the concentration compactness techniques and in particular the profile decomposition

of Bahouri and Gérard, [1]. The concentration compactness procedure, which is rooted in

the underlying symmetries of the problem, has turned out to be extremely versatile, and

has been a key ingredient in the recent classification results of large data dynamics for

semi-linear waves, which includes identifying blow-up mechanisms and describing the long

time behavior of global solutions such as the resolution of solutions into multi-bumps plus

radiation as predicted by what is loosely referred to as the soliton resolution conjecture; see

Duyckaerts, Kenig, Merle [22, 21, 24, 23].

Concentration compactness techniques have recently been applied to the wave maps equa-

tion as well in the groundbreaking work of Krieger, Schlag [49] on the large data scattering

theory for non-equivariant energy critical wave maps to H2.

In Chapters 3 and 4, we use concentration compactness techniques to investigate 1-

equivariant wave maps from 1 + 3–dimensional Minkowski space exterior to a ball and

with S3 as target. To be specific, we consider wave maps u : R × (R3 \ B) → S3 with a

Dirichlet condition on ∂B, i.e., u(∂B) = {N} where N is the north pole. In the 1-equivariant

formulation of this equation, where ψ is the azimuth angle measured from the north pole,

the Cauchy problem reduces to

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0 ∀r ≥ 1,

ψ(t, 1) = 0 ∀ t ≥ 0, (ψ, ψt)|t=0 = (ψ0, ψ1).

(1.1.13)

Any ψ(t, r) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(t,∞) = nπ for all t ∈ I where n ≥ 0 is fixed, giving rise to a notion of degree. Removing the

unit ball gives rise to several striking features, namely, (1) the absence of scaling symmetry

renders the formerly energy-supercritical equation subcritical relative to the energy, and (2)
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it admits infinitely many stationary solutions (Qn, 0), which are harmonic maps indexed by

their topological degree.

This exterior equation (3.1.2) was proposed by Bizon, Chmaj and Maliborski [5] as a

model in which to study the problem of relaxation to the ground states given by the various

equivariant harmonic maps, or the soliton resolution conjecture. In the physics literature,

this model was introduced in [2] as an easier alternative to the Skyrmion equation. Moreover,

[2] stresses the analogy with the damped pendulum which plays an important role in our

analysis. Numerical simulations described in [5] indicate that in each equivariance class ℓ,

and for each topological degree n, every solution scatters to the unique harmonic map that

lies in this class. In [53], together with Schlag we verified this conjecture for the topologically

trivial solutions, i.e., degree n = 0. These solutions start at the north-pole and eventually

return there. For n ≥ 1 we obtained a perturbative result in [53] by proving Strichartz

estimates for the linearized operator around Qn. Later, together with Kenig and Schlag,

[35], we established the full conjecture for all degrees n ≥ 0. This result can be thought of

as a verification of the stable soliton resolution conjecture for this particular equation.

Theorem 1.1.2. [53] [35] Let (ψ0, ψ1) be smooth finite energy data of degree n ≥ 0. Then

there exists a unique and global smooth solution ~ψ(t) to (1.1.13) of degree n with ~ψ(0) =

(ψ0, ψ1). Moreover, ~ψ(t) scatters to (Qn, 0) as t→∞.

The above theorem is proved using the Kenig-Merle concentration compactness/rigidity

method, with the novel aspect of our implementation being the techniques we used in the

rigidity argument. The Kenig-Merle framework can be compartmentalized into three inde-

pendent steps. First, one establishes the theorem for initial data that is close to the ground

state harmonic maps in the energy space via a perturbative method based on Strichartz

estimates. For the second step, referred to as the concentration compactness argument, one

assumes that the theorem fails and then uses concentration compactness type arguments

based on Bahouri-Gerard type profile decompositions to construct a minimal, non-scattering
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solution called the critical element. The key point here is that one can show that the critical

element has a pre-compact trajectory in the energy space. The final step, referred to as the

rigidity argument, involves showing that the critical element cannot possibly exist. For this

part of the argument, we give two completely independent proofs, one that works only in

the degree zero case, and a second that holds for all degrees.

The first rigidity proof, which holds only in the degree 0 case, is based on virial identities,

which arise from contracting the stress energy tensor with appropriate vector fields. This

approach relies heavily on the precise structure of the nonlinearity and hence is extremely

equation-specific. Indeed, in order to prove the degree 0 case without any upper bound

on the energy we demonstrate that the natural virial functional is globally coercive on H.

This requires a detailed variational argument, the most delicate part of which consists of a

phase-space analysis of the Euler-Lagrange equation which uses classical ODE techniques.

The second argument, which holds for all degrees is based on what has come to be known

as the channels of energy method and has its roots in the work of Duyckaerts, Kenig, and

Merle on the quintic, semi-linear wave equation as well as 3d super-critical semi-linear waves;

see [23, 25]. As opposed to the virial approach, this argument is robust with respect to the

nonlinearity at the level of the nonlinear wave under consideration, and relies instead on the

underlying elliptic theory and a new class of estimates, called exterior energy estimates for

the underlying radial free wave.

The idea is to provide an asymptotic lower bound on the energy of free waves exterior

to the light cone with base R > 0 in terms of the free energy of the data outside the ball

of radius R. This estimate fails as stated due to the fact that data (f, 0) and (0, g) with

f(r) = g(r) = r2−d – note that this is the Newton potential – have corresponding solutions

that have vanishing exterior energy for any R > 0. Therefore one must project away from

the plane formed by this data in the energy space to establish a lower bound.

To use these estimates in the nonlinear setting, one then notes that the compactness
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property of the critical element implies that it has vanishing exterior energy for all cones

with base R > 0. Choosing R large enough, the data outside a ball of radius R is small and

the nonlinear and linear evolutions remain close up to a lower order term coming from the

Duhamel integral. One can then use the exterior estimates for the linear evolution to show

that the nonlinear evolution must, in fact, be an elliptic solution that fails to have a crucial

property – here we show that the Dirichlet boundary condition is violated.

Finally, in Chapters 5 and 6, we study energy critical equivariant wave maps to positively

curved targets, in particular to S2. As is the case with more general dispersive equations,

the asymptotic behavior of energy critical wave maps is of particular interest. Here one can

distinguish between the small data and large data theory. Energy critical wave maps with

initial data that have small energy exhibit relatively simple global dynamics as the waves

become asymptotically free under fairly generic assumptions on the target, a phenomena

referred to as scattering. This was established in the non-equivariant case in the landmark

work of Tao, [78] when the target is S2, and later extended to H
2 by Krieger [48], and then

to wide class of targets by Tataru, [83].

On the other hand the dynamical structure for large energy critical wave maps is very

rich, with the geometry of the target playing a decisive role. Negatively curved targets

lead to defocusing type behavior and in a remarkable series of papers global existence and

scattering for all smooth data was established in the non-equivariant case by Krieger and

Schlag, [49], Sterbenz, Tataru [74], [75], and Tao [79].

In the work of Sterbenz and Tataru, [75], the possibility of blow-up was linked to the

existence of nontrivial finite energy stationary solutions, namely harmonic maps, a result

that was previously seen in the simpler equivariant setting by Struwe [76]. For positively

curved targets that do admit harmonic maps, they proved what is referred to as the threshold

conjecture, which states that for all smooth data with energy below the energy of a minimal

energy nontrivial harmonic map, Q, the corresponding evolution is global in time and scat-
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ters. Many questions remain in the case of positively curved targets including understanding

the dynamics when one looks above the threshold, and the results in these chapters are in

this direction in the case of the simpler equivariant model, where explicit blow-up solutions

have been constructed in the important works of Krieger, Schlag, Tataru [50], Raphael,

Rodnianski [62] and Rodnianski, Sterbenz [63].

Here, together with R. Côte, C. Kenig, and W. Schlag, [15], we give a new proof of a

refined version of the threshold conjecture in the equivariant setting for wave maps R1+2 →

S2, based on the concentration compactness/rigidity method of Kenig and Merle. Then,

we provide a classification of the possible dynamics for all degree 1 wave maps with energy

less that 3 times the energy of the unique (up to scaling) harmonic map to the sphere,

Q(r) = 2 arctan(r), a truly large data result; see [15, 16] for the submitted versions of these

results.

We denote by Hn the space of finite energy data of degree n and we note that the unique

harmonic map (Q, 0) ∈ H1 has minimal energy amongst degree 1 maps, with E(Q, 0) = 4.

The following theorem summarizes the main results in Chapters 5 and Chapter 6.

Theorem 1.1.3. [15, 16] Let ~ψ(0) := (ψ0, ψ1) be smooth, finite energy data.

1. Degree 0–threshold: Let E(ψ0, ψ1) < 2E(Q, 0), ~ψ(0) ∈ H0. Then the solution exists

globally, and scatters (energy on compact sets vanishes as t → ∞). For any δ > 0

there exist data of energy < 2E(Q, 0) + δ which blow up in finite time.

2. Degree 1, finite time blowup: Let E(ψ0, ψ1) < 3E(Q, 0), ~ψ(0) ∈ H1. If the solution

ψ(t) blows up at, say, t = 1, then there exists a continuous function, λ : [0, 1)→ (0,∞)

with λ(t) = o(1 − t), a map ~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = E(~ψ) − E(Q, 0), and a

decomposition

~ψ(t) = ~ϕ+ (Q (·/λ(t)) , 0) + oH0
(1) as t→ 1
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3. Degree 1, global solutions: Let E(ψ0, ψ1) < 3E(Q, 0), ~ψ(0) ∈ H1. If the solution

~ψ(t) ∈ H1 exists globally in time then there exists a continuous function, λ : [0,∞)→

(0,∞) with λ(t) = o(t) as t→∞, a solution ~ϕL(t) ∈ H0 to the linearization of (1.1.9)

about ~0, and a decomposition

~ψ(t) = ~ϕL(t) + (Q (·/λ(t)) , 0) + oH0
(1) as t→∞

The degree 0 result follows from the Kenig–Merle method, [36], [37], the novel part of

our implementation being the development of a robust rigidity theory for wave maps with

pre-compact (up to symmetries) trajectories in the energy space. We note that one can

also deduce the degree 0 theorem by considering the work of Sterbenz, Tataru [75], in the

equivariant setting.

The techniques developed by Duyckaerts Kenig and Merle in [22], [24] motivated the

proofs of the degree 1 results, as we used certain elements of their ideology, in particular

concentration compactness techniques. We also relied explicitly on several classical results

in the field of equivariant wave maps. In particular, crucial roles are played by the vanishing

of the kinetic energy proved by Shatah, Tahvildar-Zadeh [70], and Struwe’s bubbling off

theorem, [76], in our finite time blow-up result. Another key ingredient is the new class of

exterior energy estimates for the underlying even-dimensional linear wave equation proved

in [18].

1.1.5 Notation

In what follows we will adopt the convention that f . g means that there exists a constant

C > 0 such that f ≤ Cg. Similarly, f ≃ g will mean that there exist constants c, C > 0

such that cg ≤ f ≤ Cg. We also warn the reader that some notation may change meaning

between chapters. Each chapter is meant to be read on its own and the relevant notation
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for each chapter will be defined within that very chapter.
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CHAPTER 2

WAVE MAPS ON A CURVED BACKGROUND

2.1 Introduction

In this chapter we prove global well-posedness for wave maps on curved backgrounds that are

small perturbations of Euclidean space. In the case of a nonlinear dispersive equation, one

expects that data that is small in the critical norm leads to a global and smooth evolution.

For wave maps in dimensions d ≥ 4 on flat backgrounds, this was established by Tao in

the breakthrough work, [77]. Later the work of Shatah and Struwe in [69] gave a significant

simplification of Tao’s argument in dimensions d ≥ 4, and it is on the methods utilized

in [69], that this present work is based. In [69], Shatah and Struwe consider the Cauchy

problem for wave maps u : R1+d → N with initial data (u0, u1) ∈ H
d
2 × H

d
2−1(Rd, TN)

that is small in the critical norm Ḣ
d
2 × Ḣ d

2−1(Rd, TN) for d ≥ 4. The target manifold N

is assumed to have bounded geometry. Their main result is a proof of the existence of a

unique global solution, (u, u̇) ∈ C0(R;H
d
2 )× C0(R;H

d
2−1). Existence is deduced by way of

the following global a priori estimates for the differential, du, of the wave map:

‖du‖
L∞
t Ḣ

d
2−1
x

+ ‖du‖L2
tL

2d
x

. ‖u0‖
Ḣ

d
2
+ ‖u1‖

Ḣ
d
2−1

In order to prove the above estimates, Shatah and Struwe exploit the gauge invariance

of the wave maps system and introduce the Coulomb frame. This allows one to derive a

system of wave equations for du that is amenable to a Lorentz space version of the endpoint

Strichartz estimates proved in [34]. The connection form, A, associated to the Coulomb

frame on the vector bundle u∗TN appears in the nonlinearity of the wave equation for du,

and estimates to control its size are crucial to the argument. The Coulomb gauge condition

implies that A satisfies a certain elliptic equation, and it is this structure that enables the

proof, for example, of the essential L1tL
∞
x estimates for A, see [69, Proposition 4.1].
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Here, we consider the Cauchy problem for wave maps u : R × M → N , where the

background manifold (M, g) is no longer Euclidean space. We follow the same basic argument

as in [69] and derive a wave equation for the u∗TN -valued 1-form, du, using the Coulomb

gauge as our choice of frame on u∗TN . As the geometry of (M, g) is no longer trivial,

the resulting equation for du is, in its most natural setting, an equation of 1-forms. In

coordinates on M , we can rewrite the equation for du in components, obtaining a system of

variable coefficient nonlinear wave equations. This is the content of Section 2.4.

The main technical ingredients in [69] are elliptic-type estimates for the connection form

A, and the endpoint Strichartz estimates for the wave equation used to control the L∞t Ḣ
d
2−1
x ∩

L2tL
2d
x norm of du. In order to proceed as in [69], but now in the setting of a curved

background manifold, we will need replacements for each of these items.

In what follows, we restrict our attention to the case that the background manifold

(M, g) is (R4, g), with g a small perturbation of the Euclidean metric, as in this case we have

suitable replacements for the technical tools used in [69]. Here we view the equations for

the components of connection form, A, as a system of variable coefficient elliptic equations

and prove elliptic estimates via a perturbative argument; see Proposition 2.3.2. We employ

several tools from the theory of Lorentz spaces to prove the crucial L1tL
∞
x estimates for A.

In order to have suitable Strichartz estimates, we tailor our assumptions on the metric

g so that the variable coefficient wave equations for du are of the type studied by Metcalfe

and Tataru in [57]. We deduce a Lorentz refinement to the Strichartz estimates in [57], see

Section 2.8 below, which we use to prove global a priori estimates for du in Section 2.5.

The global-in-time Strichartz estimates for variable coefficient wave equations in [57]

that we use in the proof of the a priori estimates for du have emerged from Tataru’s method

of using phase space transforms and microlocal analysis to prove dispersive estimates for

variable coefficient dispersive equations. In the case of the variable coefficient wave equation,

the Bargmann transform is used to construct a parametrix that satisfies suitable dispersive
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estimates. Localized energy estimates are then used to control error terms when proving

estimates for the variable coefficient operator. We refer the reader to [85, 86, 88, 87, 89, 90]

and of course to [57], for more details and history. A very brief summary is included in

Section 2.8.

Our main theorem is a global existence and uniqueness result for the Cauchy problem

for wave maps in this setting, with data (u0, u1) that is small in the critical norm Ḣ
d
2 ×

Ḣ
d
2−1(M,TN). The precise statement of the result is Theorem 2.1.1 below.

2.1.1 Geometric Framework

We set (M, g) = (R4, g) with g a small perturbation of the Euclidean metric on R4, satisfying

the following assumptions: Let ε > 0 be a small constant, to be specified later. We will

require

‖g − g0‖L∞ ≤ ε (2.1.1)

‖∂g‖L4,1(R4) . ε (2.1.2)

‖∂2g‖L2,1(R4) . ε (2.1.3)

‖∂kg‖L2(R4) <∞ for k ≥ 3 (2.1.4)

where g0 = diag(1, 1, 1, 1) is the Euclidean metric on R4 and Lp,q(R4) denotes the Lorentz

space. Assumptions (2.1.1)–(2.1.3) are needed in order to prove the elliptic estimates for

the connection form, A, associated to the Coulomb frame in Section 2.3.1. Note that these

assumptions are consistent with, and are, in fact, stronger than the weak asymptotic flatness

conditions specified in Metcalfe and Tataru [57], namely

∑

j∈Z
sup
|x|≃2j

|x|2
∣∣∣∂2g(x)

∣∣∣+ |x| |∂g(x)|+ |g(x)− g0| ≤ ε (2.1.5)
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This will justify our application in Section 2.5 of the Strichartz estimates for variable coeffi-

cient wave equations deduced in [57].

The assumptions in (2.1.4) are needed in order to establish the high regularity local

theory for wave maps. This theory will be used in the existence argument in Section 2.7.

We will also record a few comments regarding the assumptions on the target manifold

(N, h). We will assume that (N, h) is a smooth complete Riemannian manifold, without

boundary that is isometrically embedded into Rm. Following [69], we also assume that N

has bounded geometry in the sense that the curvature tensor, R, and the second fundamental

form, S, of the embedding are bounded and all of their derivatives are bounded.

In the argument that follows, we will assume that either N admits a parallelizable struc-

ture or that N is compact, as we will require a global orthonormal frame for TN in our

argument. Such a frame does not, of course, exist for a general compact manifold. However

if N is compact, by an argument in [32], we can avoid this inconvenience by constructing

a certain isometric embedding J : N →֒ Ñ where Ñ is diffeomorphic to the flat torus T
m

and admits an orthonormal frame. This embedding J is constructed so that u is a wave

map if and only if the composition J ◦ u is a wave map, see [32, Lemma 4.1.2]. This allows

us to work with J ◦ u : M̃ → Ñ instead of with u. Hence we can assume without loss of

generality that the target manifold N admits a global orthonormal frame ẽ = (ẽ1, . . . , ẽn)

for the tangent space TN .

2.1.2 Main Result

The initial data for the Cauchy problem, (u, u̇)|t=0 = (u0, u1), can either be viewed intrin-

sically or extrinsically. In the extrinsic formulation, we will consider initial data

(u0, u1) ∈ (M, g)→ TN (2.1.6)
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by which we mean u0(x) ∈ N →֒ R
m and u1(x) ∈ Tu0(x)N →֒ R

m for almost every x ∈ M .

And we say that (u0, u1) ∈ Hs
e×Hs−1

e (M ;TN) if u0 ∈ Hs(M ;Rm) and u1 ∈ Hs−1(M ;Rm).

The homogeneous spaces Ḣs
e × Ḣs−1

e (M ;TN) are defined similarly. For the definition of the

spaces Hs(M ;Rm) we refer the reader to Section 2.9.1, or to [31].

To view the data intrinsically, we will put to use the parallelizable structure on TN . Let

our initial data be given by (u0, u1) where u0 : M → N and u1 : M → u∗0TN with u1(x) ∈

Tu0(x)N . Observe that u∗0TN inherits a parallelizable structure from TN , see Section 2.3,

and let e = (e1, . . . , en) be an orthonormal frame for u∗TN . Since du0 : TM → u∗TN

we can find a u∗TN -valued 1-form q0 = qa0ea such that du0 = qa0ea. Similarly we can find

qa1 : M → R such that u1 = qa1ea. We then say that (u0, u1) ∈ Hs
i × Hs−1

i (M ;TN) if

qa0 ∈ Hs−1(TM ;R) and qa1 ∈ Hs−1(M ;R) for each 1 ≤ a ≤ n. These norms are further

discussed in Section 2.9.1. Again, the homogeneous versions Ḣs
i ×Ḣs−1

i (M ;TN) are defined

similarly.

In Section 2.3.2, we show that if we choose the frame e to be the Coulomb frame, see

Section 2.3, then the extrinsic and intrinsic approaches to defining the homogeneous Sobolev

norms of our data (u0, u1) are equivalent. This will allow us to use both definitions inter-

changeably in the arguments that follow.

Also in the appendix, Section 2.9.1, we show that the “covariant” Sobolev spaces

Ḣs(M ;N), with (M, g) = (R4, g) with the metric g as in (2.1.1) – (2.1.4) are equivalent to

the “flat” spaces Ḣs((R4, g0);N) with the Euclidean metric g0 on R4. Hence in what follows

we can, when convenient, ignore the non-Euclidean metric g for the purpose of estimating

Sobolev norms, replacing covariant derivatives onM with partial derivatives and the volume

form dvolg with the Euclidean volume form.

We can now re-state the main result in this chapter; see Theorem 1.1.1.

Theorem 2.1.1. Let (N, h) be a smooth, complete, n-dimensional Riemannian manifold

without boundary and with bounded geometry. Let (M, g) = (R4, g) with g as in (2.1.1)–
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(2.1.4) and let (M̃, η) = (R×M, η) with η = diag(−1, g). Then there exists an ε0 > 0 such

that for every (u0, u1) ∈ H2 ×H1((M, g);TN) such that

‖u0‖Ḣ2 + ‖u1‖Ḣ1 < ε0 (2.1.7)

there exists a unique global wave map, u : (M̃, η) → (N, h), with initial data (u, u̇)|t=0 =

(u0, u1), such that (u, u̇) ∈ C0(R;H2(M ;N)) × C0(R;H1(M ;TN)). Moreover, u satisfies

the global estimates

‖du‖
L∞
t Ḣ

1
x
+ ‖du‖L2

tL
8
x
. ε0. (2.1.8)

In addition, any higher regularity of the data is preserved.

We will use a bootstrap argument to prove the global estimates (2.1.8). In what follows

we will make the assumption that there exists a time T such that for a wave map u with

data (u0, u1) as in (2.1.7), the estimates in (2.1.8) hold on the interval [0, T ). That is, we

have

‖du‖
L∞
t ([0,T );Ḣ1

x)
+ ‖du‖L2

t ([0,T );L
8
x)

. ε0 (2.1.9)

We will use this assumption to prove the global-in-time estimates (2.1.8).

Remark 1. The local well-posedness theory for the high regularity Cauchy problem for (1.1.5)

is standard. For example, with (M, g) = (R4, g) for a smooth perturbation g as in (2.1.1)–

(2.1.4), if we have data (u0, u1) ∈ Hs×Hs−1(M ;TN) for say, s > 4 = d
2+2, then the Cauchy

problem for (1.1.5) is locally well-posed. This can be proved using Hs energy estimates and

a contraction argument. The proof relies on the fact that Hs(Rd) is an algebra for s > d
2 ,

and can be found for example in [68].

Remark 2. We have only addressed the case d = 4 case here because this is the only dimension
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where we have applicable Strichartz estimates. In dimension 3, the endpoint L2tL
∞
x estimate

is forbidden. In higher dimensions, d ≥ 4, the initial data is assumed to be small in Ḣs×Ḣs−1

with s = d
2 , but the estimates in [57] only apply when lower order terms are present if we

have s = 2 or s = 1, see [57, Corollary 5 and Theorem 6]. This leaves d = 4 as the only

option, as here d
2 = 2.

2.2 Uniqueness

We use the extrinsic formulation (1.1.5) of the wave maps system to prove uniqueness. The

argument given for uniqueness in [69] adapts perfectly to our case and we reproduce it below

for completeness.

Suppose that (u, u̇) and (v, v̇) are two solutions to (1.1.5) of class H2×H1((R4, g);TN)

such that

(u, u̇)|t=0 = (v, v̇)|t=0 (2.2.1)

In addition, assume that

‖du‖L2
tL

8
x
<∞, ‖dv‖L2

tL
8
x
<∞ (2.2.2)

Set w = u− v. Then w satisfies

�ηw = −ηαβ [S(u)− S(v)](∂αu, ∂βu)− ηαβS(v)(∂αu+ ∂αv, ∂βw)
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By considering the pairing
〈
�ηw, ẇ

〉
and integrating over M we obtain

1

2

d

dt
‖dw‖2L2 =

∫

R4

〈
ηαβ [S(u)− S(v)](∂αu, ∂βu), ẇ

〉√
|g| dx

+

∫

R4

〈
ηαβS(v)(∂αu+ ∂αv, ∂βw), ẇ

〉√
|g| dx

= I(t) + II(t)

Using that S and all of its derivatives are bounded we have

|I(t)| .
∫

R4
|du|2 |w| |dw| dx

. ‖du‖2
L8‖w‖L4‖dw‖L2

. ‖du‖2
L8‖dw‖2L2

with the last inequality following from the Sobolev embedding Ḣ1(R4) →֒ L4(R4).

To estimate II(t), we exploit the fact the S(u)(·, ·) ∈ (TuN)⊥ which gives

〈S(u)(·, ·), ut〉 = 〈S(v)(·, ·), vt〉 = 0.
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This implies that we can rewrite

∣∣∣
〈
ηαβS(v)(∂αu+ ∂αv, ∂βw), ẇ

〉∣∣∣ =
∣∣∣
〈
ηαβS(v)(∂αu+ ∂αv, ∂βw), u̇

〉∣∣∣

=
∣∣∣
〈
ηαβ[S(v)− S(u)](∂αu+ ∂αv, ∂βw), u̇

〉∣∣∣

≤
∣∣∣
〈
ηαβ [S(v)− S(u)](∂αu, ∂βw), u̇

〉∣∣∣

+
∣∣∣
〈
ηαβ [S(v)− S(u)](∂αv, ∂βw), u̇

〉∣∣∣

. (|du|2 + |dv|2) |w| |dw|

Hence we have

|II(t)| . (‖du‖2
L8 + ‖dv‖2L8)‖w‖L4‖dw‖L2 . (‖du‖2

L8 + ‖dv‖2L8)‖dw‖2L2

Putting this together we have

1

2

d

dt
‖dw‖2

L2 . (‖du‖2
L8 + ‖dv‖2L8)‖dw‖2L2

Integrating in t and applying Gronwall’s inequality gives us the uniform estimate

‖dw‖2L∞
t L

2
x
≤ ‖dw(0)‖2L2 · exp(C(‖du‖2L2

tL
8
x
+ ‖dv‖2

L2
tL

8
x
))

which implies uniqueness since dw(0) = 0.
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2.3 Coulomb Frame & Elliptic Estimates

We follow [69] by exploiting the gauge invariance of the wave maps problem and rephrasing

the wave maps equation in terms of the Coulomb frame. As discussed in Section 2.1.1, we

can, without loss of generality, assume that TN is parallelizable, and we choose a global

orthonormal frame ẽ = {ẽ1, . . . , ẽn}. If u : (M̃, η) → (N, h) is a smooth map, then we can

pull back ẽ to an orthonormal frame ē = ẽ ◦ u of u∗TN . Now, let B : R ×M −→ SO(n).

With B we can rotate this frame over each point z ∈ R × M and obtain a new frame

e = (e1, . . . , en), with ea given by

ea = Bbaēb

Observe that we can express the u∗TN -valued 1-form du in this new frame by finding 1-forms

qa = qaαdx
α where qaα = u∗h(∂αu, ea), and writing

du = qaea (2.3.1)

For this frame e we have the associated connection form A. A = (Aab ) is a matrix of 1-forms

obtained in the following way. Given the frame e, we obtain for each s ∈ R a map

Dea : Γ(T ({s}×M)) −→ Γ(u∗TN)

X 7−→ DXea

where D is the pull back connection on u∗TN and where for a vector bundle E → M ,

Γ(E) denotes the space of smooth sections. Equivalently, we can view Dea as a section of

T ∗M ⊗ u∗TN . We can express this map in terms of the connection form A which can be
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viewed as the matrix of 1-forms so that

Dea = Aba ⊗ eb

Dea(X) = DXea = Aba(X)eb

Observe that this is the same as viewing Dea as a
(1
1

)
-tensor on T ∗M ⊗ u∗TN → M in the

sense that Dea : TM × u∗T ∗N → R is a bilinear map over C∞(M) . Then we have that

Aba = u∗h(Aca ⊗ ec, eb)

where u∗h is the metric on u∗TN . In local coordinates, Aba is given by Aba,αdx
α where the

coefficients of Aba are defined by Aba,α = Aba(∂α). Hence if X is given in local coordinates by

X = Xα∂α we have that DXea = XαAba,αeb.

One should also note that for a fixed coordinate α, the matrix (Aab,α) is antisymmetric.

That is, Aab,α = −Aba,α. To see this, simply differentiate the orthogonality condition of our

orthonormal frame, h(ea, eb) = δab. This gives

0 = D (h(ea, eb))

= h(Dea, eb) + h(ea, Deb)

= Aba + Aab

The curvature tensor, F, on u∗TN can be represented in term of the connection form A.

Viewed as a 2-form, F is given by F = dA+A∧A. We can also represent F in terms of the

curvature tensor on TN . In local coordinates, F is given by Fαβ = R(u)(∂αu, ∂βu).

As in [32, Lemma 4.1.3], we choose our rotation B so that at for each s ∈ R, B(s, ·)
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minimizes the functional

Λ(B(s)) =

∫

M

n∑

a,b=1

g−1(Aba(s), A
b
a(s)) dvolg

=

∫

M

n∑

a,b=1

gαβAba,α(s)A
b
a,β(s)

√
|g| dx

This gives us a frame e that we call the Coulomb frame. The Euler-Lagrange equations for

this minimization problem are given by

1√
|g|
∂α(
√
|g|gαβAβ) = 0 (2.3.2)

The above equation implies that δA = 0 since the exterior co-differential, δ, on 1-forms is

given in local coordinates by

−δA =
1√
|g|
∂α(
√
|g|gαβAβ) = 0 (2.3.3)

Since the Hodge Laplacian ∆ on M is given by ∆ = dδ + δd, (2.3.3) implies the following

differential equation of 1-forms for A

∆A = δdA

Using the fact that the curvature form F satisfies F = dA+A∧A we can rewrite the above

equation for A as

∆A = δ(F − A ∧ A) (2.3.4)
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In local coordinates we can write this in components as

(∆A)γ = −[∇α(F − A ∧ A)]αγ (2.3.5)

where ∇α = gαβ∇β and ∇ denotes the Levi-Civita connection on M .

Observe that (2.3.5) can be written as system of elliptic equations for the components of

A in local coordinates on M . We record this fact in the following lemma:

Lemma 2.3.1. The components of A satisfy the following system of elliptic equations

gij∂i∂jAγ − gijΓkij∂γAk + ∂γg
ij∂jAi − ∂γ(gijΓkij)Ak

= gij∂j
(
Fiγ − [Ai, Aγ ]

)
(2.3.6)

where the Γkij =
1
2g
km
(
∂igmj + ∂jgim − ∂mgij

)
denote the Christoffel symbols on M .

Proof. We first expand the left-hand side of (2.3.5)

(∆A)γ = (dδA)γ + (δdA)γ

= −∂γ(gij(∇jA)i)− gij(∇jdA)iγ

= −
(
∂γg

ij
)
(∇jA)i − gij∂γ

(
∂jAi − ΓkijAk

)

− gij
(
∂j(dA)iγ − Γkij(dA)kγ − Γkγj(dA)ik

)

= −gij∂i∂jAγ −
(
∂γg

ij
)
(∇jA)i + gij∂γ

(
ΓkijAk

)

+ gijΓkij(dA)kγ + gijΓkγj(dA)ik
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Similarly, we expand the right-hand side of (2.3.5)

−[∇i(F −A ∧A)]iγ = −gij∂j
(
Fiγ −

[
Ai, Aγ

])
+ gijΓkij

(
Fkγ −

[
Ak, Aγ

])

+ gijΓkjγ (Fik − [Ai, Ak])

Equating the left and right hand sides and recalling that (dA)ij = Fij − [Ai, Aj ] we have

gij∂i∂jAγ +
(
∂γg

ij
)
(∇jA)i − gij∂γ

(
ΓkijAk

)
= gij∂j

(
Fiγ −

[
Ai, Aγ

])

which is exactly (2.3.6).

2.3.1 Connection Form Estimates

With the metric g as in (2.1.1)–(2.1.3) and ε small enough, we can use the elliptic sys-

tem (2.3.6) to establish a variety of estimates for the connection form A. In particular, we

can prove the following proposition which will be essential when deriving a priori estimates

for wave maps.

Proposition 2.3.2. Let (N, h) be a n-dimensional manifold smoothly embedded in Rm with

bounded geometry and a bounded parallelizable structure. Let u : (R × R4, η) → (N, h) be a

smooth map with η = diag(−1, g) and g as in (2.1.1)–(2.1.3). Moreover, assume the bootstrap

hypothesis,

sup
t∈[0,T )

‖du‖
Ḣ1 . ε0 (2.3.7)

Then, for each t ∈ R, there exists a unique frame e = (e1, . . . , en) for u∗TN with the

associated connection form, A, satisfying the uniform-in-time estimates

(i) ‖A‖L4 . ‖du‖H1 . ε0
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(ii) ‖A‖
Ẇ 1,83

. ‖du‖L8‖du‖Ḣ1

(iii) ‖A‖
Ẇ 2,85

. ‖du‖L8‖du‖Ḣ1

(iv) ‖A‖L∞ . ‖du‖2
L8,2(R4)

as long as ε0 is small enough. Also, the frame e, and hence A, depend continuously on t.

Above, L8,2 = L8,2(R4) denotes the Lorentz space.

The estimates are deduced via a perturbative method as the assumptions in (2.1.1)–

(2.1.3) imply that the left hand side of (2.3.6) is a slight perturbation of the flat Laplacian

on R4. To simplify notation, in what follows we consider an elliptic operator of the form

L := gij∂i∂j + bj∂j + c (2.3.8)

and the elliptic system

LAℓ = gij∂jGiℓ (2.3.9)

where Giℓ := Fiℓ − [Ai, Aℓ], and b and c satisfy

‖b‖L4,1(R4) . ε (2.3.10)

‖∂b‖L2,1(R4) . ε (2.3.11)

‖c‖L2,1(R4) . ε (2.3.12)

Since Γkij =
1
2g
kℓ(∂igℓj+∂jgiℓ−∂ℓgij), it is clear that the left-hand side of (2.3.6) is essentially

of this form.

We begin by recalling some basic elliptic estimates. Let g0 denote the Euclidean metric
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on R4 and let L0 := g
ij
0 ∂i∂j denote the flat Laplacian on R4. Then we have

‖A‖
Ẇ s+2,p . ‖L0A‖Ẇ s,p (2.3.13)

for every s ∈ R and for every 1 < p <∞. With (2.3.13) we can prove the following elliptic

estimates for the connection form A.

Lemma 2.3.3. Let A be the connection form associated to the Coulomb frame e. Then, if

ε is small enough, we have the following uniform-in-time estimates

(i) ‖A‖
Ẇ 1,p . ‖[A,A]‖Lp + ‖F‖Lp if 1 < p < 4

(ii) ‖A‖
Ẇ 2,p . ‖[A,A]‖

Ẇ 1,p + ‖F‖Ẇ 1,p if 1 < p < 2.

where F denotes the curvature tensor on u∗TN .

Proof. Let L0 and L be defined as above and write LA = L0A+ (L− L0)A. Hence,

‖LA‖
Ẇ s,p ≥ ‖L0A‖Ẇ s,p − ‖(L− L0)A‖Ẇ s,p

We can use (2.3.13) to obtain

‖A‖
Ẇ s+2,p . ‖LA‖

Ẇ s,p + ‖(L− L0)A‖Ẇ s,p (2.3.14)

for every s ∈ R and for 1 < p <∞. To prove (i), set s = −1 above to get

‖A‖
Ẇ 1,p . ‖LA‖

Ẇ−1,p + ‖(L− L0)A‖Ẇ−1,p

.
∥∥∥g−1 ∂G

∥∥∥
Ẇ−1,p

+ ‖b ∂A‖
Ẇ−1,p

+ ‖cA‖
Ẇ−1,p +

∥∥∥(g−1 − g−10 )∂2A
∥∥∥
Ẇ−1,p
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We claim that

∥∥∥g−1 ∂G
∥∥∥
Ẇ−1,p

. ‖G‖Lp

This follows from the dual estimate

∥∥∥g−1f
∥∥∥
Ẇ 1,p′

. ‖f‖
Ẇ 1,p′ (2.3.15)

To prove (2.3.15) observe that we have

∥∥∥g−1f
∥∥∥
Ẇ 1,p′

.
∥∥∥∂(g−1f)

∥∥∥
Lp′

.
∥∥∥(∂g−1)f

∥∥∥
Lp′

+
∥∥∥g−1(∂f)

∥∥∥
Lp′

.
∥∥∥∂g−1

∥∥∥
L4
‖f‖Lr +

∥∥∥g−1
∥∥∥
L∞
‖∂f‖

Lp′

. ‖f‖
Ẇ 1,p′

where the last inequality follows from (2.1.2) and the Sobolev embedding Ẇ 1,p′ →֒ Lr since

we have 1
r = 1

p′
− 1

4 . Next, we assert that

∥∥∥(g−1 − g−10 )∂2A
∥∥∥
Ẇ−1,p

. ε
∥∥∥∂2A

∥∥∥
Ẇ−1,p

. ε ‖A‖
Ẇ 1,p

Again, this follows from a duality argument. Observe that

‖(g−1 − g−10 )f‖
Ẇ 1,p′ . ‖∂(g−1 − g−10 )f‖

Ẇ 1,p′ + ‖(g−1 − g−10 )∂f‖
Ẇ 1,p′

. ‖∂g−1‖L4‖f‖Lr + ‖(g−1 − g−10 )‖L∞‖∂f‖
Lp′

. ε‖f‖
Ẇ 1,p′

where the last inequality is again due to (2.1.1), (2.1.2), and Sobolev embedding since 1
r =
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1
p′
−1

4 . To estimate ‖b ∂A‖
Ẇ−1,p , we use Sobolev embedding, Hölder’s inequality and (2.3.10).

Indeed,

‖b ∂A‖
Ẇ−1,p . ‖b ∂A‖Ls

. ‖b‖L4‖∂A‖Lp

. ε ‖A‖
Ẇ 1,p

where 1
p = 1

s − 1
4 . Finally, we show that

‖cA‖
Ẇ−1,p . ε ‖A‖

Ẇ 1,p

To see this, we again use Sobolev embedding and (2.3.12) to obtain

‖cA‖
Ẇ−1,p . ‖cA‖Ls

. ‖c‖L2‖A‖Lr

. ε‖A‖
Ẇ 1,p

with 1
p = 1

s − 1
4 ,

1
s = 1

2 +
1
r , and

1
r = 1

p − 1
4 . Putting this all together we are able to conclude

that

‖A‖
Ẇ 1,p . ‖G‖Lp + ε ‖A‖

Ẇ 1,p

For ε small enough, this implies (i), since G = F − A ∧ A.

To prove (ii) we set s = 0 in (2.3.14), and use (2.1.1), (2.3.10), (2.3.12), and Sobolev
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embedding to obtain

‖A‖
Ẇ 2,p .

∥∥∥g−1 ∂G
∥∥∥
Lp

+ ‖b ∂A‖Lp + ‖cA‖Lp +
∥∥∥(g−1 − g−10 )∂2A

∥∥∥
Lp

.
∥∥∥g−1

∥∥∥
L∞
‖∂G‖Lp + ‖b‖L4‖∂A‖Ls + ‖c‖L2‖A‖Lr

+
∥∥∥g−1 − g−10

∥∥∥
L∞
‖∂2A‖Lp

. ‖G‖
Ẇ 1,p + ε‖A‖

Ẇ 2,p

where
1

s
=

1

p
− 1

4
and

1

r
=

1

p
− 2

4
. This proves (ii) as long as ε is small enough.

With the elliptic estimates in Lemma 2.3.3 we can prove Proposition 2.3.2 (i), (ii)

and (iii).

Proof of Proposition 2.3.2 (i). This will follow from Lemma 2.3.3 (i) with p = 2, a contrac-

tion argument at one fixed time, and then a bootstrap argument to conclude the uniform-in-

time estimates. We note that this argument also proves the existence of a unique Coulomb

frame e with the associated connection form A having small L4 norm.

To carry out the contraction argument we fix a time t0 and we set X to be the space

X := {A ∈ Ḣ1 ∩ L4}

with the norm

‖A‖X := ‖A‖L4 + ‖A‖Ḣ1

Of course by Sobolev embedding we have ‖A‖X . ‖A‖
Ḣ1. We set Xε0 to be

Xε0 := {A ∈ X : ‖A‖X ≤ ε0}
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Define a map Φ that associates to each Ã ∈ Xε0 the solution A to the linear elliptic problem

LAℓ = gij∂i(Fjℓ − [Ãj , Ãℓ]) (2.3.16)

The existence of such a solution follows easily by the method of continuity, the key estimate

here being

‖A‖
Ḣ1 . ‖LA‖

Ḣ−1

which was obtained in the course of proving Lemma 2.3.3 (i) with p = 2. We will show that

if ε0 and ‖du‖Ḣ1 are small enough, then Φ : Xε0 → Xε0 and that Φ is a contraction mapping

on this space. To see that Φ : Xε0 → Xε0 we use Sobolev embedding and Lemma 2.3.3 (i)

to obtain

‖A‖X . ‖A‖
Ḣ1 . ‖[Ã, Ã]‖L2 + ‖F‖L2

Recall that we can write Fαβ = R(u)(∂αu, ∂βu) where R is the Riemannian curvature tensor

on N . Hence

‖A‖X . ‖Ã‖2L4 + ‖R‖L∞‖du‖2L4

≤ C1‖Ã‖2X + C2‖du‖2Ḣ1 ≤ ε0

as long as ε0 and ‖du‖
Ḣ1 are small enough. Next we show that Φ : Xε0 → Xε0 is a

contraction mapping. Let Ã1, Ã2 ∈ Xε0 and let A1, A2 be the associated solutions to (2.3.16).
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Then A1 −A2 is a solution to

L(A1
ℓ − A2

ℓ ) = gij∂i([Ã
1
j , Ã

1
ℓ ]− [Ã2

j , Ã
2
ℓ ])

and hence we have estimates

‖A1 − A2‖X . ‖A1 − A2‖
Ḣ1 . ‖[Ã1, Ã1]− [Ã2, Ã2]‖L2

. ‖Ã1 − Ã2‖L4‖Ã1‖L4 + ‖Ã1 − Ã2‖L4‖Ã2‖L4

. ε0‖Ã1 − Ã2‖X

which proves that Φ is a contraction. Hence Φ has a unique fixed point A = A(t0) which

solves (2.3.9) such that

‖A(t0)‖L4 . ε0

To obtain this estimate for all times t with a uniform constant we again use Lemma 2.3.3 (i)

with p = 2 to obtain for any time

‖A‖L4 . ‖A‖
Ḣ1 . ‖[A,A]‖L2 + ‖F‖L2

. ‖A‖2
L4 + ‖du‖2Ḣ1

As long as ‖du‖
Ḣ1 is small enough we can use a bootstrap argument, with ‖A(t0)‖ . ε0 as

our base case, to absorb the ‖A‖2
L4 term on the left hand side and obtain

‖A‖L4 . ε0

for all times t, as desired.
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Proof of Propostion 2.3.2 (ii) and (iii). To prove (ii) we set p = 8
3 in Lemma 2.3.3 (i),

giving

‖A‖
Ẇ 1,83

. ‖[A,A]‖
L

8
3
+ ‖F‖

L
8
3

First we claim that ‖[A,A]‖
L

8
3
. ε‖A‖

Ẇ 1,83
and this term can thus be absorbed on the

left-hand side above. Indeed,

‖[A,A]‖
L

8
3
. ‖A‖L4‖∂A‖L8

. ε0‖A‖
Ẇ 1,83

where the last inequality follows from Sobolev embedding and the previous estimate

‖A‖L4 . ε.

Next we recall that F = R(u)(du, du) and hence we have

‖F‖
L

8
3
. ‖du‖L8‖du‖L4 . ‖du‖L8‖du‖Ḣ1

Putting this together implies gives

‖A‖
Ẇ 1,83

. ‖du‖L8‖du‖Ḣ1

as long as ε is small enough.

To prove (iii) we proceed in a similar fashion. We set p = 8
5 in Lemma (2.3.3) (ii). This
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gives

‖A‖
Ẇ 2,85

. ‖[A,A]‖
Ẇ 1,85

+ ‖F‖
Ẇ 1,85

First we observe that ‖[A,A]‖
Ẇ 1,85

. ε‖A‖
Ẇ 2,85

and this term can thus be absorbed on the

left-hand side above. In fact,

‖[A,A]‖
Ẇ 1,85

. ‖A∂A‖
L

8
5

. ‖A‖L4‖∂A‖
L

8
3

. ε0‖A‖
Ẇ 2,85

where the last inequality follows from Sobolev embedding and the previous estimate

‖A‖L4 . ε.

Next observe that

∂γFαβ = (∂R(u))(∂γu, ∂αu, ∂βu) +R(u)(∂γ∂αu, ∂βu) +R(u)(∂αu, ∂γ∂βu)
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Hence by Sobolev embedding and the assumption that ‖du‖
Ḣ1 . ε0,

‖∂F‖
L

8
5
. ‖∂R(u)‖L∞‖du‖L4‖du‖L4‖du‖L8 + ‖R‖L∞‖∂du‖L2‖du‖L8

. ‖du‖
Ḣ1‖du‖L8

Putting this all together we have for small enough ε0 that

‖A‖
Ẇ 2,85

. ‖du‖
Ḣ1‖du‖L8 . ‖du‖L8

establishing (iii).

To prove the pointwise estimates for the connection form in Propostion 2.3.2 (iv), we will

need a few facts about Lorentz Spaces, Lp,r(R4), including Sobolev embedding for Lorentz

spaces and the Calderon-Zygmund theorem for Lorentz spaces. These facts, along with a

few others, are reviewed in the appendix, see Section 2.9.3.

Now, again let L0 = g
ij
0 ∂i∂j be the flat Laplacian on R4 and let K = L−10 be convolution

with k(x) =
c

|x|2
, the fundamental solution for L0 in R4. We can then write

A = KLA+K(L0 − L)A

In order to prove Proposition 2.3.2 (iv), we will need the following preliminary estimates

for ∂A.

Lemma 2.3.4. Let A denote the connection form associated to the Coulomb frame as in

Proposition 2.3.2. Then, the following estimates hold uniformly in time:

‖∂A‖L4,1 . ‖du‖2
L8,2 + ε‖A‖L∞
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Proof. With K, L and L0 as above, write

A = KLA+K(L0 − L)A

Then

KLA = k ∗ gij∂iGj

= (∂ik) ∗ gijGj − k ∗ (∂igij)Gj

Then, formally, we have

∂α(KLA) = (∂α∂ik) ∗ gijGj − (∂αk) ∗ (∂igij)Gj (2.3.17)

Since, ∂α∂ik is a Calderon-Zygmund kernel, we can use the Calderon-Zygmund theorem for

Lorentz spaces, see Theorem 2.9.5 below, and Hölder’s inequality for Lorentz spaces, see

Lemma 2.9.3 (i) below, to obtain

‖(∂α∂ik) ∗ gijGj‖L4,1 . ‖gijGj‖L4,1

. ‖[A,A]‖L4,1 + ‖F‖L4,1

. ‖A‖2
L8,2 + ‖du‖2L8,2

Using the fact that Lp,r ⊂ Lp,s for r < s, Sobolev embedding for Lorentz spaces, see

Lemma 2.9.4 below, and Proposition 2.3.2 (iii), we have

‖A‖L8,2 . ‖A‖
L8,85

. ‖A‖
Ẇ 2,85

. ‖du‖L8‖du‖Ḣ1
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Then using the bootstrap assumption that ‖du‖
Ḣ1 ≪ 1 we can conclude that

‖A‖L8,2 . ‖du‖L8 . ‖du‖L8,2 (2.3.18)

Inserting this estimate above we can conclude that

‖(∂α∂ik) ∗ gijGj‖L4,1 . ‖du‖2
L8,2

Next, we can use Young’s inequality for Lorentz spaces, see Lemma 2.9.3 (ii) below, to show

‖(∂αk) ∗ (∂igij)Gj‖L4,1 . ‖∂αk‖
L

4
3 ,∞
‖∂igijGj‖L2,1

. ‖∂igij‖L4,∞‖Gj‖L4,1

. ‖A2‖L4,1 + ‖F‖L4,1

. ‖du‖2
L8,2

where above we have used (2.1.2). Now, to deal with the error term K(L0 − L)A, write

(L0 − L)A = εij∂i∂jA− bj∂jA− cA where εij(x) = g
ij
0 (x)− gij(x). Then we have

K(L0 − L)A = k ∗ εij∂i∂jA− k ∗ bj∂jA− k ∗ cA

= (∂ik) ∗ εij∂jA− k ∗ (∂iεij)∂jA− k ∗ bj∂jA− k ∗ cA

Hence, formally we have

∂α(K(L0 − L)A) = (∂α∂ik) ∗ εij∂jA− (∂αk) ∗ (∂iεij)∂jA (2.3.19)

− (∂αk) ∗ bj∂jA− (∂αk) ∗ cA

And as before, we use the Calderon-Zygmund theorem on the first term on the right-hand
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side above to get

‖(∂α∂ik) ∗ εij∂jA‖L4,1 .
∑

i

‖εij∂jA‖L4,1 . ε‖∂A‖L4,1

We estimate the other three terms on the right-hand side of (2.3.19) using Young’s inequality

for Lorentz spaces as follows

‖(∂αk) ∗ (∂iεij)∂jA‖L4,1 . ‖∂αk‖
L

4
3 ,∞
‖(∂iεij)∂jA‖L2,1

. ‖∂iεij‖L4,∞‖∂jA‖L4,1

. ε‖∂A‖L4,1

the last inequality following from the fact that ∂iε
ij = ∂ig

ij ∈ L4,∞. We also have

‖∂αk ∗ cA‖L4,1 . ‖∂αk‖
L

4
3 ,∞
‖cA‖L2,1

. ‖c‖L2,1‖A‖L∞

. ε‖A‖L∞

Above we have used the fact that

|∂αk| ∼
1

|x|3
∈ L4

3 ,∞(R4), ‖c‖L2,1 . ε,

see Lemma 2.9.2, (iii) and (2.3.12). And lastly,

‖(∂αk) ∗ bj∂jA‖L4,1 . ‖∂αk‖
L

4
3 ,∞
‖bj∂jA‖L2,1

. ‖b‖L4∞‖∂A‖L4,1

. ε‖∂A‖L4,1
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which follows by (2.3.10). Putting this all together establishes that

‖∂A‖L4,1 . ‖du‖2L8,2 + ε‖A‖L∞ + ε‖∂A‖L4,1

which, for small ε, implies that

‖∂A‖L4,1 . ‖du‖2
L8,2 + ε‖A‖L∞

as desired.

Now we are able to prove Proposition (2.3.2) (iv).

Proof of Proposition 2.3.2 (iv). Since A = KLA+K(L0−L)A, it suffices to show that for

every t the following two estimates hold:

‖KLA‖L∞ . ‖du‖2
L8,2 (2.3.20)

‖K(L0 − L)A‖L∞ . ‖du‖2
L8,2 + ε‖A‖L∞ (2.3.21)

Observe that we can write

KLA = k ∗ gij∂iGj

= (∂ik) ∗ gijGj − k ∗ (∂igij)Gj
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By Lemma 2.9.3 (iii), we have that

‖(∂ik) ∗ gijGj‖L∞ . ‖∂ik‖
L

4
3 ,∞
‖gijGj‖L4,1

. ‖[A,A]‖L4,1 + ‖F‖L4,1

. ‖A‖2L8,2 + ‖F‖2L4,1

. ‖du‖2
L8,2

where we have used (2.3.18) in the last inequality. Similarly,

‖k ∗ (∂igij)Gj‖L∞ . ‖k‖L2,∞‖∂igijGj‖L2,1

. ‖∂igij‖L4,∞‖Gj‖L4,1

. ‖G‖L4,1

. ‖du‖L8,2

This proves (2.3.20). To establish the error estimate (2.3.21) we again write

K(L0 − L)A = k ∗ εij∂i∂jA− k ∗ bj∂jA− k ∗ cA

= ∂ik ∗ εij∂jA− k ∗ (∂iεij)∂jA− (∂jk) ∗ bjA+ k ∗ (∂jbj)A

− k ∗ cA

= ∂ik ∗ εij∂jA− ∂jk ∗ (∂iεij)A+ k ∗ (∂j∂iεij)A− (∂jk) ∗ bjA (2.3.22)

+ k ∗ (∂jbj)A− k ∗ cA

where as before εij = g
ij
0 − gij. Now, we can use Lemma 2.3.4 to control the first term on
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the right above

‖∂ik ∗ εij∂jA‖L∞ . ‖∂ik‖
L

4
3 ,∞
‖εij∂jA‖L4,1

. ε‖∂A‖L4,1

. ‖du‖2
L8,2 + ε‖A‖L∞

The other terms in (2.3.22) are estimated as follows:

‖∂jk ∗ (∂iεij)A‖L∞ . ‖∂jk‖
L

4
3 ,∞
‖(∂iεij)A‖L4,1

.
∑

j

‖∂igij‖L4,1‖A‖L∞

. ε‖A‖L∞

We also have

‖k ∗ (∂i∂jεij)‖L∞ . ‖k‖L2,∞‖(∂j∂iεij)A‖L2,1

. ‖(∂j∂iεij)‖L2,1‖A‖L∞

. ε‖A‖L∞

The remaining terms are handled exactly in the same manner as these last two, using (2.3.10),

(2.3.11) and (2.3.12) as needed. This proves (2.3.21). Finally, putting everything together,

we have

‖A‖L∞ . ‖KLA‖L∞ + ‖K(L0 − L)A‖L∞ . ‖du‖2
L8,2 + ε‖A‖L∞
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which, for ε small enough, gives

‖A‖L∞ . ‖du‖2L8,2

as claimed.

2.3.2 Equivalence of Norms

In this section we again set (M, g) = (R4, g) with g as in (2.1.1)-(2.1.4). Now that we have

settled Proposition 2.3.2, we can show that in the case that e is the Coulomb frame, the

extrinsic Ḣs
e norms of du are equivalent to the intrinsic Ḣs

i norms of q = qaea where q is

defined, as in (2.3.1), by

du = qaea

In the appendix, Section 2.9.1, we show using (2.1.1)-(2.1.4), that Ḣs
e ((M, g);N) is equiv-

alent to Ḣs
e ((R

4, g0);N) and that Ḣs
i ((M, g);N) is equivalent to Ḣs

i ((R
4, g0);N). Therefore,

it suffices to ignore the perturbed metric g on R
4 and show that

‖du‖
Ḣs

e ((R
4,g0);N)

≃ ‖q‖
Ḣs

c ((R
4,g0);N)

(2.3.23)

This will follow from Proposition 2.3.2. We proceed exactly as in [69, Section 4.3]. We

reproduce their argument here. For each t, since e is an orthonormal frame, we have

|du|2 = |q|2 =

4∑

α=0

|qα|2

This implies that for 1 ≤ p ≤ ∞ that the Lp norm of du is well defined and independent of

the choice of frame and coincides with the “extrinsic” Lp norm of du. However, this “gauge”
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independence is in general lost when we consider norms of higher derivatives of du as the

connection form A appears when relating the intrinsic and extrinsic representations, and A,

in general, cannot be controlled. In the case of the Coulomb frame, we can use the smallness

provided by Proposition 2.3.2 to prove the desired equivalence of Sobolev norms. To see

this, let ψ be a section of u∗TN whose components in terms of the Coulomb frame e are

given by

ψ = Qaea = Qe (2.3.24)

By the previous discussion we have ‖ψ‖L2 = ‖Q‖L2. Recall that we can represent covariant

derivatives of ψ in terms of the extrinsic partial derivatives of ψ and the second fundamental

form by

∂kψ = Dkψ + S(u)(∂ku, ψ) (2.3.25)

Using the representation (2.3.24) we also have

Dkψ = (∂kQ+ AQ)e (2.3.26)

Combining (2.3.25) and (2.3.26), we obtain

∂kψ = ∂kQe+ AQe +B(u)(∂ku,Qe)

We can then use Proposition 2.3.2 (i), Sobolev embedding and the boundedness of the second
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fundamental form to obtain

∣∣‖∂ψ‖L2 − ‖∂Q‖L2

∣∣ . ‖AQ‖L2 + ‖duQ‖L2 (2.3.27)

. (‖A‖L4 + ‖du‖L4)‖Q‖L4

. ε‖∂Q‖L2

This proves equivalence of the H1 norms of Q and ψ. Interpolation then provides equivalence

for the Hs norms for all 0 ≤ s ≤ 1. To conclude the equivalence of all the Hs norms of q

and du, we apply the above argument to ψ = ∇ℓdu for all ℓ ∈ N.

Note that a similar argument also proves the equivalence of the Hs norms of ψ if we

instead used covariant derivatives on u∗TN . That is, we can also show that

‖DQ‖L2 ≃ ‖∂Q‖L2 = ‖Q‖
Ḣ1

i (R
4;N)

≃ ‖Q‖
Ḣ1

i (M ;N)
(2.3.28)

We will use (2.3.28) in Section 2.6 when we prove that higher regularity of wave maps is

preserved by the evolution.

2.4 Wave Equation for du

In this section show that for any Riemannian manifold (M, g), if u : R×M → N is a smooth

wave map, then we can derive wave equations of 1-forms for du. The wave equations of

1-forms imply a system of variable coefficient wave equations for the components of du. We

emphasize that the content of this section holds for any Riemannian manifold (M, g) and

not just the special case (M, g) = (R4, g) with g as in (2.1.1)–(2.1.4).

We begin by expressing du ∈ Γ(T ∗M̃ ⊗ u∗TN) in terms of the Coulomb frame e as in
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Proposition 2.3.2, by finding u∗TN -valued one-forms q = qαdx
α so that

du = qaea (2.4.1)

Here qaα = u∗h (∂αu, ea). Assuming that u is a wave map, we derive a wave equation of

1-forms for q. In what follows we let � = dδ + δd denote the Hodge Laplacian on p-forms

over M̃ = R×M , where d is the exterior derivative on M̃ and δ is the adjoint to d.

Lemma 2.4.1. Let u : (M̃, η) → (N, h) be a smooth wave map. And let q = du be the

representation of du in the Coulomb frame e as in (2.4.1). Then we have δ qc = Aca,α η
αβ qaβ .

Proof. This follows from the fact that u is a wave map. We have that u is wave map if and

only if

1√
|η|
Dα

(√
|η| ηαβ∂βu

)
= 0 ⇐⇒ 1√

|η|
Dα

(√
|η| ηαβqaβea

)
= 0

Hence, we have

0 =
1√
|η|
Dα

(√
|η| ηαβqaβea

)

=
1√
|η|
∂α

(√
|η| ηαβqcβ

)
ec + ηαβqaβA

c
a,αec

=− δqcec + Aca,αη
αβ qaβ ec

Therefore,

δ qc = Aca,α η
αβ qaβ

as desired.
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Lemma 2.4.2. Let u : (M̃, η)→ (N, h) be a smooth map and let q = du be the representation

of du in the Coulomb frame as in (2.4.1). Then we have dqc = −Acb ∧ qb.

Proof. First we claim that Dα(∂βu)−Dβ(∂αu) = 0. To see this recall that

Dα(∂βu)
k = ∂α∂βu

k + Γkij(u)∂αu
j∂βu

i

Then the claim follows from the fact that ∂α∂βu
k = ∂β∂αu

k and the fact that Γkij = Γkji.

The above implies that

Dα(q
a
β ea)−Dβ(qaα ea) = 0

Now, recalling that the A is the connection form for the frame e we have that

0 = Dα(q
b
β eb)−Dβ(qbα eb)

=
(
∂αq

c
β + Acb,α q

b
β − ∂βqcα − Acb,β qbα

)
ec

=
(
∂αq

c
β − ∂βqcα + Acb,α q

b
β − Acb,β qbα

)
ec

=
(
(dqc)αβ − (Acb ∧ qb)βα

)
ec

and the lemma follows.

Lemma 2.4.2 shows that in local coordinates on M̃ we have that (dqc)αβ dx
α ∧ dxβ =

(Acb∧qb)βα dxα∧dxβ . We can abbreviate this by writing dq = −A∧q. Hence, by Lemma 2.4.1

and Lemma 2.4.2 we obtain the following equation for q

�q = d(ηαβAαqβ) + δ(−A ∧ q) (2.4.2)
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This is a system of wave equations for the u∗TN valued 1-form q. In coordinates we can

express the operator δ on a 2-form ω in terms of Levi-Civita connection, ∇, on R ×M as

follows

(δω)β = −(∇αω)αβ (2.4.3)

where ∇α = ηαβ∇β . Hence, in components, the equations for q become

(�q)γ = ∂γ(η
αβAαqβ) +∇α(A ∧ q)αγ (2.4.4)

By expanding the right-hand side of (2.4.4) we obtain the following equation for q.

Proposition 2.4.3. Let u : (M̃, η) → (N, h) be a smooth wave map. Let q = du be the

representation of du in the Coulomb frame, e as in (2.4.1). Then q satisfies the following

wave equation of 1-forms, written in components as

(�q)γ = Fγα q
α + Aα A

α qγ + (∇αA)α qγ + 2Aα (∇αq)γ (2.4.5)

where F is the curvature tensor on u∗TN .

Remark 3. Proposition 2.4.3 essentially amounts to differentiating the wave map equation

(1.1.1) and then expressing the result in terms of the Coulomb frame. We emphasize that

in order to obtain (2.4.5) we must begin with a wave map u.
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Proof. We begin by expanding the right-hand side of (2.4.4)

(�q)γ = ∂γ(η
αβAαqβ) +∇α(A ∧ q)αγ

= (∂γη
αβ)Aαqβ + ηαβ(∂γAα)qβ + ηαβAα(∂γqβ) + ηαβ

(
∇βA ∧ q

)
αγ

+ ηαβ
(
A ∧ ∇βq

)
αγ

= (∂γη
αβ)Aαqβ + ηαβ(∂γAα)qβ + ηαβAα(∂γqβ) + ηαβ(∇βA)α qγ

− ηαβ(∇βA)γ qα + ηαβAα(∇βq)γ − ηαβAγ(∇βq)α

Now, observe that

ηαβ(∂γAα)qβ = ∂αAγq
α + Fγαq

α − AγAαqα + AαAγq
α

and by Lemma 2.4.1 we have

−ηαβAγ(∇βq)α = −Aγ(∇αq)α = Aγδq = AγAαq
α

Also, Lemma 2.4.2 implies

ηαβAα(∂γqβ) = ηαβAα(dq)γβ + ηαβAα∂βqγ

= ηαβAα(A ∧ q)βγ + ηαβAα∂βqγ

= AαA
αqγ − AαAγqα + ηαβAα∂βqγ
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Hence,

(�q)γ = Fγαq
α + AαA

αqγ + (∇αA)α qγ + Aα(∇αq)γ + ηαβAα∂βqγ

+ (∂γη
αβ)Aαqβ + ηαβ∂βAγqα − ηαβ(∇βA)γ qα

Next observe that

ηαβAα∂βqγ = ηαβAα(∇βq)γ + ηαβAαΓ
σ
βγqσ

and

ηαβ∂βAγqα − ηαβ(∇βA)γqα = ηαβΓσβγAσqα

Therefore,

(�q)γ = Fγαq
α + AαA

αqγ + (∇αA)α qγ + 2Aα(∇αq)γ

+ (∂γη
αβ)Aαqβ + ηαβAαΓ

σ
βγqσ + ηαβΓσβγAσqα

Finally, we claim that

(∂γη
αβ)Aαqβ + ηαβAαΓ

σ
βγqσ + ηαβΓσβγAσqα = 0 (2.4.6)

This follows from the fact that Γσβγ = 1
2η
σδ(∂βηγδ + ∂γηβδ − ∂δηβγ) and that ∂γη

αβ =

−ηαδ(∂γηδσ)ησβ, the latter statement being the general fact that for an invertible matrix
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G(x) we have ∂iG
−1 = −G−1∂iGG−1. To show (2.4.6), we write

(∂γη
αβ)Aαqβ + ηαβAαΓ

σ
βγqσ + ηαβΓσβγAσqα

=
(
∂γη

αβ + ηασΓ
β
σγ + ησβΓασγ

)
Aαqβ

=
(
−ηαδησβ∂γηδσ

)
Aαβ

+

(
1

2
ηασηβδ(∂σgδγ + ∂γgσδ − ∂δgσγ)

)
Aαqβ (2.4.7)

+

(
1

2
ησβηαδ(∂σgδγ + ∂γgσδ − ∂δgσγ)

)
Aαqβ

= 0

where the last line follows by swapping σ and δ in line (2.4.7) above. Therefore,

(�q)γ = Fγαq
α + AαA

αqγ + (∇αA)α qγ + 2Aα(∇αq)γ

as claimed.

Next, we examine the left hand side of (2.4.2). We claim that for a 1-form q, we can

write �q = q̈ +∆q, where ∆ denotes the Hodge Laplacian on the Riemannian manifold M

and q̈ is the 1-form given in local coordinates by q̈(t, x) = q̈α(t, x) dx
α.

Lemma 2.4.4. We can express � in local coordinates on R×M by

(�q)γ = q̈γ + (∆q)γ (2.4.8)

where here ∆ is the Hodge Laplacian on 1-forms over M .

Remark 4. Despite the appearance of the + sign in expression (2.4.8), the expression � =
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∂2t +∆ is, in fact, a hyperbolic operator as we will see in Proposition 2.4.6. The sign in (2.4.8)

is simply due to our sign convention for the Hodge Laplacian ∆. Our convention is such

that for a 0-form f , ∆f = −∆gf where ∆g =
1√
|g|
∂i(
√
|g|gij∂j) is the Laplace-Beltami

operator on M .

Proof. Let η = diag(−1, g) denote the metric on M̃ = R ×M . In the following argument,

0 ≤ α, β, γ ≤ d will be indices denoting coordinates on R×M and 1 ≤ i, j ≤ d will be indices

denoting coordinates on M . Also we denote by dM , (resp. δM ), the exterior differential,

(resp. co-differential), on M . It follows that

(�q)γ = (dδq)γ + (δdq)γ

= −∂γ
(
ηαβ(∇βq)α

)
− ηαβ(∇βdq)αγ

= −∂γ
(
−(∇0q)0 + gij(∇jq)i

)
+ (∇0dq)0γ − gij(∇jdq)iγ

= ∂γ∂0q0 − ∂γ
(
gij(∇jq)i

)
+ ∂0∂0qγ − ∂γ∂0q0 − gij(∇jdq)iγ

= q̈γ + (dMδM q)γ + (δMdMq)γ

= q̈γ + (∆q)γ

Above we have used the fact that the Christoffel symbols Γδαβ = 0 if either α, β, or δ are

equal to 0.

We can derive a coordinate representation for the Hodge Laplacian ∆ on 1-forms in terms

of the Laplace-Beltrami operator, ∆g, on functions plus lower order terms.

Lemma 2.4.5. The Hodge Laplacian on 1-forms q can be written in coordinates as

(∆q)γ = −∆gqγ + 2gijΓkjγ∂iqk + ∂γ(g
ijΓkij)qk (2.4.9)

Proof. Here we will let d and δ denote the exterior differential and exterior co-differential on

56



M . Then,

(∆q)γ = (dδq)γ + (δdq)γ

= −∂γ
(
gij(∇jq)i

)
− gij

(
∇jdq

)
iγ

= −(∂γgij)(∇jq)i − gij∂γ(∂jqi − Γkjiqk)

− gij
(
∂j(dq)iγ − Γkji(dq)kγ − Γkjγ(dq)ik

)

= −(∂γgij)∂jqi + ∂γ(g
ijΓkji)qk − gij∂j∂iqγ + gijΓkji∂kqγ

+ gijΓkjγ∂iqk − gijΓkjγ∂kqi

Recalling that ∆gqγ = gij∂j∂iqγ − gijΓkji∂kqγ and that ∂γg
ij = −gik∂γgkmgmj we have

then that

(∆q)γ = −∆gqγ + ∂γ(g
ijΓkji)qk + gik∂γgkmg

mj∂jqi + gijΓkjγ∂iqk − gijΓkjγ∂kqi

Finally observe that

gik∂γgkmg
mj∂jqi + gijΓkjγ∂iqk − gijΓkjγ∂kqi = 2gijΓkjγ∂iqk

Therefore

(∆q)γ = −∆gqγ + 2gijΓkjγ∂iqk + ∂γ(g
ijΓkij)qk

which is exactly (2.4.9).

Combining the results of the previous two lemmas with Proposition 2.4.3 gives us a

system of nonlinear wave equations for the components of q. The following Proposition is

the main result of this section and will be used to prove a priori estimates for the differential,

du, of a wave map u.
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Proposition 2.4.6. Let u : (M̃, η) → (N, h) be a smooth wave map. Let q = du be the

representation of du in the Coulomb frame, e as in (2.4.1). Then, the components of q

satisfy the following system of variable coefficient wave equations:

q̈γ −∆gqγ + 2gijΓkjγ∂iqk + ∂γ(g
ijΓkij)qk

= Fγα q
α + AαA

α qγ + (∇αA)α qγ + 2Aα (∇αq)γ (2.4.10)

Expanding the term ∆gqγ , the left-hand side of the above system becomes

q̈γ − gij∂i∂jqγ + gijΓkij∂kqγ + 2gijΓkjγ∂iqk + ∂γ(g
ijΓkij)qk (2.4.11)

2.5 A Priori Estimates

To derive a priori bounds for wave maps u we use the Strichartz estimates for variable

coefficient wave equations proved in [57]. We require a Lorentz space refinement of the

estimates in [57] obtained by a rephrasing in terms of Besov spaces and real interpolation.

Equation (2.4.10), the decay assumptions on the metric g specified in (2.1.1)–(2.1.3), and [57,

Theorems 4 and 6] imply the following estimates for q:

‖q‖
L2
t Ḃ

1
6
6,2

+ ‖∂q‖L∞
t L

2
x
. ‖q[0]‖

Ḣ1×L2 + ‖H‖L1
tL

2
x

(2.5.1)

where Hγ := Fγα q
α + AαA

α qγ + (∇αA)α qγ + 2Aα (∇αq)γ is the nonlinearity in (2.4.10).

There are a few things to note. The first is that we have extended the result in [57] to

the case of a system of variable coefficient equations as q is the solution to such a system.

However this extension is immediate as the methods in [57] allow us to treat the lower order

terms in (2.4.10) perturbatively, and the principle part of our operator is diagonal. Hence

the system of equations for q in (2.4.10) falls directly into the class of equations that are
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treated in [57] because of the assumptions in (2.1.1)–(2.1.3). The second observation is that

a Besov norm appears on the left-hand side in (2.5.1). This refinement can be obtained by

an easy modification of the proof of Lemma 19 in [57]. For completeness we carry out this

refinement in Section 2.8.3.

To obtain a Lorentz space version of estimate (2.5.1) we use the Besov space embedding

into Lorentz spaces, see Lemma 2.9.4, with d = 4, s = 1
6 , q = 6, p = 8 and r = 2 which gives

Ḃ
1
6
6,2(R

4) →֒ L8,2(R4)

This, together with the estimate in (2.5.1), gives

‖q‖
L2
tL

8,2
x

+ ‖∂q‖L∞
t L

2
x
. ‖q[0]‖

Ḣ1×L2 + ‖H‖L1
tL

2
x

(2.5.2)

We use Proposition 2.3.2, together with Sobolev embedding to estimate the various terms

in H . In local coordinates on M , H is given by

Hγ = ηγαFγβ qα + ηαβAαAβ qγ + ηαβ(∂βAα) qγ (2.5.3)

+ 2ηαβAβΓ
δ
αγqδ + 2ηαβAβ (∂αqγ)

Hence, at any time t ∈ [0, T ), (where T is chosen as in (2.3.7), for the sake of our bootstrap
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argument), we have

‖H‖L2
x
. ‖Fq‖L2

x
+ ‖A2q‖L2

x
+ ‖(∂A)q‖L2

x
+ ‖ΓAq‖L2

x
+ ‖A∂q‖L2

x
(2.5.4)

. ‖F‖L4
x
‖q‖L4

x
+ ‖A2‖

L
8
3
x

‖q‖L8
x
+ ‖∂A‖

L
8
3
x

‖q‖L8
x

+ ‖Γ‖L4
x
‖A‖L8

x
‖q‖L8

x
+ ‖A‖L∞

x
‖∂q‖L2

x

. ‖q‖2L8
x
‖∂q‖L2

x
+ ‖A‖

Ẇ
1,83
x

‖q‖L8
x
+ ‖q‖2

L
8,2
x
‖∂q‖L2

x

. ‖q‖2
L
8,2
x
‖∂q‖L2

x

where in the third inequality above we have used Proposition 2.3.2 and Sobolev embedding

to show that ‖A2‖
L

8
3
. ‖A‖L4‖A‖L8 . ‖A‖

Ẇ 1,83
. This implies that we have the estimate

‖q‖
L2
t ([0,T );L

8,2
x )

+ ‖∂q‖L∞
t ([0,T );L2

x)
. ‖q[0]‖

Ḣ1×L2 (2.5.5)

+ ‖q‖2
L2
t ([0,T );L

(8,2)
x )
‖∂q‖L∞

t ([0,T );L2
x)

. ‖q[0]‖
Ḣ1×L2

+

(
‖q‖

L2
t ([0,T );L

(8,2)
x )

+ ‖∂q‖L∞
t ([0,T );L2

x)

)3

By the equivalence of the extrinsic and intrinsic norms of du = q, see Section 2.3.2, we can

show

‖q[0]‖
Ḣ1×L2 . ‖du0‖Ḣ1 + ‖u1‖Ḣ1 . ε0 (2.5.6)

Hence as long as ε0 is sufficiently small, we can use a bootstrap/continuity-trapping argument

to absorb the cubic term,

(
‖q‖L2([0,T );L(8,2)) + ‖∂q‖L∞([0,T );L2)

)3
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on the left-hand side in (2.5.5) and obtain the global in time estimate

‖q‖L2L8,2 + ‖∂q‖L∞L2 . ‖du0‖Ḣ1 + ‖u1‖Ḣ1 (2.5.7)

Using again the equivalence of the relevant extrinsic norms of du and intrinsic norms of q,

see Section 2.3.2, and recalling that ‖du‖L2L8 ≤ ‖du‖L2L8,2, we obtain the desired global a

priori bounds which we record in the following proposition:

Proposition 2.5.1. Let (M̃, η) = (R × R4, η), where η = diag(−1, g), and g satisfies the

conditions (2.1.1)–(2.1.3). Let u : (M̃, η) → (N, h) be a smooth wave map with initial data

(u0, u1) satisfying (2.1.7). Then du satisfies the following global, a priori estimates

‖du‖L2
tL

8
x
+ ‖du‖

L∞
t Ḣ

1
x
. ‖du0‖Ḣ1 + ‖u1‖Ḣ1 . ε0 (2.5.8)

2.6 Higher Regularity

In this section we show that higher regularity of the data is preserved. In particular, we

show that if we begin with initial data, (u0, u1) ∈ Hs × Hs−1((R4, g), TN) for any s ≥ 2,

such that (2.1.7) holds, then the Hs × Hs−1 norm of the solution, (u(t), u̇(t)), to (1.1.1),

is finite for any time t. This will allow us to immediately deduce global existence of wave

maps with data (u0, u1) ∈ Hs ×Hs−1 satisfying (2.1.7) for s ≥ 5, as any local solution to

the Cauchy problem can then be extended past any finite time, T , using the high regularity

local theory with data (u(T ), u̇(T )), which is finite in Hs ×Hs−1 due to the results in this

section. We note that the a priori estimates, (2.5.8), and in particular the global control of

‖du‖L2
tL

8
x
, will play a key role in the argument. We formulate the main result of this section

in the following proposition:

Proposition 2.6.1. Let (M̃, η) = (R × R4, η), where η = diag(−1, g), and g satisfies the

conditions (2.1.1)–(2.1.3). Let u : (M̃, η) → (N, h) be a solution to (1.1.1) with initial
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data (u0, u1) that is small in the sense of (2.1.7). Suppose in addition that (u0, u1) ∈

Hs×Hs−1((R4, g), TN) with s ≥ 2. Then for any time T , the Hs×Hs−1((R4, g), N) norm

of the solution (u(T ), u̇(T )) is finite. In particular,

sup
0≤t≤T

‖(u(t), u̇(t))‖Hs×Hs−1 ≤ CT ‖u[0]‖Hs×Hs−1 (2.6.1)

where the constant, CT , depends on T and ε0.

To prove Proposition 2.6.1, we begin by differentiating (1.1.1) covariantly. Let 1 ≤ γ ≤ 4

be a space index and let q = du be the representation of du in the Coulomb frame. Then,

recalling that DαDβ −DβDα = Fαβ , we have

0 =Dγ

(
1√
|η|
Dα(

√
|η|ηαβqβ)

)

=−Dγ (Dtqt) +Dγ

(
1√
|g|
Dα(

√
|g|gαβqβ)

)

=−DtDtqγ +
1√
|g|
Dα(

√
|g|gαβDγqβ)

+ Fγαη
αβqβ + ∂γ(g

αβ)Dαqβ + ∂γ

(
1√
|g|
∂α(
√
|g|gαβ)

)
qβ

This implies that q satisfies the equation

DtDtqγ −
1√
|g|
Dα(

√
|g|gαβDβqγ)

= Fγαη
αβqβ + ∂γ(g

αβ)Dαqβ − ∂γ
(
gαρΓ

β
αρ

)
qβ (2.6.2)
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Pairing this equation with gγδDtqδ as sections of u∗TN →M and integrating over M gives

∫

M

〈
DtDtqγ −

1√
|g|
Dα(

√
|g|gαβDγqβ), gγδDtqδ

〉
√
|g| dx

=

∫

M

〈
Fγαη

αβqβ, g
γδDtqδ

〉√
|g| dx+

∫

M

〈
∂γ(g

αβ)Dαqβ , g
γδDtqδ

〉√
|g| dx

−
∫

M

〈
∂γ

(
gαρΓ

β
αρ

)
qβ , g

γδDtqδ

〉√
|g| dx

Integrating the second term on the left by parts gives

1

2

d

dt
‖Dq‖2L2 = −

∫

M
gαβ∂α(g

γδ)
〈
Dγqβ , Dtqδ

〉√
|g| dx

+

∫

M
gαβgγδ

〈
Dγqβ, Fαtqδ

〉√
|g| dx

+

∫

M
ηαβgγδ

〈
Fγαqβ, Dtqδ

〉√
|g| dx

+

∫

M
∂γ(g

αβ)gγδ
〈
Dαqβ, Dtqδ

〉√
|g| dx

−
∫

M
∂γ

(
gαρΓ

β
αρ

)
gγδ

〈
qβ , Dtqδ

〉√
|g| dx

where we define

‖Dq‖2
L2 :=

∫

M
gγδ

〈
Dγqt, Dδqt

〉√
|g| dx (2.6.3)

+

∫

M
gαβgγδ

〈
Dγqβ , Dαqδ

〉√
|g| dx
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Hence,

1

2

d

dt
‖Dq‖2L2 . ‖∂g‖L∞‖Dq‖2L2 + ‖F‖L4‖q‖L4‖Dq‖L2 (2.6.4)

+ ‖∂2g‖L4‖q‖L4‖Dq‖L2

. ‖Dq‖2
L2‖q‖2L8 + ‖Dq‖2L2

Integrating in time gives

‖Dq(t)‖2
L2 ≤ ‖Dq(0)‖2L2 + C

∫ t

0
‖Dq(s)‖2

L2(‖q(s)‖2L8 + 1) ds

Hence by Gronwall’s inequality we have

‖Dq(t)‖2
L2 ≤ ‖Dq(0)‖2L2exp

(
C

∫ t

0
(‖q(s)‖2

L8 + 1) ds

)
(2.6.5)

≤ ‖Dq(0)‖2L2exp
(
C(‖q‖2L2L8 + t)

)

≤ ‖Dq(0)‖2
L2exp (C(ε0 + t))

The last inequality follows from the global a priori bounds, (2.5.8), proved in the previous

section.

As explained in Section 2.3.2, see (2.3.27) and (2.3.28), the inequality in (2.6.5) is equiv-

alent to a bound on (u, u̇) in Ḣ2(M ;N) × Ḣ1(M ;N). We thus obtain a bound on (u, u̇)

in H2(M ;N) × H1(M ;N) by combining the above with the conservation of energy and

the simple L2 estimates obtained by the fundamental theorem of calculus and Minkowksi’s

inequality

‖u(t)‖L2 ≤ ‖u(0)‖L2 + t‖∂tu(t)‖L2 (2.6.6)
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Remark 5. Of course, we already have proved an even stronger result than (2.6.5) in the

previous section where we showed that, in fact, ‖q(t)‖
Ḣ1 . ε0 for any time t where the

wave map u is defined. We have gone through the trouble in proving (2.6.5) here in order

to establish the technique required to prove bounds on higher derivatives of q below.

To obtain bounds in H3(M ;N)×H2(M ;N) and in H4(M ;N)×H3(M ;N) we proceed

in exactly the same manner as above, differentiating (2.6.2) two more times and obtaining

wave equations for Dκqδ and for DµDκqδ . Roughly, these are of the form

DtDtDκqγ −
1√
|g|
Dα

(√
|g|gαβDβDκqγ

)
= Dκ(η

αβFγαqβ) (2.6.7)

+ lower order terms

and

DtDtDµDκqγ −
1√
|g|
Dα

(√
|g|gαβDβDµDκqγ

)
=

= DµDκ(η
αβFγαqβ) + lower order terms (2.6.8)

Proceeding as above, we pair (2.6.7) with gκιgγδDtDιqδ, and we pair (2.6.8) with

gµνgκιgγδDtDνDιqδ

and integrate over M to obtain for ℓ = 1, 2

1

2

d

dt
‖Dℓ+1q‖2

L2 .

ℓ+1∑

k=1

‖Dkq‖2
L2 + ‖Dℓ(ηFq)‖L2‖Dℓ+1q‖L2 (2.6.9)
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We claim that (2.6.9) implies the estimate

1

2

d

dt
‖Dℓ+1q‖2

L2 .

ℓ+1∑

k=1

‖Dkq‖2
L2 +



ℓ+1∑

k=1

‖Dkq‖2
L2


 ‖q‖2

L8 (2.6.10)

In order to deduce (2.6.10) from (2.6.9), we need the following lemma:

Lemma 2.6.2. For any time t and for ℓ = 1, 2 we have

‖Dℓ(ηFq)‖L2 .

ℓ+1∑

k=1

‖Dkq‖L2‖q‖2L8 (2.6.11)

Proof. In what follows we will freely use the equivalence of norms explained in Section 2.3.2.

For ℓ = 1, we have ∂(ηFq) = ∂ηFq + η∂Fq + ηF∂q. Schematically, recall that we have

F = R(u)(q, q) and hence ∂F = (∂R(u))(q, q, q) + 2R(u)(∂q, q). Hence we have

‖∂(ηFq)‖L2 . ‖∂η‖L4‖q3‖L4 + ‖∂R(u)‖L∞‖q‖L4‖q3‖L4 (2.6.12)

+ ‖R(u)‖L∞‖∂q‖L4‖q2‖L4

. ‖q3‖L4 + ‖q‖Ḣ1‖q3‖L4 + ‖D2q‖L2‖q‖2L8

Finally we claim that ‖q3‖L4 . ‖D2q‖L2‖q‖2L8. This follows from the multiplicative Sobolev

inequality, see [26, pg. 24]. Indeed,

‖q3‖L4 .

3∏

i=1

‖q‖Lpi .

3∏

i=1

‖D2q‖1−θi
L2 ‖q‖θiL8 . ‖D2q‖L2‖q‖2L8 (2.6.13)

as long as we set 1
p1

+ 1
p2

+ 1
p3

= 1
4 ,

1
pi

= θi
8 and θ1 + θ2 + θ3 = 2. For example, we can set

pi = 12 and θi =
2
3 for i = 1, 2, 3.
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For ℓ = 2 we have

∂2(ηFq) = ∂2ηFq + η∂2Fq + ηF∂2q + 2∂η∂Fq + 2∂ηF∂q + 2η∂F∂q

And we have

∂2F = (∂2R(u))(q, q, q, q) + 5(∂R(u))(∂q, q, q) + 2R(u)(∂2q, q) + 2R(u)(∂q, ∂q)

Hence,

‖∂2(ηFq)‖2L . ‖∂2ηFq‖L2 + ‖∂η∂Fq‖L2 + ‖∂ηF∂q‖L2 (2.6.14)

+ ‖ηF∂2q‖L2 + ‖η∂F∂q‖L2 + ‖η∂2Fq‖L2 (2.6.15)

The first three terms on the right-hand side of (2.6.14) all have derivatives hitting η and can

be controlled as follows

‖∂2ηFq‖L2 + ‖∂η∂Fq‖L2 + ‖∂ηF∂q‖L2 . ‖∂2η‖L4‖Fq‖L4 + ‖∂η‖L∞‖∂Fq‖L2

+ ‖∂η‖L∞‖F∂q‖L2

. ‖q3‖L4 + ‖∂R(u)‖L∞‖q‖L4‖q3‖L4

+ ‖R(u)‖L∞‖∂q‖L4‖q2‖L4

+ ‖∂q‖L4‖q2‖L4

. ‖D2q‖L2‖q‖2L8

where the last line is deduced via the same argument as in (2.6.12) and (2.6.13). To estimate

the first term in (2.6.15) we observe that

‖ηF∂2q‖L2 . ‖F‖L4‖∂2q‖L4 . ‖D3q‖L2‖q‖2L8
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For the last two terms in (2.6.15) we have

‖η∂F∂q‖L2 + ‖η∂2Fq‖L2 . ‖(∂R)(u)‖L∞‖q3∂q‖L2 (2.6.16)

+ ‖R(u)‖L∞‖q(∂q)2‖L2

+ ‖R(u)‖L∞‖q2∂2q‖L2

+ ‖(∂2R)(u)‖L∞‖q5‖L2

. ‖q‖L4‖q‖2L16‖∂q‖L8 + ‖q‖L8‖∂q‖2
L

16
3

+ ‖q‖2
L8‖∂2q‖L4 + ‖q‖2L8‖q‖3L12

The multiplicative Sobolev inequality then implies

‖q‖16 . ‖D3q‖
1
3
L2‖q‖

2
3
L8

‖∂q‖L8 . ‖D3q‖
1
3
L2‖q‖

2
3
L8

‖∂q‖
L

16
3
. ‖D3q‖

1
2
L2‖q‖

1
2
L8

‖q‖L12 . ‖D3q‖
1
3
L2‖q‖

2
3
L4

Plugging these into (2.6.17), and using Sobolev embedding followed by the a priori bounds

‖q‖
L∞Ḣ1 . ε0, we get

‖η∂F∂q‖L2 + ‖η∂2Fq‖L2 . ‖q‖Ḣ1‖D3q‖L2‖q‖2L8

. ‖D3q‖L2‖q‖2L8

Putting this all together we conclude

‖∂2(ηFq)‖L2 .
(
‖D2q‖L2 + ‖D3q‖L2

)
‖q‖2L8
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as desired.

Now, inserting the conclusion in Lemma 2.6.2 into (2.6.9) we have for ℓ = 1, 2

1

2

d

dt
‖Dℓ+1q‖2L2 .



ℓ+1∑

k=1

‖Dkq‖2L2



(
‖q‖2L8 + 1

)
(2.6.17)

Together with (2.6.4) this implies for ℓ = 1, 2 that

1

2

d

dt

ℓ+1∑

k=1

‖Dkq‖2L2 .




ℓ+1∑

k=1

‖Dkq‖2L2




(
‖q‖2L8 + 1

)
(2.6.18)

Integrating in time, applying Gronwall’s inequality and using the a priori estimates

‖q‖L2L8 . ε0,

gives

ℓ+1∑

k=1

‖Dkq(t)‖2
L2 ≤



ℓ+1∑

k=1

‖Dkq(0)‖2
L2


 exp (C(ε0 + t)) (2.6.19)

for ℓ = 1, 2. This implies that the H3(M ;N) × H2(M ;N) (resp. H4(M ;N) ×H3(M ;N))

norm of the solution (u, u̇) remains finite for all time assuming the data (u0, u1) is bounded

in H3(M ;N)×H2(M ;N), (resp. H4(M ;N)×H3(M ;N)).

To deal with higher derivatives, s ≥ 5, we note that (2.6.19) implies that

q(t) ∈ H3 →֒ L∞x ,

and hence we can bootstrap the preceding argument, in particular Lemma 2.6.2, to all higher

derivatives. For the global existence proof to come in the next section, we only need to do

the case s = 5 as we have a local well-posedness theory for (1.1.2) at this regularity, see for
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example [68, Chapter 5].

2.7 Existence & Proof of Theorem 2.1.1

In this section, we the complete the proof of Theorem 2.1.1. We begin by establishing

the existence statement in Theorem 2.1.1. The argument here follows exactly as in [69].

As explained in Section 2.9.2, we can find a sequence of smooth data (uk0 , u
k
1) ∈ C∞ ×

C∞(M ;TN) such that (uk0 , u
k
1)→ (u0, u1) in H

2 ×H1(M ;TN) as k →∞. Using the high

regularity, local well-posedness theory, we can find smooth local solutions uk to the Cauchy

problem (1.1.1) with data (uk0, u
k
1) satisfying

‖uk0‖Ḣ2 + ‖uk1‖Ḣ1 < ε0 (2.7.1)

for large enough k. Then, by the a priori bounds in Proposition 2.5.1 and the regularity

results in Proposition 2.6.1, these local solutions uk can be extended as smooth solutions

of (1.1.1) for all time satisfying the uniform in k, global-in-time estimates

‖duk‖
L∞Ḣ1 + ‖duk‖L2L8 . ‖uk0‖Ḣ2 + ‖uk1‖Ḣ1 . ε0 (2.7.2)

for large enough k. To see this, suppose that the smooth local solution uk exists on the

time interval [0, T ). Then, by Proposition 2.5.1 and Proposition 2.6.1 we have, say, that the

H5 × H4 norm of (uk(T ), u̇k(T )) is finite. Hence, we can apply the high regularity local

well-posedness theory again to the Cauchy problem with data (uk(T ), u̇k(T )) obtaining a

positive time of existence, T1. By the uniqueness theory, this solution agrees with uk, thereby

extending uk to the interval [0, T + T1). This implies that uk is, in fact a global solution, as

it can always be extended.

Now, by (2.7.2), we can find a subsequence, uk such that uk ⇁ u weakly in H2
loc. We
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also have

‖du‖
L∞Ḣ1 + ‖du‖L2L8 . ‖u0‖Ḣ2 + ‖u1‖Ḣ1 . ε0 (2.7.3)

By Rellich’s theorem, we can find a further subsequence so that duk → du pointwise almost

everywhere. It follows that u is a global solution to (1.1.1) with data (u0, u1). We have now

completed the proof of Theorem 2.1.1. We summarize the entire proof below.

Proof of Theorem 2.1.1. In Proposition 2.5.1 we established the global a priori bounds

(2.1.8) for smooth wave maps (u, u̇) with initial data (u0, u1) that satisfies (2.1.7). Now,

given data (u0, u1) ∈ H2×H1((R4, g), TN) satisfying (2.1.7) the above argument concludes

the existence of a global wave map (u, u̇) ∈ C0(R;H2 ×H1). Proposition 2.5.1, and in par-

ticular the global control of the L2tL
8
x norm of du allowed us to deduce the global regularity

result, Proposition 2.6.1, which not only drives the existence proof above, but also shows

that higher regularity of the data is preserved. Finally, the global control of the L2tL
8
x norm

of du validates the uniqueness proof in Section 2.2.

2.8 Linear Dispersive Estimates for Wave Equations on a

Curved Background

In this section we outline the linear dispersive estimates for variable coefficient wave equations

established by Metcalfe and Tataru in [57]. We review a portion of the argument in [57] with

the necessary extensions needed to prove (2.5.1). It is suggested that the reader refer to [57]

when reading this section as here we detail only the parts where changes have been made

to suit our needs. In order to facilitate this joint reading we will try to use as much of the

same notation as possible. We begin with a brief summary.

We say that (ρ, p, q) is a Strichartz pair if 2 ≤ p ≤ ∞, 2 ≤ q <∞, and if (ρ, p, q) satisfies
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the following two conditions

1

p
+
d

q
=
d

2
− ρ (2.8.1)

1

p
+
d− 1

2q
≤ d− 1

4
(2.8.2)

with the exception of the forbidden endpoint (1, 2,∞), if d = 3.

In [57], Metcalfe and Tataru prove global Strichartz estimates for variable coefficient wave

equations of the form

Pv = f (2.8.3)

v[0] = (v0, v1)

where P is the second order hyperbolic operator,

P (t, x, ∂) = −∂2t + ∂α(a
αβ(x)∂β) + bα(x)∂α + c(x) (2.8.4)

In fact, in [57] time-dependent coefficients are considered as well, but we will restrict our

attention to the time-independent case for our purposes. Here we assume that the matrix a

is positive definite and the coefficients a, b, c satisfy the weak asymptotic flatness conditions

∑

j∈Z
sup
|x|∼2j

|x|2
∣∣∣∂2a(x)

∣∣∣+ |x| |∂a(x)|+ |a(x)− g0| ≤ ε̃ (2.8.5)

where g0 denotes the diagonal matrix diag(1, . . . , 1). And

∑

j∈Z
sup
|x|∼2j

|x|2 |∂b(x)|+ |x| |b(x)| ≤ ε̃ (2.8.6)

∑

j∈Z
sup
|x|∼2j

|x|4 |c(x)|2 ≤ ε̃ (2.8.7)
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Given the assumptions in (2.1.1)–(2.1.3), it is clear that our wave equation for q in (2.4.10) is

of this form. Metcalfe and Tataru introduce the following function spaces in order to deduce

localized energy estimates and control error terms later on.

Let Sk denote the kth Littlewood Paley projection. Set Aj = R × {|x| ≃ 2j} and

A<j = R× {|x| . 2j}. For a function v of frequency 2k define the norm

‖v‖Xk
:= 2

k
2‖v‖L2

t,x(A<−k)
+ sup
j≥−k

‖ |x|−1
2 v‖L2

t,x(Aj)
(2.8.8)

With this we can define the global norm

‖v‖2Xs :=
∑

k∈Z
22sk‖Skv‖2Xk

(2.8.9)

for −d+1
2 < s < d+1

2 . The space Xs is defined to be the completion of all Schwartz functions

with respect to the Xs norm defined above. For the dual space Y s = (X−s)′ we have the

norm

‖f‖2Y s =
∑

k∈Z
22sk‖Skf‖2X ′

k
(2.8.10)

for −d+1
2 < s < d+1

2 . We refer the reader to [57] for details regarding the structure of these

spaces.

With this setup, Metcalfe and Tataru are able to prove the following results:

1. Establish Ḣs localized energy estimates for the operator P , see [57, Definition 2, The-

orem 4 and Corollary 5].

2. Construct a global-in-time parametrix, K, for the operator P , and prove Strichartz

estimates for this parametrix. Error terms are controlled in the localized energy spaces,

see [57, Propositions 15-17 and Lemmas 19-21].
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3. Combine the localized energy estimates with the Strichartz and error estimates for

the parametrix to prove global Strichartz estimates for solutions to (2.8.3), see [57,

Theorem 6].

To prove these results, Metcalfe and Tataru are able to make a number of simplifications

that allow them to treat the lower order terms in P as small perturbations and work instead

with only the principal part of P , denoted by Pa = −∂2t + ∂αa
αβ∂β .

Let χj be smooth spatial Littlewood-Paley multipliers, i.e.

1 =
∑

j∈Z
χj(x), supp(χj) ⊂ {2j−1 ≤ |x| ≤ 2j+1}

And set

χ<j(x) :=
∑

k<j

χk(x), Sj :=
∑

k<j

Sk

We then define frequency localized coefficients

a
αβ
(k)

:= g
αβ
0 +

∑

ℓ<k−4
(S<ℓχ<k−2ℓ)Sℓaαβ (2.8.11)

corresponding frequency localized operators

P(k) := −∂2t + ∂α(a
αβ
(k)
∂β) (2.8.12)

used on functions of frequency k, and the global operators

P̃ :=
∑

k∈Z
P(k)Sk (2.8.13)

In order to prove (2.5.1), we only need to make a small alteration to the proof of the
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Strichartz estimates for the parametrix, K. At first, the parametrix construction occurs on

the level of the frequency localized operator, P0, see [57, Propositions 15-17]. In particular,

they prove the following result.

Proposition 2.8.1 ([57], Proposition 17). Assume that ε̃ is sufficiently small, and assume

that f is localized at frequency 0. Then there is a parametrix K0 for P(0) which has the

following properties:

(i) (regularity) For any Strichartz pairs (p1, q1) respectively (p2, q2) with q1 ≤ q2, we

have

‖∂K0f‖Lp1
t L

q1
x ∩X0

. ‖f‖
L
p′2
t L

q′2
x

(2.8.14)

(ii) (error estimate) For any Strichartz pair (p, q) we have

‖(P(0)K0 − 1)f‖X ′
0
. ‖f‖

Lp′

t L
q′
x

(2.8.15)

The next step is to move from these frequency localized parametrices to a construction

of a parametrix for Pa, and this is where we make a slight alteration. To begin, Metcalfe

and Tataru prove that the operator P(0) in Proposition 2.8.1 can be replaced with P̃ , see [57,

Lemma 10], on functions localized at frequency 0. To construct parametrices, Kj , at any

frequency j, for P̃ we rescale, setting

Kjf(t, x) = 2−2jK0(f2−j )(2
jt, 2jx) (2.8.16)

where f2−j (t, x) = f(2−jt, 2−jx). Next, set

K :=
∑

j∈Z
KjSj (2.8.17)
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With these definitions it is straightforward to prove the following lemma, which is our

altered version of [57, Lemma 19]. Recall that the homogeneous Besov norm of a function

ϕ is given by

‖ϕ‖
Ḃs
p,q

=



∑

j∈Z
(2sj‖Sjϕ‖Lp)q




1
q

Then we have

Lemma 2.8.2 (Besov space version of Lemma 19 in [57]). The parametrix K has the fol-

lowing properties:

(i) (regularity) For any Strichartz pairs (ρ1, p1, q1), respectively (ρ2, p2, q2) with q1 ≤ q2

we have

‖∂Kf‖
L
p1
t Ḃ

s−ρ1
q1,2

∩Xs
. ‖f‖

|∂x|−s−ρ2L
p′2
t L

q′2
x

(2.8.18)

(ii) (error) For any Strichartz pair (ρ, p, q), we have

‖(PaK − 1)f‖Y s . ‖f‖|∂x|−s−ρL
p′

t L
q′
x

(2.8.19)

Proof. We begin by extending the results of Lemma 2.8.1 to the parametrices Kj . Observe

that ∂Kjf(t, x) = 2−j∂K0(f2−j )(2jt, 2jx). Hence, for a function f localized at frequency j,

we have

‖∂Kjf‖Lp1
t L

q1
x

= 2−j2j(−
1
p1
− d

q1
)‖∂K0(f2−j )‖Lp1

t L
q1
x

. 2
j(−1− 1

p1
− d

q1
)‖f2−j‖

L
p′2
t L

q′2
x

= 2
j(−1− 1

p1
− d

q1
)
2
j( 1

p′2
+ d

q′2
)
‖f‖

L
p′2
t L

q′2
x
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Therefore, by (2.8.1) we obtain

2j(
d
2+1−ρ1)‖∂Kjf‖Lp1

t L
q1
x

. 2j(
d
2+1+ρ2)‖f‖

L
p′2
t L

q′2
x

(2.8.20)

for functions f localized at frequency j.

We also need to estimate ‖∂Kjf‖Xj
. Let f again be localized at frequency j. Observe

that

2
j
2‖∂Kjf‖L2

t,x(A<−j)
= 2

j
2

(∫

|x|≤2−j

∣∣∂Kjf(t, x)
∣∣2 dx dt

)1
2

= 2j(−1−
d
2)‖∂K0f2−j‖L2

t,x(A<0)

Therefore we can apply Proposition 2.8.1 to deduce

2j(
d
2+1)2

j
2‖∂Kjf‖L2

t,x(A<−j)
. ‖f2−j‖

L
p′2
t L

q′2
x

= 2
j( 1

p′2
+ d

q′2
)
‖f‖

L
p′2
t L

q′2
x

= 2j(
d
2+1+ρ2)‖f‖

L
p′2
t L

q′2
x

Similarly one can show for any k ≥ −j that

2j(
d
2+1)

∥∥∥|x|−
1
2 ∂Kjf

∥∥∥
L2
t,x(Ak)

. 2j(
d
2+1+ρ2)‖f‖

L
p′2
t L

q′2
x

Hence,

‖∂Kjf‖Xj
. 2jρ2‖f‖

L
p′2
t L

q′2
x
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Putting this all together we obtain the frequency j version of Proposition 2.8.1 (i):

2−jρ1‖∂Kjf‖Lp1
t L

q1
x

+ ‖∂Kjf‖Xj
. 2jρ2‖f‖

L
p′2
t L

q′2
x

(2.8.21)

The next step is to use the Littlewood-Paley theorem to sum up these frequency localized

pieces. As a preliminary step we observe that (2.8.21) implies that for each s

22j(s−ρ1)‖∂Kjf‖2Lp1
t L

q1
x

+ 22js‖∂Kjf‖2Xj
. 22j(s+ρ2)‖f‖2

L
p′2
t L

q′2
x

(2.8.22)

Then, we have

‖∂Kf‖
L
p1
t Ḃ

s−ρ1
q1,2

=

∥∥∥∥∥∥∥∥



∑

j∈Z
22j(s−ρ1)

∥∥∥∥∥∥
Sj∂

∑

ℓ∈Z
KℓSℓf

∥∥∥∥∥∥

2

L
q1
x




1
2

∥∥∥∥∥∥∥∥
L
p1
t

(2.8.23)

.

∥∥∥∥∥∥∥



∑

j∈Z
22j(s−ρ1)

∥∥∂KjSjf
∥∥2
L
q1
x




1
2

∥∥∥∥∥∥∥
L
p1
t

(2.8.24)

.



∑

j

22j(s−ρ1)
∥∥∂KjSjf

∥∥2
L
p1
t L

q1
x




1
2

(2.8.25)

.



∑

j

22j(s+ρ2)
∥∥Sjf

∥∥2
L
p′2
t L

q′2
x




1
2

(2.8.26)

.

∥∥∥∥∥∥∥




∑

j

22j(s+ρ2)
∣∣Sjf

∣∣2




1
2

∥∥∥∥∥∥∥
L
p′2
t L

q′2
x

(2.8.27)

. ‖f‖
|∂x|−s−ρ2L

p′2
t L

q′2
x

(2.8.28)

Above, (2.8.25), (2.8.26), (2.8.27) and (2.8.28) follow, respectively, from Minkowski’s inequal-

ity, estimate (2.8.22), the dual estimate to Minkowski, and the Littlewood-Paley theorem.
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Finally, we have

‖∂Kf‖Xs =



∑

j∈Z
22js

∥∥∥∥∥∥
Sj∂

∑

ℓ∈Z
KℓSℓf

∥∥∥∥∥∥

2

Xj




1
2

(2.8.29)

.



∑

j∈Z
22js

∥∥∂KjSjf
∥∥2
Xj




1
2

(2.8.30)

.



∑

j∈Z
22j(s+ρ2)

∥∥Sjf
∥∥2
L
p′2
t L

q′2
x




1
2

(2.8.31)

. ‖f‖|∂x|−s−ρ2Lp′

t L
q′
x

(2.8.32)

where (2.8.32) follows from the dual to Minkowski’s inequality and the Littlewood-Paley

theorem. The proof of (2.8.19) follows exactly as in [57].

We can carry out the rest of the argument exactly as in [57] except with Lemma 2.8.2 in

place of [57, Lemma 19], to obtain the following Besov space version of [57, Theorem 6].

Theorem 2.8.3 (Besov space version of Theorem 6 in [57]). Let d ≥ 4. Assume that the

coefficients aαβ, bα, c satisfy (2.8.5), (2.8.6), and (2.8.7) with ε̃ sufficiently small. Let

(ρ1, p1, q1) and (ρ2, p3, q2) be two Strichartz pairs and assume further that s = 0 or s = −1.

Then the solution v to (2.8.3) satisfies

‖∂v‖
L
p1
t Ḃ

s−ρ1
q1,2

+ ‖∂v‖Xs . ‖v[0]‖
Ḣs+1×Ḣs + ‖f‖

|∂x|−s−ρ2L
p′2
t L

q′2
x +Y s

(2.8.33)

To obtain (2.5.1) we set s = 0, ρ1 = 5
6 , p = 2, q = 6, ρ2 = 0, p2 = 1 and q2 = 2 in (2.8.33)

giving

‖v‖
L2Ḃ

1
6
6,2

. ‖v[0]‖
Ḣ1×L2 + ‖f‖L1L2 (2.8.34)
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We combine this which the energy estimates which correspond to s = 0, ρ1 = 0, p = ∞,

q = 2, ρ2 = 0, p2 = 1, q2 = 2 and d = 4 in (2.8.33) giving

‖v‖
L2
t (R;(Ḃ

1
6
6,2(R

4))
+ ‖∂v‖L∞

t (R;(L2
x(R

4)) .

‖v[0]‖
Ḣ1×L2(R4)

+ ‖f‖L1
t (R;(L

2
x(R

4)) (2.8.35)

which is exactly (2.5.1).

2.9 Appendix

2.9.1 Sobolev Spaces

We have interchangeably used two different definitions of Sobolev spaces throughout this

chapter. The difference in the definitions arises from the different ways that we can view

maps f : M → N and their differentials df : TM → u∗TN . On one hand, we can take the

extrinsic viewpoint, where we consider the isometric embedding of N →֒ Rm and view TN as

a subspace of Rm. Here we view f as a map M → Rm with values in N and df : TM → Rm

with values in TN . On the other hand, we can view things intrinsically, and exploit the

parallelizable structure on TN . We outline these different approaches below, and show that

if we take the Coulomb frame on u∗TN these approaches are equivalent for our purposes.

Furthermore, we show that if (M, g) = (R4, g) with g as in (2.1.1)–(2.1.4) then all of the

following spaces are equivalent to those that would arise if we had set M to be R4 with the

Euclidean metric.

Extrinsic Approach

Taking the extrinsic point of view, we consider maps f : (M, g) → (Rm, 〈·, ·〉). Hence, we

can write f = (f1, . . . , fm) with the differential df = (df1, . . . , dfm). For such f and for
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1 < p <∞, we define the norm

‖f‖
W k,p

e
=

k∑

ℓ=0

(
m∑

a=1

∫

M

∣∣∣∇ℓfa
∣∣∣
p

g
dvolg

)1
p

(2.9.1)

=

k∑

ℓ=0

(
m∑

a=1

∫

M

(
gi1j1 · · · giℓjℓ(∇ℓfa)i1,...,iℓ(∇

ℓfa)j1...,jℓ

)p
2
√
|g| dx

)1
p

where ∇ℓ denotes the ℓth covariant derivative on M with the convention that ∇0fa = fa,

see [31] . For example, the components in local coordinates of ∇fa are given by (∇fa)i =

(df)i = ∂if while the components in local coordinates for ∇2fa are given by

(∇2fa)ij = ∂ijf
a − Γkijf

a
k

We define W
k,p
e (M,Rm) to be the completion of {f ∈ C∞(M ;Rm) : ‖f‖

W
k,p
e

< ∞} with

respect to the above norm, (the subscript e here stands for extrinsic). We then define

W
k,p
e (M,N) to be the space of functions {f ∈ W

k,p
e (M,Rm) : f(x) ∈ N, a.e.}. The

homogeneous Sobolev spaces Ẇ
k,p
e (M ;N) are defined similarly.

Remark 6. The one drawback with this definition is that C∞(M ;N) may not be dense in

W 1,p(M ;N) for p < dimM , for a generic compact manifold N . For example, in [66], Schoen

and Uhlenbeck show that f(x) = x
|x| ∈ H

1(B3;S2) cannot be approximated by C∞ maps

from B3 → S2 in H1(B3;S2), see [54] for a proof. This poses a potential difficulty for us

as we required the density of C∞(M,TN) in H1(M ;TN) in order to approximate the data

(u0, u1) ∈ H2 × H1(M ;TN) by smooth functions in our existence argument. Thankfully,

this difficulty can be avoided using the equivalence of the extrinsic and intrinsic definitions

of Sobolev spaces which will be argued below.

With (M, g) = (R4, g), with g as in (2.1.1)–(2.1.4), and ε small enough, we can show

that these “covariant” Sobolev Spaces W
k,p
e ((R4, g);N) are equivalent to the “flat” Sobolev
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spaces W
k,p
e ((R4, 〈·, ·〉);N).

Lemma 2.9.1. Let (M, g) = (R4, g) with g as in (2.1.1)–(2.1.4) and let 1 < p < ∞. Then

Ẇ k,p((R4, g)) is equivalent to Ẇ k,p(R4, g0) where g0 is the Euclidean metric on R
4. In

particular, if f : R4 → Rm then for every k ∈ N we have

‖∂kf‖Lp(R4) ≃ ‖∇kf‖Lp(R4,g) (2.9.2)

Proof. As the above norms are defined component-wise for f = (f1, . . . , fm), it enough to

prove the statement for functions f : (M, g)→ R instead of for maps f : (M, g)→ Rm with

values in N . We also will only prove this lemma in detail for a few easy cases, namely for

k = 0, 1 and for k = 2, p = 2. These, in fact, include all the cases that we need. The other

cases follow by similar arguments.

By (2.1.1) it is clear that
√
|g(x)| is a bounded function on R4. Hence, for every k we

have

∫

R4

∣∣∣∇kf
∣∣∣
p

g

√
|g| dx ≃

∫

R4

∣∣∣∇kf
∣∣∣
p

g
dx

This proves the lemma for k = 0. In local coordinates we have, for k = 1, that (∇f)i :=

(df)i = ∂if and |∂f |2g = gij∂if∂jf . Letting g0 denote the Euclidean metric we have, for p

even, that

|∇f |pg − |∂f |p = (gij∂if∂jf)
p
2 − (g

ij
0 ∂if∂jf)

p
2

= (gij − gij0 )(∂if∂jf)

p
2∑

ℓ=1

(gab∂af∂bf)
p
2−ℓ(gcd0 ∂cf∂df)

ℓ−1
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Hence by (2.1.1) we have

∣∣∣‖∇f‖p
Lp(R4,g)

− ‖∂f‖p
Lp(R4)

∣∣∣ . ε

∫

R4
|∂f |p dx

For p odd we interpolate. This proves the case k = 1. For k = 2, p = 2 we have in local

coordinates that

(∇2f)ij = ∂ijf − Γℓij∂ℓf

where here Γlij are the Christoffel symbols for (R4, g). We also have

∣∣∣∇2f
∣∣∣
2
= gikgjℓ(∇2f)ij(∇2f)kℓ

Hence, using (2.1.1)-(2.1.2) and the Sobolev embedding we have

∣∣∣‖∇2f‖2L2(R4,g) − ‖∂
2f‖2L2(R4)

∣∣∣

≃
∣∣∣∣
∫

R4
gikgjℓ(∂ijf − Γaij∂af)(∂kℓf − Γbkℓ∂bf) − gik0 g

jℓ
0 (∂ijf)(∂kℓf) dx

∣∣∣∣

.

∣∣∣∣
∫

R4
(gikgjℓ − gik0 g

jℓ
0 )(∂ijf)(∂kℓf) dx

∣∣∣∣ + 2

∣∣∣∣
∫

R4
gikgjℓ ∂ijf Γ

a
kℓ ∂af dx

∣∣∣∣

+

∣∣∣∣
∫

R4
gikgjℓ Γaij ∂af Γ

b
kℓ ∂bf dx

∣∣∣∣

. ε2‖∂2f‖2
L2(R4)

+ ‖∂2f‖L2(R4)‖Γ‖L4(R4)‖∂f‖L4(R4) + ‖∂f‖2L4(R4)
‖Γ‖2

L4(R4)

Now, recall that Γaij =
1
2g
ab(∂igbj +∂jgib−∂bgij). Hence by (2.1.2), we have ‖Γ‖L4(R4) . ε.

Using the Sobolev embedding Ḣ1(R4) →֒ L4(R4) and the above inequalities we have

∣∣∣‖∇2f‖2
L2(R4,g)

− ‖∂2f‖2
L2(R4)

∣∣∣ . ε‖∂2f‖2
L2(R4)

proving (2.9.2) in the case k = 2, p = 2.
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Intrinsic Approach

Next, we use the parallelizable structure on TN to define “intrinsic” Sobolev spaces for maps

ψ : TM → u∗TN .

Let ẽ = (ẽ1, . . . , ẽn) be a global orthonormal frame on TN and let ē = (ē1, . . . , ē
n) be

the induced orthonormal frame on u∗TN obtained via pullback. Now, let ψ : TM → u∗TN

be a smooth map, i.e., ψ is a u∗TN valued 1-form on M . Then ψ can be written in terms of

the orthonormal frame ē on u∗TN . The components of ψ in the frame ē are then given by

ψa = 〈ψ, ēa〉u∗h and each of these can be viewed as a 1-form on M , i.e., a section of T ∗M ,

and can be written in local coordinates as ψa = ψaαdx
α.

One way to define the Sobolev norms of ψ is to ignore the covariant structure on u∗TN

and say that ψ ∈ Ẇ k,p
i (M ;N), (the index i here stands for intrinsic), if all of the components,

ψa, are in Ẇ k,p(M ;R). And we define

‖ψ‖p
Ẇ

k,p
i (M ;N)

:=

n∑

a=1

‖ψa‖p
Ẇ k,p(M)

=

n∑

a=1

∫

M

∣∣∣∇kψa
∣∣∣
p

g
dvolg (2.9.3)

=

n∑

a=1

∫

M

(
gi1j1 · · · gik+1,jk+1(∇kψ)ai1,...,ik+1

(∇kψ)aj1,...,jk+1

)p
2
√
|g| dx

where ∇k denotes the kth covariant derivative on M . By the same argument as above, we

can show that in our case, with (M, g) = (R4, g) and g as in (2.1.1)–(2.1.4), these spaces

are equivalent to the case where we have the Euclidean metric on R4, that is, there exist

constants c, C such that

‖∂kψa‖Lp(R4) ≃ ‖∇kψa‖Lp(M) (2.9.4)

The one glaring issue here, is that this construction will depend, in general, on the choice

of frame ē. We can avoid this confusion though in the case where the frame e is the Coulomb

frame as in this case the intrinsic norms are equivalent to their extrinsic counterparts in the
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cases we will be interested in. This issue was addressed in Section 2.3.2.

2.9.2 Density of C∞ × C∞(M ; TN) in H2 ×H1(M ; TN)

We set (M, g) = (R4, g) with g as in (2.1.1)-(2.1.4). In the existence argument for wave

maps we claimed the existence of a sequence of smooth data (uk0 , u
k
1) → (u0, u1) in H2 ×

H1(M ;TN). Here we show that such a sequence does, in fact, exist. That is, we show that

C∞ × C∞(M ;TN) is dense in in H2 ×H1(M ;TN).

First, observe that C∞(M ;N) is dense in H2
e (M ;N), see [7, Lemma A.12]. Hence we

can find a sequence of smooth maps uk0 such that uk0 → u0 in H2(M ;N).

Finding a sequence of smooth maps uk1 : M → TN such that uk1(x) ∈ Tuk0(x)
N ap-

proximating u1 in H1(M ;TN) is not as straightforward as we do not know a priori that

C∞(M ;TN) is dense in H1
e (M ;TN). However, we can use the equivalence of the norms

H1
e (M ;TN) and H1

i (M ;TN) proved in the previous section to get around this issue.

Let e denote the Coulomb frame on u∗0TN . Since u1 is a section of u∗0TN , we can find

one-forms qa1 over M so that u1 = qa1ea. By the equivalence of the norms H1
e (M ;TN) and

H1
i (M ;TN), we see that u1 ∈ H1

e (M ;TN) if and only if qa1 ∈ H1(TM ;R). Since C∞ is dense

in H1(TM ;R) ≃ H1(R4;R) we can find smooth (qa1)
k such that (qa1)

k → qa1 in H1(TM ;R).

Now, for each smooth map uk0 : M → N we can find the associated Coulomb frame ek =

(ek1 , . . . , e
k
n). We then define smooth sections uk1 := (qa1)

keka and by the equivalence of norms

explained in Section 2.3.2 we have uk1 → u1 in H1
e (M ;TN) as desired.

2.9.3 Lorentz Spaces

To prove the pointwise estimates for the connection form A associated to the Coulomb gauge

we need a few general facts about Lorentz spaces. We review these facts below. Lp,r(Rd)
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functions are measured with the norm

‖f‖Lp,r =

(∫ ∞

0
t
r
p f∗(t)r

dt

t

)1
r

for 0 < r <∞. If r =∞, then

‖f‖Lp,∞ = sup
t>0

t
1
pf∗(t)

where above we have

f∗(t) = inf{α : df (α) ≤ t}

df (α) = meas{x : |f(x)| > α}

A consequence of real interpolation theory is that Lorentz spaces can also be characterized

as the interpolation spaces given by

Lp,r(Rd) = (Lp0 , Lp1)θ,r (2.9.5)

where 1 ≤ p0 < p1 ≤ ∞, p0 < r ≤ ∞ and 1
p = 1−θ

p0
+ θ
p1
. We refer the reader to [4, Chapter

5.2] for more details.

Note that the Lp,∞ norm is the same as the weak-Lp norm. Below we record some general

properties of Lorentz spaces that were needed in the proof of Proposition 2.3.2. We refer the

reader to [29], [4], [61], and [80] for more details.

Lemma 2.9.2. Suppose that 0 < p ≤ ∞ and 0 < r < s ≤ ∞. Then

(i) Lp,p = Lp
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(ii) If r < s then Lp,r ⊂ Lp,s

(iii) If h : Rd → R is defined by h(x) =
1

|x|α , then h ∈ L
d
α ,∞.

The proof of Lemma 2.9.2 follows easily from the definitions and can be found for example

in [29, Chapter 1.4.2]. We also needed the Lorentz space versions of Hölder’s inequality and

Young’s inequality and the following duality statement.

Lemma 2.9.3. Suppose that f ∈ Lp1,r1 and g ∈ Lp2,r2 where 1 ≤ p1, p2 < ∞ and 1 ≤

r1, r2 ≤ ∞. Then,

(i) ‖fg‖Lp,r . ‖f‖Lp1,r1‖g‖Lp2,r2 if 1
p = 1

p1
+ 1
p2

and 1
r = 1

r1
+ 1
r2

(ii) ‖f ∗ g‖Lp,r . ‖f‖Lp1,r1‖g‖Lp2,r2 if 0 < 1
p = 1

p1
+ 1
p2
− 1 and

1
r = 1

r1
+ 1
r2

(iii) (Lp,r)′ = Lp1,r1 for 1 < p < ∞, 1 < r < ∞ and (Lp,1)′ = Lp1,∞ for 1 < p < ∞,

where 1
p +

1
p1

= 1 and 1
r +

1
r1

= 1

To prove (i) above observe that (fg)∗(t) ≤ f∗( t2)g
∗( t2), see [29, Proposition 1.4.5]. Then

apply Hölder’s inequality. We refer the reader to [61] for the proof of (ii) above. And (iii)

is proved in [29, Theorem 1.4.17].

We also require Sobolev embedding theorems for Lorentz spaces which can be obtained

via real interpolation. A detailed proof can be found in [80, Chapter 32].

Lemma 2.9.4 (Sobolev embedding for Lorentz spaces). If 0 < s <
d

q
and

1

p
=

1

q
− s

d
then

Ẇ s,q(Rd) →֒ Lp,q(Rd) and Ḃsq,r(R
d) →֒ Lp,r(Rd).

To give an idea of why Lemma 2.9.4 is true, we demonstrate a special case, namely that

Ḣs(Rd) →֒ Lp,2(Rd) (2.9.6)
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for 1
p = 1

2 − s
d . Observe that this is a strengthening of the standard Sobolev inequality which

says that Ḣs(Rd) →֒ Lp(Rd) for 1
p = 1

2 − s
d since Lp,2(Rd) →֒ Lp(Rd). The proof of (2.9.6)

relies on Plancherel’s theorem and real interpolation. Let F denote the Fourier transform.

Let f ∈ Ḣs(Rd), which means that |ξ|sFf ∈ L2(Rd). Also note that if 0 < s < d
2 then

|ξ|−s ∈ Ld
s ,∞(Rd)

Hence, by Hölder’s inequality for Lorentz spaces

‖Ff‖Lγ,2 = ‖ |ξ|sFf |ξ|−s ‖Lγ,2 . ‖ |ξ|sFf‖L2,2‖ |ξ|−s ‖
L

d
s ,∞

<∞

for 1
γ = 1

2 + s
d . Now recall that F−1 : L1 → L∞ and F−1 : L2 → L2. Therefore, by real

interpolation

F−1 : (L1, L2)θ,2 → (L∞, L2)θ,2

which, by (2.9.5) is exactly the statement that

F−1 : Lα,2(Rd)→ Lβ,2(Rd)

where 1
α = 1− θ

2 and 1
β = θ

2 and we notice that 1
α + 1

β = 1. Hence, with 1
γ = 1

2 +
s
d we have

that Ff ∈ Lγ,2(Rd) which implies that f ∈ Lγ′,2(Rd) where 1
γ′

= 1
2 − s

d which is exactly

(2.9.6).

The Lp and Besov space versions of this statement are slightly more complicated to prove

as they require additional facts from real interpolation theory and we refer the reader to [80]

for a detailed proof.

We also need the following version of the Calderon-Zygmund theorem for Lorentz spaces.

Theorem 2.9.5 (Calderon-Zygmund theorem for Lorentz spaces). Let T be a Calderon-
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Zygmund operator. Then T : Lp,r → Lp,r for 1 < p <∞ and 1 ≤ r ≤ ∞,

‖Tf‖Lp,r . ‖f‖Lp,r

where the constant above does not depend on r.

This extension of the Calderon-Zygmund theorem is an easy consequence of the Lp version

given the following interpolation theorem of Calderon, see [4, Theorem 5.3.4].

Theorem 2.9.6 (Calderon’s interpolation theorem). Let T be a linear operator and suppose

that

T : Lp1,ρ → Lq1,∞

T : Lp2,ρ → Lq2,∞

where ρ > 0. Then,

T : Lp,r → Lq,s

as long as 0 < r ≤ s ≤ ∞, p1 6= p2, q1 6= q2,
1

p
=

(1− θ)
p1

+
θ

p2
, and

1

q
=

(1− θ)
q1

+
θ

q2
for

θ ∈ (0, 1).

Proof of Theorem 2.9.5. Let T be a Calderon-Zygmund operator. To prove that T : Lp,q →

Lp,q, find p1, p2, θ so that 1 < p1 < p < p2 < ∞ and
1

p
=

(1− θ)
p1

+
θ

p2
. Then we have

T : Lp1,p1 → Lp1,∞ and T : Lp2,p1 → Lp2,∞ since

‖Tf‖Lp1,∞ . ‖Tf‖Lp1,p1 = ‖Tf‖Lp1 . ‖f‖Lp1 = ‖f‖Lp1,p1

‖Tf‖Lp2,∞ . ‖Tf‖Lp2,p2 = ‖Tf‖Lp2 . ‖f‖Lp2 = ‖f‖Lp2,p2 . ‖f‖Lp2,p1

Therefore, by Theorem 2.9.6, we have T : Lp,q → Lp,q for every q > 0.
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CHAPTER 3

3D WAVE MAPS EXTERIOR TO A BALL

3.1 Introduction

In this chapter, we begin our investigation of equivariant wave maps from 3+ 1-dimensional

Minkowski space exterior to a ball and with S3 as target. To be specific, let B ⊂ R3 be the

unit ball in R
3. We consider wave maps U : R× (R3 \B)→ S3 with a Dirichlet condition on

∂B, i.e., U(∂B) = {N} where N is a fixed point on S3. In the usual equivariant formulation

of this equation, where ψ is the azimuth angle measured from the north pole, the equation

for the ℓ-equivariant wave map from R3+1 → S3 reduces to

ψtt − ψrr −
2

r
ψr + ℓ(ℓ+ 1)

sin(2ψ)

2r2
= 0 (3.1.1)

We restrict to ℓ = 1 and r ≥ 1 with Dirichlet boundary condition ψ(1, t) = 0 for all t ≥ 0.

In other words, we are considering the Cauchy problem

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0, r ≥ 1,

ψ(1, t) = 0, ∀ t ≥ 0,

~ψ(0) = (ψ0, ψ1)

(3.1.2)

The conserved energy is

E(ψ, ψt) =
∫ ∞

1

1

2

(
ψ2t + ψ2r + 2

sin2(ψ)

r2
)
r2 dr (3.1.3)

Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(∞, t) = nπ for all t ∈ I where n ≥ 0 is fixed.

The natural space to place the solution into for n = 0 is the energy space H := (Ḣ1
0 ×
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L2)((1,∞)) with norm

‖(ψ, ψ̇)‖2H :=

∫ ∞

1
(ψ2r (r) + ψ̇2(r)) r2 dr (3.1.4)

Here Ḣ1
0 ((1,∞)) is the completion of the smooth functions on (1,∞) with compact support

under the first norm on the right-hand side of (3.1.4).

The exterior equation (3.1.2) was proposed by Bizon, Chmaj, and Maliborski [5] as a

model in which to study the problem of relaxation to the ground states given by the various

equivariant harmonic maps. In the physics literature, this model was introduced in [2] as

an easier alternative to the Skyrmion equation. Moreover, [2] stresses the analogy with the

damped pendulum which plays an important role in our analysis. Numerical simulations

described in [5] indicate that in each equivariance class and topological class given by the

boundary value nπ at r = ∞ every solution scatters to the unique harmonic map that lies

in this class. In this chapter we verify this conjecture for ℓ = 1, n = 0. These solutions start

at the north-pole and eventually return there. For n ≥ 1 we obtain a perturbative result

in this chapter. In the next chapter we prove the full conjecture for the higher topological

classes, n ≥ 1.

Theorem 3.1.1. Consider the topological class defined by equivariance ℓ = 1 and degree

n = 0. Then for any smooth energy data in that class there exists a unique global and

smooth evolution to (3.1.2) which scatters to zero in the sense that the energy of the wave

map on an arbitrary but fixed compact region vanishes as t→∞.

The scattering property can also be phrased in the following fashion: one has

(ψ, ψt)(t) = (ϕ, ϕt)(t) + oH(1) t→∞ (3.1.5)
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where (ϕ, ϕt) ∈ H solves the linearized version of (3.1.2), i.e.,

ϕtt − ϕrr −
2

r
ϕr +

2ϕ

r2
= 0, r ≥ 1, ϕ(1, t) = 0 (3.1.6)

We prove Theorem 3.1.1 by means of the Kenig-Merle method [36], [37]. The most novel

aspect of our implementation of this method lies with the rigidity argument. Indeed, in

order to prove Theorem 3.1.1 without any upper bound on the energy we demonstrate that

the natural virial functional is globally coercive on H. This requires a detailed variational

argument, the most delicate part of which consists of a phase-space analysis of the Euler-

Lagrange equation.

The advantage of this model lies with the fact that removing the unit ball eliminates the

scaling symmetry and also renders the equation subcritical relative to the energy. Both of

these features are in stark contrast to the same equation on 3 + 1-dimensional Minkowski

space, which is known to be super-critical and to develop singularities in finite time, see

Shatah [67] and also Shatah, Struwe [68].

Another striking feature of this model, which fails for the 2 + 1-dimensional analogue,

lies with the fact that it admits infinitely many stationary solutions Qn(r) which satisfy

Qn(1) = 0 and limr→∞Qn(r) = nπ, for each n ≥ 1. These solutions have minimal energy in

the class of all functions of finite energy which satisfy the nπ boundary condition at r =∞,

and they are the unique stationary solutions in that class. We denote the latter class by Hn.

Theorem 3.1.2. For any n ≥ 1 there exists ε > 0 small with the property that for any

smooth data (ψ0, ψ1) ∈ Hn such that

‖(ψ0, ψ1)− (Qn, 0)‖H < ε

the solution to (3.1.1) with data (ψ0, ψ1) exists globally, is smooth, and scatters to (Qn, 0)

as t→∞.
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The same result applies as well to higher equivariance classes ℓ ≥ 2, after some fairly

obvious modifications of the arguments in Section 3.5. However, for the sake of simplicity

we restrict ourselves to ℓ = 1. Scattering here means that on compact regions in space one

has (ψ, ψt)(t)− (Qn, 0)→ (0, 0) in the energy topology, or alternatively

(ψ, ψt)(t) = (Qn, 0) + (ϕ, ϕt)(t) + oH(1) t→∞ (3.1.7)

where ϕ solves (3.1.6). Bizoń, Chmaj, and Maliborski [5] conducted numerical experiments

which suggest that Theorem 3.1.2 holds with ε =∞. We prove this much stronger theorem

in the next chapter, completing the soliton resolution theory for this model. This requires

a completely novel approach however as the methods of this chapter do not seem to extend

to the cases n ≥ 1. The main difficulty with this approach to a rigidity theory lies with the

coercivity of the virial functional centered at the harmonic maps Qn. Indeed, in Section 3.4,

we establish the global coercivity of the virial functional centered at zero. This hinges

crucially on the fact that the Euler-Lagrange equation of the associated variational problem

can be transformed into an autonomous system in the plane which we analyze by a rigorous

study of the phase portrait. For the nonzero Qn we lose this reduction to an autonomous

system, making any rigorous statement about the Euler-Lagrange equation associated to the

virial functional centered at Qn very difficult. Furthermore, no explicit expression is known

for the Qn which makes even the perturbative analysis — in and of itself useless for the

Kenig-Merle method — of this virial functional very non-obvious. Therefore the case n ≥ 1

requires a different strategy from the one we employ here.
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3.2 Basic well-posedness and scattering

One has the following version of Hardy’s inequality in Ḣ1(1,∞):

∫ ∞

1
ψ2(r) dr ≤ 4

∫ ∞

1
ψ2r (r)r

2 dr (3.2.1)

proved by integration by parts:

∫ ∞

1
ψ2(r) dr + ψ2(1) = −2

∫ ∞

1
rψr(r)ψ(r) dr (3.2.2)

and an application of Cauchy-Schwarz. This shows in particular that E(~ψ) ≃ ‖~ψ‖2H where

~ψ = (ψ, ψ̇). Another useful fact is the Strauss estimate:

|ψ(r)| ≤ 2r−
1
2‖ψ‖

Ḣ1(1,∞)
∀r ≥ 1 (3.2.3)

which in particular implies that ‖ψ‖∞ ≤ 2‖ψ‖
Ḣ1. Since the nonlinearity in (3.1.2) is glob-

ally Lipschitz due to r ≥ 1, energy estimates immediately imply the following global well-

posedness result. In what follows, Rd∗ := R
d \B where B is the unit ball at the origin.

Proposition 3.2.1. For any (ψ0, ψ1) ∈ H the Cauchy problem (3.1.2) has a unique global

solution

ψ ∈ C([0,∞); Ḣ1
0(1,∞)), ψt ∈ C([0,∞), L2(1,∞)) (3.2.4)

in the Duhamel sense which depends continuously on the data. Moreover, E(~ψ(t)) = constant

and we have persistence of regularity.

Proof. Just write the equation in Duhamel form and apply the standard energy estimate to
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obtain local well-posedness. To be more precise, we write

~ψ(t) = S0(t)~ψ(0) +

∫ t

0
S0(t− s)(0, N(ψ))(s) ds,

N(ψ)(t, r) := −sin(2ψ(t, r))
r2

(3.2.5)

where S0(t) is the linear evolution of the wave equation in Rt×R3∗, with a Dirichlet condition

at r = 1 (everything can be taken to be radial, of course). By the conservation of energy

one has

‖S0(t)~ψ(0)‖H = ‖~ψ(0)‖H (3.2.6)

whence

‖~ψ(t)‖H . ‖~ψ(0)‖H +

∫ t

0
‖ψ(s)‖2 ds

. ‖~ψ(0)‖H + t sup
0<s<t

‖ψ(s)‖2
(3.2.7)

So we can set up a contraction in the space L∞t (I;H) where I = [0, T ) and T is small

depending only on the size of ‖~ψ(0)‖H. The global statement therefore follows by energy

conservation.

As in [68] we refer to these energy Duhamel solutions as strong solutions. For the scat-

tering problem the formulation (3.1.2) is less convenient due to the linear term in the non-

linearity:

sin(2ψ)

r2
=

2ψ

r2
+

sin(2ψ)− 2ψ

r2
=

2ψ

r2
+
O(ψ3)

r2
(3.2.8)

The presence of the strong repulsive potential 2
r2

indicates that the linearized operator

of (3.1.2) has more dispersion than the three-dimensional wave equation. In fact, it has the
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same dispersion as the five-dimensional wave equation as the following standard reduction

shows.

We set ψ = ru which leads to the equation

utt − urr −
4

r
ur +

sin(2ru)− 2ru

r3
= 0, r ≥ 1, u(1, t) = 0 (3.2.9)

The nonlinearity is of the form N(u, r) := u3 Z(ru) where Z is a smooth function, and the

linear part is the d’Alembertian in Rt × R5∗.

To relate strong solutions of (3.1.2) with those of (3.2.9) we first note that

∫ ∞

1
ψ2r (r)r

2 dr ≃
∫ ∞

1
u2r(r)r

4 dr (3.2.10)

via Hardy’s inequality and the relations

ψr = rur + u = rur +
ψ

r

Therefore, the map H ∋ ~ψ → 1
r
~ψ =: ~u ∈ Ḣ1

0×L2(R5∗) is an isomorphism and in what follows

we will use the notation H for both spaces without further comment. Second, there is the

following Strauss estimate in R
5∗:

|u(r)| . r−
3
2‖u‖

Ḣ1 (3.2.11)

Proposition 3.2.2. The exterior Cauchy problem for (3.2.9) is globally well-posed in Ḣ1
0 ×

L2(R5∗). Moreover, a solution u scatters as t→∞ to a free wave, i.e., a solution ~v ∈ H of

�v = 0, r ≥ 1, v(1, t) = 0, ∀t ≥ 0 (3.2.12)

if and only if ‖u‖S <∞ where S = L3t ([0,∞);L6x(R
5∗)). In particular, there exists a constant
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δ > 0 small so that if ‖~u(0)‖H < δ, then u scatters to free waves as t→ ±∞.

Proof. By the global Strichartz1 estimates of Smith-Sogge [72] for the free wave equation

outside a convex obstacle every energy solution of (3.2.12) satisfies

‖v‖
L3
t (R;Ẇ

1
2 ,3
x (R5

∗))
. ‖~v(0)‖H (3.2.13)

We claim the embedding Ẇ
1
2 ,3
x →֒ L6x for radial functions in r ≥ 1 in R5∗. Indeed, one checks

via the fundamental theorem of calculus that Ẇ
1,3
x →֒ L∞x . More precisely,

|f(r)| ≤ r−
2
3‖f‖

Ẇ
1,3
x

(3.2.14)

Interpolating this with the embedding L3 →֒ L3 we obtain the claim. From (3.2.13) we infer

the weaker Strichartz estimate

‖v‖L3
t (R;L

6
x(R

5
∗))

. ‖~v(0)‖H (3.2.15)

which suffices for our purposes. Indeed, applying it to the equation

�u = u3Z(ru) = N(u), r ≥ 1

and estimating the inhomogeneous term in L1tL
2
x, implies for any time interval I ∋ 0

‖u‖L3
t (I;L

6
x)

+ ‖~u‖L∞
t ;H . ‖~u(0)‖H + ‖u‖3

L3
t (I;L

6
x)

(3.2.16)

1. Due to the radial assumption and the simple geometry, one does not need to resort to the sophisticated
construction in [72]. Indeed, grazing and gliding rays cannot occur in this setting which is the main difficulty
in the general case and which is addressed by means of the Melrose-Taylor parametrix in [72]. For the radial
problem outside the ball one can instead rely on an elementary and explicit parametrix.
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By the usual continuity argument (expanding I) this implies

‖~u(0)‖H < δ =⇒ ‖u‖S . δ

Moreover, the scattering is also standard. Indeed, denoting the free propagator in R5∗ with

a Dirichlet boundary condition again by S0(t), we seek ~v(0) ∈ H such that

~u(t) = S0(t)~v(0) + oH(1)

as t → ∞. In view of the Duhamel representation of ~u and using the group property and

unitarity of S0 this is tantamount to

~v(0) = ~u(0) +

∫ ∞

0
S0(−s)(0, N(u(s))) ds (3.2.17)

The integral on the right-hand side is absolutely convergent in H provided ‖u‖S <∞. The

necessity of the latter condition follows from the fact that free waves satisfy it, whence by

the small data theory (applied to large times) it carries over to any nonlinear wave that

scatters.

We remark that in the ψ formulation, the scattering of Proposition 3.2.2 means pre-

cisely (3.1.5), (3.1.6).

To prove Theorem 3.1.1 we therefore need to show that every energy solution ψ of (3.1.2)

has the property that in the u-formulation ‖u‖S < ∞. This will be done by means of the

Kenig-Merle concentration-compactness approach [36], [37].

3.3 Concentration Compactness

In this section, we prove the following result.
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Proposition 3.3.1. Suppose that Theorem 3.1.1 fails. Then there exists a nonzero energy

solution to (3.1.2) (referred to as critical element) ~ψ(t) for t ≥ 0 with the property that the

trajectory

K+ := {~ψ(t) | t ≥ 0}

is precompact in H.

In the following section we then lead this to a contradiction via a virial-type rigidity

argument. To prove Proposition 3.3.1 we may work in the u-formulation of equation (3.2.9)

since the map u = r−1ψ is an isomorphism between H in R
5∗ and R

3∗, respectively.

To proceed, we need the following version of the Bahouri-Gérard decomposition [1]. As

before, “free” waves refer to solutions of (3.2.12). The following two lemmas are standard,

see in particular Chapter 2 of the book [59].

Lemma 3.3.2. Let {un} be a sequence of free radial waves bounded in H = Ḣ1
0 × L2(R5∗).

Then after replacing it by a subsequence, there exist a sequence of free solutions vj bounded

in H, and sequences of times t
j
n ∈ R such that for γkn defined by

un(t) =
∑

1≤j<k
vj(t+ t

j
n) + γkn(t) (3.3.1)

we have for any j < k, ~γkn(−tjn)⇀ 0 weakly in H as n→∞, as well as

lim
n→∞ |t

j
n − tkn| =∞ (3.3.2)

and the errors γkn vanish asymptotically in the sense that

lim
k→∞

lim sup
n→∞

‖γkn‖(L∞
t L

p
x∩L3

tL
6
x)(R×R5

∗)
= 0 ∀ 10

3
< p <∞ (3.3.3)
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Finally, one has orthogonality of the free energy

‖~un‖2H =
∑

1≤j<k
‖~vj‖2H + ‖~γkn‖2H + o(1) (3.3.4)

as n→∞.

Proof. Recall the Sobolev embeddings Ḣ1
0 (R

5∗) →֒ L
10
3 ∩L∞(R5∗) for radial functions. More-

over, for any p ∈ (103 ,∞) the embedding is compact. Since γkn is bounded in Ḣ1
0 , interpolation

with these, as well as the Strichartz estimates from [72] implies that it suffices to bound the

remainder in L∞t L
p
x for any fixed p ∈ (103 ,∞). Fix such a p. Let γ0n := un and k = 0. If

νk := lim sup
n→∞

‖γkn‖L∞
t L

p
x
= 0,

then we are done by putting γℓn = γkn for all ℓ > k. Otherwise, there exists a sequence tkn ∈ R

such that ‖γkn(−tkn)‖Lp
x
≥ νk/2 for large n. Since ~γkn(−tkn) ∈ H is bounded, after extracting

a subsequence it converges weakly in H, and γkn(−tkn) converges strongly in L
p
x(R

5∗). Let vk

be the free wave given by the limit

lim
n→∞~γ

k
n(−tkn) = ~vk(0)

By Sobolev ‖vk(0)‖
Ḣ1

0 (R
5
∗)

& νk. We repeat the same procedure inductively in k ≥ 1. As

before, let S0(t) denote the free exterior propagator in H. If tjn− tkn → c ∈ R for some j < k,

then

~γkn(−tkn) = S0(t
j
n − tkn)~γkn(−tjn)→ 0,
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weakly in H. To see this, it suffices to show that

〈~γkn(−tkn) | ~φ〉 → 0 n→∞

for any Schwartz function ~φ. But one has

〈~γkn(−tkn) | ~φ〉 = 〈~γkn(−tjn) | S0(tkn − tjn)~φ〉 → 0

since S0(t
k
n− tjn)~φ→ S0(−c)~φ strongly in L2. Hence |tjn− tkn| → ∞ as long as ~vk 6= 0. Then

for all j ≤ k,

~γk+1
n (−tjn) = ~γkn(−tjn)− ~vk(tkn − tjn)⇀ 0

weakly in H. Indeed, if j < k then this follows from the inductive assumption, whereas for

j = k it follows by construction.

To prove (3.3.4), expand (without loss of generality at t = 0)

‖~un(0)‖2H =
∥∥∥
∑

1≤j<k
~vj(t

j
n) + ~γkn(0)

∥∥∥
2

H

The cross terms are all o(1) as n→∞: for k > j 6= ℓ, and with the scalar product in H,

〈~vj(tjn) | ~vℓ(tℓn)〉 = 〈~vj(0) | S0(tℓn − tjn)~vℓ(0)〉 → 0

〈~vj(tjn) | ~γkn(0)〉 = 〈~vj(0) | ~γkn(−tjn)〉 → 0

(3.3.5)

The first line of (3.3.5) vanishes as n → ∞ due to ‖S0(tℓn − tjn)~φ‖∞ → 0 for any Schwartz

function ~φ since |tℓn− tjn| → ∞, by the pointwise decay of free waves with Schwartz data; as

usual this suffices since we can approximate ~vj(0), ~vℓ(0) by Schwartz functions. The second

line vanishes by ~γkn(−tjn)⇀ 0 in H as n→∞.
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Finally, one uses (3.3.4) to conclude that νj → 0:

lim sup
n→∞

‖~un‖2H ≥
∑

j<k

‖~vj‖2H &
∑

j<k

(νj)2

uniformly in k. The final inequality follows from the radial Sobolev embedding (in other

words, Sobolev embedding and compactness). Hence, lim supn→∞ ‖γkn‖L∞
t L

p
x
= νk → 0, as

k →∞.

Applying this decomposition to the nonlinear equation requires a perturbation lemma

which we now formulate. All spatial norms are understood to be on R5∗. The exterior

propagator S0(t) is as above.

Lemma 3.3.3. There are continuous functions ε0, C0 : (0,∞) → (0,∞) such that the

following holds: Let I ⊂ R be an open interval (possibly unbounded), u, v ∈ C(I; Ḣ1
0 ) ∩

C1(I;L2) radial functions satisfying for some A > 0

‖~u‖L∞(I;H) + ‖~v‖L∞(I;H) + ‖v‖L3
t (I;L

6
x)
≤ A

‖eq(u)‖L1
t (I;L

2
x)

+ ‖eq(v)‖L1
t (I;L

2
x)

+ ‖w0‖L3
t (I;L

6
x)
≤ ε ≤ ε0(A),

where eq(u) := �u+u3Z(ru) in the sense of distributions, and ~w0(t) := S0(t− t0)(~u−~v)(t0)

with t0 ∈ I arbitrary but fixed. Then

‖~u− ~v − ~w0‖L∞
t (I;H) + ‖u− v‖L3

t (I;L
6
x)
≤ C0(A)ε.

In particular, ‖u‖L3
t (I;L

6
x)
<∞.

Proof. Let X := L3tL
6
x and

w := u− v, e := �(u− v) + u3Z(ru)− v3Z(rv) = eq(u)− eq(v).
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There is a partition of the right half of I as follows, where δ0 > 0 is a small absolute constant

which will be determined below:

t0 < t1 < · · · < tn ≤ ∞, Ij = (tj , tj+1), I ∩ (t0,∞) = (t0, tn),

‖v‖X(Ij)
≤ δ0 (j = 0, . . . , n− 1), n ≤ C(A, δ0).

We omit the estimate on I ∩ (−∞, t0) since it is the same by symmetry. Let ~wj(t) :=

S0(t− tj)~w(tj) for all 0 ≤ j < n. Then

~w(t) = ~w0(t) +

∫ t

t0
S0(t− s)(0, e− (v + w)3Z(r(v + w)) + v3Z(rv))(s) ds (3.3.6)

which implies that, for some absolute constant C1 ≥ 1,

‖w − w0‖X(I0)
. ‖(v + w)3Z(r(v + w))− v3Z(rv)− e‖L1

tL
2
x(I0)

≤ C1(δ
2
0 + ‖w‖2X(I0)

)‖w‖X(I0)
+ C1ε

(3.3.7)

To estimate the differences involving the Z function we invoke its smoothness as well as the

fact that by radiality, ru and rv are bounded pointwise in terms of the energy of u and v,

respectively (which we assume to be bounded by A). Note that ‖w‖X(I0)
<∞ provided I0

is a finite interval. If I0 is half-infinite, then we first need to replace it with an interval of

the form [t0, N), and let N → ∞ after performing the estimates which are uniform in N .

Now assume that C1δ
2
0 ≤ 1

4 and fix δ0 in this fashion. By means of the continuity method

(which refers to using that the X-norm is continuous in the upper endpoint of I0), (3.3.7)

implies that ‖w‖X(I0)
≤ 8C1ε. Furthermore, Duhamel’s formula implies that

~w1(t)− ~w0(t) =

∫ t1

t0

S0(t− s)(0, e− (v + w)3Z(r(v + w)) + v3Z(rv))(s) ds
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whence also

‖w1 − w0‖X(R) .

∫ t1

t0
‖(e− (v + w)3Z(r(v + w)) + v3Z(rv))(s)‖2 ds (3.3.8)

which is estimated as in (3.3.7). We conclude that ‖w1‖X(R) ≤ 8C1ε. In a similar fashion

one verifies that for all 0 ≤ j < n

‖w − wj‖X(Ij)
+ ‖wj+1 − wj‖X(R) . ‖e− (v + w)3Z(r(v + w)) + v3Z(rv)‖L1

tL
2
x(Ij)

≤ C1(δ
2
0 + ‖w‖2X(Ij)

)‖w‖X(Ij)
+ C1ε

(3.3.9)

where C1 ≥ 1 is as above. By induction in j one obtains that

‖w‖X(Ij)
+ ‖wj‖X(R) ≤ C(j) ε ∀ 1 ≤ j < n

This requires that ε < ε0(n) which can be done provided ε0(A) is chosen small enough.

Repeating the estimate (3.3.9) once more, but with the energy piece L∞t H included on the

left-hand side, we can now bound the S(I)-norm on w.

We can now apply standard arguments to prove the main result of this section. Without

further mention, all functions are radial.

Proof of Proposition 3.3.1. Suppose that the theorem fails. Then there exists a bounded

sequence ~un := (u0,n, u1,n) ∈ H with

‖~un‖H → E∗ > 0, ‖un‖S →∞

where un denotes the global evolution of ~un of (3.2.9). We may assume that E∗ is minimal

with this property. Applying Lemma 3.3.2 to the free evolutions of ~un(0) yields free waves
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vj and times t
j
n as in (3.3.1). Let Uj be the nonlinear profiles of (vj, t

j
n), i.e., those energy

solutions of (3.2.9) which satisfy

lim
t→tj∞

‖~vj(t)− ~Uj(t)‖H → 0

where limn→∞ t
j
n = t

j
∞ ∈ [−∞,∞]. The Uj exist locally around t = t

j
∞ by the local

existence and scattering theory, see Proposition 3.2.2. Locally around t = 0 one has the

following nonlinear profile decomposition

un(t) =
∑

j<k

Uj(t + t
j
n) + γkn(t) + ηkn(t) (3.3.10)

where ‖~ηkn(0)‖H → 0 as n → ∞. Now suppose that either there are two non-vanishing vj ,

say v1, v2, or that

lim sup
k→∞

lim sup
n→∞

‖~γkn‖H > 0 (3.3.11)

Note that the left-hand side does not depend on time since γkn is a free wave. By the

minimality of E∗ and the orthogonality of the energy (3.3.4) each Uj is a global solution

and scatters with ‖Uj‖L3
tL

6
x
<∞.

We now apply Lemma 3.3.3 on I = R with u = un and

v(t) =
∑

j<k

Uj(t+ t
j
n) (3.3.12)

That ‖eq(v)‖L1
tL

2
x
is small for large n follows from (3.3.2). To see this, note that with
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N(v) := v3Z(rv),

eq(v) = �v + v3Z(rv)

= −
∑

j<k

N(Uj(t+ t
j
n)) +N

(∑

j<k

Uj(t+ t
j
n)
)

The difference on the right-hand side here only consists of terms which involve at least one

pair of distinct j, j′. But then ‖eq(v)‖L1
tL

2
x
→ 0 as n → ∞ by (3.3.2). In order to apply

Lemma 3.3.3 it is essential that

lim sup
n→∞

∥∥∑

j<k

Uj(t+ t
j
n)
∥∥
L3
tL

6
x
≤ A <∞ (3.3.13)

uniformly in k, which follows from (3.3.2), (3.3.4), and Proposition 3.2.2. The point here

is that the sum can be split into one over 1 ≤ j < j0 and another over j0 ≤ j < k. This

splitting is performed in terms of the energy, with j0 being chosen such that for all k > j0

lim sup
n→∞

∑

j0≤j<k
‖~Uj(tjn)‖2H ≤ ε20 (3.3.14)

where ε0 is fixed such that the small data result of Proposition 3.2.2 applies. Clearly, (3.3.14)

follows from (3.3.4). Using (3.3.2) as well as the small data scattering theory one now obtains

lim sup
n→∞

∥∥∥
∑

j0≤j<k
Uj(·+ t

j
n)
∥∥∥
3

L3
tL

6
x

=
∑

j0≤j<k

∥∥Uj(·)
∥∥3
L3
tL

6
x

≤ C lim sup
n→∞

( ∑

j0≤j<k
‖~Uj(tjn)‖2H

)3
2

(3.3.15)

with an absolute constant C. This implies (3.3.13), uniformly in k.
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Hence one can take k and n so large that Lemma 3.3.3 applies to (3.3.10) whence

lim sup
n→∞

‖un‖L3
tL

6
x
<∞

which is a contradiction. Thus, there can be only one nonvanishing vj , say v1, and moreover

lim sup
n→∞

‖~γ2n‖H = 0 (3.3.16)

Thus, ‖~U1‖H = E∗. By the preceding, necessarily

‖U1‖L3
tL

6
x
=∞ (3.3.17)

Therefore, U1 =: u∗ is the desired critical element. Suppose that

‖u∗‖L3
t ([0,∞);L6

x)
=∞ (3.3.18)

Then we claim that

K+ := {~u∗(t) | t ≥ 0}

is precompact in H. If not, then there exists δ > 0 so that for some infinite sequence tn →∞

one has

‖~u∗(tn)− ~u∗(tm)‖H > δ ∀ n > m (3.3.19)

Applying Lemma 3.3.2 to U1(tn) one concludes via the same argument as before based on

the minimality of E∗ and (3.3.17) that

~u∗(tn) = ~V (τn) + ~γn(0) (3.3.20)
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where ~V , ~γn are free waves in H, and τn is some sequence in R. Moreover, ‖~γn‖H → 0 as

n → ∞. If τn → τ∞ ∈ R, then (3.3.20) and (3.3.19) lead to a contradiction. If τn → ∞,

then

‖V (·+ τn)‖L3
t ([0,∞);L6

x)
→ 0 as n→∞

implies via the local wellposedness theory that ‖u∗(·+ tn)‖L3
t ([0,∞);L6

x)
<∞ for all large n,

which is a contradiction to (3.3.18). If τn → −∞, then

‖V (·+ τn)‖L3
t ((−∞,0];L6

x)
→ 0 as n→∞

implies that ‖u∗(· + tn)‖L3
t ((−∞,0];L6

x)
< C < ∞ for all large n where C is some fixed

constant. Passing to the limit yields a contradiction to (3.3.17) and (3.3.19) is seen to be

false, concluding the proof of compactness of K+.

3.4 The rigidity argument

In this section we complete the proof of Theorem 3.1.1 by showing that a critical element as

given by Proposition 3.3.1 does not exist. This is based on the virial identity exterior to the

ball. The main novelty here lies with the fact that due to the radial assumption in R3∗ we are

able to show that the nonlinear functional arising in this virial identity is globally coercive on

the energy space. In contrast, for equivariant energy critical wave maps in the energy class,

Côte, Kenig, Merle [17] needed an upper bound on the energy in order to apply the virial

argument. In particular, we have the following proposition.

Proposition 3.4.1 (Rigidity Property). Let (ψ0, ψ1) ∈ H, and denote by ~ψ(t) the associated
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global in time solution to (3.1.2) given by Proposition 3.2.1. Suppose that the trajectory

K+ := {~ψ(t) | t ≥ 0}

is precompact in H. Then ψ ≡ 0.

The proof of Proposition 3.4.1 relies on the following two results related to the virial

identity for solutions to (3.1.2). In what follows we let χ ∈ C∞0 (R) be an even function

so that χ(r) = 1 for |r| ≤ 1, supp(χ) ∈ [−2, 2] and χ(r) ∈ [0, 1] for every r ∈ R. Define

χR(r) := χ(R−1r).

Lemma 3.4.2. Let ~ψ(t) ∈ H be a solution to (3.1.2). Then, for every T ∈ R we have

〈
χRψ̇|rψr

〉 ∣∣∣
T

0
≤
∫ T

0

{
−3
2

∫ ∞

1
ψ̇2 r2 dr +

1

2

∫ ∞

1
ψ2r r

2 dr

}
dt (3.4.1)

+

∫ T

0

{∫ ∞

1
sin2(ψ) dr +O(E∞R (~ψ))

}
dt

〈
χRψ̇|ψ

〉 ∣∣∣
T

0
=

∫ T

0

{∫ ∞

1
ψ̇2 r2 dr −

∫ ∞

1
ψ2r r

2 dr −
∫ ∞

1
ψ sin(2ψ) dr

}
dt (3.4.2)

+

∫ T

0

{
O(E∞R (~ψ)) +O

(∫ ∞

R
ψ2 dr

)}
dt

where here, the brackets 〈·|·〉 refer to the L2
rad

(R3∗) pairing 〈f |g〉 :=
∫ ∞

1
f(r)g(r)r2 dr and

E∞R (~ψ) :=
1

2

∫ ∞

R

(
ψ̇2 + ψ2r +

2 sin2(ψ)

r2

)
r2 dr (3.4.3)

109



Proof. We first establish (3.4.1) for solutions ~ψ(t) ∈ C∞0 × C∞0 (R3∗).

d

dt

〈
χRψ̇ | rψr

〉
=
〈
χRψ̈ | rψr

〉
+
〈
χRψ̇ | rψ̇r

〉

=

〈
χR

(
ψrr +

2

r
ψr −

sin(2ψ)

r2

)
| rψr

〉
+
〈
χRψ̇ | rψ̇r

〉

=
1

2

∫ ∞

1
∂r(ψ

2
r )(χRr

3) dr + 2

∫ ∞

1
χR ψ

2
rr

2 dr

−
∫ ∞

1
∂r(sin

2(ψ))χRr dr +
1

2

∫ ∞

1
∂r(ψ̇

2)χRr
3 dr

Integrating by parts, the preceding line can be further simplified as follows:

= −3
2

∫ ∞

1
χRψ̇

2r2 dr +
1

2

∫ ∞

1
χRψ

2
rr

2 dr +

∫ ∞

1
χR sin2(ψ) dr − 1

2
ψ2r (t, 1)

+
1

2

∫ ∞

1

(
ψ2r − ψ̇2 +

2 sin2(ψ)

r2

)
r χ′R r

2 dr

= −3
2

∫ ∞

1
ψ̇2r2 dr +

1

2

∫ ∞

1
ψ2r r

2 dr +

∫ ∞

1
sin2(ψ) dr − 1

2
ψ2r (t, 1)

−
∫ ∞

1
(1− χR)

(
−3
2
ψ̇2r2 +

1

2
ψ2r r

2 +
sin2(ψ)

r2

)
r2 dr

+
1

2

∫ ∞

1

(
ψ2r − ψ̇2 +

2 sin2(ψ)

r2

)
r χ′R r

2 dr

Next, observe that

∣∣∣∣
∫ ∞

1
(1− χR)

(
−3
2
ψ̇2r2 +

1

2
ψ2r r

2 +
sin2(ψ)

r2

)
r2 dr

∣∣∣∣ . E∞R (~ψ)
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And similarly, since supp(χ′(R−1·)) ∩ [1,∞) ⊂ [R, 2R], we have

∣∣∣∣
1

2

∫ ∞

1

(
ψ2r − ψ̇2 +

2 sin2(ψ)

r2

)
r χ′R r

2 dr

∣∣∣∣

≤ 1

2

∫ ∞

1

(
ψ2r + ψ̇2 +

2 sin2(ψ)

r2

)
R−1r

∣∣∣χ′(R−1r)
∣∣∣ r2 dr

. E∞R (~ψ)

Putting this together, we obtain

d

dt

〈
χRψ̇ | rψr

〉
= −3

2

∫ ∞

1
ψ̇2r2 dr +

1

2

∫ ∞

1
ψ2r r

2 dr +

∫ ∞

1
sin2(ψ) dr

− 1

2
ψ2r (t, 1) +O(E∞R (~ψ))

≤ −3
2

∫ ∞

1
ψ̇2r2 dr +

1

2

∫ ∞

1
ψ2r r

2 dr

+

∫ ∞

1
sin2(ψ) dr +O(E∞R (~ψ))

By integrating the above inequality in time from 0 to T we obtain (3.4.1) for smooth solutions.

Our well-posedness theory for (3.1.2) then allows us to extend (3.4.1) to all energy class

solutions ~ψ(t) ∈ H via an approximation argument.

We proceed in a similar fashion to prove (3.4.2). Thus, for smooth ψ we have by direct
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calculation,

d

dt

〈
χRψ̇ | ψ

〉
=
〈
χRψ̈ |ψ

〉
+
〈
χRψ̇ | ψ̇

〉

=

〈
χR

(
ψrr +

2

r
ψr −

sin(2ψ)

r2

)
|ψ
〉
+
〈
χRψ̇ | ψ̇

〉

=
〈χR
r2
∂r

(
r2ψr

)
|ψ
〉
−
〈
χR

sin(2ψ)

r2
|ψ
〉
+
〈
χRψ̇ | ψ̇

〉

Integrating by parts, the above simplifies as follows:

=

∫ ∞

1
χRψ̇

2r2 dr −
∫ ∞

1
χRψ

2
r r

2 dr −
∫ ∞

1
χRψ sin(2ψ) dr

−
∫ ∞

1
ψrψχ

′
Rr

2 dr

=

∫ ∞

1
ψ̇2r2 dr −

∫ ∞

1
ψ2r r

2 dr −
∫ ∞

1
ψ sin(2ψ) dr

−
∫ ∞

1
(1− χR)

(
ψ̇2 − ψ2r

)
r2 dr

+

∫ ∞

1

{
(1− χR)ψ sin(2ψ) +

1

2
ψ2∂r(χ

′
Rr

2)

}
dr

As before we have,

∣∣∣∣−
∫ ∞

1
(1− χR)

(
ψ̇2 − ψ2r

)
r2 dr

∣∣∣∣ ≤ E∞R (~ψ)
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And, since |ψ sin(2ψ)| ≤ 2ψ2, we can deduce that

∣∣∣∣
∫ ∞

1

{
(1− χR)ψ sin(2ψ) +

1

2
ψ2∂r(χ

′
Rr

2)

}
dr

∣∣∣∣

.

∫ ∞

1
(1− χR)ψ2 dr +

∫ ∞

1
ψ2
∣∣∣χ′(R−1r)

∣∣∣R−1r dr +
∫ ∞

1
ψ2
∣∣∣χ′′(R−1r)

∣∣∣R−2r2 dr

.

∫ ∞

R
ψ2 dr

Therefore, we see thatf

d

dt

〈
χRψ̇|ψ

〉
=

∫ ∞

1
ψ̇2r2 dr −

∫ ∞

1
ψ2r r

2 dr −
∫ ∞

1
ψ sin(2ψ) dr

+O
(
E∞R (~ψ)

)
+O

(∫ ∞

R
ψ2 dr

)

Integrating the above in time from 0 to T proves (3.4.2) for smooth solutions. Approximating

energy solutions by smooth solutions concludes the proof.

From (3.4.1) and (3.4.2) we construct a nonlinear functional, L : H → R, whose global

coercivity on H is a key ingredient in the proof of Theorem 3.4.1. Using Lemma 3.4.1 we

consider the following linear combination of (3.4.1) and (3.4.2):

〈
χRψ̇ | rψr +

29

20
ψ

〉 ∣∣∣
T

0
≤ −

∫ T

0

[∫ ∞

1

(
1

20
ψ̇2 +

19

20
ψ2r

)
r2 dr

]
dt (3.4.4)

+

∫ T

0

[∫ ∞

1

(
sin2(ψ)− 29

20
ψ sin(2ψ)

)
dr

]
dt

+

∫ T

0

[
O
(
E∞R (~ψ)

)
+O

(∫ ∞

R
ψ2 dr

)]
dt

We define L : H → R as follows

L(~ψ) := −
∫ ∞

1

(
1

20
ψ̇2 +

19

20
ψ2r

)
r2 dr +

∫ ∞

1

(
sin2(ψ)− 29

20
ψ sin(2ψ)

)
dr (3.4.5)

Lemma 3.4.3. Let L : H → R be defined as in (3.4.5). Then for every ~ψ = (ψ(t), ψ̇(t)) ∈ H
113



we have

L(~ψ) ≤ − 1

20

∫ ∞

1

(
ψ̇2 + ψ2r

)
r2 dr ≤ − 1

180
E(~ψ) (3.4.6)

We postpone the proof of Lemma 3.4.3, and first use it to prove Proposition 3.4.1.

Proof of Proposition 3.4.1. Suppose ~ψ(t) ∈ H satisfies the conditions of Proposition 3.4.1,

i.e., suppose that

K+ := {~ψ(t) | t ≥ 0}

is pre-compact in H. Note that the pre-compactness of K+ in H implies, by Hardy’s in-

equality, that K+ is also pre-compact in L2(R3∗, dr) where

‖ψ(t)‖2L2(R3
∗,dr)

:=

∫ ∞

1
ψ(t)2 dr

Then, for every ε > 0 there exists R(ε) such that for every t ≥ 0 we have

E∞R(ε)(~ψ(t)) +
∫ ∞

R(ε)
ψ(t)2 dr < ε (3.4.7)

Now, by (3.4.4) and Lemma 3.4.3, we have that for all T

〈
χRψ̇ | rψr +

29

20
ψ

〉 ∣∣∣
T

0
≤
∫ T

0

[
L(~ψ) +O

(
E∞R (~ψ(t)) +

∫ ∞

R
ψ(t)2 dr

)]
dt

≤
∫ T

0

[
−E(

~ψ)

180
+O

(
E∞R (~ψ(t)) +

∫ ∞

R
ψ(t)2 dr

)]
dt
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Using (3.4.7), we fix R large enough so that

sup
t≥0

O

(
E∞R (~ψ(t)) +

∫ ∞

R
ψ(t)2 dr

)
<
E(~ψ)
360

Therefore, we deduce that

〈
χRψ̇ | rψr +

29

20
ψ

〉 ∣∣∣
T

0
≤ − 1

360
E(~ψ)T (3.4.8)

for every T > 0. However, we can use Hardy’s inequality and the conservation of energy to

estimate the left hand side of the above inequality as follows,

∣∣∣∣
〈
χRψ̇ | rψr +

29

20
ψ

〉∣∣∣∣ ≤
∣∣∣∣
∫ ∞

1
χRψ̇ψr r

3 dr

∣∣∣∣ + C

∣∣∣∣
∫ ∞

1
χRψ̇ψ r

2 dr

∣∣∣∣

. R

∫ ∞

1
(ψ̇2 + ψ2r +

ψ2

r2
) r2 dr

. RE(~ψ)

Combining the above with (3.4.8) we conclude that

T
1

360
E(~ψ) . R E(~ψ)

for all T > 0, which, since E(~ψ) = const, implies that T ≤ CR. And this contradicts the

fact that ~ψ exists globally in time.

We can now complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Suppose that Theorem 3.1.1 fails. Then Proposition 3.3.1 implies

the existence of a critical element, i.e., a nonzero energy class solution ~ψ(t) ∈ H to (3.1.2)
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such that the trajectory K+ = {~ψ(t)|t ≥ 0} is pre-compact in H. However, Proposition 3.4.1

implies that any such solution must be identically zero, which contradicts the fact that the

critical element is nonzero.

3.4.1 Proof of Lemma 3.4.3

The remaining piece of the argument is the proof of Lemma 3.4.3. To begin we define

Λ : Ḣ1
0 (1,∞)→ R by

Λ(ψ) := − 9

10

∫ ∞

1
ψ2r r

2 dr +

∫ ∞

1

(
sin2(ψ)− 29

20
ψ sin(2ψ)

)
dr (3.4.9)

And we note that in order to prove Lemma 3.4.3, it suffices to show that

Λ(ψ) ≤ 0 for every ψ ∈ Ḣ1
0 (1,∞) (3.4.10)

Indeed, if (3.4.10) holds then

L(~ψ) = − 1

20

∫ ∞

1

(
ψ̇2 + ψ2r

)
r2 dr + Λ(ψ)

≤ − 1

20

∫ ∞

1

(
ψ̇2 + ψ2r

)
r2 dr

which is exactly (3.4.6). For each R > 1, define

AR := {ψ ∈ Ḣ1
0 (1,∞) | ψ(r) = 0 for every r ≥ R}

Observe that AR = Ḣ1
0 (1, R) where the subscript 0 indicates Dirichlet boundary conditions

at both r = 1 and r = R. We start by deducing (3.4.10) on AR for each R > 1.

Lemma 3.4.4. For each R > 1 the restriction Λ|AR
: AR → R satisfies Λ(ψ) ≤ 0 for every
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ψ ∈ AR.

Assuming Lemma 3.4.4, we can extend (3.4.10) to all of Ḣ1
0 (1,∞) via an approximation

argument as follows. To simplify notation, set

F (ψ) := sin2(ψ)− 29

20
ψ sin(2ψ)

N(ψ) :=

∫ ∞

1
F (ψ(r)) dr

E(ψ) :=
1

2

∫ ∞

1
ψ2r (r) r

2 dr

Then,

Λ(ψ) = −9
5
E(ψ) +N(ψ)

Proof that Lemma 3.4.4 implies Lemma 3.4.3. We assume that Lemma 3.4.4 is true but

(3.4.10) fails. Then there exists ψ ∈ Ḣ1
0 (1,∞) such that

Λ(ψ) = δ > 0 (3.4.11)

For each k ∈ N define φk ∈ C∞0 (R) so that φk(r) = 1 for 0 ≤ r ≤ k, φk ≡ 0 for r ≥ 2k and
∣∣φ′k(r)

∣∣ . 1
k . Then set ψk := φkψ. Note that for each k, ψk ∈ A2k and that

E(ψk)→ E(ψ) as k →∞

N(ψk)→ N(ψ) as k →∞

Hence, by (3.4.11), there exists k0 ∈ N such that

Λ(ψk) ≥
δ

2
> 0
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for k ≥ k0, and this contradicts Lemma 3.4.4.

Therefore, it remains to establish Lemma 3.4.4. In what follows we fix R > 1. The goal

is to show via a variational argument that ψ ≡ 0 maximizes Λ|AR
. Since Λ(0) = 0, this

would prove Lemma 3.4.4.

We claim that Λ defines a bounded functional on AR. To see this, observe that for every

x, we have |F (x)| ≤ 2 |x|. Hence by the Strauss estimate, (3.2.3), and the fact that we are

in AR, we have

N(ψ) ≤ 2

∫ R

1
|ψ(r)| dr ≤ 8R

√
E(ψ)

Therefore,

Λ(ψ) ≤ −9
5
E(ψ) + 8R

√
E(ψ) ≤ C(R) (3.4.12)

Since Λ is bounded on AR and Λ(0) = 0, we define 0 ≤ µ ≤ C(R) by

µ := sup
ψ∈AR

Λ(ψ)

Now, let {ψn}∞n=1 ⊂ AR be a maximizing sequence, i.e., Λ(ψn) → µ as n → ∞. We claim

that E(ψn) ≤ C. If not, then there exists a subsequence, {ψnk} such that E(ψnk) → ∞.

But then, by (3.4.12), we would have Λ(ψnk)→ −∞, which contradicts the fact that {ψn}

is maximizing and µ ≥ 0. Since E(ψn) =
1
2‖ψn‖2Ḣ1 ≤ C we can extract a subsequence, still

denoted by {ψn}, so that

ψn ⇀ ψ∞ ∈ Ḣ1
0

ψn → ψ∞ ∈ L2loc
ψn → ψ∞ pointwise a.e. on [1, R]
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And, since AR = Ḣ1
0 (1, R), the boundary conditions are automatically satisfied and we have

ψ∞ ∈ AR. Next, we claim that ψ∞ is in fact a maximizer, i.e., Λ(ψ∞) = µ. On the one

hand, since µ is the supremum, Λ(ψ∞) ≤ µ. To prove the other direction we remark that

by the lower semi-continuity of weak limits we have that

lim inf
n

E(ψn) ≥ E(ψ∞)

Also, since |F (ψn)| ≤ 3ψ2n ≤ 6E(ψn) ≤ C, by the bounded convergence theorem, we see

that

lim
n→∞N(ψn) = N(ψ∞).

Putting this together we get

Λ(ψ∞)− µ = lim
n→∞(Λ(ψ∞)− Λ(ψn))

= lim
n→∞

(
−9
5
E(ψ∞) +

9

5
E(ψn) +N(ψ∞)−N(ψn)

)

≥ 9

5
lim inf
n→∞ (−E(ψ∞) + E(ψn)) + lim inf

n→∞ (N(ψ∞)−N(ψn))

≥ lim inf
n→∞ (N(ψ∞)−N(ψn)) = 0

Hence Λ(ψ∞) = µ and so ψ := ψ∞ ∈ AR is our maximizer. Now, let η ∈ C∞0 (1, R) and

consider compact variations ψε := ψ + εη of ψ. Since ψ is a maximizer for Λ|AR
, it follows

that

0 =
d

dε
Λ(ψε)|ε=0 = −9

5

∫ ∞

1
ψrηr r

2 dr +

∫ ∞

1
F ′(ψ)η dr

=

∫ ∞

1

(
9

5
r−2∂r(r2ψr) +

F ′(ψ)
r2

)
η r2 dr

119



This implies that ψ satisfies the following Euler-Lagrange equation

ψrr +
2

r
ψr = −

5

9

F ′(ψ)
r2

(3.4.13)

ψ(1) = 0, ψ(R) = 0

where the boundary conditions originate with the requirement that ψ ∈ AR. Setting r = ex

and defining ϕ(x) := ψ(ex) we obtain the following autonomous differential equation for ϕ:

ϕ′′ + ϕ′ = f(ϕ) (3.4.14)

ϕ(0) = 0, ϕ(log(R)) = 0

where f(ϕ) := −5
9F
′(ϕ) = 1

4 sin(2ϕ)+
29
18ϕ cos(2ϕ). We claim that ϕ ≡ 0 is the only solution

to (3.4.14). Note that this implies Lemma 3.4.4 since then ψ ≡ 0 would be the unique

maximizer for Λ|AR
and Λ(0) = 0. We formulate the claim as a general lemma about the

differential equation (3.4.14).

Lemma 3.4.5. Let f(x) := 1
4 sin(2x) +

29
18x cos(2x). Suppose that x(t) is a solution to

ẍ+ ẋ = f(x) (3.4.15)

and suppose that x(0) = 0 and that there exists a T > 0 such that x(T ) = 0. Then x ≡ 0.

We note that the conclusion of Lemma 3.4.5 depends highly on the exact form the

function f . In fact, the lemma fails if we replace f with 3
2f . Such a change would amount to

requiring a smaller fraction of E(ψ) to dominate N(ψ) in (3.4.10). This subtlety necessitates

the careful analysis that is carried out in the proof.

The proof of Lemma 3.4.5 will consist of a detailed analysis of the phase portrait associ-
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ated to (3.4.15). Letting y(t) := ẋ(t), and setting

v(t) := (x(t), y(t))tr

N(x, y) := (y,−y + f(x))tr

we rewrite (3.4.15) as the following system

v̇ :=



ẋ

ẏ


 =




y

−y + f(x)


 =: N(v) (3.4.16)

We can make a few immediate observations about the behavior of solutions to (3.4.16). First

we note that since |N(v)| ≤ C |v|, Gronwall’s inequality implies that solutions are unique

and exist globally in time. Let Φt denote the flow.

Next observe that equilibria of (3.4.16) are all hyperbolic (following the terminology of

Wiggins [91]) and that they occur at the points vj := (xj , 0), where xj is a zero of f , i.e.,

f(xj) = 0. To see this we linearize about the equilibrium vj , which results in the the equation

ξ̇ = ∇N(vj)ξ (3.4.17)

where

∇N(vj) =




0 1

f ′(xj) −1




The eigenvalues of ∇N(vj) are given by

λ±(vj) = −
1

2
± 1

2

√
1 + 4f ′(xj) (3.4.18)
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To proceed, a more careful examination of the zeros of f is required. We can order the zeros

xj so that

. . . x−j < · · · < x−1 < 0 =: x0 < x1 < · · · < xj . . .

We note that since f is odd one has x−j = −xj and it suffices to look at only those xj such

that xj ≥ 0. Indeed, all properties of the phase portrait on the right-half plane are identical

to those on the left-half plane after a reflection about the origin.

First, observe that x0 := 0 satisfies f(x0) = 0 and f ′(x0) = 19
9 > 2. Hence, λ+(v0) >

−1
2 + 3

2 = 1 > 0 and λ−(v0) < −1
2 . This means that (3.4.16) has a saddle at v0 = (0, 0).

Next, we see that due to the oscillatory nature of f and the fact that f ′(0) > 0 we can

deduce that f ′(xj) > 0 for j even, and f ′(xj) < 0 for j odd. It is also straightforward to

show that
∣∣f ′(xj)

∣∣ > 1 for every j > 0. These facts, together with (3.4.18) imply that

Re (λ±(vj)) < 0 if j is odd

λ+(vj) > 0, and λ−(vj) < 0 if j is even

Hence (3.4.16) has sinks at each xj for j even, and saddles at each xj for j odd. Also we

note that in a neighborhood Vj ∋ vj , the equilibira vj , for j even, each have a 1-dimensional

invariant stable manifold

W s
j := {v ∈ Vj | Φt(v) ∈ Vj ∀ t ≥ 0, Φt(v)→ vj exponentially as t→ +∞}

and a 1-dimensional invariant unstable manifold

Wu
j := {v ∈ Vj | Φt(v) ∈ Vj ∀ t ≤ 0, Φt(v)→ vj exponentially as t→ −∞}

that are tangent to the respective invariant subspaces of the the linearized vector field corre-

122



sponding to the right hand side of (3.4.17) at the point vj . For j even, the stable invariant

linear subspace at vj is spanned by ξ−(vj) = (1, λ−(vj)) and the unstable invariant subspace

is spanned by ξ+(vj) = (1, λ+(vj)). The equilibria vj , for j odd, each have a two dimensional

invariant stable manifold, (see, for example, [59], Chapt. 3.2).

Our goal is to demonstrate the impossibility of a trajectory v(t) such that v(0) = (0, y0)

and v(T ) = (0, yT ) with y0 6= 0 and T ∈ R. By symmetry considerations we can restrict

ourselves to the case y0 > 0. We rule out such a trajectory by showing that solutions with

data on the unstable invariant manifolds at the equilibria vj , for j even, have the following

properties:

Lemma 3.4.6. Let j = 2ℓ be even. Denote by v+j = (x+j , y
+
j ) the unique trajectory with

data in Wu
j such that there exists a τ1 > 0 large enough so that y+j (t) > 0 for all t < −τ1.

And denote by v−j = (x−j , y
−
j ) the unique trajectory in Wu

j such that there exists a τ2 > 0

large enough so that y−j (t) < 0 for all t < −τ2. Then, the following statements hold.

(i) There exists T1 ∈ R such that v+j (T1) = (p+j , 0) with p
+
j ∈ (xj+1, xj+2).

(ii) There exists T2 ∈ R such that v−j (T2) = (p−j , 0) with p
−
j ∈ (xj−2, xj−1).

We assume that T1, T2 are minimal with the stated properties.

The conclusion of Lemma 3.4.6 is depicted in Figure 3.1.

Proof that Lemma 3.4.6 implies Lemma 3.4.5. Suppose we start with data v(0) = (0, y0)

with y0 > 0. Then, since the right hand side of (3.4.16) is given by (y,−y)tr on the line

{x = 0}, the trajectory v(t) enters the right-half plane in forward time. Note that v(t)

can never cross back into the left-half plane when y(t) > 0 since the line {x = 0, y > 0}

is repulsive with respect the forward trajectory of v. Hence, in order for there to be a

time T > 0 such that v(T ) = (0, y(T )) the trajectory must first cross into the lower-half

plane. However, v(t) must then either lie in the stable manifold W s
j for some even j, or by
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Figure 3.1: The figure above represents a slice of the phase portrait associated to (3.4.16).
The red flow lines represent the unstable manifolds, Wu

j , associated to the vj , and the green

flow lines represent the stable manifolds, W s
j , associated to the vj .

Lemma 3.4.6 (i) it crosses the x-axis between xk and xk+1 for some k odd. But then, if the

latter occurs, by Lemma 3.4.6 (ii), the flow must cross back into the the upper-half plane

again at some point strictly between xk−1 and xk. If we track the trajectory further, (i)

and (ii) will, in fact, force v(t) into the sink at xk, thus preventing it from ever reaching the

y-axis. By the reflection symmetry of (3.4.16), the same logic works if we begin with data

v(0) = (0, y0) with y0 < 0.

To simplify the picture we begin by dividing the phase plane into strips by defining

Ωj/2+1 = [xj , xj+2]× R for j ∈ 2Z. We first verify Lemma 3.4.6 in Ω1 and in Ω2 and then

we will renormalize (3.4.16) in order to treat cases (i) and (ii) in Ωℓ for ℓ ≥ 3.

Proof of Lemma 3.4.6 on Ω1 and Ω2. The main tool in the proof of Lemma 3.4.6 in Ω1 and

Ω2 will be the following identity which is obtained by multiplying equation (3.4.15) by ẋ and

integrating from t = t0 to t = t1.

∫ t1

t0

ẍ(s)ẋ(s) ds+

∫ t1

t0

ẋ(s)2 ds =

∫ t1

t0

f(x(s))ẋ(s) ds (3.4.19)
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Figure 3.2: A schematic depiction of the flow in the first strip Ω1.

Substituting y = ẋ this becomes

1

2
(y2(t1)− y2(t0)) +

∫ t1

t0

y2(s) ds = F (x(t1))− F (x(t0)) (3.4.20)

where F (x) := 5
18 cos(2x) +

29
36x sin(2x) is a primitive for f .

We will also need to approximate the zeros x0, x1, . . . , x4. We can do this to any degree

of precision, although a rather rough approximation will suffice. By inspection, the zero xj

is close to the point 2j−1
4 π for j ≥ 1. Indeed we have,

x0 = 0, x1 ≈ 0.8733, x2 ≈ 2.3886, x3 ≈ 3.9466, x4 ≈ 5.51186 (3.4.21)

First we show (i) on Ω1. We would like to show that there exists T ∈ (−∞,∞] and

p ∈ [x1, x2] so that v+0 (T ) = (p, 0). In the process we will also show that x+0 (t) ≤ xj+2 for

all t ∈ R.

Note that on the line {x = xj} in the phase plane the right-hand side of (3.4.16) is equal

to (y,−y)tr. Hence, the trajectory v+0 (t) can never enter the left-half plane {x < 0} by
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crossing the line {x = 0, y > 0} as the vector field (y,−y)tr is repulsive along this line in

forward time. Also, since |f(x)| ≤ 3 on [0, x2] the vector field (y,−y+f(x))tr prevents v+0 (t)

from ever crossing above the line segment {0 ≤ x ≤ x2, y = 4}. Similarly, v+0 (t) can never

cross from the upper into the lower-half plane through the line segment {0 < x < x1, y = 0},

since f(x) > 0 on (0, x1) and thus the vector field (0, f(x))tr repulses such a trajectory in

forward time.

Therefore, the only remaining possibilities for the forward trajectory v+0 (t) are for

Lemma 3.4.6 (i) to hold, or for one of the following two scenarios to occur: the trajectory

crosses the line {x = x2, y > 0} in finite time, or it is heteroclinic connecting the saddles

(x0, 0) and (x2, 0). Suppose that either of the latter two cases occurs. Then, there exists

T ∈ R ∪ {∞} such that v+0 (T ) = (x2, y(T )) with y(T ) ≥ 0. But then, letting t0 → −∞ in

(3.4.20) we would have

1

2
y2(T ) +

∫ T

∞
y2(s) ds = F (x2)− F (0) ≈ −2.1799 < −2

which is a contradiction since the left hand side is strictly positive. This proves (i) for

Ω1. The proof of (i) for Ω2 is identical. One first shows that the only possibilities for the

trajectory v+2 (t) are for either (i) to hold, or for it to cross the line {x = x4, y > 0} in finite

time, or to be to heteroclinic. And the latter two scenarios are impossible by (3.4.20) since

then there would be a T ∈ R ∪ {∞} so that

1

2
y2(T ) +

∫ T

∞
y2(s) ds = F (x4)− F (x2) ≈ −2.52841 < −2

which contradicts the positivity of the left-hand-side above.

We will also use (3.4.20) to prove (ii), although we will not get by as easily as in the

proof of (i), as we will need to estimate the size of the left hand side of (3.4.20) to obtain a

contradiction. This will be achieved via the construction of a Lyapunov functional. Unfor-
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tunately, this is somewhat delicate as can been seen by means of the blue line in Figure 3.2

which is the unstable manifoldWu
2 as computed by Maple. While it does visibly fall into the

sink, it does so much less dramatically than Wu
0 . For (ii), the relevant trajectory in Ω1 is

v−2 (t) which has data v−2 (−∞) = (x2, 0) and satisfies y−2 (t) < 0 for t ≤ −τ2. By symmetry,

we can instead consider the trajectory v+−2(t) in W
u
−2 so that y+−2(t) > 0 for t < −τ . This

trajectory lies in Ω−1.

Again one shows that either (ii) holds, or the forward trajectory v+−2(t) reaches the line

{x = 0, y ≥ 0} in finite or infinite positive time. In order to arrive at a contradiction, we

assume that the latter occurs. That is, we assume that there exists T ∈ R ∪ {∞} such that

v+−2(T ) = (0, y+−2(T )) with y
+
−2(T ) ≥ 0. In this case we are able to use the attractive nature

of the fixed point (x−1, 0) to construct a subset Σ ⊂ Ω−1 so that the flow v+−2(t) cannot

enter Σ. In other words, the boundary of Σ will be repulsive with respect to the forward

trajectory of v+−2.

To construct Σ, we define three polynomials. First define p1 as a function of x:

p1(x) := −
3

1000
+

110

47

(
x+

43

18

)
− 89

222

(
x+

43

18

)2

− 23

42

(
x+

43

18

)3

+
7

85

(
x+

43

18

)4

+
8

303

(
x+

43

18

)5

− 1

446

(
x+

43

18

)6

− 1

760

(
x+

43

18

)7

+
1

4035

(
x+

43

18

)8

− 1

13999

(
x+

43

18

)9
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Then, define p2 and p3 as functions of y as follows:

p2(y) := −
6627

638000
− 17913

29000
y − 19

75

(
y − 21

22

)2

− 17

80

(
y − 21

22

)3

− 29

106

(
y − 21

22

)4

− 36

115

(
y − 21

22

)5

− 9

20

(
y − 21

22

)6

− 19

31

(
y − 21

22

)7

− 32

35

(
y − 21

22

)8

− 42

31

(
y − 21

22

)9

and

p3(y) := −
104159

877500
− 9383

19500
y − 18

113

(
y − 3

5

)2

+
2

365

(
y − 3

5

)3

− 38

291

(
y − 3

5

)4

+
3

50

(
y − 3

5

)5

− 21

158

(
y − 3

5

)6

+
6

71

(
y − 3

5

)7

− 2

15

(
y − 3

5

)8

+
7

82

(
y − 3

5

)9

− 31

278

(
y − 3

5

)10

+
6

121

(
y − 3

5

)11

Finally, we set Σ = Σ1 ∪ Σ2 ∪ Σ3 where,

Σ1 :=

{
(x, y) ∈ Ω−1 | −

43

18
+

3

1000
< x < −3

5
, 0 < y < p1

(
−3
5

)}

Σ2 :=

{
(x, y) ∈ Ω−1 | −

3

5
< x < p2(y),

3

5
< y <

21

22

}

Σ3 :=

{
(x, y) ∈ Ω−1 | −

3

5
< x < p3(y), 0 < y <

3

5

}

The region Σ is pictured in Figure 3.3. A few words are required in order to explain how one

goes about constructing the region Σ, and in particular, about how one finds the functions

pk. To choose p1, one begins by finding an approximate solution to (3.4.15) with data slightly

to the right of x−2 via power series expansions. This approximate solution is then shifted

downward by a small amount, here we take 3
1000 . As we will see below, this downward

shift ensures that the resulting function forms a curve that is, at least initially, a Lyapunov

functional in that it is repulsive with respect to the true trajectory emanating from x−2,
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Σ1 Σ2

Σ3

x−2

21
22

3
5

−3
5 0

p1(x)

p2(y)

p3(y)

Figure 3.3: The region Σ = Σ1∪Σ2∪Σ3 pictured above has the property that ∂Σ is repulsive
with respect to the unstable manifold Wu

−2.

i.e., the unstable manifold Wu
−2. We then define p1 by approximating the coefficients of the

polynomial we found by rationals. We cease to use the graph of p1 as the boundary of Σ

when it ceases to possess the desired Lyapunov properties. We then define p2 and p3 in

similar fashions making sure that all of the respective graphs are eventually joined together

by curves that are also Lyapunov. In the case of the segment joining the graph of p1 and p2

this is achieved with a vertical line as depicted in Figure 3.3. For p2 and p3 the matching is

done with a horizontal line.

We claim that the boundary of Σ is repulsive with respect to the trajectory v+−2(t). To

see this, it suffices to show that the outward normal ν on ∂Σ ∩ {y > 0} satisfies

ν ·N ≥ 0 (3.4.22)

where N := (y,−y + f(x))tr is the vector field (3.4.16). There are five components to

∂Σ ∩ {y > 0}. Three components are given by the graphs of p1, . . . , p3, and we label

these components ∂Σ1, . . . , ∂Σ3. The other two components are given by the vertical seg-

ment, ∂Σ4, connecting the point (−3
5 ,

21
22) to (−3

5 , p1(−3
5)), and the horizontal segment, ∂Σ5,
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connecting the point (p3(
3
5),

3
5) to (p2(

3
5),

3
5). We must check that (3.4.22) holds on each

component.

On ∂Σ1 the outward normal ν1 is given by ν1 = (−p′1(x), 1). On ∂Σ2, ν2 = (1,−p′2(y)).

Similarly, ν3 = (1,−p3(y)). Finally, ν4 = (1, 0) and ν5 = (0,−1). And, it is elementary to

check that indeed,

ν1 ·N = f(x)− p1(x)(1 + p′1(x)) > 0 for every − 43

18
≤ x ≤ −3

5

ν2 ·N = y + p′2(y)(y − f(p2(y)) > 0 for every
3

5
< y ≤ 21

22

ν3 ·N = y + p′3(y)(y − f(p3(y)) > 0 for every 0 ≤ y ≤ 3

5

as well as

ν4 ·N = y > 0 for every
3

5
≤ y ≤ 21

22

ν5 ·N =
3

5
− f(x) > 0 for every p3 (3/5) ≤ x ≤ p2 (3/5)

Now, by (3.4.20), we have that

1

2
y2(T ) +

∫ T

−∞
y2(s) ds = F (0)− F (x−2) ≈ 2.1799 < 2.18 (3.4.23)

However, we claim that

∫ T

−∞
y2(s) ds > Area(Σ) > 2.18 (3.4.24)

To prove (3.4.24), we first make the claim that under our current assumptions, the integral on

the left-hand side of (3.4.24) is greater than the area of the region bounded by the trajectory

v+−2(t) and the lines {x ≤ 0} and {y = 0}. To see this recall that v+−2(t) lies on the unstable
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manifold Wu
−2 and hence locally we can either write y+−2(t) = y(x(t)) or x+−2(t) = x(y(t)).

Assume that for τ0 < t < τ1 we can write y = y(x). Then, x(τ0) < x(τ1) and

∫ τ1

τ0

y2(s) ds =

∫ τ1

τ0

y(x(s))ẋ(s) ds =

∫ x(τ1)

x(τ0)
y(x) dx

which, since y(t) ≥ 0, is, in fact, the area of the region bounded by the trajectory v+−2(t),

the line {y = 0}, and the lines {x = x(τ0)} and {x = x(τ1)}.

Next suppose we can write x = x(y) for τ2 < t < τ3 and that y(τ2) > y(τ3). Since all

vertical lines in Ω−1 have the property that they cannot be crossed by the flow from right

to left in forward time we have that x(y(τ2)) ≤ x(y(τ3)). Observe that if x = x(y(t)) then

ẋ = x′(y)ẏ, and hence

∫ τ3

τ2

ẋ(s)2 ds =

∫ τ3

τ2

y(s)x′(y(s))ẏ(s) ds =
∫ y(τ3)

y(τ2)
y x′(y) dy

=

∫ y(τ2)

y(τ3)
x(y) dy + y(τ3)x(y(τ3))− y(τ2)x(y(τ2))

but this can further be estimated from below by

≥
∫ y(τ2)

y(τ3)
x(y) dy + (y(τ3)− y(τ2))x(y(τ2))

=

∫ y(τ2)

y(τ3)
[x(y) + x(y(τ2))] dy

where the last line is exactly the area of the region bounded by v+−2(t), and the lines {x =

x(τ2)}, and {y = y(τ3)}.

Therefore, since v+−2(t) cannot enter Σ we have
∫ T
−∞ y2(s) ds > Area(Σ). The remaining

step is to compute the area of Σ which can be done explicitly since Σ is defined entirely in
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terms of polynomials with rational coefficients. Indeed,

Area(Σ) = Area(Σ1) + Area(Σ2) + Area(Σ3) > 2.21

which proves (3.4.24) and provides a contradiction when combined with (3.4.23). This proves

(ii) in Ω1. Note that small margin of error which is allowed here (after all the relevant

numbers are, respectively, 2.21 and 2.18) is a reflection of the “almost heteroclinic” nature

of the blue line in Figure 3.2 which is Wu
2 . This forces us to be very precise about the

Lyapunov functionals that we constructed above.

Next, we will establish (ii) in Ω2. The relevant trajectory is v−4 (t) which has data

v−4 (−∞) = (x4, 0). As before, we can show that the only possibilities for v−4 (t) are either

that (ii) holds, or that there exists a time T ∈ R ∪ {∞} such that v−4 (T ) = (x2, y
−
4 (T ))

where y−4 (t) ≤ 0 for all −∞ < t ≤ T . We assume the latter holds and seek a contradiction.

As in the proof of (ii) in Ω1 we will construct a subset Σ ⊂ Ω2 so that the boundary, ∂Σ, is

repulsive with respect to the forward flow v−4 (t). To construct Σ we define the polynomial

p(x) :=
3

100
+

15

4

(
x− 11

2

)
+

18

89

(
x− 11

2

)2

− 136

181

(
x− 11

2

)3

and define

Σ := {(x, y) ∈ Ω2 | 18/5 < x < 11/2, p(x) < y < 0}

The function p is constructed in the same fashion as the Lyapunov functional for Ω−1

except that here we need only a 3rd order approximation. Indeed, the trajectory v−4 is far

from heteroclinic and thus provides us with a much larger margin for error as we seek a

contradiction.

Again it suffices to show that the outward normal ν on ∂Σ ∩ {y < 0} satisfies ν ·N ≥ 0.
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Figure 3.4: A schematic depiction of the flow in the second strip Ω2.

We have ν = (p′(x),−1)tr. And one can show that

ν ·N = p(x)(1 + p′(x))− f(x) > 0 for every 18/5 < x < 11/2

Again, we use (3.4.20) to obtain,

1

2
y2(T ) +

∫ T

−∞
y2(s) ds = F (x2)− F (x4) ≈ 2.52841 < 2.6 (3.4.25)

However, we have

∫ T

−∞
y2(s) ds > Area(Σ) > 3.8 (3.4.26)

which contradicts (3.4.25). This completes the proof of Lemma 3.4.6 in Ω1 and in Ω2. We

remark that the Lyapunov construction for Ω2 is considerably easier than for Ω1 as can

be seen by Figure 3.4. Indeed, the unstable manifold Wu
4 , which is depicted by the blue

trajectory in Figure 3.4, is very far from being heteroclinic.
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To prove Lemma 3.4.6 on Ωℓ for ℓ ≥ 3 we first shift and rescale (3.4.16) via the following

renormalization. For each j ∈ N, ε ∈ R we define ζ and η via

x(t) =:
2j − 1

4
π + ζ(ε−1t) (3.4.27)

y(t) =: ε−1 η(ε−1t)

Define zj :=
2j−1
4 π. Then (3.4.16) implies the following system of equations for ζ, η



ζ̇

η̇


 =




η

−εη + ε2f(zj + ζ)


 (3.4.28)

where ˙ = d
ds where s = ε−1t. Observe that we have

f(zj + ζ) = (−1)j 29
18
zj sin(2ζ) + (−1)j+1g(ζ)

where g(ζ) := 1
4 cos(2ζ)− 29

18ζ sin(2ζ). Fix j = 2ℓ with ℓ ≥ 2 and set

ε :=

√
72

29π(2j − 1)
(3.4.29)

Note that j ≥ 4 implies that 0 < ε < 7
20 . Then (3.4.28) becomes



ζ̇

η̇


 =




η

sin(2ζ)− εη − ε2g(ζ)


 (3.4.30)

Note that (3.4.30) is the equation governing the motion of a damped pendulum with a small

perturbative term ε2g(ζ), and in the limit as ε → 0, (3.4.30) is exactly the the equation of

a simple pendulum.

Let’s rephrase the set-up of Lemma 3.4.6 in terms of this renormalization. First we
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examine how this affects the strip Ωj/2+1. We can write the zeros of f as

xj = zj + ζ0

xj+1 = zj+1 + ζ1 = zj +
π

2
+ ζ1

xj+2 = zj+2 + ζ2 = zj + π + ζ2

where 0 < ζ0 <
π
2 + ζ1 < π + ζ2 are the first three positive zeros of

h(ζ) := sin(2ζ)− ε2g(ζ)

Hence the strip Ωj/2+1 becomes the strip Ω̃ = [ζ0, π + ζ2] × R. Note that the renormaliza-

tion (3.4.27) does not affect the topological properties of the dynamics of (3.4.16) and hence

the invariant manifolds associated to the equilibria of (3.4.16) in Ωj/2+1 become invariant

manifolds associated to the equilibria of (3.4.30) in the strip Ω̃. Denote by Wu
ζ0

and Wu
ζ2
,

the unstable invariant manifolds associated to the equilibria (ζ0, 0) and (π + ζ2, 0). Thus

Lemma 3.4.6 in Ωℓ for ℓ ≥ 3 is equivalent to the following result. For simplicity, we again

use t to denote time.

Lemma 3.4.7. Denote by v+ = (ζ+, η+) the unique solution of (3.4.30) with data in Wu
ζ0

such that there exists a τ1 > 0 large enough so that η+(t) > 0 for all t < −τ1. And denote

by v− = (ζ−, η−) the unique solution in Wu
ζ2

such that there exists a τ2 > 0 large enough so

that η−(t) < 0 for all t < −τ2. Then, the following statements hold:

(i) There exists T1 ∈ R such that v+(T1) = (p1, 0) with p1 ∈ (π/2 + ζ1, π).

(ii) There exists T2 ∈ R such that v−(T2) = (p2, 0) with p2 ∈ (ζ0, π/2 + ζ1).

Again, we let T1, T2 be minimal with these properties.

The proof of Lemma 3.4.7 will require a rather precise knowledge of the location of the

zeros ζ0 and π + ζ2 of h(ζ).
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Lemma 3.4.8. Set h(ζ) = sin(2ζ)− ε2g(ζ). Then

(a) There exists a function a : [0, 7
20 ]→ [−1

3 ,−1
9 ] such that h has a zero at ζ0 = ζ0(ε) =

1
2ε

2g(0)(1 + a(ε)ε4).

(b) There exists a function c : [0, 7
20 ] → [10, 40] such that h has a zero at π + ζ2 =

π + ζ2(ε) = π + 1
2ε

2g(π)(1− 29
18πε

2 + c(ε)ε4).

In particular, ζ0 > 0 and ζ2 > 0.

We will momentarily postpone the proof of Lemma 3.4.8 and first establish Lemma 3.4.7.

Proof of Lemma 3.4.7. Again our main tool will be the following identity, which is deduced

in the same manner as (3.4.20),

1

2
(η2(t1)− η2(t0)) + ε

∫ t1

t0

η2(s) ds =

∫ t1

t0

sin(2ζ)ζ̇ ds− ε2
∫ t1

t0

g(ζ(s))ζ̇(s) ds (3.4.31)

=
1

2
(cos(2ζ(t0))− cos(2ζ(t1)))

− ε2(G(ζ(t1))−G(ζ(t0)))

where G(x) := 29
36x cos(2x)− 5

18 sin(2x) is a primitive of g.

First we prove (i). The only possibilities for the forward trajectory v+(t) are for (i) to

hold, or for there to exist a time T , possibly infinite, such that v+(T ) = (π, η+(T )) with

0 ≤ η+(t) for all t ≤ T . In this latter case, (3.4.31) implies that

1

2
η2(T ) + ε

∫ T

−∞
η2(s) ds =

1

2
(cos(2ζ(t0))− 1))− ε2(G(π)−G(ζ0))

≤ −ε2(G(π)−G(ζ0)) ≤ 0

which is a contradiction since the left-hand-side above is strictly positive.
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7
4 2 π

Σ1Σ2

y1(x)

y2(x)

Figure 3.5: The region Σ = Σ1 ∪ Σ2 pictured above has the property that ∂Σ is repulsive
with respect to the unstable manifold Wu

ζ2
.

Now, assume (ii) fails. Then there exists a time T ∈ R ∪ {∞} such that v−(T ) =

(ζ0, η
−(T )) with η−(t) ≤ 0 for every t ≤ T . As in the proof of Lemma 3.4.6 (ii) for Ω1 and

Ω2 we construct a region Σ in Ω̃ so that the boundary ∂Σ is repulsive with respect to the

flow v−(t). Set

y1(ζ) := −
5

4
sin(ζ) (3.4.32)

y2(ζ) = −
5

4
sin(2)

√
1− 25

36
(ζ − 2)2 (3.4.33)

Define Σ = Σ1 ∪ Σ2 by

Σ1 := {(x, y) ∈ Ω̃ | 2 ≤ x ≤ π, y1(x) ≤ y ≤ 0} (3.4.34)

Σ2 := {(x, y) ∈ Ω̃ | 7
4
≤ x < 2, y2(x) ≤ y ≤ 0} (3.4.35)

The region Σ is depicted in Figure 3.5.

Once again we need to check that the outward normal vectors ν1 on ∂Σ1 and ν2 on ∂Σ2

satisfy νk · Ñ ≥ 0 for k = 1, 2, where

Ñ(ζ, η) = (η , sin(2ζ)− εη − ε2g(ζ))tr
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Here ν1 = (y′1(ζ),−1)tr and ν2 = (y′2(x),−1)tr and we have

ν1 · Ñ = −y1(x)
β2

F1(x, ε) (3.4.36)

ν2 · Ñ = − y2(x)

β2 sin2(2)
F2(x, ε) (3.4.37)

where, for α := 6
5 and β := 5

4 , F1 and F2 are defined by

F1(x, ε) := 2g(x)ε2 − 2β sin(x)ε+ (β2 − 2) sin(2x) (3.4.38)

F2(x, ε) := g(x)ε2 − εβ sin(2)
α

√
α2 − (x− 2)2 (3.4.39)

− β2 sin2(2)(x− 2) + α sin(2x)

α2

Observe that y1(x) ≤ 0 for 2 ≤ x ≤ π, and y2(x) ≤ 0 for 7
4 ≤ x ≤ 2. Hence, the following

lemma will suffice to conclude that νk · Ñ ≥ 0 for k = 1, 2.

Lemma 3.4.9. Define F1, F2 as in (3.4.38) and (3.4.39). Then

(A) F1(x, ε) ≥ 0 for every (x, ε) ∈ [2, π]× [0, 7
20 ].

(B) F2(x, ε) ≥ 0 for every (x, ε) ∈ [74 , 2]× [0, 7
20 ].

For the moment we assume Lemma 3.4.9 and observe that it implies that the boundary

of Σ is repulsive with respect to the flow v−(t). By (3.4.31) we have the following identity

1

2
η2(T ) + ε

∫ T

−∞
η2(s) ds =

1

2
(cos(2π + 2ζ2)− cos(2ζ0)) (3.4.40)

− ε2(G(π + ζ2)−G(ζ0))

To arrive at a contradiction we carefully estimate the left and right-hand sides of (3.4.40).
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By Lemma 3.4.8, we can expand the right hand side in powers of ε.

1

2
(cos(2ζ2)− cos(2ζ0))− ε2(G(π + ζ2)−G(ζ0)) =

29π

36
ε2 − 29π

1152
ε6 +O(ε8) (3.4.41)

<
29π

36
ε2

for 0 ≤ ε ≤ 7
20 .

On the other hand, as in the proof of Lemma 3.4.6 for Ω1 and Ω2, we have that

ε

∫ T

−∞
η2(s) ds > εArea(Σ) = ε

(
−
∫ 2

7
4

y2(x) dx−
∫ π

2
y1(x) dx

)
> ε (3.4.42)

Finally, (3.4.40) then implies that ε < 29π
36 ε

2 which is a contradiction for 0 ≤ ε ≤ 7
20 . Hence,

assuming the results of Lemma 3.4.8 and Lemma 3.4.9, we have established Lemma 3.4.7

and therefore we have also completed the proof of Lemma 3.4.6.

It remains to prove Lemma 3.4.8 and Lemma 3.4.9.

Proof of Lemma 3.4.8. For fixed a, we plug ζ0(a, ε) =
1
2ε

2g(0)(1 + aε4) into h and expand

in powers of ε about ε = 0. This gives

h(ζ0(a, ε)) =

(
1

18
+
a

4

)
ε6 +O(ε10)

With this in mind we set a1 = −1
3 , and obtain

h(ζ0(−
1

3
, ε)) = − 1

36
ε6 +R9(ε) (3.4.43)

where R9(ε) is the ninth remainder term in Taylor’s theorem. One can show that for 0 ≤
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ε ≤ 7
20 , we have

|R9(ε)| ≤ sup
0≤|ξ|≤ε

∣∣∣∣∣

(
d

dξ

)10

h(ζ0(−
1

3
, ξ))

∣∣∣∣∣ (10!)
−1ε10 ≤ ε10

Hence,

h(ζ0(−
1

3
, ε)) ≤ − 1

36
ε6 + ε10 ≤ − 1

36
ε6 +

(
7

20

)4

ε6 ≤ 0

as long as 0 ≤ ε ≤ 7
20 . Next we set a = −1

9 and we obtain

h(ζ0(−
1

9
, ε)) =

1

36
ε6 +R9(ε)

Again, one can show that |R9(ε)| ≤ ε10 for 0 ≤ ε ≤ 7
20 and hence

h(ζ0(−
1

9
, ε)) ≥ 1

36
ε6 − ε10 ≥ 1

36
ε6 −

(
7

20

)4

ε6 ≥ 0

for 0 ≤ ε ≤ 7
20 . This proves (a). We carry out the same procedure to prove (b). First, fix

c and plug π + ζ2(c, ε) = π + 1
2ε

2g(π)(1 − 29
18πε

2 + cε4) into h and expand in powers of ε

about ε = 0. This gives,

h(π + ζ2(c, ε)) =
(72 + 324c− 841π2)

1296
ε6 +O(ε8)

Now, fix c = 10. Then

h(π + ζ2(10, ε)) =

(
23

9
− 841π2

1296

)
ε6 +R7(ε)

140



One can show that |R7(ε)| ≤ 20ε8 for 0 ≤ ε ≤ 7
20 , and hence

h(π + ζ2(10, ε)) ≤ −3.8ε6 + 20ε8 ≤ −3.8ε6 + 2.5ε6 ≤ 0

as long as 0 ≤ ε ≤ 7
20 . Finally, set c = 40. Then

h(π + ζ2(40, ε)) =

(
181

18
− 841π2

1296

)
ε6 +R7(ε)

One can show that |R7(ε)| ≤ 60ε8 for 0 ≤ ε ≤ 1
8 , and hence

h(π + ζ2(40, ε)) ≥ 3.6ε6 − 60ε8 ≥ 3.6ε6 − ε6 ≥ 0

as long as 0 ≤ ε ≤ 1
8 . To conclude, we note that the positivity of h(π + ζ2(40, ε)) on the

compact interval ε ∈ [18 ,
7
20 ] is readily checked.

Proof of Lemma 3.4.9. Observe that for fixed, x, F1(x, ε) and F2(x, ε) are quadratic func-

tions in ε and hence have real zeros for ε ∈ [0, 7
20 ] if and only if their associated discriminants

are nonnegative. One can readily check that the discriminant associated to F1(x, ·) is neg-

ative for each 2 ≤ x ≤ π. And the discriminant associated to F2(x, ·) is negative for each

7
4 ≤ x ≤ 2. Therefore, by continuity, F1 has a fixed sign on [2, π] × [0, 7

20 ] and F2 has a

fixed sign on [74 , 2]× [0, 7
20 ]. Hence checking the positivity of F1 and F2 on their respective

domains reduces to checking that they are positive at a single point. And, for example

F1(
5
2 ,

1
4) ≈ 0.54 > 0 and F2(

15
8 ,

1
4) ≈ .41 > 0.

This concludes the proofs of Lemmas 3.4.3–3.4.7.
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3.5 The higher topological classes

In this section we prove Theorem 3.1.2. By [5] we know that for each integer n ≥ 1 there is

a unique solution Q = Qn to the stationary problem

−Q′′ − 2

r
Q′ +

sin(2Q)

r2
= 0, Q(1) = 0, Q′(1) > 0 (3.5.1)

with the property that limr→∞Qn(r) = nπ. Moreover, these Qn are strictly increasing and

satisfy

Qn(r) = nπ − O(r−2) as r →∞ (3.5.2)

Now fix any such Qn for n > 0 and drop the subscript. Set ψ(r) := ∂λQ(λr)
∣∣∣
λ=1

= rQ′(r).

Then ψ(r) > 0 for all r ≥ 1 and ψ(r) = O(r−2) as r →∞. Furthermore, ψ is a solution to

the linearized elliptic problem

−ψ′′(r)− 2

r
ψ′(r) +

2

r2
cos(2Q(r))ψ(r) = 0 (3.5.3)

in R3∗, but it does not satisfy the Dirichlet condition at r = 1. As before, the 5-dimensional

reduction reads

ϕ(r) :=
1

r
ψ(r), (−∆5 + V )ϕ = 0, V (r) =

2

r2
(cos(2Q(r))− 1) (3.5.4)

where ∆5 is the Laplacian in R5. By the preceding, V is a real-valued, radial, bounded and

smooth potential on R5∗ which decays like r−6 as r →∞ (and each derivative improves the

decay by one power of r).

The operator H := −∆ + V = −∆5 + V is self-adjoint with domain D := (H2 ∩

H1
0 )(R

5∗). Its essential spectrum coincides with [0,∞) and that spectrum is purely absolutely
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continuous. As observed in [5], H has no negative spectrum. Indeed, if it did, then by a

variational principle there would have to be a lowest eigenvalue −E2∗ < 0 which is simple and

with associated eigenfunction f∗ which is smooth, radial, and does not change its sign on

r > 1. We may assume that f∗ > 0 whence f ′∗(1) > 0. Then, with 〈·|·〉 being the L2-pairing

in R
5∗,

−E2
∗〈f∗|ϕ〉 = 〈Hf∗|ϕ〉 = |S4|f ′∗(1)ϕ(1) > 0 (3.5.5)

which is a contradiction since the left-hand side is negative. It remains to analyze the

threshold 0, which generally speaking can be either a resonance or an eigenvalue. Since

we are in dimension 5, the former would mean that there exists f ∈ D, f 6≡ 0, with

|f(x)| ∼ c
|x|3 as x → ∞ (the decay here being that of the Newton kernel). However, in

that case f ∈ L2, whence we recover the well-known fact that zero energy can only be an

eigenfunction, necessarily radial by our standing assumption. Thus, let Hf = 0, f ∈ L2

radial. Then

0 = 〈Hf |ϕ〉 = 〈f |Hϕ〉+ |S4|f ′(1)ϕ(1) = |S4|f ′(1)ϕ(1) (3.5.6)

which is a contradiction since f(1) = 0 precludes f ′(1) = 0 (recall ϕ(1) 6= 0). In conclusion,

H has no point spectrum (as already noted in [5]). For future reference we remark that the

same argument as in (3.5.6) shows that there can be no solution f ∈ L2(R5∗) of Hf = 0,

unless

f ′(1) + 2f(1) = 0 (3.5.7)

Of course ϕ satisfies this condition, as can be seen from the equation.

In order to prove Theorem 3.1.2 we need to establish Strichartz estimates for the wave
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equation exterior to the ball, perturbed by the radial potential V . Once this is done, Theo-

rem 3.1.2 is an immediate consequence via a standard contraction argument. Henceforth, the

free problem refers to the wave equation exterior to a ball in R5 with a Dirichlet condition at

r = 1 as considered by [72]. By an admissible Strichartz norm for the free problem we mean

any Strichartz norm as in [72] for solutions with Ḣ1
0 × L2-data excluding the L2t -endpoint.

Proposition 3.5.1. Let ‖ · ‖X be an admissible Strichartz norm for the free problem. Let V

be a potential as above and assume that −∆+ V has no point spectrum. Then any solution

of

�u+ V u = F, (t, x) ∈ (0,∞)× R
5
∗

u(1, t) = 0, t ≥ 0,

(u(0), u̇(0)) = (f, g) ∈ Ḣ1
0 × L2(R5

∗)

(3.5.8)

with radial data satisfies

‖u‖X ≤ C
(
‖(f, g)‖Ḣ1

0×L2 + ‖F‖L1
tL

2
x

)
(3.5.9)

with a constant C = C(V ).

Proof. The argument is a variant of the one in [64]. It suffices to consider F = 0 by

Minkowski’s inequality. Let −∆ be the Laplacian on R5∗ with domain D := H2∩H1
0 (R

5∗) on

which it is self-adjoint (this incorporates the Dirichlet condition at r = 1). We claim that

A := (−∆)
1
2 satisfies

‖Af‖2 ≃ ‖f‖Ḣ1
0

(3.5.10)

for all f ∈ C∞(R5) which are compactly supported in {x ∈ R5 | 1 < |x| < ∞}. Indeed,
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squaring both sides this is equivalent to

〈−∆f |f〉 = ‖∇f‖22

for all such f , which is obviously true. For any real-valued u = (u1, u2) ∈ Ḣ1
0 × L2 we set

U := Au1 + iu2

Then (3.5.10) implies that ‖U‖2 ≃ ‖(u1, u2)‖H. Furthermore, u solves (3.5.8) if and only if

i∂tU = AU + V u

U(0) = Af + ig ∈ L2(R5
∗)

(3.5.11)

Then

U(t) = e−itAU(0)− i
∫ t

0
e−i(t−s)AV u(s) ds

By [72], with P := A−1Re ,

‖Pe−itAU(0)‖X ≤ C‖U(0)‖2

Factorize V = V1V2 where the factors decay like r−3. By the Christ-Kiselev lemma, see [72],

and our exclusion of L2t , it suffices to bound

∥∥∥P
∫ ∞

−∞
e−i(t−s)A V1V2 u(s) ds

∥∥∥
X
≤ ‖K‖L2

t,x→X‖V2 u(s)‖L2
s,x

(KF )(t) := P

∫ ∞

−∞
e−i(t−s)AV1F (s) ds

(3.5.12)

Now

‖KF‖X ≤ ‖Pe−itA‖2→X
∥∥∥
∫ ∞

−∞
eisAV1F (s) ds

∥∥∥
2
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The first factor on the right-hand side is some constant by [72]. We claim that the second

one is bounded by C‖F‖L2
t,x
. By duality, this claim is equivalent to the local energy bound

‖V1 e−itAφ‖L2
t,x
≤ C‖φ‖2 (3.5.13)

relative to L2(R5∗). This is elementary to prove for radial φ (which suffices for us), using the

distorted Fourier transform relative to −∂rr+ 2
r2

on L2((1,∞)) with a Dirichlet condition at

r = 1. Indeed, map any smooth radial f = f(r) ∈ L2(R5∗) onto the function f̃(r) = r2f(r) ∈

L2(1,∞). Then

(−∆5f)(r) = r−2(L0f̃)(r), L0 = −∂rr +
2

r2

Associated with L0 there is a distorted Fourier basis φ0(r;λ) that satisfies

φ0(1;λ) = 0, L0φ0(r;λ) = λ2φ0(r;λ),

and such that for all g ∈ L2((1,∞))

ĝ(λ) =

∫ ∞

1
φ0(r;λ)g(r) dr

g(r) =

∫ ∞

0
φ0(r;λ)ĝ(λ) ρ0(dλ)

‖g‖2
L2(1,∞)

=

∫ ∞

0
|ĝ(λ)|2 ρ0(dλ)

(3.5.14)

where the integrals need to be interpreted in a suitable limiting sense. The real-valued

functions φ0(r;λ) and the positive measure ρ0(dλ) = ω0(λ) dλ are explicit, see Lemma 3.5.2

below. Moreover, it is shown there that

sup
r≥1, λ>0

|φ0(r;λ)|2ω0(λ) ≤ C <∞ (3.5.15)

Taking this for granted, we note that (3.5.13) is equivalent to the following estimate for
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f ∈ L2((1,∞))

∫ ∞

−∞

∥∥∥V1
∫ ∞

0
e−itλφ0(r;λ)f̂(λ) ρ0(dλ)

∥∥∥
2

2
dt ≤ C‖f‖22 (3.5.16)

Here we used that A =
√L0 (in the half-line picture) is given by multiplication by λ on the

Fourier side, and so e−itA becomes e−itλ. Expanding the left-hand side and carrying out

the t-integration explicitly reduces this to the following statement:

∫ ∞

1
V 2
1 (r)

∫ ∞

0

∫ ∞

0
φ0(r;λ)φ0(r;µ)f̂(λ)f̂(µ)δ(λ− µ) ρ0(dλ)ρ0(dµ) dr ≤ C‖f‖22 (3.5.17)

The left-hand side above is

=

∫ ∞

1
V 2
1 (r)

∫ ∞

0
φ0(r;λ)

2f̂(λ)2ω0(λ)
2 dλ dr

In view of (3.5.15), (3.5.14), and
∫∞
1 V 2

1 (r) dr < ∞, we obtain (3.5.16), and thus (3.5.13).

This means that ‖K‖L2
t,x→X ≤ C, some finite constant.

For the second factor in (3.5.12) we claim the estimate

‖V2 u(t)‖L2
t,x
≤ C‖U(0)‖2 = C‖(f, g)‖

Ḣ1×L2 (3.5.18)

valid for any solution of (3.5.8) with F = 0. To prove it, we invoke the distorted Fourier

transform relative to the self-adjoint operator H := −∆ + V on the domain D as defined

above, restricted to radial functions. As before, conjugation by r2 reduces matters to a

half-line operator L := −∂rr + 2
r2

+ V on L2((1,∞)) with a Dirichlet condition at r = 1.

In analogy with L0, we show in Lemma 3.5.2 below that there exists a Fourier basis φ(r;λ)

satisfying for all λ ≥ 0

Lφ(r;λ) = λ2φ(r;λ), φ(1;λ) = 0
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and the correspondences

f̂(λ) :=

∫ ∞

1
φ(r;λ)f(r) dr

f(r) =

∫ ∞

0
φ(r;λ)f̂(λ) ρ(dλ)

‖f‖L2(1,∞) = ‖f̂‖L2((0,∞);ρ)

(3.5.19)

for a suitable positive measure ρ(dλ) = ω(λ) dλ on (0,∞). It is here that the assumptions

on the spectrum of H enter crucially. Indeed, the absence of negative spectrum means that

ρ is supported on (0,∞), and the absence of a zero eigenvalue implies that ω exhibits the

same rate of decay as ω0 as λ → 0+. The exact property which emerges from all this and

which underlies the proof of (3.5.18) is the following variant of (3.5.15), see Lemma 3.5.2,

sup
r≥1, λ>0

(λr)−2|φ(r;λ)|2ω(λ) ≤ C <∞ (3.5.20)

The local energy estimate (3.5.18) reduces to

∫ ∞

−∞

∫ ∞

1

∣∣∣V2(r)
∫ ∞

0
φ(r;λ)

(
cos(tλ)f̂(λ) + λ−1 sin(tλ)ĝ(λ)

)
ρ(dλ)

∣∣∣
2
drdt

≤ C

∫ ∞

1
(|f ′(r)|2 + |g(r)|2) dr

Consider the case g = 0. Expanding and integrating out the left-hand side one obtains

1

2

∫ ∞

1

∫ ∞

0
V2(r)

2φ(r;λ)2|f̂(λ)|2 ω(λ)2 dλ

≤ C

∫ ∞

1
V2(r)

2r2 dr

∫ ∞

0
λ2|f̂(λ)|2 ρ(dλ) ≤ C‖

√
Lf‖22 ≤ C‖f ′‖22

(3.5.21)

where we used (3.5.20) to pass to the second inequality sign, and (3.5.10) to pass to the final

inequality. The calculation for f = 0 is similar.

Putting everything together we obtain (3.5.18) and therefore also (3.5.9).
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Now we turn to the technical statements concerning the distorted Fourier transforms for

the half-line operators L0 = −∂rr + 2
r2

and L = L0 + V on L2((1,∞)), respectively, with a

Dirichlet condition at r = 1. This is completely standard, see for example [28, Section 2], the

first two chapters in [10], or Newton’s survey [60]. But since these references do not treat

the specific half-line problem that we are dealing with, and in order to keep this chapter

self-contained, we include the details.

Lemma 3.5.2. The half-line operators L0 and L admit Fourier bases satisfying (3.5.14),

(3.5.15), and (3.5.19), (3.5.20), respectively. For L it is essential to assume that it has no

point spectrum.

Proof. For any z ∈ C denote by φ0(r; z) and θ0(r; z) the unique solutions of

L0φ0(·; z) = z2φ0(·; z), L0θ0(·; z) = z2θ0(·; z)

with initial conditions

φ0(1; z) = 0, φ′0(1; z) = 1, θ0(1; z) = 1, θ′0(1; z) = 0

These are entire in z, and satisfy W (θ0(·; z), φ0(·; z)) = 1 by construction. Here W (f, g) =

fg′ − f ′g is the Wronskian. Furthermore, since L0 is in the limit-point case at r = ∞, for

any z ∈ C with Im z > 0 there exists a unique solution ψ0(·; z) ∈ L2((1,∞)) to L0ψ0(·; z) =

z2ψ0(·; z) with ψ0(1; z) = 1. Writing

ψ0(·; z) = θ0(·; z) +m0(z)φ0(·; z)

one finds that m0 is analytic in Im z > 0, as well as a Herglotz function (Imm(z) > 0 in the
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upper half plane) and the spectral measure is determined by

ρ0(dλ) = 2λImm0(λ+ i0) dλ (3.5.22)

It is common to refer to m0 as the Weyl-Titchmarsh function, and to ψ as the Weyl-

Titchmarsh solution.

For the specific case of L0 a fundamental system is of L0f = z2f is given by weighted

Hankel functions r
1
2H±3

2

(zr). These functions are explicit linear combinations of e±izr with

rational (in r) coefficients. Indeed, one verifies that

φ0(r; z) = (z3r)−1
[
(1 + z2r) sin(z(r − 1))− z(r − 1) cos(z(r − 1))

]

θ0(r; z) = (z3r)−1
[
(1 + z2(r − 1)) sin(z(r − 1)) + (z3r − z(r − 1)) cos(z(r − 1))

]

ψ0(r; z) =
z + i/r

z + i
eiz(r−1)

m0(z) =
i(z2 − 1)− z

z + i

Note that while the first two lines are entire in z, the third and fourth are meromorphic in C

and analytic in Im z ≥ 0. For the spectral measure we find that

ρ0(dλ) =
2λ4

1 + λ2
dλ

To prove (3.5.15), we set u := λ(r − 1) whence

φ0(r;λ) = λ−2(u+ λ)−1
[
sin u− u cosu+ λ(u+ λ) sin u

]

If λ > 1, one checks that λφ0(r;λ) = O(1) uniformly in u > 0, whereas for 0 < λ < 1 one

has λ2φ(r;λ) = O(1) for all u > 0. In fact, in both cases one gains a factor of u for small u.
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These two bounds amount to

|φ0(r;λ)|
λ2

1 + λ
≤ C min(1, λ(r − 1)) ∀ r ≥ 1, λ > 0

which is precisely (3.5.15). Notice that this estimate contains the L0-analogue of (3.5.20).

By standard perturbation theory we now transfer these results to L, see [10] for more

background. First, for λ ∈ R, λ 6= 0, we set

ψ̃(r;λ) = ψ0(r;λ) +

∫ ∞

r
G0(r, r

′;λ)V (r′)ψ̃(r′;λ) dr′ (3.5.23)

with the Green function

G0(r, r
′;λ) :=

ψ0(r;λ)ψ0(r′;λ)− ψ0(r′;λ)ψ0(r;λ)
W (ψ0(·;λ), ψ0(·;λ))

Evaluating at r = ∞ one sees that W (ψ0(·;λ), ψ0(·;λ)) = −2iλ3/(1 + λ2) 6= 0. To be

specific,

G0(r, r
′;λ) =

1

λ2
(
1

r′
− 1

r
) cos(λ(r − r′)) +

λ2 + 1
rr′

λ2
sin(λ(r′ − r))

λ
(3.5.24)

whence for all λ 6= 0 and 1 < r < r′ <∞,

|G0(r, r
′;λ)| ≤ C0

(
|λ|−1χ[|λ|>1] + (r′ − r + (r′ − r)3)χ[0<|λ|<1]

)
(3.5.25)

By Volterra iteration we see that (3.5.23) has a unique solution ψ̃(r;λ) even for λ = 0 which

satisfies for all r ≥ 1

|ψ̃(r;λ)− ψ0(r;λ)| ≤ exp
(
C0

∫ ∞

r
s3|V (s)| ds

)
− 1 (3.5.26)
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We used here that ‖ψ0(·;λ)‖L∞(1,∞) ≤ 1 for all λ. It follows that

ψ̃(r;λ) = ψ0(r;λ) +O(r−4) r →∞ (3.5.27)

uniformly in λ. In particular, we conclude that

W
(
ψ̃(·;λ), ψ̃(·;λ)

)
=W (ψ0(·;λ), ψ0(·;λ)) = −

2iλ3

1 + λ2
(3.5.28)

whence ψ̃(r, λ) 6= 0 for all λ 6= 0 and r ≥ 1. Hence, we can find a (smooth) function c(λ) for

λ 6= 0 such that ψ(r;λ) := c(λ)ψ̃(r;λ) satisfies ψ(1;λ) = 1. Furthermore, the first estimate

in (3.5.25) implies that

ψ̃(r;λ) = ψ0(r;λ) +O(λ−1) λ→∞ (3.5.29)

uniformly in r ≥ 1. This shows that c(λ) = 1 +O(λ−1) as λ→∞ and that

2iImm(λ) = W (ψ(·;λ), ψ(·;λ)) = 2iλ3

1 + λ2
+O(1) λ→∞

where m is the Weyl-Titchmarsh function for L. In view of the universal property (3.5.22)

one has for all 0 < λ0 < λ <∞

C−1 ≤ λ−1
dρ

dλ
(λ) ≤ C (3.5.30)

for some constant C = C(λ0). As far as the bounds on φ(r;λ) are concerned, one has

φ(r;λ) =
Imψ(r;λ)

Imm(λ)
(3.5.31)
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which immediately shows that for λ > λ0,

λ|φ(r;λ)| ≤ C

To gain a factor λ(r − 1), observe that (3.5.23) implies that ‖∂rψ(r;λ)‖∞ ≤ C(λ0)λ. In

particular,

|Imψ(r;λ)| ≤ |ψ(r;λ)− ψ(1;λ)| ≤ Cλ(r − 1)

where C = C(λ0) as before. It remains to verify (3.5.19), (3.5.20) in the regime 0 < λ≪ 1.

It is of course here that the assumption on absence of a zero energy eigenvalue enters.

We begin with the zero energy solution, i.e., a fundamental system of solutions to Lf = 0.

First, 1
r , r

2 form such a system for L0f = 0. Then

u0(r) = r−1 −
∫ ∞

r
G0(r, s)V (s)u0(s) ds (3.5.32)

with Green function

G0(r, s) :=
1

3

r3 − s3
sr

defines a solution of Lu0 = 0. The Volterra iteration again converges and yields

u0(r) = r−1(1 +O(r−4)) r →∞ (3.5.33)

Here and in what follows, the O(·)-terms can be differentiated in r (and λ where appropriate)

with the expected effect. We leave the detailed verification of this property to the reader.

By (3.5.7), both u0(1) 6= 0 and u′0(1) 6= 0. Another solution is given by

u1(r) = u0(r)

∫ r

r0
u−20 (s) ds (3.5.34)
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for all r > r0 where r0 ≫ 1 is chosen such that u0(r) > 0 in that range. Inserting (3.5.33)

into (3.5.34) yields

u1(r) =
1

3
r2(1 +O(r−4)) r →∞ (3.5.35)

Clearly, {u0, u1} forms a fundamental system of Lu = 0 with W (u0, u1) = 1.

Next, define for all r ≥ 1 and 0 < λ≪ 1,

u1(r;λ) = u1(r) + λ2
∫ r

1
G(r, r′)u1(r′;λ) dr′ (3.5.36)

where

G(r, r′) := u1(r)u0(r
′)− u0(r)u1(r′)

Then (3.5.36) has a solution, which satisfies Lu1(·;λ) = λ2u1(·;λ) and

u1(r;λ) = u1(r) +O(λ2r2(r − 1)2)

as long as λ2r2 ≪ 1. Similarly, we define u0(r;λ) as

u0(r;λ) = u0(r) + λ2
(∫ r

1
u0(r)u1(s)u0(s;λ) ds+

∫ ελ−1

r
u1(r)u0(s)u0(s;λ) ds

)
(3.5.37)

Here ε > 0 is a small absolute constant, which is to be determined. Notice that (3.5.37) is

not a Volterra equation, but it can be solved by a contraction argument. Indeed, we set

u0(r;λ) = u0(r) + λ2ru2(r;λ)

and reformulate (3.5.37) in the form u2 = Tu2 for some linear map T = Tε,λ. Then one

checks that for all 0 < λ ≪ 1 and a small but fixed ε > 0, the map T is a contraction in a
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ball of fixed size in the space C([1, ελ−1]). Consequently, there is a unique solution satisfying

|u2(r;λ)| ≤ C ∀ 1 ≤ r ≤ ελ−1

and all 0 < λ ≪ 1. Returning to (3.5.37), we see that this integral equation has a solution

for all 1 ≤ r ≤ ελ−1, which is also a solution of Lu0 = λ2u0, and which is of the form

u0(r;λ) = u0(r) +O(λ2r) on [1, ελ−1]

Furthermore, {u0(·;λ), u1(·;λ)} forms a fundamental system of Lu = λ2u with

W (u0(·;λ), u1(·;λ)) = 1 +O(λ2)

as λ→ 0, and u0(1;λ) 6= 0 for small λ since u0(1) 6= 0.

Consequently, for all |λ| ≪ 1 one has (since u1(1;λ) = u1(1))

φ(r;λ) = c(λ)
(
u1(r;λ)−

u0(r;λ)

u0(1;λ)
u1(1)

)
(3.5.38)

where c(λ) is continuous with |c(λ)| ≃ 1. Indeed,

c(λ) =
(
u′1(1;λ)−

u′0(1;λ)
u0(1;λ)

u1(1)
)−1

=
u0(1;λ)

W (u0(·;λ), u1(·;λ))

By inspection, one has the bounds on 1 < r < λ−1,

|φ(r;λ)| ≤ Cλ−2, |∂rφ(r;λ)| ≤ Cλ−1

Indeed, u1 satisfies these bounds, and u0 better ones as can be seen directly from the Volterra
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equations (3.5.37), (3.5.36). Hence,

λ2|φ(r;λ)| ≤ Cmin(1, λ(r − 1)) ∀ 1 < r < λ−1 (3.5.39)

as desired. To extend this bound to r > λ−1, and in order to describe the spectral measure

for small λ, we use ψ̃ from (3.5.23). In fact, writing

φ(r;λ) = a(λ)ψ̃(r;λ) + ā(λ)ψ̃(r;λ) (3.5.40)

one has

a(λ) =
W (φ(·;λ), ψ̃(·;λ))
W (ψ̃(·;λ), ψ̃(·;λ))

= O(λ−3) (3.5.41)

For the denominator we used (3.5.28), whereas the numerator is evaluated at r = λ−
1
2 , say

which reduces matters to

W
(
φ(·;λ), ψ̃(·;λ)

)
= c(λ)W

(
u1(·;λ), ψ0(·;λ)

)
+ o(1) = O(1) λ→ 0 (3.5.42)

Inserting (3.5.41) into (3.5.40) one obtains supr>1 λ
2|φ(r;λ)| = O(1) as λ → 0. Together

with (3.5.39), this concludes the proof of (3.5.20).

Finally, in order to determine Imm(λ) for small λ, we use the relation (3.5.31), valid for

all r ≥ 1. We use it at r = C a large constant to conclude that

φ(r;λ) ≍ 1, Imψ(r;λ) ≍ Imψ0(r;λ) ≍ λ3

which implies Imm(λ) ≍ λ3 and we are done. Here a ≍ b means C−1 < a
b < C.
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CHAPTER 4

3D WAVE MAPS EXTERIOR TO A BALL: RELAXATION TO

HARMONIC MAPS FOR ALL DATA AND FOR ALL

DEGREES

In this chapter we describe all possible asymptotic dynamics for the 1-equivariant wave-map

equation from

R
1+3
t,x \ (R×B(0, 1))→ S3

with a Dirichlet condition on the boundary of the ball B(0, 1), and data of finite energy for

all degree classes, n ≥ 0. To remind the reader, we are considering the Lagrangian

L(U, ∂tU) =
∫

R1+3\(R×B(0,1))

1

2

(
− |∂tU |2g +

3∑

j=1

|∂jU |2g
)
dtdx

where g is the round metric on S3, and we only consider functions for which the boundary

of the cylinder R × B(0, 1) gets mapped to a fixed point on S
3, say the north pole. Un-

der the usual 1-equivariance assumption the Euler-Lagrange equation associated with this

Lagrangian becomes

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0 (4.0.1)

where ψ(t, r) measures the angle from the north-pole on S3. The imposed Dirichlet boundary

condition is then ψ(t, 1) = 0 for all t ∈ R. In other words, we are considering the Cauchy
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problem

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0, r ≥ 1,

ψ(t, 1) = 0, ∀ t,

ψ(0, r) = ψ0(r), ψt(0, r) = ψ1(r)

(4.0.2)

The conserved energy is

E(ψ, ψt) =
∫ ∞

1

1

2

(
ψ2t + ψ2r + 2

sin2(ψ)

r2
)
r2 dr (4.0.3)

Any ψ(t, r) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(t,∞) = nπ for all t ∈ I where n ∈ Z is fixed. We can restrict to the case n ≥ 0 since this

covers the entire range n ∈ Z by the symmetry ψ 7→ −ψ. We call n the degree, and denote

by En the connected component of the metric space of all ~ψ = (ψ0, ψ1) with E(~ψ) <∞ and

fixed degree n (of course obeying the boundary condition at r = 1), i.e.,

En := {(ψ0, ψ1) | E(ψ0, ψ1) <∞, ψ0(1) = 0, lim
r→∞ψ0(r) = nπ} (4.0.4)

The natural space to place the solution into for n = 0 is the energy space H0 := (Ḣ1
0 ×

L2)(R3∗) with norm

‖~ψ‖2H0
:=

∫ ∞

1
(ψ2r (r) + ψ2t (r)) r

2 dr, ~ψ = (ψ, ψt) (4.0.5)

Here, R3∗ := R3\B(0, 1) and Ḣ1
0 (R

3∗) is the completion under the first norm on the right-hand

side of (4.0.5) of the smooth radial functions on {x ∈ R3 | |x| > 1} with compact support.

For n ≥ 1, we denote Hn := En − (Qn, 0) with “norm”

‖~ψ‖Hn
:= ‖~ψ − (Qn, 0)‖H0

158



The point of this notation is that the boundary condition at r = ∞ is ~ψ − (Qn, 0)(r) → 0

as r →∞.

Our main result is as follows. It should be viewed as a verification of the soliton reso-

lution conjecture for this particular case and completes the study of this model initiated in

Chapter 3.

Theorem 4.0.3. For any smooth energy data in En there exists a unique global and smooth

solution to (4.0.2) which scatters to the harmonic map (Qn, 0).

Scattering here means that on compact regions in space one has (ψ, ψt)(t) − (Qn, 0) →

(0, 0) in the energy topology, or alternatively

(ψ, ψt)(t) = (Qn, 0) + (ϕ, ϕt)(t) + oHn
(1) t→∞ (4.0.6)

where (ϕ, ϕt) ∈ H0 solves the linearized version of (4.0.2), i.e.,

ϕtt − ϕrr −
2

r
ϕr +

2

r2
ϕ = 0, r ≥ 1, ϕ(t, 1) = 0 (4.0.7)

We would like to emphasize that only the scattering part of Theorem 4.0.3 is difficult.

In the previous chapter and in [53] the author, together with Wilhelm Schlag, established

this theorem for degree zero, and also proved asymptotic stability of the Qn for n ≥ 1. Here

we are able to treat data of all sizes in the higher degree case. As in [53] we employ the

method of concentration compactness from [36, 37]. The main difference from [53] lies with

the rigidity argument. While the virial identity was the key to rigidity in [53] for degree

zero (which seems to be impossible for n ≥ 1), here we follow an alternate route which was

developed in a very different context in [23, 25] for the three-dimensional energy critical

nonlinear focusing wave equation. To be specific we rely on the exterior asymptotic energy

arguments developed there. A novel feature of our work is that we elucidate the role of
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the Newton potential as an obstruction to linear energy estimates exterior to a cone in odd

dimensions; in particular we do this for dim = 5, which is what is needed for equivariant

wave maps in R3. It is precisely this feature which allows us to adapt the rigidity blueprint

from [23, 25] to the model under consideration.

Finally, let us mention that we expect the methods of this chapter to carry over to higher

equivariance classes as well.

4.1 Preliminaries

In this section we discuss the harmonic maps Qn, as well as the reduction of the equivariant

wave maps equation to a semi-linear equation in R5∗ := R5\B(0, 1) with a Dirichlet condition

at r = 1.

4.1.1 Exterior Harmonic Maps

In each energy class, En there is a unique finite energy exterior harmonic map, (Q, 0) =

(Qn, 0). In fact (Qn, 0) can be seen to have minimal energy in En. An exterior harmonic

map is a stationary solution of (4.0.2), i.e.,

Qrr +
2

r
Qr =

sin(2Q)

r2
(4.1.1)

Q(1) = 0, lim
r→∞Q(r) = nπ (4.1.2)

Lemma 4.1.1. For all α ∈ R there exists a unique solution Qα ∈ Ḣ1(R3∗) to (4.1.1) with

Qα(r) = nπ − αr−2 +O(r−6)

The O(·) is determined by α, and vanishes for α = 0. Moreover, there exists a unique α

such that Qα(1) = 0, which we denote by α0. One has α0 > 0.
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The proof of Lemma 4.1.1 is standard so we just sketch an outline below. In order to study

solutions to (4.1.1) it is convenient to introduce new variables s = log(r) and φ(s) = Q(r).

With this change of variables we obtain an autonomous differential equation for φ, viz.,

φ̈+ φ̇ = sin(2φ) (4.1.3)

which is the equation for a damped pendulum. We can thus reduce matters to the phase

portrait associated to (4.1.3). Setting x(s) = φ(s), y(s) = φ̇(s) we rewrite (4.1.3) as the

system



ẋ

ẏ


 =




y

−y + sin(2x)


 =: X(x, y) (4.1.4)

and we denote by Φs the flow associated to X . The equilibria of (4.1.4) occur at points

vk/2 = (kπ2 , 0) where k ∈ Z. For each k
2 = n ∈ Z the flow has a saddle with eigenvalues

λ+ = 1, λ− = −2, and the corresponding unstable and stable invariant subspaces for the

linearized flow are given by the spans of (1, λ+) = (1, 1), respectively (1, λ−) = (1,−2). In a

neighborhood V ∋ vn = (nπ, 0) one can define the 1-dimensional invariant unstable manifold

Wu
n = {(x, y) ∈ V | Φs(x, y)→ vn as s→ −∞}

and the 1-dimensional invariant stable manifold

W st
n = {(x, y) ∈ V | Φs(x, y)→ vn as s→∞}

which are tangent at vn to the invariant subspaces of the linearized flow. In particular, for
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each n one can parameterize the stable manifold W st
n by

φn,α(s) = nπ − αe−2s +O(e−6s)

with the parameter α determining all the coefficients of higher order. This proves the ex-

istence of the Qα in Lemma 4.1.1. One can show that if the parameter α satisfies α > 0

then φn,α(s) lies on the branch of the stable manifold which stays below nπ for all s ∈ R,

i.e., φn,α(s) < nπ for all s ∈ R. If α = 0 then φn,α(s) = nπ for all s. Finally, if α < 0

then φn,α(s) > nπ for all s ∈ R. Different choices of α correspond to translations in s along

the respective branches of the stable manifold, which is what we mean by uniqueness in the

statement of Lemma 4.1.1.

To prove the existence and uniqueness of α0, we note that an analysis of the phase

portrait shows that any trajectory with α > 0 must have crossed the y-axis at some finite

time s0, and once it has crossed can never do so again. Note that if the parameter α satisfies

α < 0 then the trajectory can never cross the y-axis since in this case φn,α(s) > nπ for all

s ∈ R.

Now, fix any α+ > 0 and α− < 0. Passing back to the original variables we have three

trajectories

Qn,α±(r) = nπ − α±r−2 +O(r−6)

Qn,0(r) = nπ

(4.1.5)

where Qn,α+(r) is a trajectory on the branch of W st
n that increases to nπ as r → ∞, and

Qn,α−(r) is a trajectory on the branch of W st
n that decreases to nπ as r → ∞. Since the

trajectory Qn,α+ satisfies Qn,α+(r0) = 0 for some r0 > 0, we can obtain our solution Qn(r)
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to (4.1.1) which satisfies (4.1.2) by rescaling Qn,α+(r) by λ0 > 0, i.e., we set

Qn(r) = Q+
n (r/λ0) = nπ − λ20α+r−2 +O(r−6)

where we note that λ0 > 0 is uniquely chosen to ensure that the boundary condition Qn(1) =

0 is satisfied. Note that such rescalings amount to a translation in the s-variable above.

Setting α0 := λ20α+, the unique harmonic map (Qn(r), 0) ∈ En therefore satisfies

Qn(r) = nπ − α0r−2 +O(r−6) (4.1.6)

as claimed above.

4.1.2 5d Reduction

In the higher topological classes, En for n ≥ 1, we linearize about Q = Qn by writing

ψ = Q + ϕ

where Q = Qn is the unique harmonic map and energy minimizer in En. If ~ψ ∈ En is a wave

map, then ~ϕ ∈ Hn satisfies

ϕtt − ϕrr −
2

r
ϕr +

2 cos(2Q)

r2
ϕ = Z(r, ϕ)

Z(r, ϕ) :=
cos(2Q)(2ϕ− sin(2ϕ)) + 2 sin(2Q) sin2(ϕ)

r2

ϕ(t, 1) = 0, ϕ(t,∞) = 0 ∀t, ~ϕ(0) = (ψ0 −Q,ψ1)

(4.1.7)

163



The standard 5d reduction is given by setting ru := ϕ and then ~u solves

utt − urr −
4

r
ur + V (r)u = F (r, u) +G(r, u), r ≥ 1

u(t, 1) = 0 ∀t, ~u(0) = (u0, u1)

V (r) :=
2(cos(2Q)− 1)

r2

F (r, u) := 2 sin(2Q)
sin2(ru)

r3

G(r, u) := cos(2Q)
(2ru− sin(2ru))

r3

(4.1.8)

We will consider radial initial data (u0, u1) ∈ H := Ḣ1
0 × L2(R5∗) where R5∗ = R5 \B(0, 1),

‖(u0, u1)‖2H :=

∫ ∞

1
((∂ru0(r))

2 + u21(r)) r
4 dr (4.1.9)

where Ḣ1
0 (R

5∗) is the completion under the first norm on the right-hand side above of all

smooth radial compactly supported functions on {x ∈ R5 | |x| > 1}. We remark that the

potential

V (r) :=
2(cos(2Q)− 1)

r2
(4.1.10)

is real-valued, radial, bounded, smooth and by (4.1.6) satisfies

V (r) = O(r−6) as r →∞ (4.1.11)

Also, by (4.1.6) we can deduce that

|F (r, u)| . r−3 |u|2

|G(r, u)| . |u|3
(4.1.12)

164



For the remainder of the chapter we deal exclusively with u(t, r) in R
5∗ rather than the

equivariant wave map angle ψ(t, r). In fact, one can check that the Cauchy problem (4.0.2)

with data (ψ0, ψ1) ∈ En is equivalent to (4.1.8). To see this let ~ψ ∈ En and set

r~u(r) := (ψ0(r)−Qn(r), ψ1(r)) (4.1.13)

We claim that

‖~ψ‖Hn
≃ ‖~u‖H (4.1.14)

Indeed, setting ϕ(r) := ψ0(r)−Qn(r) we see that

∫ ∞

1
ϕ2r(r)r

2 dr ≃
∫ ∞

1
u2r(r)r

4 dr (4.1.15)

via Hardy’s inequality and the relations

ϕr = rur + u = rur +
ϕ

r

Therefore for each topological class En the map

~ψ 7→ 1

r
(ψ0(r)−Qn(r), ψ1(r))

is an isomorphism between the spaces En and H respectively.

In particular, we will prove the analogous formulation of Theorem 4.0.3 in the u-setting

rather than the original one. Scattering in this context will mean that we approach a solution

of (4.1.8) but with V = F = G = 0.

165



4.2 Small Data Theory and Concentration Compactness

4.2.1 Global existence and scattering for data with small energy

Here we give a brief review of the small data well-posedness theory for (4.1.8) that was

developed in the previous chapter; see also [53]. As usual the small data theory rests on

Strichartz estimates for the inhomogeneous linear, radial exterior wave equation with the

potential V ,

utt − urr −
4

r
ur + V (r)u = h

u(t, 1) = 0 ∀t

~u(0) = (u0, u1) ∈ H

(4.2.1)

where V (r) is as in (4.1.10). We define SV (t) to be the exterior linear propagator associated

to (4.2.1). The conserved energy associated to (4.2.1) with h = 0 is given by

EL(u, ut) =
1

2

∫ ∞

1
(u2t + u2r + V (r)u2) r4 dr

This energy has an important positive definiteness property: one has

EL(u, ut) =
1

2
(‖ut‖22 + 〈Hu|u〉), H = −∆+ V (4.2.2)

It is shown in [5, 53] that H is a nonnegative self-adjoint operator in L2(R5∗) (with a Dirichlet

condition at r = 1), and moreover, that the threshold energy zero is regular; in other words,

if Hf = 0 where f ∈ H2 ∩ Ḣ1
0 then f = 0. It is now standard to conclude from this spectral

information that for some constants 0 < c < C,

c‖f‖2
Ḣ1

0
≤ 〈Hf |f〉 ≤ C‖f‖2

Ḣ1
0
∀ f ∈ Ḣ1

0 (R
5
∗) (4.2.3)
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We sometimes write ‖~u‖2E := EL(~u), which satisfies

‖~u‖E ≃ ‖~u‖H ∀~u ∈ H (4.2.4)

In what follows we say a triple (p, q, γ) is admissible if

p > 2, q ≥ 2

1

p
+

5

q
=

5

2
− γ

1

p
+

2

q
≤ 1

For the free exterior 5d wave, i.e., the case V = 0 in (4.2.1), Strichartz estimates were

established in [33]. Although the estimates in [33] hold in more general exterior settings, we

state only the specific example of these estimates that we need here.

Proposition 4.2.1. [33] Let (p, q, γ) and (r, s, ρ) be admissible triples. Then any solution

~v(t) to

vtt − vrr −
4

r
vr = h

~v(0) = (f, g) ∈ H(R5
∗)

v(t, 1) = 0 ∀t ∈ R

(4.2.5)

with radial initial data satisfies

‖ |∇|−γ ∇v‖Lp
tL

q
x
. ‖(f, g)‖H + ‖ |∇|ρ h‖

Lr′
t L

s′
x

(4.2.6)

In the previous chapter, the author and Wilhelm Schlag showed that in fact the same

family of Strichartz estimates hold for (4.2.1).

Proposition 4.2.2. Let (p, q, γ) and (r, s, ρ) be admissible triples. Then any solution ~u(t)
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to (4.2.1) with radial initial data satisfies

‖ |∇|−γ ∇u‖Lp
tL

q
x
. ‖~u(0)‖H + ‖ |∇|ρ h‖

Lr′
t L

s′
x

(4.2.7)

With these Strichartz estimates the following small data, global well-posedness theory

for (4.1.8) follows from the standard contraction argument.

Proposition 4.2.3. The exterior Cauchy problem for (4.1.8) is globally well-posed in H :=

Ḣ1
0 × L2(R5∗). Moreover, a solution u scatters as t → ∞ to a free wave, i.e., a solution

~uL ∈ H of

�uL = 0, r ≥ 1, uL(t, 1) = 0, ∀t ≥ 0 (4.2.8)

if and only if ‖u‖S <∞ where S = L3t ([0,∞);L6x(R
5∗)). In particular, there exists a constant

δ > 0 small so that if ‖~u(0)‖H < δ, then u scatters to free waves as t→ ±∞.

Remark 7. We remark that in [53, Theorem 1.2], the conclusions of Proposition 4.2.3 were

phrased in terms of the original wave map angle ψ where here the result is phased in terms

of u(t, r) := 1
r (ψ(t, r)−Qn(r)). As we saw in Section 4.1 this passage to the u−formulation

is allowed since the map ~u = 1
r (ψ − Qn, ψt) is an isomorphism between the energy class En

and H := Ḣ0
1 × L2(R5∗), respectively.

We refer the reader to the previous chapter for the details regarding Proposition 4.2.2

and Proposition 4.2.3. For convenience, we recall how the scattering norm L3tL
6
x is obtained.

By Proposition 4.2.2, solutions to (4.2.1) satisfy

‖u‖
L3
t (R;Ẇ

1
2 ,3
x (R5

∗))
. ‖~u(0)‖H + ‖h‖

L1
tL

2
x+L

3
2
t L

30
17
x

(4.2.9)

As in the previous chapter, we claim the embedding Ẇ
1
2 ,3
x →֒ L6x for radial functions in r ≥ 1
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in R5∗. Indeed, one checks via the fundamental theorem of calculus that Ẇ
1,3
x →֒ L∞x . More

precisely,

|f(r)| ≤ r−
2
3‖f‖

Ẇ
1,3
x

(4.2.10)

Interpolating this with the embedding L3 →֒ L3 we obtain the claim. From (4.2.9) we infer

the weaker Strichartz estimate

‖u‖L3
t (R;L

6
x(R

5
∗))

. ‖~u(0)‖H + ‖h‖
L1
t (R;L

2
x(R

5
∗))+L

3
2
t (R;L

30
17
x (R5

∗))
(4.2.11)

which suffices for our purposes. Indeed, using (4.2.11) on the nonlinear equation (4.1.8) gives

‖u‖L3
t (R;L

6
x(R

5
∗))

. ‖~u(0)‖H + ‖F (r, u) + G(r, u)‖
L1
tL

2
x+L

3
2
t L

30
17
x

. ‖~u(0)‖H + ‖r−3u2‖
L

3
2
t L

30
17
x

+ ‖u3‖L1
tL

2
x

. ‖~u(0)‖H + ‖r−3‖
L∞
t L

30
7
x

‖u2‖
L

3
2
t L

3
x

+ ‖u‖3
L3
tL

6
x

. ‖~u(0)‖H + ‖u‖2
L3
tL

6
x
+ ‖u‖3

L3
tL

6
x

where we have estimated the size of the nonlinearity h = F (r, u) + G(r, u) using (4.1.12).

Thus for small initial data, ‖~u(0)‖H < δ, we obtain the global a priori estimate

‖u‖L3
t (R;L

6
x(R

5
∗))

. ‖~u(0)‖H . δ (4.2.12)

from which the small data scattering statement in Proposition 4.2.3 follows.
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4.2.2 Concentration Compactness

We now formulate the concentration compactness principle relative to the linear wave equa-

tion with a potential, see (4.2.1) with h = 0. This is what we mean by “free” in Lemma 4.2.4.

Note that this is a different meaning of “free” than the one used in Proposition 4.2.3. How-

ever, observe that any solution to (4.2.1) with h = 0, which is in L3tL
6
x must scatter to “free”

waves, where “free” is in the sense of Proposition 4.2.3.

Lemma 4.2.4. Let {un} be a sequence of free radial waves bounded in H = Ḣ1
0 × L2(R5∗).

Then after replacing it by a subsequence, there exist a sequence of free solutions vj bounded

in H, and sequences of times t
j
n ∈ R such that for γkn defined by

un(t) =
∑

1≤j<k
vj(t+ t

j
n) + γkn(t) (4.2.13)

we have for any j < k,

~γkn(−tjn)⇀ 0 (4.2.14)

weakly in H as n→∞, as well as

lim
n→∞ |t

j
n − tkn| =∞ (4.2.15)

and the errors γkn vanish asymptotically in the sense that

lim
k→∞

lim sup
n→∞

‖γkn‖(L∞
t L

p
x∩L3

tL
6
x)(R×R5

∗)
= 0 ∀ 10

3
< p <∞ (4.2.16)
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Finally, one has orthogonality of the free energy with a potential, cf. (4.2.4),

‖~un‖2E =
∑

1≤j<k
‖~vj‖2E + ‖~γkn‖2E + o(1) (4.2.17)

as n→∞.

The proof is essentially identical with that of Lemma 3.3.2 in the previous chapter. In

fact, instead of the Strichartz estimates for � in R5∗ we use those from Proposition 4.2.2

above.

Applying this decomposition to the nonlinear equation requires a perturbation lemma

which we now formulate. All spatial norms are understood to be on R5∗. The exterior

propagator SV (t) is as above.

Lemma 4.2.5. There are continuous functions ε0, C0 : (0,∞) → (0,∞) such that the

following holds: Let I ⊂ R be an open interval (possibly unbounded), u, v ∈ C(I; Ḣ1
0 ) ∩

C1(I;L2) radial functions satisfying for some A > 0

‖~u‖L∞(I;H) + ‖~v‖L∞(I;H) + ‖v‖L3
t (I;L

6
x)
≤ A

‖eq(u)‖L1
t (I;L

2
x)

+ ‖eq(v)‖L1
t (I;L

2
x)

+ ‖w0‖L3
t (I;L

6
x)
≤ ε ≤ ε0(A),

where eq(u) := (� + V )u − F (r, u) − G(r, u) in the sense of distributions, and ~w0(t) :=

SV (t− t0)(~u− ~v)(t0) with t0 ∈ I arbitrary but fixed. Then

‖~u− ~v − ~w0‖L∞
t (I;H) + ‖u− v‖L3

t (I;L
6
x)
≤ C0(A)ε.

In particular, ‖u‖L3
t (I;L

6
x)
<∞.

The proof of this lemma is essentially identical with that of Lemma 3.3.3 in the previous

chapter. The only difference is that we use the propagator SV instead of S0.
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4.2.3 Critical Element

We now turn to the proof of Theorem 4.0.3 following the concentration compactness method-

ology from [36, 37]. We begin by noting that Theorem 4.0.3 was proved in the regime of all

energies slightly above the ground state energy E(Qn, 0) in Theorem 3.1.2, see also Propo-

sition 4.2.3 above. As usual, we assume that Theorem 4.0.3 fails and construct a critical

element which is a non-scattering solution of minimal energy, E∗, which is necessarily strictly

bigger than E(Qn, 0). This is done in the following proposition on the level of the semi-linear

formulation given by (4.1.8).

Proposition 4.2.6. Suppose that Theorem 4.0.3 fails. Then there exists a nonzero energy

solution to (4.1.8) (referred to as a critical element) ~u∗(t) for t ∈ R with the property that

the trajectory

K := {~u∗(t) | t ∈ R} (4.2.18)

is pre-compact in H(R5∗).

Proof. Suppose that the theorem fails. Then there exists a bounded sequence of ~ψj =

(ψ0,j , ψ1,j) ∈ En with

E(~ψj)→ E∗ > 0 (4.2.19)

and a bounded sequence ~uj := (u0,j, u1,j) ∈ H where ~uj(r) =
1
r (
~ψj(r)− (Q(r), 0)) with

‖uj‖S →∞

where un denotes the global evolution of ~un of (4.1.8). We may assume that E∗ is minimal

with this property. Applying Lemma 4.2.4 to the free evolutions SV of ~uj(0) yields free
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waves vi and times tij as in (4.2.13). Let U i be the nonlinear profiles of (vi, tij), i.e., those

energy solutions of (4.1.8) which satisfy

lim
t→ti∞

‖~vi(t)− ~U i(t)‖H → 0

where limj→∞ tij = ti∞ ∈ [−∞,∞]. The U i exist locally around t = ti∞ by the local existence

and scattering theory, see Proposition 4.2.3. Note that here and throughout we are using

the equivalence of norms in (4.2.4). Locally around t = 0 one has the following nonlinear

profile decomposition

uj(t) =
∑

i<k

U i(t+ tij) + γkj (t) + ηkj (t) (4.2.20)

where ‖~ηkj (0)‖H → 0 as j → ∞. Now suppose that either there are two non-vanishing vj ,

say v1, v2, or that

lim sup
k→∞

lim sup
j→∞

‖~γkj ‖E > 0 (4.2.21)

Note that the left-hand side does not depend on time since γkj is a free wave. By the

minimality of E∗ and the orthogonality of the nonlinear energy–which follows from (4.2.15)

and (4.2.14)–each U i is a global solution and scatters with ‖U i‖L3
tL

6
x
<∞.

We now apply Lemma 4.2.5 on I = R with u = uj and

v(t) =
∑

i<k

U i(t+ tij) (4.2.22)

That ‖eq(v)‖L1
tL

2
x
is small for large n follows from (4.2.15). To see this, note that with
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N(v) := F (r, v) +G(r, v),

eq(v) = (�+ V )v − F (r, v)−G(r, v)

=
∑

i<k

N(U i(t+ tij))−N
(∑

i<k

U i(t+ tij)
)

The difference on the right-hand side here only consists of terms which involve at least one

pair of distinct i, i′. But then ‖eq(v)‖L1
tL

2
x
→ 0 as j → ∞ by (4.2.15). In order to apply

Lemma 4.2.5 it is essential that

lim sup
j→∞

∥∥∑

i<k

U i(t+ tij)
∥∥
L3
tL

6
x
≤ A <∞ (4.2.23)

uniformly in k, which follows from (4.2.15), (4.2.17), and Proposition 4.2.3. The point here

is that the sum can be split into one over 1 ≤ i < i0 and another over i0 ≤ i < k. This

splitting is performed in terms of the energy, with i0 being chosen such that for all k > i0

lim sup
j→∞

∑

i0≤i<k
‖~U i(tij)‖2H ≤ ε20 (4.2.24)

where ε0 is fixed such that the small data result of Proposition 4.2.3 applies. Clearly,

(4.2.24) follows from (4.2.17). Using (4.2.15) as well as the small data scattering theory one

now obtains

lim sup
j→∞

∥∥∥
∑

i0≤i<k
U i(·+ tij)

∥∥∥
3

L3
tL

6
x

=
∑

i0≤i<k

∥∥U i(·)
∥∥3
L3
tL

6
x

≤ C lim sup
j→∞

( ∑

i0≤i<k
‖~U i(tij)‖2H

)3
2

(4.2.25)

with an absolute constant C. This implies (4.2.23), uniformly in k.
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Hence one can take k and j so large that Lemma 4.2.5 applies to (4.2.20) whence

lim sup
j→∞

‖uj‖L3
tL

6
x
<∞

which is a contradiction. Thus, there can be only one nonvanishing vi, say v1, and moreover

lim sup
j→∞

‖~γ2j ‖H = 0 (4.2.26)

Thus, if we let ~ψ1 be the wave map angle associated to ~U1 then we have E(~ψ1) = E∗. By

the preceding, necessarily

‖U1‖L3
tL

6
x
=∞ (4.2.27)

Therefore, U1 =: u∗ is the desired critical element. Suppose that

‖u∗‖L3
t ([0,∞);L6

x)
=∞ (4.2.28)

Then we claim that

K+ := {~u∗(t) | t ≥ 0}

is precompact in H. If not, then there exists δ > 0 so that for some infinite sequence tn →∞

one has

‖~u∗(tn)− ~u∗(tm)‖H > δ ∀ n > m (4.2.29)

Applying Lemma 4.2.4 to U1(tn) one concludes via the same argument as before based on
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the minimality of E∗ and (4.2.27) that

~u∗(tn) = ~v(τn) + ~γn(0) (4.2.30)

where ~v, ~γn are free waves in H, and τn is some sequence in R. Moreover, ‖~γn‖H → 0 as

n → ∞. If τn → τ∞ ∈ R, then (4.2.30) and (4.2.29) lead to a contradiction. If τn → ∞,

then

‖v(·+ τn)‖L3
t ([0,∞);L6

x)
→ 0 as n→∞

implies via the local wellposedness theory that ‖u∗(·+ tn)‖L3
t ([0,∞);L6

x)
<∞ for all large n,

which is a contradiction to (4.2.28). If τn → −∞, then

‖v(·+ τn)‖L3
t ((−∞,0];L6

x)
→ 0 as n→∞

implies that ‖u∗(· + tn)‖L3
t ((−∞,0];L6

x)
< C < ∞ for all large n where C is some fixed

constant. Passing to the limit yields a contradiction to (4.2.27) and (4.2.29) is seen to be

false, concluding the proof of compactness of K+.

Finally, we need to make sure that u∗(t) is precompact with respect to both t → +∞

and t → −∞, see (4.2.18). To achieve the latter, we extract another critical element from

the sequence

{~u∗(n)}∞n=1 ⊂ H

Indeed, by the compactness that we have already established we can pass to a strong limit

~un → ~u∞ in H, which has the same energy E∗. By construction, the nonlinear evolu-

tion (4.1.8) with data ~u∞ has infinite L3tL
6
x-norm in both time directions. Therefore, the

same compactness argument as above concludes the proof. Indeed, the solution given by ~u∞

is now our desired critical element.
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In Section 4.4 we will show that u∗ cannot exist. In order to do so, we need to develop

another tool for the linear evolution.

4.3 The linear external energy estimates in R5

We now turn to our main new ingredient from the linear theory, which is Proposition 4.3.1.

In order to motivate this result, we first review the analogous statements in dimensions d = 1

and d = 3.

Suppose wtt − wxx = 0 with smooth energy data (w(0), ẇ(0)) = (f, g). Then by local

energy conservation

∫

x>a

1

2
(w2
t + w2

x)(0, x) dx−
∫

x>T+a

1

2
(w2
t + w2

x)(T, x) dx =
1

2

∫ T

0
(wt + wx)

2(t, t+ a) dt

for any T > 0 and a ∈ R. Since (∂t − ∂x)(wt + wx) = 0, we have that

1

2

∫ T

0
(wt + wx)

2(t, t + a) dt =
1

2

∫ T

0
(wt + wx)

2(0, a+ 2t) dt

=
1

4

∫ a+2T

a
(wt + wx)

2(0, x) dx =
1

4

∫ a+2T

a
(fx + g)2(x) dx

Consequently,

∫

x>a

1

2
(w2
t + w2

x)(0, x) dx− lim
T→∞

∫

x>T+a

1

2
(w2
t + w2

x)(T, x) dx

=
1

4

∫ ∞

a
(fx + g)2(x) dx

and thus

min
±

[ ∫

x>a

1

2
((f2x + g2)(0, x) dx− lim

T→±∞

∫

x>|T |+a
1

2
(w2
t + w2

x)(T, x) dx
]

≤ 1

4

∫ ∞

a
(f2x + g2)(x) dx

177



whence

max
±

lim
T→±∞

∫

x>|T |+a
1

2
(w2
t + w2

x)(T, x) dx ≥
1

4

∫ ∞

a
(f2x + g2)(x) dx (4.3.1)

Here we used that t 7→ −t leaves f unchanged, but turns g into −g.

Given �u = 0 radial in three dimensions, w(t, r) = ru(t, r) solves wtt − wrr = 0. Conse-

quently, (4.3.1) gives the following estimate from [22, Lemma 4.2], see also [24, 23, 25]: for

any a ≥ 0 one has

max
±

lim
T→±∞

∫

r>|T |+a
1

2
((ru)2r + (rut)

2)(T, r) dr

≥ 1

4

∫

r>a
((rf)2r + (rg)2)(r) dr

(4.3.2)

where u(0) = f , u̇(0) = g. The left-hand side of (4.3.2) equals

max
±

lim
T→±∞

∫

r>|T |+a
1

2
(u2r + u2t )(T, r) r

2dr (4.3.3)

by the standard dispersive properties of the wave equation. The right-hand side, on the

other hand, exhibits the following dichotomy: if a = 0, then it equals half of the full energy

1

4

∫ ∞

0
(f2r + g2)(r) r2dr

However, if a > 0, then integration by parts shows that it equals (ignoring the constant from

the spherical measure in R3)

1

4

∫

r>a
(f2r + g2)(r)r2 dr − 1

4
af2(a) =

1

4
‖π⊥a (f, g)‖2Ḣ1×L2(r>a)
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where π⊥a = Id− πa and πa is the orthogonal projection onto the line

{(cr−1, 0) | c ∈ R} ⊂ Ḣ1 × L2(r > a).

The appearance of this projection is natural, in view of the fact that the Newton potential

r−1 in R3 yields an explicit solution to �u = 0, u(0, r) = r−1, u̇(0, r) = 0: indeed, one has

u(r, t) = r−1 in r > |t| + a for which (4.3.3) vanishes. Since r−1 6∈ L2(r > 1) no projection

appears in the time component. In contrast, the Newton potential in R
5, viz. r−3, does lie

in H1(r > a) for any a > 0. This explains why in R5 we need to project away from a plane

rather than a line, see (4.3.4) and the end of the proof of Proposition 4.3.1.

Proposition 4.3.1. Let �u = 0 in R
1+5
t,x with radial data (f, g) ∈ Ḣ1 ×L2(R5). Then with

some absolute constant c > 0 one has for every a > 0

max
±

lim sup
t→±∞

∫ ∞

r>a+|t|
(u2t + u2r)(t, r)r

4 dr ≥ c‖π⊥a (f, g)‖2Ḣ1×L2(r>a) (4.3.4)

where πa = Id− π⊥a is the orthogonal projection onto the plane

{(c1r−3, c2r−3) | c1, c2 ∈ R}

in the space Ḣ1×L2(r > a). The left-hand side of (4.3.4) vanishes for all data in this plane.

Remark 8. We note that by finite propagation speed Proposition 4.3.1 with a > 1 holds as

well for solutions v(t) to the free radial wave equation in R× R5∗ with a Dirichlet boundary

condition at r = 1.

vtt − vrr −
4

r
vr = 0

~v(0) = (f, g)

v(t, 1) = 0 ∀t ∈ R

(4.3.5)
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Proof. By the basic energy estimate we may assume that f, g are compactly supported and

smooth, say. We first note that it suffices to deal with data (f, 0) and (0, g) separately.

Indeed, reversing the time direction keeps the former fixed, whereas the latter changes to

(0,−g). This implies that we may choose the time-direction so as to render the bilinear

interaction term between the two respective solutions nonnegative on the left-hand side

of (4.3.4).

We begin with data (f, 0) and set w(t, r) := r−1(r3u(t, r))r, see [38]. Throughout this

proof, the singularity at r = 0 plays no role due to the fact that r ≥ a+ |t| ≥ a > 0. Then

wtt − wrr = r2∂r
(
utt − urr −

4

r
ur
)
+ 3r

(
utt − urr −

4

r
ur
)
= 0

From the d’Alembert formula,

lim sup
t→∞

∫ ∞

a+t
w2(t, r) dr ≥ 1

4

∫ ∞

a
w2(0, r) dr

which is the same as

lim sup
t→∞

∫ ∞

a+t
(r2ur(t, r) + 3ru(t, r))2 dr ≥ 1

4

∫ ∞

a
(r2f ′(r) + 3rf(r))2 dr (4.3.6)

By our assumption on the data, we have the point wise bound

|u(t, r)| ≤ Ct−2χ[R−t≤r≤R+t]

for t ≥ 1 and some large R. Hence, (4.3.6) equals

lim sup
t→∞

∫ ∞

a+t
u2r(t, r)r

4 dr ≥ 1

4

(∫ ∞

a
r4f ′(r)2 dr − 3a3f(a)3

)
(4.3.7)
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where we integrated by parts on the right-hand side. Finally, one checks that

f̃(r) := f(r)− a3

r3
f(a)

is the orthogonal projection perpendicular to r−3 in Ḣ1(r > a) in R5 and that it satisfies

∫ ∞

a
r4f̃ ′(r)2 dr =

∫ ∞

a
r4f ′(r)2 dr − 3a3f(a)3

which agrees with the right-hand side of (4.3.7) and concludes the proof of (4.3.4) for data

(f, 0).

For data (0, g) we use the new dependent variable

v(t, r) :=

∫ ∞

r
s∂tu(t, s) ds (4.3.8)

By direct differentiation and integration by parts one verifies that v solves the 3-dimensional

radial wave equation, viz.

vtt − vrr −
2

r
vr = 0

Moreover, vt(0, r) = 0. From the exterior energy estimate in dim = 3, i.e., (4.3.2),

lim sup
t→∞

∫ ∞

a+t
((rv)2t + (rv)2r)(t, r) dr ≥

1

2

∫ ∞

a
((rv)2t + (rv)2r)(0, r) dr (4.3.9)

where we have used the fact that for data (v0, 0) or (0, v1) the estimate (4.3.2) holds in both

time directions. By our assumption on the data and stationary phase

|v(t, r)| ≤ Ct−1χ[r≤R+t], |vt(t, r)| ≤ Ct−2χ[r≤R+t]
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Hence (4.3.9) reduces to

lim sup
t→∞

∫ ∞

a+t
v2r (t, r)r

2 dr ≥ 1

2

∫ ∞

a
(rh′(r) + h(r))2 dr (4.3.10)

where h(r) :=
∫∞
r sg(s) ds. Inserting (4.3.8) on the left-hand side and integrating by parts

on the right-hand side yields

lim sup
t→∞

∫ ∞

a+t
2u2t (t, r)r

4 dr ≥
∫ ∞

a
h′(r)2r2 dr − ah2(a)

=

∫ ∞

a
g(r)2r4 dr − a

(∫ ∞

a
ρg(ρ) dρ

)2 (4.3.11)

Finally, the right-hand side here is ‖g̃‖2
L2(r>a)

where

g̃(r) := g(r)− ar−3
∫ ∞

a
sg(s) ds

is the orthogonal projection perpendicular to r−3 in L2(r > a) in R5.

For data (r−3, 0) the solution equals r−3 on r > t + a ≥ a > 0 since r−3 is the Newton

potential in R5. Similarly, data (0, r−3) produce the solution tr−3 on the same region. In

both cases, the left-hand side of (4.3.4) vanishes.

4.4 Rigidity Argument

In this section we will complete the proof of Thereom 4.0.3 by showing that a critical element

as constructed in Section 4.2 does not exist. In particular, we prove the following proposition:

Proposition 4.4.1 (Rigidity Property). Let ~u(t) ∈ H := Ḣ1
0 × L2(R5∗) be a global solution

to (4.1.8) and suppose that the trajectory

K := {~u(t) | t ∈ R}
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is pre-compact in H. Then ~u(t) ≡ (0, 0).

First note that the pre-compactness of K immediately implies that the energy of ~u(t) on

the exterior cone {r ≥ R + |t|} vanishes as |t| → ∞.

Corollary 4.4.2. Let ~u(t) be as in Proposition 4.4.1. Then for any R ≥ 1 we have

‖~u(t)‖H(r≥R+|t|) → 0 as |t| → ∞. (4.4.1)

The proof of Proposition 4.4.1 will proceed in several steps. The rough outline is to

first use Corollary 4.4.2 together with Proposition 4.3.1 to determine the precise asymptotic

behavior of u0(r) = u(0, r) and u1(r) = ut(0, r) as r →∞. Namely, we show that

r3u0(r) = ℓo +O(r−3) as r →∞

r

∫ ∞

r
u1(ρ)ρ d ρ = O(r−1) as r →∞

(4.4.2)

We will then argue by contradiction to show that ~u(t, r) = (0, 0) is the only possible solution

that has both a pre-compact trajectory and initial data satisfying (4.4.2).

4.4.1 Step 1

We use the exterior estimates for the free radial wave equation in Proposition 4.3.1 together

with Corollary 4.4.2 to deduce the following inequality for the pre-compact trajectory ~u(t).

Lemma 4.4.3. There exists R0 > 1 such that for every R ≥ R0 and for all t ∈ R we have

‖π⊥R ~u(t)‖2H(r≥R) . R−22/3‖πR ~u(t)‖2H(r≥R)
+R−11/3‖πR ~u(t)‖4H(r≥R) + ‖πR ~u(t)‖

6
H(r≥R)

(4.4.3)

where again P (R) := {(k1r−3, k2r−3) | k1, k2 ∈ R, r > R}, πR denotes the orthogonal

projection onto P (R) and πR
⊥ denotes the orthogonal projection onto the orthogonal com-
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plement of the plane P (R) in H(r > R;R5∗). We note that (4.4.3) holds with a constant that

is uniform in t ∈ R.

In order to prove Lemma 4.4.3 we need a preliminary result concerning the nonlinear

evolution for a modified Cauchy problem which is adapted to capture the behavior of our

solution ~u(t) only on the exterior cone {(t, r) | r ≥ R + |t|}. Since we will only consider the

evolution – and in particular the vanishing property (4.4.1) – on the exterior cone we can,

by finite propagation speed, alter the nonlinearity and the potential term in (4.1.8) on the

interior cone {1 ≤ r ≤ R+ |t|} without affecting the flow on the exterior cone. In particular,

we can make the potential and the nonlinearity small on the interior of the cone so that for

small initial data we can treat the potential and nonlinearity as small perturbations.

With this in mind, for every R > 1 we define QR(t, r) by setting

QR(t, r) :=






Q(R + |t|) for 1 ≤ r ≤ R + |t|

Q(r) for r ≥ R + |t|
(4.4.4)

Next, set

VR(t, r) :=





2(R + |t|)−2(cos(2QR(t, r))− 1) for 1 ≤ r ≤ R + |t|

2r−2(cos(2Q(r))− 1) for r ≥ R + |t|

FR(t, r, h) :=





2(R + |t|)−3 sin(2QR(t, r)) sin2((R + |t|)h) for 1 ≤ r ≤ R + |t|

2r−3 sin(2Q(r)) sin2(rh) for r ≥ R + |t|

G(r, h) := r−3 cos(2Q(r))(2rh− sin(2rh)) ∀ r ≥ 1
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Note that for R large enough we have, using (4.1.6) and (4.1.11) that

|VR(t, r)| .





(R + |t|)−6 for 1 ≤ r ≤ R + |t|

r−6 for r ≥ R + |t|
(4.4.5)

|FR(t, r, h)| .





(R + |t|)−3 |h(t, r)|2 for 1 ≤ r ≤ R + |t|

r−3 |h(t, r)|2 for r ≥ R + |t|
(4.4.6)

|G(r, h)| . |h(t, r)|3 for r ≥ 1, ∀t ∈ R (4.4.7)

We consider the modified Cauchy problem in R× R5∗:

htt − hrr −
4

r
hr = NR(t, r, h)

NR(t, r, h) := −VR(t, r)h+ FR(t, r, h) +G(r, h)

h(1, t) = 0 ∀t ∈ R

~h(0) = (h0, h1) ∈ H

(4.4.8)

Lemma 4.4.4. There exists R0 > 0 and there exists δ0 > 0 small enough so that for all

R > R0 and all initial data ~h(0) = (h0, h1) ∈ H with

‖~h(0)‖2H ≤ δ0

there exists a unique global solution ~h(t) ∈ H to (4.4.8). In addition ~h(t) satisfies

‖h‖L3
tL

6
x(R×R5

∗)
. ‖~h(0)‖H . δ0 (4.4.9)

Moreover, if we let hL(t) := S0(t)~h(0) ∈ H denote the free linear evolution, i.e., solution
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to (4.3.5), of the data ~h(0) we have

sup
t∈R
‖~h(t)−~hL(t)‖H . R−11/3‖~h(0)‖H +R−11/6‖~h(0)‖2H + ‖~h(0)‖3H (4.4.10)

Remark 9. Note that for each t ∈ R,

NR(t, r, h) = −V (r)h+ F (r, h) +G(r, h) ∀r ≥ R + |t| (4.4.11)

where V (r), F (r, h), and G(r, h) are as in (4.1.8). By finite propagation speed it is then

immediate that solutions to (4.4.8) and (4.1.8) agree on the exterior cone {(t, r) | r ≥ R+|t|}.

Proof of Lemma 4.4.4. The small data well-posedness theory, including estimate (4.4.9), fol-

lows from the usual contraction and continuity arguments based on the Strichartz estimates

in Proposition 4.2.1. To prove (4.4.10) we note that by the Duhamel formula and Strichartz

estimates we have

‖~h(t)−~hL(t)‖H . ‖NR(·, ·, h)‖L1
tL

2
x(R×R5

∗)

. ‖VRh‖L1
tL

2
x(R×R5

∗)
+ ‖FR(·, ·, h)‖L1

tL
2
x(R×R5

∗)
+ ‖G(·, h)‖L1

tL
2
x(R×R5

∗)

We can now estimate the three terms on the right-hand side above. First, we claim that

‖VRh‖L1
tL

2
x(R×R5

∗)
. ‖VR‖

L
3
2
t L

3
x

‖h‖L3
tL

6
x
. R−11/3‖h‖L3

tL
6
x

To see this, we can use (4.4.5) to deduce that for each t ∈ R

‖VR‖3L3
x
.

∫ R+|t|

1
(R + |t|)−18r4 dr +

∫ ∞

R+|t|
r−18r4 dr

. (R + |t|)−13
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Therefore,

‖VR‖
L

3
2
t L

3
x

.

(∫

R

(R + |t|)−13/2 dt
)2

3

. R−11/3

Similarly, we can show using (4.4.6) and (4.4.7) that

‖FR(·, ·, h)‖L1
tL

2
x(R×R5

∗)
. R−11/6‖h‖2

L3
tL

6
x

‖G(·, h)‖L1
tL

2
x(R×R5

∗)
. ‖h‖3

L3
tL

6
x

which proves (4.4.10).

We can now prove Lemma 4.4.3.

Proof of Lemma 4.4.3. We will first prove Lemma 4.4.3 for time t = 0. The fact that (4.4.3)

holds at all times t ∈ R for R > R0, with R0 independent of t will follow from the pre-

compactness of K.

For each R ≥ 1, define truncated initial data ~uR(0) = (u0,R, u1,R) given by

u0,R(r) =






u0(r) for r ≥ R

u0(R)
R−1 (r − 1) for r < R,

u1,R(r) =





u1(r) for r ≥ R

0 for r < R.

(4.4.12)

Observe that this truncated data has small energy for large R since

‖~uR(0)‖H . ‖~u(0)‖H(r≥R). (4.4.13)
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In particular, there exists R0 ≥ 1 so that for all R ≥ R0 we have

‖~uR(0)‖H ≤ δ0

where δ0 is the small constant in Lemma 4.4.4. Let ~uR(t) denote the solution to (4.4.8) given

by Lemma 4.4.4 with data ~uR(0) as in (4.4.12). Note that by finite propagation speed we

have

~uR(t, r) = ~u(t, r) ∀t ∈ R, ∀r ≥ R + |t|

Also let ~uR,L(t) = S0(t)~uR(0) denote the solution to free wave equation (4.3.5) with initial

data ~uR(0). Now, by the triangle inequality we obtain for each t ∈ R

‖~u(t)‖H(r≥R+|t|) = ‖~uR(t)‖H(r≥R+|t|) ≥ ‖~uR,L(t)‖H(r≥R+|t|)

− ‖~uR(t)− ~uR,L(t)‖H
(4.4.14)

By (4.4.10) and (4.4.13) we can deduce that

sup
t∈R
‖~uR(t)− ~uR,L(t)‖H . R−11/3‖~uR(0)‖H +R−11/6‖~uR(0)‖2H + ‖~uR(0)‖3H

. R−11/3‖~u(0)‖H(r≥R) +R−11/6‖~u(0)‖2H(r≥R)
+ ‖~u(0)‖3H(r≥R)

Therefore (4.4.14) gives

‖~u(t)‖H(r≥R+|t|) ≥ ‖~uR,L(t)‖H(r≥R+|t|) − C0R
−11/3‖~u(0)‖H(r≥R)

− C0R
−11/6‖~u(0)‖2H(r≥R) − C0‖~u(0)‖3H(r≥R)

Letting t tend to either ±∞ – the choice determined by Proposition 4.3.1 – we can use

Proposition 4.3.1 to estimate the right-hand side above and use Corollary 4.4.2 to see that
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the left-hand side above tends to zero, which gives

‖π⊥R ~uR(0)‖2H(r≥R) . R−22/3‖~u(0)‖2H(r≥R) +R−11/3‖~u(0)‖4H(r≥R) + ‖~u(0)‖
6
H(r≥R)

after squaring both sides. Finally we note that by the definition of ~uR(0),

‖π⊥R ~uR(0)‖2H(r≥R) = ‖π
⊥
R ~u(0)‖2H(r≥R)

Therefore,

‖π⊥R ~u(0)‖2H(r≥R) . R−22/3
(
‖πR ~u(0)‖2H(r≥R) + ‖π

⊥
R ~u(0)‖2H(r≥R)

)

+R−11/3
(
‖πR ~u(0)‖2H(r≥R) + ‖π

⊥
R ~u(0)‖2H(r≥R)

)2

+
(
‖πR ~u(0)‖2H(r≥R) + ‖π

⊥
R ~u(0)‖2H(r≥R)

)3

where we have used the orthogonality of the projection πR to expand the right-hand side.

To conclude the proof, simply choose R0 large enough so that we can absorb all of the terms

on the right-hand side involving π⊥ into the left-hand side and deduce that

‖π⊥R ~u(0)‖2H(r≥R) . R−22/3‖πR ~u(0)‖2H(r≥R)
+R−11/3‖πR ~u(0)‖4H(r≥R) + ‖πR ~u(0)‖

6
H(r≥R).

This proves Lemma 4.4.3 for t = 0. To show that this inequality holds for all t ∈ R observe

that by the pre-compactness of K we can choose R0 = R0(δ0) so that

‖~u(t)‖H(r≥R) ≤ δ0 (4.4.15)

uniformly in t ∈ R. Now simply repeat the argument given above with the truncated initial
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data for time t = t0 and R ≥ R0 defined by

u0,R,t0(r) =





u(t0, r) for r ≥ R

u(t0,R)
R−1 (r − 1) for r < R,

u1,R,t0(r) =





ut(t0, r) for r ≥ R

0 for r < R.

This concludes the argument.

4.4.2 Step 2

In this step we will deduce the asymptotic behavior of ~u(0, r) as r →∞ described in (4.4.2).

In particular we will establish the following result.

Lemma 4.4.5. Let ~u(t) be as in Proposition 4.4.1 with ~u(0) = (u0, u1). Then there exists

ℓ0 ∈ R such that

r3u0(r)→ ℓ0 as r →∞ (4.4.16)

r

∫ ∞

r
u1(ρ)ρ dρ→ 0 as r →∞ (4.4.17)

Moreover, we have the following estimates for the rates of convergence,

∣∣∣r3u0(r)− ℓ0
∣∣∣ = O(r−3) as r →∞ (4.4.18)

∣∣∣∣r
∫ ∞

r
u1(ρ)ρ dρ

∣∣∣∣ = O(r−1) as r →∞ (4.4.19)

190



To begin, we define

v0(t, r) := r3u(t, r)

v1(t, r) := r

∫ ∞

r
ut(t, ρ)ρ dρ

(4.4.20)

and for simplicity we will write v0(r) := v0(0, r) and v1(r) := v1(0, r). By direct computation

one can show that

‖π⊥R ~u(t)‖2H(r≥R) =
∫ ∞

R

(
1

r
∂rv0(t, r)

)2

dr +

∫ ∞

R
(∂rv1(t, r))

2 dr (4.4.21)

‖πR ~u(t)‖2H(r≥R) = 3R−3v20(t, R) +R−1v21(t, R) (4.4.22)

For convenience, we can rewrite the conclusions of Lemma 4.4.3 in terms of (v0, v1):

Lemma 4.4.6. Let (v0, v1) be defined as in (4.4.20). There exists R0 > 1 so that for all

R > R0 we have

∫ ∞

R

(
1

r
∂rv0(t, r)

)2

dr+

∫ ∞

R
(∂rv1(t, r))

2 dr . R−
22
3

(
3R−3v20(t, R) +R−1v21(t, R)

)

+R−
11
3

(
3R−3v20(t, R) +R−1v21(t, R)

)2

+
(
3R−3v20(t, R) +R−1v21(t, R)

)3

. R−
31
3 v20(t, R) +R−

29
3 v40(t, R) +R−9v60(t, R)

+R−
25
3 v21(t, R) +R−

17
3 v41(t, R) +R−3v61(t, R)

with the above estimates holding uniformly in t ∈ R.

We will use Lemma 4.4.6 to prove a difference estimate. First, let δ1 > 0 be a small

number to be determined below with δ1 ≤ δ0 where δ0 is as in Lemma 4.4.4. Let R1 be large
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enough so that for all R ≥ R1 we have

‖~u(t)‖H(r≥R) ≤ δ1 ≤ δ0 ∀R ≥ R1, ∀t ∈ R

R
−11

3
1 ≤ δ1

(4.4.23)

We note again that such an R1 = R1(δ1) exists by the pre-compactness of K.

Corollary 4.4.7. Let R1 be as above. The for all r, r′ with R1 ≤ r ≤ r′ ≤ 2r and for all

t ∈ R we have

∣∣v0(t, r)− v0(t, r′)
∣∣ . r−

11
3 |v0(t, r)|+ r−

10
3 |v0(t, r)|2 + r−3 |v0(t, r)|3

+ r−
8
3 |v1(t, r)|+ r−

4
3 |v1(t, r)|2 + |v1(t, r)|3

(4.4.24)

and

∣∣v1(t, r)− v1(t, r′)
∣∣ . r−

14
3 |v0(t, r)|+ r−

13
3 |v0(t, r)|2 + r−4 |v0(t, r)|3

+ r−
11
3 |v1(t, r)|+ r−

7
3 |v1(t, r)|2 + r−1 |v1(t, r)|3

(4.4.25)

with the above estimates holding uniformly in t ∈ R.

We will also need a trivial consequence of the preceding result which we state as another

corollary for convenience.

Corollary 4.4.8. Let R1 be as above. The for all r, r′ with R1 ≤ r ≤ r′ ≤ 2r and for all

t ∈ R we have

∣∣v0(t, r)− v0(t, r′)
∣∣ . δ1 |v0(t, r)|+ rδ1 |v1(t, r)| (4.4.26)

and

∣∣v1(t, r)− v1(t, r′)
∣∣ . r−1δ1 |v0(t, r)|+ δ1 |v1(t, r)| (4.4.27)
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with the above estimates holding uniformly in t ∈ R.

We remark that Corollary 4.4.8 follows immediately from Corollary 4.4.7 in light of

(4.4.22) and (4.4.23).

Proof of Corollary 4.4.7. This is a simple consequence of Lemma 4.4.6. Indeed, for r ≥ R1

and r′ ∈ [r, 2r] we use Lemma 4.4.6 to see that

∣∣v0(t, r)− v0(t, r′)
∣∣2 ≤

(∫ r′

r
|∂rv0(t, ρ)| dρ

)2

≤
(∫ r′

r
ρ2 dρ

)(∫ r′

r

∣∣∣∣
1

ρ
∂rv0(t, ρ)

∣∣∣∣
2

dρ

)

. r3
(
r−

31
3 v20(t, r) + r−

29
3 v40(t, r) + r−9v60(t, r)

)

+ r3
(
r−

25
3 v21(t, r) + r−

17
3 v41(t, r) + r−3v61(t, r)

)

Similarly,

∣∣v1(t, r)− v1(t, r′)
∣∣2 ≤

(∫ r′

r
|∂rv1(t, ρ)| dρ

)2

≤
(∫ r′

r
dρ

)(∫ r′

r
|∂rv1(t, ρ)|2 dρ

)

. r
(
r−

31
3 v20(t, r) + r−

29
3 v40(t, r) + r−9v60(t, r)

)

+ r
(
r−

25
3 v21(t, r) + r−

17
3 v41(t, r) + r−3v61(t, r)

)

as claimed.

The next step towards establishing Lemma 4.4.5 is to provide an upper bound on the

growth rates of v0(t, r) and v1(t, r).
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Claim 4.4.9. Let v0(t, r), v1(t, r) be as in (4.4.20). Then,

|v0(t, r)| . r
1
6 (4.4.28)

|v1(t, r)| . r
1
18 (4.4.29)

uniformly in t ∈ R.

Proof. First, note that it suffices to prove Claim 4.4.9 only for t = 0 since the ensuing

argument relies exclusively on results in this section that hold uniformly in t ∈ R. Fix

r0 ≥ R1 and observe that by (4.4.26), (4.4.27)

∣∣∣v0(2n+1r0)
∣∣∣ ≤ (1 + C1δ1) |v0(2nr0)|+ (2nr0)C1δ1 |v1(2nr0)| (4.4.30)

∣∣∣v1(2n+1r0)
∣∣∣ ≤ (1 + C1δ1) |v1(2nr0)|+ (2nr0)

−1C1δ1 |v0(2nr0)| (4.4.31)

To simply the exposition, we introduce the notation

an := |v1(2nr0)| (4.4.32)

bn := (2nr0)
−1 |v0(2nr0)| (4.4.33)

Then, combining (4.4.30) and (4.4.31) gives

an+1 + bn+1 ≤
(
1 +

3

2
C1δ1

)
an +

(
1

2
+

3

2
C1δ1

)
bn

≤
(
1 +

3

2
C1δ1

)
(an + bn)

Arguing inductively we then see that for each n we have

(an + bn) ≤
(
1 +

3

2
C1δ1

)n
(a0 + b0)
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Choosing δ1 small enough so that (1 + 3
2C1δ1) ≤ 2

1
18 allows us to conclude that

an ≤ C(2nr0)
1
18 (4.4.34)

where the constant C > 0 above depends on r0 which is fixed. In light of (4.4.32) we have

thus proved (4.4.29) for all r = 2nr0. Now define

cn := |v0(2nr0)| (4.4.35)

By (4.4.22), (4.4.23), (4.4.24), and (4.4.34) we have

cn+1 ≤ (1 + C1δ1)cn + C(2nr0)
1
6

Inductively, we can deduce that

cn ≤ (1 + C1δ1)
nc0 + Cr

1
6
0

n∑

k=1

(1 + C1δ1)
n−k2

k−1
6

≤ C(2nr0)
1
6

where we have used that (1 + C1δ1) ≤ 2
1
18 , and again the constant C > 0 depends on r0,

which is fixed. This proves (4.4.28) for r = 2nr0. The general estimates (4.4.28) and (4.4.29)

follow from the difference estimates (4.4.24) and (4.4.25).

Claim 4.4.10. For each t ∈ R there exists a number ℓ1(t) ∈ R such that

|v1(t, r)− ℓ1(t)| = O(r−1) as r →∞ (4.4.36)

where the O(·) is uniform in t.

Proof. Again, it suffices to show this for t = 0. Let r0 ≥ R1 where R1 > 1 is as in (4.4.23).
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By (4.4.25) and Claim 4.4.9 we have

∣∣∣v1(2n+1r0)− v1(2nr0)
∣∣∣ . (2nr0)

−9
2 + (2nr0)

−4 + (2nr0)
−7

2

+ (2nr0)
−65

18 + (2nr0)
−20

9 + (2nr0)
−5

6

. (2nr0)
−5

6

This implies that the series

∑

n

∣∣∣v1(2n+1r0)− v1(2nr0)
∣∣∣ <∞

which in turn implies that there exists ℓ1 ∈ R such that

lim
n→∞ v1(2

nr0) = ℓ1.

The fact that lim
r→∞ v1(r) = ℓ1 follows from the difference estimates (4.4.24), (4.4.25), and the

growth estimates (4.4.28), (4.4.29). To establish the estimates on the rate of convergence in

(4.4.36) we note that by the difference estimate (4.4.25) and the fact that we now know that

|v1(r)| is bounded, for large enough r we have

∣∣∣v1(2n+1r)− v1(2nr)
∣∣∣ . (2nr)−1

Hence,

|v1(r)− ℓ1| =

∣∣∣∣∣∣

∑

n≥0
(v1(2

n+1r)− v1(2nr))

∣∣∣∣∣∣
. r−1

∑

n≥0
2−n . r−1

as desired.

Next we show that the limit ℓ1(t) is actually independent of t.
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Claim 4.4.11. The function ℓ1(t) in Claim 4.4.10 is independent of t, i.e., ℓ1(t) = ℓ1 for

all t ∈ R.

Proof. By the definition of v1(t, r) we have shown that

ℓ1(t) = r

∫ ∞

r
ut(t, ρ)ρ dρ+O(r−1)

Fix t1, t2 ∈ R with t1 6= t2. We will show that

ℓ1(t2)− ℓ1(t1) = 0

To see this observe that for each R ≥ R1 we have

ℓ1(t2)− ℓ1(t1) =
1

R

∫ 2R

R
(ℓ1(t2)− ℓ1(t1)) ds

=
1

R

∫ 2R

R

(
s

∫ ∞

s
(ut(t2, r)− ut(t1, r))r dr

)
ds+O(R−1)

=
1

R

∫ 2R

R

(
s

∫ ∞

s

∫ t2

t1

utt(t, r) dt r dr

)
ds+O(R−1)

Using the fact that u is a solution to (4.1.8), we can rewrite the above integral as

=

∫ t2

t1

1

R

∫ 2R

R

(
s

∫ ∞

s
(rurr(t, r) + 4ur(t, r)) dr

)
ds dt+

+

∫ t2

t1

1

R

∫ 2R

R

(
s

∫ ∞

s
(−rV (r)u(t, r) + rN(r, u(t, r))) dr

)
ds dt

+O(R−1)

= I + II +O(R−1)

(4.4.37)
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To estimate I we integrate by parts:

I =

∫ t2

t1

1

R

∫ 2R

R

(
s

∫ ∞

s

1

r3
∂r(r

4ur(t, r)) dr

)
ds dt

= 3

∫ t2

t1

1

R

∫ 2R

R

(
s

∫ ∞

s
ur(t, r) dr

)
ds dt−

∫ t2

t1

1

R

∫ 2R

R
s2ur(t, s) ds dt

= −3
∫ t2

t1

1

R

∫ 2R

R
r u(t, r) dr dt−

∫ t2

t1

1

R

∫ 2R

R
r2 ur(t, r) dr dt

= −
∫ t2

t1

1

R

∫ 2R

R
r u(t, r) dr dt+

∫ t2

t1

(Ru(t, R)− 2Ru(t, 2R)) dt

(4.4.38)

Finally, we note that (4.4.28) and the definition of v0(t, r) give us

r3 |u(t, r)| = |v0(t, r)| . r
1
6 (4.4.39)

Using this estimate for |u(t, r)| in the last line in (4.4.38) shows that

I = |t2 − t1|O(R−
11
6 )

To estimate II we can use (4.4.39) to see that for r > R large enough

|−V (r)u(t, r) +N(r, u(t, r))| . r−6 |u(t, r)|+ r−3 |u(t, r)|2 + |u(t, r)|3

. r−6−
17
6 + r−3−

17
3 + r−

17
2

. r−8

Hence,

II .

∫ t2

t1

1

R

∫ 2R

R
s

∫ ∞

s
r−8 dr ds dt = |t2 − t1|O(R−6)
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Putting this together we get

|ℓ1(t2)− ℓ1(t1)| = O(R−1)

which implies that ℓ1(t2) = ℓ1(t1).

We next show that ℓ1 is necessarily equal to 0.

Claim 4.4.12. ℓ1 = 0.

Proof. Suppose ℓ1 6= 0. We know that for all R ≥ R1 and for all t ∈ R we have

R

∫ ∞

R
ut(t, r) r dr = ℓ1 +O(R−1)

where O(·) is uniform in t. Hence, for R large, the left-hand side above has the same sign

as ℓ1, for all t. Thus we can choose R ≥ R1 large enough so that for all t ∈ R,

∣∣∣R
∫ ∞

R
ut(t, r) r dr

∣∣∣ ≥ |ℓ1|
2

Integrating from t = 0 to t = T gives

∣∣∣
∫ T

0
R

∫ ∞

R
ut(t, r) r dr dt

∣∣∣ ≥ T
|ℓ1|
2

However, we integrate in t on the left-hand side and use (4.4.39) to obtain

∣∣∣∣∣R
∫ ∞

R

∫ T

0
ut(t, r) r dt dr

∣∣∣∣∣ =
∣∣∣∣R
∫ ∞

R
[u(T, r)− u(0, r)] r dr

∣∣∣∣

. R

∫ ∞

R
r−

11
6 dr . R

1
6
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Therefore for fixed large R we have

T
|ℓ1|
2

. R
1
6

which gives a contradiction by taking T large.

Now that we have shown that v1(r)→ 0 as r →∞, we can prove that v0(r) also converges

and complete the proof of Lemma 4.4.5.

Proof of Lemma 4.4.5. It remains to show that there exists ℓ0 ∈ R such that

|v0(r)− ℓ0| = O(r−3) as r →∞ (4.4.40)

Using the difference estimate (4.4.24) as well as (4.4.28) and the fact that |v1(r)| . r−1 for

r ≥ R1 we have for r0 ≥ R1

∣∣∣v0(2n+1r0)− v0(2nr0)
∣∣∣ . (2nr0)

−11
3 (2nr0)

1
6 + (2nr0)

−10
3 (2nr0)

1
3 + (2nr0)

−3(2nr0)
1
2

+ (2nr0)
−8

3 (2nr0)
−1 + (2nr0)

−4
3 (2nr0)

−2 + (2nr0)
−3

. (2nr0)
−5

2

Hence,

∑

n≥0

∣∣∣v0(2n+1r0)− v0(2nr0)
∣∣∣ <∞

and therefore there exists ℓ0 ∈ R so that

lim
n→∞ v0(2

nr0) = ℓ0

By the difference estimate (4.4.24) and the fact that v1(r)→ 0 we can conclude that in fact

lim
r→∞ v0(r) = ℓ0. To establish the convergence rate, we note that since we now know that
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|v0(r)| is bounded we have the improved difference estimate

∣∣∣v0(2n+1r)− v0(2nr)
∣∣∣ . (2nr)−3 (4.4.41)

which holds for all r ≥ R. Therefore,

|v0(r)− ℓ0| =

∣∣∣∣∣∣

∑

n≥0
(v0(2

n+1r)− v0(2nr))

∣∣∣∣∣∣
. r−3

∑

n≥0
2−3n (4.4.42)

as claimed.

4.4.3 Step 3

Finally, we complete the proof of Proposition 4.4.1 by showing that ~u(t) = (0, 0). We divide

this argument into two separate cases depending on whether the number ℓ0 found in the

previous step is zero or nonzero.

Case 1: ℓ0 = 0 implies ~u(0) = (0, 0):

In this case we show that if ℓ0 = 0, then ~u(t) = (0, 0).

Lemma 4.4.13. Let ~u(t) be as in Proposition 4.4.1 and let ℓ0 be as in Lemma 4.4.5. Suppose

that ℓ0 = 0. Then ~u(t) = (0, 0).

We begin by showing that if ℓ0 = 0 then (u0, u1) must be compactly supported.

Claim 4.4.14. Let ℓ0 be as in Lemma 4.4.5. If ℓ0 = 0 then (u0, u1) must be compactly

supported.

Proof. The assumption ℓ0 = 0 means that

|v0(r)| = O(r−3) as r →∞

|v1(r)| = O(r−1) as r →∞
(4.4.43)
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Therefore, for r0 ≥ R1 we have

|v0(2nr0)|+ |v1(2nr0)| . (2nr0)
−3 + (2nr0)

−1 . (2nr0)
−1 (4.4.44)

On the other hand, using the difference estimates (4.4.24)–(4.4.27) as well as our assumption

(4.4.43) we obtain

∣∣∣v0(2n+1r0)
∣∣∣ ≥ (1− C1δ1) |v0(2nr0)| − C1(2

nr0)
−2 |v1(2nr0)|

∣∣∣v1(2n+1r0)
∣∣∣ ≥ (1− C1δ1) |v1(2nr0)| − C1(2

nr0)
−4 |v0(2nr0)|

This means that

∣∣∣v0(2n+1r0)
∣∣∣+
∣∣∣v1(2n+1r0)

∣∣∣ ≥ (1− C1δ1 − C1r
−2
0 ) (|v0(2nr0)|+ |v1(2nr0)|)

Choose r0 large enough and δ1 small enough so that C1(δ1+ r−20 ) < 1
4 . Arguing inductively

we can conclude that

|v0(2nr0)|+ |v1(2nr0)| ≥
(
3

4

)n
(|v0(r0)|+ |v1(r0)|)

Estimating the left hand side above using (4.4.44) gives

(
3

4

)n
(|v0(r0)|+ |v1(r0)|) . 2−nr−10

which means that

(
3

2

)n
(|v0(r0)|+ |v1(r0)|) . 1
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Hence ~v(r0) := (v0(r0), v1(r0)) = (0, 0). But then (4.4.22) implies that

‖πr0~u(0)‖H(r≥r0) = 0

Using Lemma 4.4.3 we can also deduce that

‖π⊥r0~u(0)‖H(r≥r0) = 0

and hence

‖~u(0)‖H(r≥r0) = 0

which concludes the proof since lim
r→∞ u0(r) = 0.

Proof of Lemma 4.4.13. Assume that ℓ0 = 0. Then by Claim 4.4.14, (u0, u1) is compactly

supported. We assume that (u0, u1) 6= (0, 0) and argue by contradiction. In this case we can

find ρ0 > 1 so that

ρ0 := inf{ρ : ‖~u(0)‖H(r≥ρ) = 0}

Let ε > 0 small to be determined below and find 1 < ρ1 < ρ0, ρ1 = ρ1(ε) so that

0 < ‖~u(0)‖2H(r≥ρ1) ≤ ε ≤ δ21

where δ1 > 0 is as in (4.4.23). With (v0, v1) as in (4.4.20) we have

∫ ∞

ρ1

(
1

r
∂rv0(r)

)2

dr +

∫ ∞

ρ1

(∂rv1(r))
2 dr + 3ρ−31 v20(ρ1) + ρ−11 v21(ρ1) =

= ‖π⊥ρ1~u(0)‖
2
H(r≥ρ1) + ‖πρ1~u(0)‖

2
H(r≥ρ1) = ‖~u(0)‖

2
H(r≥ρ1) < ε (4.4.45)
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By Lemma 4.4.6 we also have

∫ ∞

ρ1

(
1

r
∂rv0(r)

)2

dr +

∫ ∞

ρ1

(∂rv1(r))
2 dr . ρ

−31
3

1 v20(ρ1) + ρ
−29

3
1 v40(ρ1) + ρ−91 v60(ρ1)

+ ρ
−25

3
1 v21(ρ1) + ρ

−17
3

1 v41(ρ1) + ρ−31 v61(ρ1) (4.4.46)

Arguing as in Corollary 4.4.8 and using the fact that v0(ρ0) = v1(ρ0) = 0 gives

|v0(ρ1)| = |v0(ρ1)− v0(ρ0)| . ε |v0(ρ1)|+ ρ1ε |v1(ρ1)| (4.4.47)

and

|v1(ρ1)| = |v1(ρ1)− v1(ρ0)| . ρ−11 ε |v0(ρ1)|+ ε |v1(ρ1)| (4.4.48)

Plugging (4.4.47) into (4.4.48) gives

|v1(ρ1)| . ρ−11 ε2 |v0(ρ1)|+ ε(1 + ε) |v1(ρ1)|

which means that for ε small enough we have

|v1(ρ1)| . ρ−11 ε2 |v0(ρ1)| (4.4.49)

Putting this estimate back into (4.4.47) we obtain

|v0(ρ1)| . ε |v0(ρ1)|+ ε3 |v0(ρ1)| . ε(1 + ε2) |v0(ρ1)|

which implies that v0(ρ1) = 0 as long as ε is chosen small enough. By (4.4.49) we can
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conclude that v1(ρ1) = 0 as well. By (4.4.46) and (4.4.45) we then have that

‖~u(0)‖H(r≥ρ1) = 0

which is a contradiction since ρ1 < ρ0.

We next consider the case ℓ0 6= 0.

Case 2: ℓ0 6= 0 is impossible.

In this final step we show that the case ℓ0 6= 0 is impossible. Indeed we prove that if ℓ0 6= 0

then our original wave map ~ψ(t) is equal to a rescaled solution Qℓ0 to (4.1.1) that does

not satisfy the Dirichlet boundary condition, Qℓ0(1) 6= 0, which is a contradiction since

ψ(t, 1) = 0 for all t ∈ R.

We have shown that

r3u0(r) = ℓ0 +O(r−3)

Recall that ru0(r) = ϕ0(r) = ψ0(r)−Q(r) and that

Q(r) = nπ − α0
r2

+O(r−6)

where α0 > 0 is uniquely determined by the boundary condition Q(1) = 0. Hence,

ψ0(r) = nπ − α0 − ℓ0
r2

+O(r−5) (4.4.50)

By Lemma 4.1.1 there is a solution Qα0−ℓ ∈ Ḣ1(R3∗) to (4.1.1) satisfying

Qα0−ℓ0(r) = nπ − α0 − ℓ0
r2

+O(r−6) (4.4.51)
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and from here out we write Qℓ0 := Qα0−ℓ0. Note, by Lemma 4.1.1, ℓ0 6= 0 implies that

Qℓ0(1) 6= 0

Indeed, recall from the discussion following Lemma 4.1.1 that if α0 − ℓ0 > 0 then Qℓ0 is

a nontrivial rescaling of the harmonic map Q and hence no longer satisfies the boundary

condition. If α0 − ℓ0 = 0 then Qℓ0(r) = nπ for all r. Finally, we recall that α0 − ℓ0 < 0

implies that Qℓ0(r) > nπ for all r. Now set

uℓ0,0(r) :=
1

r
(ψ0(r)−Qℓ0(r))

uℓ0,1(r) :=
1

r
ψ1(r)

(4.4.52)

For each t ∈ R define uℓ0(t, r) :=
1
r (ψ(t, r)− Qℓ0(r)). We record a few properties of ~uℓ0 :=

(uℓ0, ∂tuℓ0). Note that by construction we have

vℓ0,0(r) := r3uℓ0(r) = O(r−3) as r →∞

vℓ0,1(r) := r

∫ ∞

r
ρ uℓ0,1(ρ) dρ = O(r−1) as r →∞

(4.4.53)

Also, ~uℓ0(t) satisfies

∂ttuℓ0 − ∂rruℓ0 −
4

r
∂ruℓ0 = −Vℓ0(r)u+Nℓ0(r, uℓ0) (4.4.54)

where

Vℓ0(r) :=
2(cos(2Qℓ0)− 1)

r2

Nℓ0(r, uℓ0) := cos(2Qℓ0)
(2ruℓ0 − sin(2ruℓ0))

r3
+ 2 sin(2Qℓ0)

sin2(ruℓ0)

r3

(4.4.55)
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Crucially, we remark that ~uℓ0(t) inherits the compactness property from ~ψ(t). Indeed, the

trajectory

K̃ := {~uℓ0(t) | t ∈ R}

is pre-compact in Ḣ1 × L2(R5∗). However, since we have assumed that ℓ0 6= 0 we see that

uℓ0(t, 1) = ψ0(t, 1)−Qℓ0(1) = −Qℓ0(1) 6= 0. (4.4.56)

On the other hand, below we will show that ~uℓ0 = (uℓ0, ∂tuℓ0) = (0, 0) which contra-

dicts (4.4.56).

Lemma 4.4.15. Suppose ℓ0 6= 0. Let ~u(t) be as in Proposition 4.4.1 and define ~uℓ0 as

in (4.4.52). Then ~uℓ0 = (0, 0).

The argument that we will use to prove Lemma 4.4.15 is nearly identical to the one

presented in the previous steps to reach the desired conclusion for ℓ0 = 0 and we omit many

details here.

We start by showing that (∂ruℓ0,0, uℓ0,1) must be compactly supported. As before we

can argue as in the proof of Lemma 4.4.3, by modifying (4.4.54) inside the interior cone

{(t, r) | 1 ≤ r ≤ R + |t|}, and using the linear exterior estimates in Proposition 4.3.1 to

produce the same type of inequality as (4.4.3).

Lemma 4.4.16. There exists R0 > 1 so that for all R ≥ R0 we have

‖π⊥R ~uℓ0‖
2
H(r≥R) . R−22/3‖πR ~uℓ0‖

2
H(r≥R)

+R−11/3‖πR ~uℓ0‖
4
H(r≥R) + ‖πR ~uℓ0‖

6
H(r≥R)

(4.4.57)

where again P (R) := {(k1r−3, k2r−3) | k1, k2 ∈ R, r > R}, πR denotes the orthogonal

projection onto P (R) and πR
⊥ denotes the orthogonal projection onto the orthogonal com-
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plement of the plane P (R) in H(r > R;R5∗).

We remark that the proof of Lemma 4.4.16 follows exactly as the proof of Lemma 4.4.3

where we simply replace Q with Qℓ0 and ~u with ~uℓ0 in the arguments given for the proof

of Lemma 4.4.3. We note that since the trajectory K̃ is pre-compact in Ḣ1 × L2(R5∗), ~uℓ0

satisfies the conclusions of Corollary 4.4.2, namely for each R > 1 we have

‖~uℓ0(t)‖H(r≥R+|t|) → 0 as |t| → ∞

where the condition R > 1 allows the interchange of the norms H = Ḣ1
0 × L2(R5∗) and

Ḣ1 × L2(R5∗). With (vℓ0,0, vℓ0,1) defined as in (4.4.53) we can then conclude that for all

R > R0 large enough we have

∫ ∞

R

(
1

r
∂rvℓ0,0(r)

)2

dr +

∫ ∞

R
(∂rvℓ0,1(r))

2 dr . R−
31
3 v2ℓ0,0(R) + R−

29
3 v4ℓ0,0(R)

+R−9v6ℓ0,0(R) +R−
25
3 v2ℓ0,1(R)

+R−
17
3 v4ℓ0,1(R) +R−3v6ℓ0,1(R)

. R−7(v2ℓ0,0(R) + v2ℓ0,1(R))

(4.4.58)

where the first inequality follows by rewriting (4.4.57) in terms of ~vℓ0 = (vℓ0,0, vℓ0,1) and the

last line following from the known decay estimates in (4.4.53). Next, mimicking the proof

of Corollary 4.4.7 we can again establish difference estimates using (4.4.58). Indeed, for all

R0 ≤ r ≤ r′ ≤ 2r we have

∣∣vℓ0,0(r)− vℓ0,0(r
′)
∣∣2 . r−4(v2ℓ0,0(r) + v2ℓ0,1(r))

∣∣vℓ0,1(r)− vℓ0,1(r
′)
∣∣2 . r−6(v2ℓ0,0(r) + v2ℓ0,1(r))

(4.4.59)
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In terms of the vector ~vℓ0 = (vℓ0,0, vℓ0,1) we then have

∣∣~vℓ0(r)− ~vℓ0(r
′)
∣∣ . r−2

∣∣~vℓ0(r)
∣∣ (4.4.60)

Hence for fixed r0 ≥ R0 large enough we can deduce that

∣∣∣~vℓ0(2
n+1r0)

∣∣∣ &
3

4

∣∣~vℓ0(2
nr0)

∣∣

Therefore for each n,

∣∣~vℓ0(2
nr0)

∣∣ &
(
3

4

)n ∣∣~vℓ0(r0)
∣∣

On the other hand, by (4.4.53) we have

∣∣~vℓ0(2
nr0)

∣∣ . (2nr0)
−1

Combining the last two lines we see that

(
3

2

)n ∣∣~vℓ0(r0)
∣∣ . 1,

which implies that ~vℓ0(r0) = (0, 0). By (4.4.58) we can deduce that

∫ ∞

r0

(
1

r
∂rvℓ0,0(r)

)2

dr +

∫ ∞

r0

(∂rvℓ0,1(r))
2 dr = 0

Therefore,

‖~uℓ0‖
2
H(r≥r0) =

=

∫ ∞

r0

(
1

r
∂rvℓ0,0(r)

)2

dr +

∫ ∞

r0

(∂rvℓ0,1(r))
2 dr + 3r−30 v2ℓ0,0(r0) + r−10 v2ℓ0,1(r0) = 0
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which means that (∂ruℓ0,0, uℓ0,1) is compactly supported. We conclude by showing that

~uℓ0 = (0, 0).

Proof of Lemma 4.4.15. The proof is nearly identical to the proof of Lemma 4.4.14. Suppose

(∂ruℓ0,0, uℓ0,1) 6= (0, 0)

and we argue by contradiction. By the preceding arguments (∂ruℓ0,0, uℓ0,1) is compactly

supported. Then we can define ρ0 > 1 by

ρ0 := inf{ρ : ‖~uℓ0‖H(r≥ρ) = 0}

Let ε > 0 small to be determined below and find 1 < ρ1 < ρ0, ρ1 = ρ1(ε) so that

0 < ‖~uℓ0‖H(r≥ρ1) ≤ ε

We then have

∫ ∞

ρ1

(
1

r
∂rvℓ0,0(r)

)2

dr +

∫ ∞

ρ1

(∂rvℓ0,1(r))
2 dr + 3ρ−31 v2ℓ0,0(ρ1) + ρ−11 v2ℓ0,1(ρ1) =

= ‖π⊥ρ1~uℓ0‖
2
H(r≥ρ1) + ‖πρ1~uℓ0‖

2
H(r≥ρ1) = ‖~uℓ0‖

2
H(r≥ρ1) < ε (4.4.61)

By (4.4.58) we also have

∫ ∞

ρ1

(
1

r
∂rvℓ0,0(r)

)2

dr +

∫ ∞

ρ1

(∂rvℓ0,1(r))
2 dr . ρ

−31
3

1 v2ℓ0,0(ρ1) + ρ
−29

3
1 v4ℓ0,0(ρ1)+

+ ρ−91 v6ℓ0,0(ρ1) + ρ
−25

3
1 v2ℓ0,1(ρ1) + ρ

−17
3

1 v4ℓ0,1(ρ1) + ρ−31 v6ℓ0,1(ρ1) (4.4.62)
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Arguing as in Corollary 4.4.8 and using the fact that v0(ρ0) = v1(ρ0) = 0 gives

∣∣vℓ0,0(ρ1)
∣∣ =

∣∣vℓ0,0(ρ1)− vℓ0,0(ρ0)
∣∣ . ε

∣∣vℓ0,0(ρ1)
∣∣+ ρ1ε

∣∣vℓ0,1(ρ1)
∣∣ (4.4.63)

and

∣∣vℓ0,1(ρ1)
∣∣ =

∣∣vℓ0,1(ρ1)− vℓ0,1(ρ0)
∣∣ . ρ−11 ε

∣∣vℓ0,0(ρ1)
∣∣ + ε

∣∣vℓ0,1(ρ1)
∣∣ (4.4.64)

Plugging (4.4.63) into (4.4.64) gives

∣∣vℓ0,1(ρ1)
∣∣ . ρ−11 ε2

∣∣vℓ0,0(ρ1)
∣∣+ ε(1 + ε)

∣∣vℓ0,1(ρ1)
∣∣

which means that for ε small enough we have

∣∣vℓ0,1(ρ1)
∣∣ . ρ−11 ε2

∣∣vℓ0,0(ρ1)
∣∣ (4.4.65)

Putting this estimate back into (4.4.63) we obtain

∣∣vℓ0,0(ρ1)
∣∣ . ε

∣∣vℓ0,0(ρ1)
∣∣+ ε3

∣∣vℓ0,0(ρ1)
∣∣ . ε(1 + ε2)

∣∣vℓ0,0(ρ1)
∣∣

which implies that vℓ0,0(ρ1) = 0 as long as ε is chosen small enough. By (4.4.65) we can

conclude that vℓ0,1(ρ1) = 0 as well. By (4.4.62) and (4.4.61) we then have that

‖~uℓ0‖H(r≥ρ1) = 0

which is a contradiction since ρ1 < ρ0. Therefore, (∂ruℓ0,0, uℓ0,1) = (0, 0) Since uℓ0(r) → 0

as r →∞ we can also conclude that (uℓ0,0, uℓ0,1) = (0, 0).
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4.4.4 Proof of Proposition 4.4.1 and Proof of Theorem 4.0.3

For clarity, we summarize what we have done in the proof of Proposition 4.4.1.

Proof of Proposition 4.4.1. Let ~u(t) be a solution to (4.1.8) and suppose that the trajectory

K = {~u(t) | t ∈ R}

is pre-compact in H. We recall that

r~u(t, r) = ~ψ(t, r)− (Qn(r), 0)

where ~ψ(t) ∈ Hn is a degree n wave map, i.e., a solution to (4.0.2). By Lemma 4.4.5 there

exists ℓ0 ∈ R so that

∣∣∣r3u0(r)− ℓ0
∣∣∣ = O(r−3) as r →∞ (4.4.66)

∣∣∣∣r
∫ ∞

r
u1(ρ)ρ dρ

∣∣∣∣ = O(r−1) as r →∞ (4.4.67)

If ℓ0 6= 0 then by Lemma 4.4.15, ψ(0, r) = Qℓ0 where Qℓ0 is defined in (4.4.51). However,

this is impossible since Qℓ0(1) 6= 0, which contradicts the Dirichlet boundary condition

ψ(t, 1) = 0 for all t ∈ R.

Hence, ℓ0 = 0. Then by Lemma 4.4.13 we can conclude that ~u(0) = (0, 0), which proves

Proposition 4.4.1.

The proof of Theorem 4.0.3 is now complete. We conclude by summarizing the argument.

Proof of Theorem 4.0.3. Suppose that Theorem 4.0.3 fails. Then by Proposition 4.2.6 there

exists a critical element, that is, a nonzero solution ~u∗(t) ∈ H to (4.1.8) such that the

trajectory K = {~u∗(t) | t ∈ R} is pre-compact in H. However, Proposition 4.4.1 implies that
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any such solution is necessarily identically equal to (0, 0), which contradicts the fact that

the critical element ~u∗(t) is nonzero.
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CHAPTER 5

CLASSIFICATION OF 2D EQUIVARIANT WAVE MAPS TO

POSITIVELY CURVED TARGETS: PART I

5.1 Introduction

In this chapter we consider energy critical equivariant wave maps. We restrict out attention

to the corotational case ℓ = 1, and study maps U : (R1+2, η)→ (S2, g), where g is the round

metric on S2. In spherical coordinates,

(ψ, ω) 7→ (sinψ cosω, sinψ sinω, cosψ),

on S2, the metric g is given by the matrix g = diag(1, sin2(ψ)). In the 1-equivariant setting,

we thus require our wave map, U , to have the form

U(t, r, ω) = (ψ(t, r), ω) 7→ (sinψ(t, r) cosω, sinψ(t, r) sinω, cosψ(t, r)),

where (r, ω) are polar coordinates on R
2. In this case, the Cauchy problem (1.1.8) reduces

to

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0 (5.1.1)

(ψ, ψt)|t=0 = (ψ0, ψ1).

cp flat In this equivariant setting, the conservation of energy becomes

E(U, ∂tU)(t) = E(ψ, ψt)(t) =
∫ ∞

0

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr = const. (5.1.2)
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Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(t, 0) = mπ and ψ(t,∞) = nπ for all t ∈ I, where m,n are fixed integers. This requirement

splits the energy space into disjoint classes according to this topological condition. The wave

map evolution preserves these classes.

In light of this discussion, the natural spaces in which to consider Cauchy data for (5.1.1)

are the energy classes

Hm,n := {(ψ0, ψ1) | E(ψ0, ψ1) <∞ and ψ0(0) = mπ, ψ0(∞) = nπ}. (5.1.3)

We will mainly consider the spaces H0,n and we denote these by Hn := H0,n. In this case

we refer to n as the degree of the map. We also define H =
⋃
n∈ZHn to be the full energy

space.

In the analysis of 1-equivariant wave maps to the sphere, an important role is played by

the harmonic map, Q, given by stereographic projection. In spherical coordinates, Q is given

by Q(r) = 2 arctan(r) and is a solution to

Qrr +
1

r
Qr =

sin(2Q)

2r2
. (5.1.4)

One can show via an explicit calculation that (Q, 0) is an element of H1, i.e., Q has finite

energy and sends the origin in R
2 to the north pole and spacial infinity to the south pole.

In fact, the energy E(Q) := E(Q, 0) = 4 is minimal in H1 and simple phase space analysis

shows that, up to a rescaling, (Q, 0) is the unique, nontrivial, 1-equivariant harmonic map to

the sphere in H1. Note the slight abuse of notation above in that we will denote the energy

of the element (Q, 0) ∈ H1 by E(Q) rather than E(Q, 0).

It has long been understood that in the energy-critical setting, the geometry of the tar-

get should play a decisive role in determining the asymptotic behavior of wave maps. For

equivariant wave maps, global well-posedness for all smooth data was established by Struwe
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in [76] in the case where the target manifold does not admit a non-constant finite energy

harmonic sphere. This extended the results of Shatah, Tahvildar-Zadeh [70], and Grillakis

[30], where global well-posedness was proved for targets satisfying a geodesic convexity con-

dition. Recently, global well-posedness, including scattering, has been established in the full

(non-equivariant), energy critical wave maps problem in a remarkable series of works [49],

[74], [75], [79], for targets that do not admit finite energy harmonic spheres, completing the

program developed in [81], [78].

However, finite-time blow-up can occur in the case of compact targets that admit non-

constant harmonic spheres. Because we are working in the equivariant, energy critical setting,

blow-up can only occur at the origin and in an energy concentration scenario which amounts

to a breakdown in regularity. Moreover, in [76], Struwe showed that if a solution is C∞

before a regularity breakdown occurs, then such a scenario can only happen by the bubbling

off of a non-constant harmonic map.

In particular, Struwe showed that if a solution, ψ(t, r), with smooth initial data ~ψ(0) =

(ψ(0), ψ̇(0)), breaks down at t = 1, then the energy concentrates at the origin and there is a

sequence of times tj ր 1 and scales λj > 0 with λj ≪ 1 − tj so that the rescaled sequence

of wave maps

~ψj(t, r) :=
(
ψ(tj + λjt, λjr), λjψ̇

(
tj + λjt, λjr

))

converges locally to ±Q(r/λ0) in the space-time norm H1
loc((−1, 1)× R2; S2) for some λ0 >

0. Further evidence of finite time blow up for equivariant wave maps to the sphere was

provided by Cote, [14]. Recently, explicit blow-up solutions have been constructed in [63]

for equivariance classes ℓ ≥ 4 and in the 1-equivariant case in [50], [51] and [62]. In [50],

Krieger, Schlag, and Tataru constructed explicit blow-up solutions with prescribed blow-up

rates λ(t) = (1− t)1+ν for ν > 1
2 although it is believed that all rates with ν > 0 are possible

as well. In [51], a similar result is given for the radial, energy critical Yang Mills equation. In

[62], Rodnianski and Raphaël give a description of stable blow-up dynamics for equivariant

216



wave maps and the radial, energy critical Yang Mills equation in an open set about Q in a

stronger topology than the energy.

Our goal in this chapter is twofold. On one hand, we study the asymptotic behavior

of solutions to (5.1.1) with data in the “zero” topological class, i.e., ~ψ(0) ∈ H0, below a

sharp energy threshold, namely 2E(Q). Additionally, we seek to classify the behavior of

wave maps of topological degree one, i.e., those with data ~ψ ∈ H1, that blow up in finite

time with energies below the threshold 3E(Q). In particular, we show that blow-up profiles

exhibited in the works [50], [63] and [62] are universal in this energy regime in a precise sense

described below in Section 5.1.2.

5.1.1 Global existence and scattering for wave maps in H0 with energy

below 2E(Q)

We begin with a description of our results in the degree zero case. In [76], Struwe’s work im-

plies that solutions ~ψ(t) to (5.1.1) with data ~ψ(0) ∈ H0 are global in time if E(~ψ(0)) < 2E(Q).

This follows directly from the fact that wave maps in H0 with energy below 2E(Q) stay

bounded away from the south pole and hence cannot converge, even locally, to a degree

one rescaled harmonic map, thus ruling out blow-up. Recently, the Cote, Kenig, and

Merle, [17], extended this result to include scattering to zero in the regime, ~ψ(0) ∈ H0

and E(~ψ) ≤ E(Q) + δ for small δ > 0. It was conjectured in [17] that scattering should also

hold for all energies up to 2E(Q). This conjecture is a refined version of what is usually

called threshold conjecture, adapted to the case of topologically trivial equivariant data. It

is implied by the recent work of Sterbenz and Tataru in [74], [75] when one considers their

results in the equivariant setting with topologically trivial data. Here we give an alternate

proof of this refined threshold conjecture in the equivariant setting based on the concentra-

tion compactness/rigidity method of Kenig and Merle, [36], [37]. In particular, we prove the

following:
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Theorem 5.1.1 (Global Existence and Scattering in H0 below 2E(Q)). For any smooth

data ~ψ(0) ∈ H0 with E(~ψ(0)) < 2E(Q), there exists a unique global evolution ~ψ ∈ C0(R;H0).

Moreover, ~ψ(t) scatters to zero in the sense that the energy of ~ψ(t) on any arbitrary, but

fixed compact region vanishes as t→∞. In other words, one has

~ψ(t) = ~ϕ(t) + oH(1) as t→∞ (5.1.5)

where ~ϕ ∈ H solves the linearized version of (5.1.1), i.e.,

ϕtt − ϕrr −
1

r
ϕr +

1

r2
ϕ = 0 (5.1.6)

Furthermore, this result is sharp in H0 in sense that 2E(Q) is a true threshold. Indeed for

all δ > 0 there exists data ~ψ(0) ∈ H0 with E(~ψ) ≤ 2E(Q) + δ, such that ~ψ blows up in finite

time.

Remark 10. Characterizing the possible dynamics at the threshold, ~ψ ∈ H0, E(~ψ) = 2E(Q)

and above E(~ψ) > 2E(Q), remain open questions.

Remark 11. We briefly remark that Theorem 5.1.1 holds with the same assumptions and

conclusions for data ~ψ ∈ Hn,n where Hn,n is defined as in (5.1.3). Indeed, the spaces H0

and Hn,n are isomorphic via the map (ψ0, ψ1) 7→ (ψ0 + nπ, ψ1). Also, we can replace the

words “smooth finite energy data” in Theorem 5.1.1 with just “finite energy data” using the

well-posedness theory for (5.1.1), see for example [17].

As mentioned above, Theorem 5.1.1 is established by the concentration compactness –

rigidity method of Kenig and Merle in [36] and [37]. The novel aspect of our implementation

of this method lies in the development of a robust rigidity theory for wave maps ~U(t) with

trajectories that are pre-compact in the energy space up to certain time-dependent modula-

tions. We note that the following theorem is independent of both the topological class and

the energy of the wave map.
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Theorem 5.1.2 (Rigidity). Let ~U(t, r, ω) = ((ψ(t, r), ω), (ψ̇(t, r), 0)) ∈ H be a solution to

(5.1.1) and let Imax(ψ) = (T−(ψ), T+(ψ)) be the maximal interval of existence. Suppose that

there exists A0 > 0 and a continuous function λ : Imax → [A0,∞) such that the set

K̃ :=

{(
U

(
t,

r

λ(t)
, ω

)
,

1

λ(t)
∂tU

(
t,

r

λ(t)
, ω

)) ∣∣∣ t ∈ Imax
}

(5.1.7)

is pre-compact in Ḣ1×L2(R2; S2). Then, Imax = R and either U ≡ 0 or U : R2 → S2 is an

equivariant harmonic map, i.e., U(t, r, ω) = (±Q(r/λ̃), ω) for some λ̃ > 0.

Remark 12. To establish Theorem 5.1.1 we only need a version of Theorem 5.1.2 that deals

with data in H0 below 2E(Q). This rigidity result in H0 is given in Theorem 5.4.1 below, and

states that any solution ~ψ ∈ H0 with a pre-compact rescaled trajectory must be identically

zero. The full result in Theorem 5.1.2 is established for its own interest. In fact, we use the

conclusions of Theorem 5.1.1 in order to deduce the full classification of pre-compact solutions

given in Theorem 5.1.2. Alternatively, we can prove Theorem 5.1.2 using the scattering

result of [17, Theorem 1], and deduce Theorem 5.4.1 as a corollary. We have chosen the

former approach here to illustrate the independence of our stronger rigidity results from the

variational arguments given in [17, Lemma 7].

5.1.2 Classification of blow-up solutions in H1 with energies below 3E(Q)

We now turn to the issue of describing blow-up for wave maps in H1, i.e., those maps ~ψ(t)

with ψ(t, 0) = 0 and ψ(t,∞) = π. From here on out, any wave map that is assumed to

blow-up will be also be assumed to do so at time t = 1. As mentioned above, the recent

works [50] and [62] construct explicit blow-up solutions ψ(t) ∈ H1. In [50], the blow up

solutions constructed there exhibit a decomposition of the form

ψ(t, r) = Q(r/λ(t)) + ǫ(t, r) (5.1.8)
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where the concentration rate satisfies λ(t) = (1 − t)1+ν for ν > 1
2 , and ǫ(t) ∈ H0 is small

and regular. Here we consider the converse problem. Namely, if blow-up does occur for a

solution ~ψ(t) ∈ H1, in which energy regime, and in what sense does such a decomposition

always hold?

The works of Struwe, in [76] for the equivariant case, and Sterbenz, Tataru in [75] for the

full wave map problem, give a partial answer to this question. As mentioned above, they

show that if blow-up occurs, then along a sequence of times, a sequence of rescaled versions of

the original wave map converge locally to Q in the space-time norm H1
loc((−1, 1)× R2; S2).

However working locally removes any knowledge of the topology of the wave map, which

is determined by the behavior of the map at spacial infinity. In this chapter we seek to

strengthen the results in [76] and [75] in the equivariant setting by working globally in space

in the energy topology. Here we are forced to account for the topological restrictions of a

degree one wave map, and in fact we use these restrictions, along with our degree zero theory,

to our advantage.

In particular, we make the following observation. If a wave map ψ(t) ∈ H1 blows up at

t = 1 then the local convergence results of Struwe in [76] allow us to extract the blow up

profile ±Qλn := ±Q(·/λn) at least along a sequence of times tn → 1. If ~ψ has energy below

3E(Q) the profile must be +Q(·/λn), and since Q ∈ H1 as well we thus have ψ(tn)−Qλn ∈

H0. Since this object should converge locally to zero, the energy of the difference should

be roughly the difference of the energies, at least for large n. Hence, if ψ(t) has energy

below 3E(Q) the difference ψ(tn) − Qλn is degree zero and has energy below 2E(Q). By

Theorem 5.1.1, we then suspect that the blow-up profile already extracted is indeed universal

in this regime and that a decomposition of the form (5.1.8) should indeed hold, excluding the

possibility of any different dynamics, such as more bubbles forming. We prove the following

result:

Theorem 5.1.3 (Classification of blow-up solutions in H1 with energies below 3E(Q)). Let
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~ψ(t) ∈ H1 be a smooth solution to (5.1.1) blowing up at time t = 1 with

E(~ψ) = E(Q) + η < 3E(Q).

Then, there exists a continuous function, λ : [0, 1) → (0,∞) with λ(t) = o(1 − t), a map

~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = η, and a decomposition

~ψ(t) = ~ϕ+ (Q (·/λ(t)) , 0) + ~ǫ(t) (5.1.9)

such that ~ǫ(t) ∈ H0 and ~ǫ(t)→ 0 in H0 as t→ 1.

Remark 13. In the companion work [16] we address the question of global solutions ψ(t) ∈ H1

in the regime E(~ψ) < 3E(Q). We can show that in this case we have a decomposition and

convergence as in (5.1.9) with λ(t)≪ t as t→∞. This will give us a complete classification

of the possible dynamics in H1 for energies below 3E(Q). Of course, our results do not give

information about the precise rates λ(t). We also would like to mention the recent results of

Bejenaru, Krieger, and Tataru [3], regarding wave maps in H1, where they prove asymptotic

orbital stability for a co-dimension two class of initial data which is “close” to Qλ with

respect to a stronger topology than the energy.

Remark 14. Theorem 5.1.3 is reminiscent of the recent results proved by Duyckaerts, Kenig,

and Merle in [22], [21], for the energy critical focusing semi-linear wave equation in R1+3.

In fact, the techniques developed in these works provided important ideas for the proof of

Theorem 5.1.3. The situation for wave maps is somewhat different, however, as the geometric

nature of the problem provides some key distinctions. The most notable of these distinctions

is that the underlying linear theory for wave maps of degree zero is not nearly as strong as

that of a semi-linear wave in R
1+3, which causes serious problems. Indeed, as demonstrated

in [18], the strong lower bound on the exterior energy in [22, Lemma 4.2] fails for general

initial data in even dimensions. This difficulty is overcome by the fact that there is no self-
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similar blow-up for for energy critical equivariant wave maps, see e.g., [68], which can be

shown directly due to the non-negativity of the energy density.

In addition, our degree zero result and the rigid topological restrictions of the problem

allow us to extend the conclusions of Theorem 5.1.3 all the way up to 3E(Q) instead of just

slightly above the energy of the harmonic map E(Q) + δ, for δ > 0 small, as is the case in

[22], [21]. This large enegy result is similar in nature to the results for the 3d semi-linear

radial wave equation in [24], when, in the notation from [24], J0 = 1.

Remark 15. The results in [22], [21] have recently been extended by Duyckaerts, Kenig, and

Merle in [24] and [23]. In [23], a classification of solutions to the radial, energy critical,

focusing semi-linear wave equation in R1+3 of all energies is given in the sense that only

three scenarios are shown to be possible; (1) type I blow-up; (2) type II blow-up with the

solution decomposing into a sum of blow-up profiles arising from rescaled solitons plus a

radiation term; or (3) the solution is global and decomposes into a sum of rescaled solitons

plus a radiation term as t→∞.

5.1.3 Remarks on the proofs of the main results

In addition to the methods originating in [36], [37] and [22], [21], the work in this chapter

rests explicitly on several developments in the field over the past two decades. Here we

provide a quick guide to the work on which our results lie:

Results used in the proof of Theorem 5.1.1

• Theory of equivariant wave maps developed in the nineties in the works of Shatah,

Tahvildar-Zadeh, [70], [71], including the use of virial identities to prove energy decay

estimates.

• The concentration compactness decomposition of Bahouri-Gérard, [1].
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• Lemma 2 in [17] which relates energy constraints to L∞ estimates for equivariant

wave maps. In particular, if a degree zero map has energy less than 2E(Q), then the

evolution, ψ(t, r), is bounded uniformly below π. In addition, although only a weaker

small data result such as [68, Theorem 8.1] is needed, we use the global existence and

scattering result for degree one wave maps with energy below E(Q)+ δ for small δ > 0,

which was established in [18, Theorem 1].

• Hélein’s theorem on the regularity of harmonic maps which says that a weakly harmonic

map is, in fact, harmonic, [32].

Results used in the proof of Theorem 5.1.3

• The virial identity and the corresponding energy decay estimates in [70].

• Struwe’s characterization of blow-up, [76, Theorem 2.2], which gives H1
loc convergence

along a sequence of times to Q if blow-up occurs. This allows us, a priori, to identify

and extract the blow-up profile Qλn along a sequence of times, tn, which is absolutely

crucial in our argument since we can then work with degree zero maps once Qλn has

been subtracted from the degree one maps ψ(tn).

• The concentration compactness decomposition of Bahouri-Gérard, [1].

• The new results on the free radial 4d wave equation established by the Cote, Kenig

and Schlag in [18].

• The decomposition of degree one maps which have energy slightly above Q and the

stability of this decomposition under the wave map evolution for a period of time

inversely proportional to the proximity of the data to Q in the energy space established

by Cote [14].
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As we outline in the appendix, the proofs of Theorem 5.1.1, Theorem 5.1.2, and Theo-

rem 5.1.3 extend easily to energy critical 1-equivariant wave maps with more general targets.

In addition, the proofs of Theorem 5.1.2 and Theorem 5.1.1 apply equally well to the equiv-

ariance classe ℓ = 2 and the 4d equivariant Yang-Mills system after suitable modifications.

One should also be able to deduce these results for the equivariance classes ℓ ≥ 3 once a

suitable small data theory is established for these equations, which are similar in nature to

the even dimensional energy critical semi-linear wave equations in high dimensions treated

in [8] – the difficulty here resides in the low fractional power in the nonlinearity.

However, the method we used to prove Theorem 5.1.3 only works, as developed here,

for odd equivariance classes, ℓ = 1, 3, 5, . . . , and does not work when one considers even

equivariance classes, ℓ = 2, 4, 6, . . . , or the 4d equivariant Yang-Mills system in this context.

This failure of our technique arises in the linear theory in [18] for even dimensions, which

provides favorable estimates for our proof scheme only when ℓ is odd. Since the 4d equivariant

Yang-Mills system corresponds roughly to a 2-equivarant wave map, this falls outside the

scope of our current method as well. To be more specific, one can identify the linearized

ℓ-equivariant wave map equation with the 2ℓ + 2-dimensional free radial wave equation. In

the final stages of the proof of Theorem 5.1.3, and in particular Corollary 5.5.8, we require

the exterior energy estimate

‖f‖
Ḣ1 . ‖S(t)(f, 0)‖

Ḣ1×L2(r≥t) for all t ≥ 0

where S(t) is the the free radial wave evolution operator. In [18], this estimate is shown

to be true in even dimensions 4, 8, 12, . . . , and false in dimensions 2, 6, 10, . . . . Without

this estimate, our proof would show compactness of the error term in our decomposition in a

certain suitable Strichartz space but not in the energy space. Therefore, the full conclusion of

Theorem 5.1.3 remains open for the 4d equivariant Yang-Mills system and the ℓ-equivariant

wave map equation when ℓ is even.
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5.1.4 Structure of this Chapter

The outline of this chapter is as follows. In Section 5.2 we establish the necessary prelimi-

naries needed for the rest of the work. We include a brief review of the results of Shatah,

Tahvildhar-Zadeh, [70] and Struwe [76]. We also recall the concentration compactness de-

composition of Bahouri, Gérard [1] and adapt their theory to case of equivariant wave maps

to the sphere. In particular, we deduce a Pythagorean expansion of the nonlinear wave

map energy of such a decomposition at a fixed time. This type of result is crucial in the

concentration compactness/rigidity method of [36], [37]. We also establish an appropriate

nonlinear profile decomposition.

In Section 5.3 we give a brief outline of the concentration compactness/rigidity method

that is used to prove Theorem 5.1.1. In Section 5.4 we prove Theorem 5.1.2, which allows

us to complete the proof of Theorem 5.1.1.

Finally, in Section 5.5 we establish Theorem 5.1.3, which relies crucially on the linear

theory developed in [18].

5.1.5 Notation and Conventions

We will interchangeably use the notation ψt(t, r) and ψ̇(t, r) to refer to the derivative with

respect to the time variable t of the function ψ(t, r).

The notation X . Y means that there exists a constant C > 0 such that X ≤ CY .

Similarly, X ≃ Y means that there exist constants 0 < c < C so that cY ≤ X ≤ CY .

5.2 Preliminaries

We define the energy space

H = {~U ∈ Ḣ1 × L2(R2; S2) |U ◦ ρ = ρ ◦ U, ∀ρ ∈ SO(2)}.
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H is endowed with the norm

E(~U(t)) = ‖~U(t)‖2
Ḣ1×L2(R2;S2)

=

∫

R2
(|∂tU |2g + |∇U |2g) dx. (5.2.1)

As noted in the introduction, by our equivariance condition we can write U(t, r, ω) =

(ψ(t, r), ω) and the energy of a wave map becomes

E(U, ∂tU)(t) = E(ψ, ψt)(t) =
∫ ∞

0

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr = const. (5.2.2)

We also define the localized energy as follows: Let r1, r2 ∈ [0,∞). Then we set

Er2r1 (~ψ(t)) :=
∫ r2

r1

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr.

Following Shatah and Struwe, [68], we set

G(ψ) :=

∫ ψ

0
|sin ρ| dρ. (5.2.3)

Observe that for any (ψ, 0) ∈ Hn and for any r1, r2 ∈ [0,∞) we have

|G(ψ(r2))−G(ψ(r1))| =
∣∣∣∣∣

∫ ψ(r2)

ψ(r1)
|sin ρ| dρ

∣∣∣∣∣ (5.2.4)

=

∣∣∣∣
∫ r2

r1

|sin(ψ(r))|ψr(r) dr
∣∣∣∣ ≤

1

2
Er2r1 (ψ, 0)

5.2.1 Properties of degree zero wave maps

As in [17], let α ∈ [0, 2E(Q)] and define the set V (α) ⊂ H0:

V (α) := {(ψ0, ψ1) ∈ H0 | E(ψ0, ψ1) < α}
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We claim that for every α ∈ [0, 2E(Q)], V (α) is naturally endowed with the norm

‖(ψ0, ψ1)‖2H×L2 =

∫ ∞

0

(
ψ21 + (ψ0)

2
r +

ψ20
r2

)
r dr (5.2.5)

To see this, we recall the following lemma proved in [17].

Lemma 5.2.1. [17, Lemma 2] There exists an increasing function K : [0, 2E(Q)) → [0, π)

such that

|ψ(r)| ≤ K(E(~ψ)) < π ∀~ψ ∈ H0 with E(ψ) < 2E(Q) (5.2.6)

Moreover, for each α ∈ [0, 2E(Q)] we have

E(ψ0, ψ1) ≃ ‖(ψ0, ψ1)‖H×L2 (5.2.7)

for every (ψ0, ψ1) ∈ V (α), with the constant above depending only on α.

When considering Cauchy data for (5.1.1) in the class H0 the formulation in (5.1.1) can

be modified in order to take into account the strong repulsive potential term that is hidden

in the nonlinearity:

sin(2ψ)

2r2
=

ψ

r2
+

sin(2ψ)− 2ψ

2r2
=
ψ

r2
+
O(ψ3)

r2

Indeed, the presence of the strong repulsive potential 1
r2

indicates that the linearized operator

of (5.1.1) has more dispersion than the 2-dimensional wave equation. In fact, it has the same

dispersion as the 4-dimensional wave equation as the following standard reduction shows.
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Setting ψ = ru we are led to this equation for u:

utt − urr −
3

r
ur +

sin(2ru)− 2ru

2r3
= 0 (5.2.8)

~u(0) = (u0, u1).

The nonlinearity above has the form N(u, r) = u3Z(ru) where Z is a smooth, bounded, even

function and the linear part is the radial d’Alembertian in R1+4. The linearized version of

(5.2.8) is just the free radial wave equation in R1+4, namely

vtt − vrr −
3

r
vr = 0. (5.2.9)

Observe that for ~ψ(0) ∈ H0 we have that

E(~ψ(0)) ≤ ‖~ψ‖2H×L2 :=

∫ ∞

0

(
ψ2t + ψ2r +

ψ2

r2

)
r dr =

∫ ∞

0
(u2t + u2r) r

3 dr. (5.2.10)

If, in addition, we assume that E(~ψ(0)) < 2E(Q) then, by Lemma 5.2.1 we also have the

opposite inequality

‖~u(0)‖2
Ḣ1×L2 = ‖~ψ(0)‖2

H×L2 . E(~ψ(0)). (5.2.11)

Therefore, when considering initial data (ψ0, ψ1) ∈ V (α) for α ≤ 2E(Q) the Cauchy problem

(5.1.1) is equivalent to the Cauchy problem for (5.2.8) for radial initial data (rψ0, rψ1) =:

~u(0) ∈ Ḣ1 × L2(R4).

The following exterior energy estimates for the 4d free radial wave equation established

by Cote, Kenig, and Schlag [18] will play a key role in our analysis:

Proposition 5.2.2. [18, Corollary 5] Let S(t) denote the free evolution operator for the 4d
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radial wave equation, (5.2.9). There exists α0 > 0 such that for all t ≥ 0 we have

‖S(t)(f, 0)‖
Ḣ1×L2(r≥t) ≥ α0‖f‖Ḣ1 (5.2.12)

for all radial data (f, 0) ∈ Ḣ1 × L2.

The point here is that this same result applies to the linearized version of the wave map

equation:

ϕtt − ϕrr −
1

r
ϕr +

1

r2
ϕ = 0 (5.2.13)

with initial data ~ϕ(0) = (ϕ0, 0). Indeed we have the following:

Corollary 5.2.3. Let W (t) denote the linear evolution operator associated to (5.2.13). Then

there exists β0 > 0 such that for all t ≥ 0 we have

‖W (t)(ϕ0, 0)‖H×L2(r≥t) ≥ β0‖ϕ0‖H (5.2.14)

for all radial initial data (ϕ0, 0) ∈ H × L2.

Proof. Let ~ϕ(t) = W (t)(ϕ0, 0) be the linear evolution of the smooth radial data (ϕ0, 0) ∈

H × L2. Define ~v(t) by ϕ(t, r) = rv(t, r). Then ~v(t) ∈ Ḣ1 × L2(R4) and is a solution to

(5.2.9) with initial data (v0, 0) = (ϕ0r , 0). Next observe that for all A ≥ 0 we have

‖v(t)‖2
Ḣ1(r≥A) =

∫ ∞

A
v2r (t, r) r

3 dr =

∫ ∞

A

(
ϕr(t, r)

r
− ϕ(t, r)

r2

)2

r3 dr

≤ 2‖ϕ(t)‖2H(r≥A)

Similarly we can show that ‖ϕ(t)‖2
H(r≥A) ≤ 2‖v(t)‖2

Ḣ1(r≥A). Therefore using (5.2.12) on
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v(t) we obtain

‖~ϕ(t)‖2H×L2(r≥t) ≥
1

2
‖v(t)‖2

Ḣ1(r≥t) ≥
α20
2
‖v0‖2Ḣ1 =

α20
2
‖ϕ0‖2H

which proves (5.2.14) with β0 = α0√
2
.

5.2.2 Properties of degree one wave maps

Now, suppose ~ψ = (ψ0, ψ1) ∈ H1. This means that ψ(0) = 0 and ψ(∞) = π. The H × L2

norm of ~ψ is no longer finite, but we do have the following comparison:

Lemma 5.2.4. Let ~ψ = (ψ0, 0) ∈ H1 be smooth and let r0 ∈ [0,∞). Then there exists α > 0

such that

(a) If Er00 (~ψ) < α, then

‖ψ‖2H(r≤r0) . E
r0
0 (~ψ). (5.2.15)

(b) If E∞r0 (~ψ) < α, then

‖ψ(·)− π‖2H(r≥r0) . E
∞
r0 (

~ψ). (5.2.16)

Proof. We prove only the second estimate as the proof of the first is similar. Since G(π) = 2,

by (5.2.4) we have for all r ∈ [r0,∞) that

|G(ψ(r))− 2| ≤ 1

2
E∞r (ψ, 0) <

α

2
.

Since G is continuous and increasing this means that ψ(r) ∈ [π − ε(α), π + ε(α)] where

ε(ρ)→ 0 as ρ→ 0. Hence for α small enough we have the estimate sin2(ψ(r)) ≥ 1
2 |ψ(r)− π|2

for all r ∈ [r0,∞] and the estimate (5.2.16) follows by integrating this.
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Let Q(r) := 2 arctan(r). Note that (Q, 0) ∈ H1 is the unique (up to scaling) time-

independent, solution to (5.1.1) in H1. Indeed, Q has minimal energy in H1 and E(Q, 0) =

4. One way to see this is to note that Q satisfies rQr(r) = sin(Q) and hence for any

0 ≤ a ≤ b <∞ we have

G(Q(b))−G(Q(a)) =
∫ b

a
|sin(Q(r))|Qr(r) dr =

1

2
Eba(Q, 0) (5.2.17)

Letting a → 0 and b → ∞ we obtain E(Q, 0) = 2G(π) = 4. To see that E(Q, 0) is indeed

minimal in H1, observe that we can factor the energy as follows:

E(ψ, ψt) =
∫ ∞

0
ψ2t r dr +

∫ ∞

0

(
ψr −

sin(ψ)

r

)2

r dr + 2

∫ ∞

0
sin(ψ)ψr dr

=

∫ ∞

0
ψ2t r dr +

∫ ∞

0

(
ψr −

sin(ψ)

r

)2

r dr + 2

∫ ψ(∞)

ψ(0)
sin(ρ) dρ

Hence, in H1 we have

E(ψ, ψt) ≥
∫ ∞

0
ψ2t r dr + 4 =

∫ ∞

0
ψ2t r dr + E(Q) (5.2.18)

We shall also require a decomposition from [14] which amounts to the coercivity of the

energy near to ground state Q, up to the scaling symmetry.

Lemma 5.2.5. [14, Proposition 2.3] There exists a function δ : (0,∞) → (0,∞) such that

δ(α)→ 0 as α→ 0 and such that the following holds: Let ~ψ = (ψ, 0) ∈ H1. Define

α := E(~ψ)− E(Q) > 0

Then there exists λ ∈ (0,∞) such that

‖ψ −Q(·/λ)‖H ≤ δ(α)
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Note that one can choose λ > 0 so that Eλ0 (~ψ) = E10 (Q) = E(Q)/2.

We will also need the following consequence of Lemma 5.2.5 that is also proved in [14].

Corollary 5.2.6. [14, Corollary 2.4] Let ρn, σn →∞ be two sequences such that ρn ≪ σn.

Let ~ψn(t) ∈ H1 be a sequence of wave maps defined on time intervals [0, ρn] and suppose that

‖~ψn(0)− (Q, 0)‖H×L2 ≤ 1

σn
.

Then

sup
t∈[0,ρn]

‖~ψn(t)− (Q, 0)‖H×L2 = on(1) as n→∞

Remark 16. We refer the reader to the proof of [14, Corollary 2.4] and the remark immediately

following it for a detailed proof of Corollary 5.2.6. We have phrased the above result in terms

of sequences of wave maps because this is the form in which it will be applied in Section 5.5.

Also, we note that in [14] the notation ‖ · ‖2H is used to denote the nonlinear energy, E(·), of

a map, whereas here ‖ · ‖H is defined as in (5.2.5). Both Lemma 5.2.5 and Corollary 5.2.6

hold with either definition.

5.2.3 Properties of blow-up solutions

Now let ~ψ(t) ∈ H be a wave map with maximal interval of existence

Imax(~ψ) = (T−(~ψ), T+(~ψ)) 6= R.

By translating in time, we can assume that T+(~ψ) = 1. We recall a few facts that we will

need in our argument. From the work of Shatah and Tahvildar-Zadeh [70], we have the

following results:
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Lemma 5.2.7. [70, Lemma 2.2] For any λ ∈ (0, 1] we have

E1−t
λ(1−t)(

~ψ(t)) =

∫ 1−t

λ(1−t)

(
ψ2t (t, r) + ψ2r (t, r) +

sin2(ψ(t, r))

r2

)
r dr → 0 as t→ 1

(5.2.19)

Lemma 5.2.8. [70, Corollary 2.2] Let ~ψ(t) ∈ H be a solution to (5.1.1) such that Imax(~ψ)

is a finite interval. Without loss of generality we can assume T+(~ψ) = 1. Then we have

1

1− t

∫ 1

t

∫ 1−s

0
ψ̇2(s, r) r dr ds→ 0 as t→ 1 (5.2.20)

As in [22], we can use Lemma 5.2.8 to establish the following result. The proof is identical

to the argument given in [22, Corollary 5.3] so we do not reproduce it here.

Corollary 5.2.9. [22, Corollary 5.3] Let ψ(t) ∈ H be a solution to (5.1.1) such that T+(~ψ) =

1. Then, there exists a sequence of times {tn} ր 1 such that for every n and for every

σ ∈ (0, 1− tn), we have

1

σ

∫ tn+σ

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt ≤ 1

n
(5.2.21)

∫ 1−tn

0
ψ̇2(tn, r) r dr ≤

1

n
(5.2.22)

Note that (5.2.22) follows from (5.2.21) by letting σ → 0 in (5.2.21) and recalling the

continuity of the map t 7→ ψ̇(t, ·) from [0, 1)→ L2.

We now recall a result of Struwe, [76], which will be essential in our argument for degree 1.

Theorem 5.2.10. [76, Theorem 2.1] Let ψ(t) ∈ H be a smooth solution to (5.1.1) such that

T+(~ψ) = 1. Let {tn} ր 1 be defined as in Corollary 5.2.9. Then there exists a sequence
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{λn} with λn = o(1− tn) so that the following results hold: Let

~ψn(t, r) := (ψ(tn + λnt, λnr), λnψ̇(tn + λnt, λnr)) (5.2.23)

be the wave map evolutions associated to the data ~ψn(r) := ~ψ(tn, λnr). And denote by

Un(t, r, ω) := (ψn(t, r), ω) the full wave maps. Then,

Un(t, r, ω)→ U∞(r, ω) in H1
loc((−1, 1)× R

2; S2) (5.2.24)

where U∞ is a smooth, non-constant, 1-equivariant, time independent solution to (1.1.8),

and hence U∞(r, ω) = (±Q(r/λ0), ω) for some λ0 > 0. We further note that after passing

to a subsequence, Un(t, r, ω)→ U∞(r, ω) locally uniformly in (−1, 1)× (R2 − {0}).

Moreover, with the times tn and scales λn as above, we have

1

λn

∫ tn+λn

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt = on(1). (5.2.25)

Remark 17. We note that we have altered the selection procedure by which the sequence

of times tn is chosen in the proof of Theorem 5.2.10. In [76], after defining a scaling factor

λ(t), Struwe uses Lemma 5.2.8 to select a sequence of times tn via an argument involving

Vitali’s covering theorem, and he sets λn := λ(tn). Here we do something different. Given

Lemma 5.2.8 we use the argument in [22, Corollary 5.3] to find a sequence tn → 1 so that

(5.2.21) and (5.2.22) hold. Now we choose the scales λ(t) as in Struwe and for each n we set

σ = λn := λ(tn) and we establish (5.2.25), which is exactly [76, Lemma 3.3]. The rest of the

proof of Theorem 5.2.10 now proceeds exactly as in [76].

We will also need the following consequences of Theorem 5.2.10:

Lemma 5.2.11. Let ψ(t) ∈ H be a solution to (5.1.1) such that T+(~ψ) = 1. Let {tn} ր 1
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and {λn} be chosen as in Theorem 5.2.10. Define ψn(t, r), ±Q(r/λ0) as in (5.2.23). Then

ψn ∓Q(·/λ0)→ 0 as n→∞ in L2t ((−1, 1);Hloc) (5.2.26)

where H is defined as in (5.2.5).

Proof. We prove the case where the convergence in Theorem 5.2.10 is to +Q(r/λ0). Let

Qλ0(r) = Q(r/λ0). By Theorem 5.2.10, we know that

∫

R1+2

(
|∂tψn(t, r)|2 +

∣∣∂r(ψn(t, r)−Qλ0(r))
∣∣2
)
χ(t, r) r dr dt

+

∫

R1+2

∣∣ψn(t, r)−Qλ0(r)
∣∣2 χ(t, r) r dr dt −→ 0 as n→∞ (5.2.27)

for all χ ∈ C∞0 ((−1, 1) × R2), radial in space. Hence to prove (5.2.26), it suffices to show

that

∫

R1+2

∣∣ψn(t, r)−Qλ0(r)
∣∣2

r2
χ(t, r) r dr dt→ 0 as n→∞ (5.2.28)

for all χ as above. Next, note that if for fixed δ > 0, χ(t, r) satisfies supp(χ(t, ·)) ⊂ [δ,∞),

we have

∫

R1+2

∣∣ψn(t, r)−Qλ0(r)
∣∣2

r2
χ(t, r) r dr dt

≤ δ−2
∫

R1+2

∣∣ψn(t, r)−Qλ0(r)
∣∣2 χ(t, r) r dr dt→ 0 as n→∞,

with the convergence in the last line following from (5.2.27). Hence, from here out we only

need to consider χ with suppχ(t, ·) ⊂ [0, 1]. Referring to Struwe’s argument in [76, Proof of

Theorem 2.1, (ii)], we note that by construction, λn and λ0 are such that

E10 (~ψn(t)) < ε1, E10 (Qλ0) < ε1
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uniformly in |t| ≤ 1 and uniformly in n, where ε1 > 0 is a fixed constant that we can choose

to be as small as we want. Recalling that for each t, ψ(t, 0) = Q(0) = 0 and using (5.2.4),

this implies that

|G(ψn(t, r))| ≤
1

2
ε1,

∣∣G(Qλ0(r))
∣∣ ≤ 1

2
ε1

for all r ∈ [0, 1]. In particular, we can choose ε1 small enough so that

|ψn(t, r)| <
π

8
,
∣∣Qλ0(r)

∣∣ < π

8

for all r ∈ [0, 1]. Using the above line we then can conclude that there exists c > 0 such that

(ψn(t, r)−Q(r/λ0))(sin(2ψn(t, r))− sin(2Qλ0(r))) ≥ c(ψn(t, r)−Q(r/λ0))2 (5.2.29)

for all r ∈ [0, 1], and |t| ≤ 1. Consider the equation

(−∂tt + ∂rr +
1

r
∂r)(ψn(t, r)−Qλ0(r)) =

sin(2ψn(t, r))− sin(2Qλ0(r))

r2
.

Now, let χ ∈ C∞0 ((−1, 1) × R2) satisfy supp(χ(t, ·)) ⊂ [0, 1]. Multiply the above equation

by (ψn(t, r)−Qλ0(r))χ(t, r), and integrate over R1+2. Then, integrating by parts and using

the strong local convergence in (5.2.27) we can deduce that

∫

R1+2

(sin(2ψn(t, r))− sin(2Qλ0(r)))(ψn(t, r)−Q(r/λ0))
r2

χ(t, r) r dr dt→ 0

as n→∞. The lemma then follows by combining the above line with (5.2.29).

Lemma 5.2.12. Let ψ(t) ∈ H be a wave map that blows up at time t = 1. Then, there
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exists a sequence of times t̄n → 1 and a sequence of points rn ∈ [0, 1− t̄n) such that

ψ(t̄n, rn)→ ±π as n→∞ (5.2.30)

Proof. If not, then there exists a δ0 > 0 such that for every time t ∈ [0, 1) we have |ψ(t, r)| ∈

R − [π − δ0, π + δ0] for all r ∈ [0, 1 − t). Now let tn, λn and ψn(t, r) and ±Qλ0 be as in

Theorem 5.2.10 and Lemma 5.2.11. Choose 0 < R1 < R2 < ∞ so that
∣∣Qλ0(r)

∣∣ > π − δ0
2

for r ∈ [R1, R2] and choose N large enough so that [λnR1, λnR2] ⊂ [0, 1− tn − λnt) for all

t ∈ [0, 1] and for all n ≥ N . This implies that

∣∣ψn(t, r)∓Qλ0(r)
∣∣ ≥ δ0

2
∀n ≥ N, ∀r ∈ [R1, R2], (5.2.31)

and for all t ∈ [0, 1]. But this provides an immediate contradiction with the convergence in

(5.2.26).

Corollary 5.2.13. Let ψ(t) ∈ H1 be a wave map that blows up at time t = 1 such that

E(~ψ) < 3E(Q). Recall that ~ψ(t) ∈ H1 means that ψ(t, 0) = 0, ψ(t,∞) = π. Then we have

ψn −Q(·/λ0)→ 0 as n→∞ in L2t ((−1, 1);Hloc), (5.2.32)

with ψn(t, r), tn, and λn defined as in Theorem 5.2.10. In addition, there exists another

sequence of times t̄n → 1 and a sequence of points rn ∈ [0, 1− t̄n) such that

ψ(t̄n, rn)→ π as n→∞ (5.2.33)

Proof. We use the energy bound E(~ψ) < 3E(Q) to eliminate the possibility that the con-

vergence in Theorem 5.2.10 is to −Q(r/λ0) instead of to +Q(r/λ0). Suppose that in fact

we had in (5.2.26) that ψn + Q(·/λn) → 0 in L2t ((−1, 1);Hloc). Lemma 5.2.12 then gives a
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sequence of times t̄n → 1 and a sequence rn ∈ [0, 1− t̄n) such that

ψ(t̄n, rn)→ −π (5.2.34)

as n→∞. Now recall that ~ψ(t) ∈ H1. Using the above along with (5.2.4) we see that

2E(Q) = 8← 2 |G(ψ(t̄n, rn))− 2| ≤ E∞rn (ψ(t̄n), 0))

On the other hand, we can use (5.2.34) and (5.2.4) again to see that

E(Q) = 4← 2 |G(ψ(t̄n, rn))| ≤ Ern0 (ψ(t̄n), 0)

Putting this together we see that we must have E(~ψ) ≥ 3E(Q) which contradicts our initial

assumption on the energy.

5.2.4 Profile Decomposition

Another essential ingredient of our argument is the profile decomposition of Bahouri and

Gerard [1]. Here we restate the main results of [1] and then adapt these results to the case of

2d equivariant wave maps to the sphere of topological degree zero. In fact the results for the

4d wave equation stated here first appeared in [9] as the decomposition in [1] was performed

only in dimension 3. In particular, we recall the following result:

Theorem 5.2.14. [1, Main Theorem] [9, Theorem 1.1] Consider a sequence of data ~un ∈

Ḣ1×L2(R4) such that ‖un‖Ḣ1×L2 ≤ C. Then, up to extracting a subsequence, there exists a

sequence of free 4d radial waves ~V
j
L ∈ Ḣ1×L2, a sequence of times {tjn} ⊂ R, and sequence
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of scales {λjn} ⊂ (0,∞), such that for ~wkn defined by

un,0(r) =
k∑

j=1

1

λ
j
n

V
j
L(−t

j
n/λ

j
n, r/λ

j
n) + wkn,0(r) (5.2.35)

un,1(r) =
k∑

j=1

1

(λ
j
n)2

V̇
j
L(−t

j
n/λ

j
n, r/λ

j
n) + wkn,1(r) (5.2.36)

we have, for any j ≤ k, that

(λ
j
nw

k
n(λ

j
nt
j
n, λ

j
n·), (λjn)2wkn(λjntjn, λjn·))⇀ 0 weakly in Ḣ1 × L2(R4). (5.2.37)

In addition, for any j 6= k we have

λ
j
n

λkn
+
λkn

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λkn
→∞ as n→∞. (5.2.38)

Moreover, the errors ~wkn vanish asymptotically in the sense that if we let wkn,L(t) ∈ Ḣ1×L2

denote the free evolution, (i.e., solution to (5.2.9)), of the data ~wkn ∈ Ḣ1 × L2, we have

lim sup
n→∞

∥∥∥wkn,L
∥∥∥
L∞
t L

4
x∩L3

tL
6
x(R×R4)

→ 0 as k →∞. (5.2.39)

Finally, we have the almost-orthogonality of the Ḣ1 × L2 norms of the decomposition:

‖~un‖2Ḣ1×L2 =
∑

1≤j≤k
‖~V jL(−t

j
n/λ

j
n)‖2Ḣ1×L2 + ‖~wkn‖2Ḣ1×L2 + on(1) (5.2.40)

as n→∞.

The norms appearing in (5.2.39) are dispersive and examples of Strichartz estimates,

see Lindblad, Sogge [55] and Sogge’s book [73] for more background and details. For our

purposes here, it will often be useful to rephrase the above decomposition in the framework
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of the 2d linear wave equation (5.1.6). Using the right-most equality in (5.2.10) together

with the identifications

ψn(r) = run(r)

ϕ
j
L(−t

j
n/λ

j
n, r/λ

j
n) =

r

λ
j
n

V
j
L(−t

j
n/λ

j
n, r/λ

j
n)

γkn(r) = rwkn,

we see that Theorem 5.2.14 directly implies the following decomposition for sequences ~ψn ∈

H0 with uniformly bounded H×L2 norms. In particular, by (5.2.11), the following corollary

holds for all sequences ~ψn ∈ H0 with E(~ψn) ≤ C < 2E(Q).

Corollary 5.2.15. Consider a sequence of data ~ψn ∈ H0 that is uniformly bounded in

H × L2. Then, up to extracting a subsequence, there exists a sequence of linear waves

~ϕ
j
L ∈ H0, (i.e., solutions to (5.1.6)), a sequence of times {tjn} ⊂ R, and a sequence of scales

{λjn} ⊂ (0,∞), such that for ~γkn defined by

ψn,0(r) =
k∑

j=1

ϕ
j
L(−t

j
n/λ

j
n, r/λ

j
n) + γkn,0(r) (5.2.41)

ψn,1(r) =

k∑

j=1

1

λ
j
n

ϕ̇
j
L(−t

j
n/λ

j
n, r/λ

j
n) + γkn,1(r) (5.2.42)

we have, for any j ≤ k, that

(γkn(λ
j
nt
j
n, λ

j
n·), λjnγkn(λjntjn, λjn·))⇀ 0 weakly in H × L2. (5.2.43)

In addition, for any j 6= k we have

λ
j
n

λkn
+
λkn

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λkn
→∞ as n→∞. (5.2.44)
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Moreover, the errors ~γkn vanish asymptotically in the sense that if we let γkn,L(t) ∈ H0 denote

the linear evolution, (i.e., solution to (5.1.6)) of the data ~γkn ∈ H0, we have

lim sup
n→∞

∥∥∥∥
1

r
γkn,L

∥∥∥∥
L∞
t L

4
x∩L3

tL
6
x(R×R4)

→ 0 as k →∞. (5.2.45)

Finally, we have the almost-orthogonality of the H × L2 norms of the decomposition:

‖~ψn‖2H×L2 =
∑

1≤j≤k
‖~ϕjL(−t

j
n/λ

j
n)‖2H×L2 + ‖~γkn‖2H×L2 + on(1) (5.2.46)

as n→∞.

In order to apply the concentration-compactness/rigidity method developed by Kenig

and Merle in [36], [37], we need the following “Pythagorean decomposition” of the nonlinear

energy (5.2.2):

Lemma 5.2.16. Consider a sequence ~ψn ∈ H0 and a decomposition as in Corollary 5.2.15.

Then this Pythagorean decomposition holds for the energy of the sequence:

E(~ψn) =
k∑

j=1

E(~ϕjL(−t
j
n/λ

j
n)) + E(~γkn) + on(1) (5.2.47)

as n→∞.

Proof. By (5.2.46), it suffices to show for each k that

∫ ∞

0

sin2 (ψn)

r
dr =

k∑

j=1

∫ ∞

0

sin2
(
ϕ
j
L(−t

j
n/λ

j
n)
)

r
dr +

∫ ∞

0

sin2
(
γkn

)

r
dr + on(1).

241



We will need the following simple inequality:

∣∣∣sin2(x+ y)− sin2(x)− sin2(y)
∣∣∣ =

∣∣∣∣−2 sin2(x) sin2(y) +
1

2
sin(2x) sin(2y)

∣∣∣∣ (5.2.48)

. |x| |y| .

Since at some point we will need to make use dispersive estimates for the 4d linear wave

equation the argument is clearer if, at this point, we pass back to the 4d formulation. Recall

that this means we set

ψn(r) = run(r)

ϕ
j
L(−t

j
n/λ

j
n, r/λ

j
n) =

r

λ
j
n

V
j
L(−t

j
n/λ

j
n, r/λ

j
n)

γkn(r) = rwkn.

Since we have fixed k, we can, by an approximation argument, assume that all of the profiles

V j(0, ·) are smooth and supported in the same compact set, say B(0, R). We seek to prove

that

∣∣∣∣∣∣∣∣

∫ ∞

0

sin2 (run)

r
dr −

k∑

j=1

∫ ∞

0

sin2
(

r

λ
j
n

V
j
L(−t

j
n/λ

j
n, r/λ

j
n)

)

r
dr −

∫ ∞

0

sin2
(
rwkn

)

r
dr

∣∣∣∣∣∣∣∣

= on(1).

Using the inequality (5.2.48) k−1 times, we can reduce our problem to showing the following
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two estimates:

∫ ∞

0

∣∣∣V jL(−t
j
n/λ

j
n, r/λ

j
n)
∣∣∣

(λ
j
n)

∣∣V iL(−tin/λin, r/λin)
∣∣

(λin)
r dr = on(1) for i 6= j (5.2.49)

∫ ∞

0

∣∣∣V jL(−t
j
n/λ

j
n, r/λ

j
n)
∣∣∣

(λ
j
n)

∣∣∣wkn(r)
∣∣∣ r dr = on(1) for j ≤ k. (5.2.50)

From here the proof proceeds on a case by case basis where the cases are determined by

which pseudo-orthogonality condition is satisfied in (5.2.44).

Case 1: λin ≃ λ
j
n.

In this case we may assume, without loss of generality, that λ
j
n = λin = 1 for all n. By

(5.2.44) we then must have that
∣∣∣tin − tjn

∣∣∣ → ∞ as n → ∞. This means that either
∣∣tin
∣∣ or

∣∣∣tjn
∣∣∣, or both tend to ∞ as n→∞. To prove (5.2.49) we rely on the 〈t〉−3

2 point-wise decay

of free waves in R4. Indeed, we have

∫ ∞

0

∣∣∣V jL(−t
j
n, r)

∣∣∣
∣∣∣V iL(−tin, r)

∣∣∣ r dr

≤




∫ R+

∣∣∣tjn
∣∣∣

0

∣∣∣V jL(−t
j
n, r)

∣∣∣
2
r dr





1
2 (∫ R+|tin|

0

∣∣∣V iL(−tin, r)
∣∣∣
2
r dr

)1
2

.
〈
t
j
n

〉−1/2 〈
tin

〉−1/2
= on(1).

Next we prove (5.2.50). First suppose that
∣∣∣tjn
∣∣∣→∞. Then we have

∫ ∞

0

∣∣∣V jL(−t
j
n, r)

∣∣∣
∣∣∣wkn(r)

∣∣∣ r dr ≤




∫ R+

∣∣∣tjn
∣∣∣

0

∣∣∣V jL(−t
j
n, r)

∣∣∣
2
r dr





1
2

×
(∫ ∞

0

∣∣∣wkn(r)
∣∣∣
2
r dr

)1
2

. ‖wkn‖Ḣ1

〈
t
j
n

〉−1
2
= on(1)
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where the second inequality follows from the point-wise decay of free waves in R
4 and Hardy’s

inequality. Finally consider the case where
∣∣∣tjn
∣∣∣ ≤ C. Then we can assume, after passing

to a subsequence and translating the profile, that t
j
n = 0 for every n. In this case, then we

know that wkn ⇀ 0 weakly in Ḣ1 and hence wkn → 0 strongly in, e.g., L3loc(R
4) as n → ∞.

And we have

∫ ∞

0

∣∣∣V jL(0, r)
∣∣∣
∣∣∣wkn(r)

∣∣∣ r dr ≤
(∫ R

0

∣∣∣V jL(0, r)
∣∣∣
3
2
dr

)2
3
(∫ R

0

∣∣∣wkn(r)
∣∣∣
3
r3 dr

)1
3

≤ C(R)‖wkn‖L3(B(0,R)) = on(1).

Case 2: µ
ij
n =

λin
λjn
→ 0 and

∣∣∣tjn
∣∣∣

λjn
+
|tin|
λin
≤ C as n→∞.

We can assume, by translating the profiles, that tin = t
j
n = 0 for all n. We begin by

establishing (5.2.49).

Changing variables we have

∫ ∞

0

∣∣∣V jL(0, r/λ
j
n)
∣∣∣

(λ
j
n)

∣∣V iL(0, r/λ
i
n)
∣∣

(λin)
r dr =

∫ R

0

∣∣∣V j(0, r)
∣∣∣µijn

∣∣∣V i(0, µijn r)
∣∣∣ r dr

≤
(∫ R

0

∣∣∣V jL(0, r)
∣∣∣
2
r dr

)1
2
(∫ R

0
(µ
ij
n )

2
∣∣∣V iL(0, µ

ij
n r)
∣∣∣
2
r dr

)1
2

≤ C

(∫ Rµ
ij
n

0

∣∣∣V iL(0, r)
∣∣∣
2
r dr

)1
2

= on(1),

where the last line follows from the fact that Rµ
ij
n → 0 as n→∞. Next we prove (5.2.50).
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Again, we change variables to obtain

∫ ∞

0

∣∣∣V jL(−t
j
n/λ

j
n, r/λ

j
n)
∣∣∣

(λ
j
n)

∣∣∣wkn(r)
∣∣∣ r dr =

∫ R

0

∣∣∣V jL(0, r)
∣∣∣λjn

∣∣∣wkn(λ
j
nr)
∣∣∣ r dr

≤
(∫ R

0

∣∣∣V jL(0, r)
∣∣∣
3
2
r dr

)2
3
(∫ R

0
(λ
j
n)

3
∣∣∣wkn(λ

j
nr)
∣∣∣
3
r3 dr

)1
3

= on(1),

where the last line tends to 0 as n → ∞ since (5.2.37) implies that λ
j
nw

k
n(λ

j
n·) → 0 in

L3loc(R
4).

Cases 3: µ
ij
n =

λin
λ
j
n

→ 0 ,

∣∣∣tjn
∣∣∣

λ
j
n

+
|tin|
λin
→∞

This remaining case can be handled by combining the techniques demonstrated in Case 1

and Case 2 using either the point-wise decay of free waves or (5.2.37) when applicable. We

leave the details to the reader.

We will state the remaining results in this section in the 4d setting for simplicity. The

transition back to the 2d setting is straight-forward and is omitted.

Next, we exhibit the existence of a non-linear profile decomposition as in [1]. We

will employ the following notation: For a profile decomposition as in (5.2.35) with pro-

files {V jL} and parameters {tjn, λjn} we will denote by {V j} the non-linear profiles associ-

ated to {V jL(−t
j
n/λ

j
n), V̇

j
L(−t

j
n/λ

j
n)}, i.e., the unique solution to (5.2.8) such that for all

−tjn/λjn ∈ Imax(V
j) we have

lim
n→∞

∥∥∥~V j(−tjn/λjn)− ~V
j
L(−t

j
n/λ

j
n)
∥∥∥
Ḣ1×L2

= 0

The existence of the non-linear profiles follows immediately from the local well-posedness

theory for (5.2.8) developed in [17] in the case that −tjn/λjn → τ
j
∞ ∈ R. If −tjn/λjn → ±∞

then the existence of the nonlinear profile follows from the existence of wave operators for

(5.2.8).
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We will make use of the following result on several occasions.

Proposition 5.2.17. Let ~un ∈ Ḣ1 × L2 be a uniformly bounded sequence with a profile

decomposition as in Theorem 5.2.14. Assume that the nonlinear profiles V j associated to the

linear profiles V
j
L all exist globally and scatter in the sense that

‖V j‖L3
t (R;L

6
x)
<∞.

Let ~un(t) denote the solution of (5.2.8) with initial data ~un. Then, for n large enough,

~un(t, r) exists globally in time and scatters with

lim sup
n→∞

‖un‖L3
t (R;L

6
x)
<∞.

Moreover, the following non-linear profile decomposition holds:

un(t, r) =

k∑

j=1

1

λ
j
n

V j

(
t− tjn
λ
j
n

,
r

λ
j
n

)
+ wkn,L(t, r) + zkn(t, r) (5.2.51)

with wkn,L(t, r) as in (5.2.39) and

lim
k→∞

lim sup
n→∞

(
‖zkn‖L3

tL
6
x
+ ‖~zkn‖L∞

t Ḣ
1×L2

)
= 0. (5.2.52)

The proof of Proposition 5.2.17 is similar to the the proof of [22, Proposition 2.8] and we

give a sketch of the argument below. In the current formulation, the argument is easier than

the one given in [22] since here we make the simplifying assumption that all of the non-linear

profiles exist globally and scatter. We also refer the reader to [53, Proof of Proposition 3.1]

where the essential elements of the argument are carried out in an almost identical setting.

The main ingredient in the proof of Proposition 5.2.17 is the following non-linear pertur-

bation lemma which we will also make use of later as well. For the proof of the perturbation
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lemma we refer the reader to [37, Theorem 2.20], and [53, Lemma 3.3]. In the latter reference

a detailed proof in an almost identical setting is provided which can be applied verbatim

here.

Lemma 5.2.18. [37, Theorem 2.20] [53, Lemma 3.3] There are continuous functions ε0, C0 :

(0,∞) → (0,∞) such that the following holds: Let I ⊂ R be an open interval, (possibly

unbounded), u, v ∈ C0(I; Ḣ1(R4))∩C1(I;L2(R4)) radial functions satisfying for some A > 0

‖~u‖
L∞(I;Ḣ1×L2)

+ ‖~v‖
L∞(I;Ḣ1×L2)

+ ‖v‖L3
t (I;L

6
x)
≤ A

‖eq(u)‖L1
t (I;L

2
x)

+ ‖eq(v)‖L1
t (I;L

2
x)

+ ‖w0‖L3
t (I;L

6
x)
≤ ε ≤ ε0(A)

where eq(u) := �u+u3Z(ru) in the sense of distributions, and ~w0(t) := S(t− t0)(~u−~v)(t0)

with t0 ∈ I arbitrary, but fixed and S denoting the free wave evolution operator in R
1+4.

Then,

‖~u− ~v − ~w0‖L∞
t (I;Ḣ1×L2)

+ ‖u− v‖L3
tL

6
x
≤ C0(A)ε

In particular, ‖u‖L3
t (I;L

6
x)
<∞.

Proof of Proposition 5.2.17. Set

vkn(t, r) =

k∑

j=1

1

λ
j
n

V j

(
t− tjn
λ
j
n

,
r

λ
j
n

)

We would like to apply Lemma 5.2.18 to un and vkn for large n and we need to check that

the conditions of Lemma 5.2.18 are satisfied for these choices. First note that eq(un) = 0.

We claim that ‖eq(vkn)‖L1
tL

2
x
is small for large n. To see this, observe that

eq(vkn) =

k∑

j=1

N
(
V
j
n (t, r)

)
−N




k∑

j=1

V
j
n (t, r)




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where we have used the notation V
j
n (t, r) := 1

λ
j
n

V j
(
t−tjn
λ
j
n

, r
λ
j
n

)
and N(v) = v3Z(rv) as in

(5.2.8). Using the simple inequality

∣∣∣∣
sin(2ru) + sin(2rv)− sin(2r(u+ v))

2r3

∣∣∣∣

=

∣∣∣∣
2 sin(2ru) sin2(rv) + 2 sin(2rv) sin2(ru)

2r3

∣∣∣∣ . u2 |v|+ v2 |u| (5.2.53)

together with the pseudo-orthogonality of the times and scales in (5.2.38) and arguing as in

the proof of Lemma 5.2.16 we obtain ‖eq(vkn)‖L1
tL

2
x
→ 0 as n→∞ for any fixed k. Next it

is essential that

lim sup
n→∞

∥∥∥∥∥∥

k∑

j=1

V
j
n

∥∥∥∥∥∥
L3
tL

6
x

≤ A <∞ (5.2.54)

uniformly in k, which will follow from the small data theory together with (5.2.40). The

point here is that the sum can be split into one over 1 ≤ j ≤ j0 and another over j0 ≤ j ≤ k.

The splitting is performed in terms of the free energy, with j0 being chosen so that

lim sup
n→∞

∑

j0<j≤k
‖V jL(−t

j
n/λ

j
n)‖2Ḣ1×L2 < δ20

where δ0 is chosen so that the small data theory applies. Using again (5.2.38) as well as the

small data scattering theory one now obtains

lim sup
n→∞

∥∥∥∥∥∥

∑

j0<j≤k
V
j
n

∥∥∥∥∥∥

3

L3
tL

6
x

=
∑

j0<j≤k
‖V j‖3

L3
tL

6
x

≤ C lim sup
n→∞




∑

j0<j≤k
‖V jL(−t

j
n/λ

j
n)‖2Ḣ1×L2





3
2

with an absolute constant C. This implies (5.2.54). Now the desired result follows directly
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from Lemma 5.2.18.

In Section 5.5 we will require a few additional results from [18]. We restate these re-

sults here for completeness. First, we note that for a profile decomposition as in Theorem

5.2.14, the Pythagorean decompositions of the free energy remain valid even after a space

localization. In particular we have the following:

Proposition 5.2.19. [18, Corollary 8] Consider a sequence of radial data ~un ∈ Ḣ1×L2(R4)

such that ‖un‖Ḣ1×L2 ≤ C, and a profile decomposition of this sequence as in Theorem 5.2.14.

Let {rn} ⊂ (0,∞) be any sequence. Then we have

‖~un‖2Ḣ1×L2(r≥rn) =
∑

1≤j≤k
‖~V jL(−t

j
n/λ

j
n)‖2

Ḣ1×L2(r≥rn/λjn)
+ ‖~wkn‖2Ḣ1×L2(r≥rn) + on(1)

as n→∞.

Next, we will need a fact about solutions to the free 4d radial wave equation that is also

established in [18]. The following result is the analog of [22, Claim 2.11] adapted to R4. In

[22] it is proved in odd dimensions only.

Lemma 5.2.20. [18, Lemma 11] [22, Claim 2.11] Let ~wn(0) = (wn,0, wn,1) be a uniformly

bounded sequence in Ḣ1×L2(R4) and let ~wn(t) ∈ Ḣ1×L2(R4) be the corresponding sequence

of radial 4d free waves. Suppose that

‖wn‖L3
tL

6
x
→ 0

as n→∞. Let χ ∈ C∞0 (R4) be radial so that χ ≡ 1 on |x| ≤ 1 and suppχ ⊂ {|x| ≤ 2}. Let

{λn} ⊂ (0,∞) and consider the truncated data

~vn(0) := ϕ(r/λn)~wn(0),
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where either ϕ = χ or ϕ = 1 − χ. Let ~vn(t) be the corresponding sequence of free waves.

Then

‖vn‖L3
tL

6
x
→ 0 as n→∞.

5.3 Outline of the Proof of Theorem 5.1.1

The proof of Theorem 5.1.1 follows from the concentration-compactness/rigidity method

developed by the Kenig and Merle in [36], [37]. This method provides a framework for

establishing global existence and scattering results for a large class of nonlinear dispersive

equations. We begin with a brief outline of the argument adapted to our current situation.

For data ~ψ(0) ∈ H0 denote by ~ψ(t) the nonlinear evolution to (5.1.1) associated to ~ψ(0).

Define the set

S := {~ψ(0) ∈ H0 | ~ψ(t) exists globally and scatters to zero as t→ ±∞} (5.3.1)

Our goal is then to prove that

{~ψ(0) ∈ H0 | E(~ψ) < 2E(Q)} ⊂ S

This will be accomplished by establishing the following three steps. First, we recall the

following global existence and scattering result proved in [17], for data in H0 with energy

≤ E(Q).

Theorem 5.3.1. [17, Theorem 1 and Corollary 1] There exists a small δ > 0 with the

following property. Let ~ψ(0) = (ψ0, ψ1) ∈ H0 be such that E(~ψ) < E(Q) + δ. Then, there

exists a unique global evolution ~ψ ∈ C0(R;H0) to (5.1.1) which scatters to zero in the sense

of (5.1.5).
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This shows that S is not empty. We remark that Theorem 5.3.1 gives more than what

is needed for the rest of the argument. A small data global existence and scattering result

such as [17, Theorem 2] would suffice to show that S is not empty. In fact, the proof of

Theorem 5.1.1, and in particular Theorem 4.1 provide an independent alternative to the

proof of scattering below E(Q) + δ given in [17].

Next, we argue by contradiction. Assume that Thereom 5.1.1 fails and suppose that

E(Q) < E∗ < 2E(Q) is the minimal energy level at which a failure to the conclusions of

Theorem 5.1.1 occurs. We then combine the concentration compactness decomposition given

in Corollary 5.2.15, the nonlinear perturbation theory in Lemma 5.2.18, and the nonlinear

profile decomposition in Proposition 5.2.17 to extract a so-called critical element, i.e., a

nonzero solution ~ψ∗ ∈ C0(Imax(~ψ∗);H0) to (5.1.1) whose trajectory in H0 is pre-compact

up to certain time-dependent scaling factors arising due to the scaling symmetry of the

equation. Here Imax(~ψ) is the maximal interval of existence of ~ψ∗. To be specific, we can

deduce the following proposition:

Proposition 5.3.2. [17, Proposition 2 and Proposition 3] Suppose that Theorem 1 fails

and let E∗ be defined as above. Then, there exists a nonzero solution ~ψ∗(t) ∈ H0 to (5.1.1),

(referred to as a the critical element), defined on its maximal interval of existence Imax(~ψ∗) ∋

0, with

E(~ψ∗) = E∗ < 2E(Q)

Moreover, there exists A0 > 0, and a continuous function λ : Imax → [A0,∞) such that the

set

K :=

{(
ψ∗
(
t,

r

λ(t)

)
,

1

λ(t)
ψ̇∗
(
t,

r

λ(t)

)) ∣∣∣ t ∈ Imax

}
(5.3.2)

is pre-compact in H × L2.

Remark 18. As noted above, the Cauchy problem (5.1.1), for data ~ψ(0) ∈ V (α) with α ≤
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2E(Q) is equivalent to the Cauchy problem for the 4d nonlinear radial wave equation, (5.2.8),

via the identification ru = ψ. Hence, it suffices to carry out the small data global existence

and scattering argument, as well as the concentration compactness decomposition and the

extraction of a critical element on the the level of the 4d equation (5.2.8) for u. We remark

that in this setting, scattering in the sense of (5.1.5) is equivalent to ‖u‖X (R1+4) <∞ where

X is a suitably chosen Strichartz norm. For example, X = L3tL
6
x will do.

Remark 19. In the proof of Theorem 5.1.1, the requirement that E(~ψ(0)) < 2E(Q) arises

in the concentration compactness procedure. Indeed, in order to ensure that the critical

element ~ψ∗ described in Proposition 5.3.2 lies in H0 one needs to require that any sequence

of data {~ψn(0)} with energies converging from below to the minimal energy level E∗, also

have uniformly bounded H × L2 norms. This is only guaranteed when E∗ < 2E(Q) by

Lemma 5.2.1. In this case, one obtains a sequence of data ~un(0), via the identification

run = ψn, that is uniformly bounded in Ḣ1 × L2(R4) and on which one is free to perform

the concentration compactness decomposition as in [1] and extract a critical element ~u∗ as

in [37], [17]. We can then define ~ψ∗ := r~u∗.

Remark 20. For the proof that the function λ(t) described in Proposition 5.3.2 can be taken

to be continuous, we refer the reader to [37, Lemma 4.6] and [36, Remark 5.4]. The fact that

we can assume that λ is bounded from below follows verbatim from the arguments given in

[22, Section 6, Step 3]. See also, [37, Proof of Theorem 7.1] and [36, Proof of Theorem 5.1].

The final step, referred to as the rigidity argument, consists of showing any solution

~ψ(t) ∈ H0 with the aforementioned compactness properties must be identically zero, which

provides the contradiction. This part of the concentration compactness/rigidity method is

what allows us to extend the result in [17] to all energies below 2E(Q) and we will thus carry

out the proof in detail in the next section.
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5.3.1 Sharpness of Theorem 5.1.1 in H0

Before we begin the rigidity argument, we first show that Theorem 5.1.1 is indeed sharp in

H0 by demonstrating the following claim: for all δ > 0 there exist data ~ψ(0) ∈ H0 with

E(ψ) ≤ 2E(Q) + δ, such that the corresponding wave map evolution, ψ(t), blows up in finite

time. This follows easily from the blow-up constructions of [50] or [62].

Fix δ0 > 0. By [50] or [62] we can choose data ~u(0) ∈ H1 such that

E(~u(0)) ≤ E(Q) + δ, δ ≪ δ0

such that the corresponding wave map evolution ~u(t) ∈ H1 blows up at time t = 1. In

other words, the energy of ~u(t) concentrates in the backwards light cone, K(1, 0) := {(t, r) ∈

[0, 1]× [0, 1] | r ≤ 1− t}, emanating from the point (1, 0) ∈ R× [0,∞], i.e.,

lim
tր1
E1−t0 (~u(t)) ≥ E(Q)

where Eba(u, v) =
∫ b
a (u

2
r + v2 +

sin2(u)
r2

) r dr. Now define ~ψ(0) ∈ H0 as follows:

ψ(0, r) =





u(0, r) if r ≤ 2

π −Q(λr) if r ≥ 2

(5.3.3)

where λ > 0 is chosen so that π − Q(2λ) = u(0, 2). We note that the existence of such a λ

follows form the fact that we can ensure that u(0, r) > 0 for r > 1. To see this, observe that

since ~u(t) blows up at time t = 1 and thus must concentrate at least E(Q) inside the light

cone we can deduce by the monotonicity of the energy that E10 (~u(0)) ≥ E(Q). Now choose

δ < E(Q). If we have u(0, r) ≤ 0 for any r > 1 we would need at least E∞r (u(0), 0) ≥ E(Q)

to ensure that u(0,∞) = π. This follows from the minimality of E(Q) in H1. However

E∞r (u(0), 0) ≤ δ < E(Q).
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Now observe that

E(~ψ(0)) = E20 (~u(0)) + E∞2 (π −Q) ≤ E(~u) + E(Q) ≤ 2E(Q) + δ. (5.3.4)

Let ~ψ(t) denote the wave map evolution of the data ~ψ(0). By the finite speed of propagation,

we have that ~ψ(t, r) = ~u(t, r) for all (t, r) ∈ K(0, 1) and hence

lim
tր1
E1−t0 (~ψ(t)) = lim

tր1
E1−t0 (~u(t)) ≥ E(Q) (5.3.5)

which means that ~ψ(t) blows up at t = 1 as desired. Note that if one wishes to construct

blow-up data in H0 that maintains the smoothness of u(0), one can simply smooth out

~ψ(0, r) in a small neighborhood of the point r = 2 using an arbitrarily small amount of

energy.

We again remark that the questions of determining the possible dynamics at the thresh-

old, E(~ψ) = 2E(Q), and above it, E(~ψ) > 2E(Q), are not addressed here and remain open.

5.4 Rigidity

In this section we prove Theorem 5.1.2 and complete the proof of Theorem 5.1.1. We begin

by establishing a rigidity theory in H0 which will allow us to deduce Theorem 5.1.1. We then

use the conclusions of Theorem 5.1.1 together with the proof of Theorem 5.4.1 to establish

Theorem 5.1.2.

Theorem 5.4.1 (Rigidity in H0). Let ~ψ(t) ∈ H0 be a solution to (5.1.1) and let Imax(ψ) =

(T−(ψ), T+(ψ)) be the maximal interval of existence. Suppose that there exist A0 > 0 and a

continuous function λ : Imax → [A0,∞) such that the set

K :=

{(
ψ

(
t,

r

λ(t)

)
,

1

λ(t)
ψ̇

(
t,

r

λ(t)

)) ∣∣∣ t ∈ Imax
}

(5.4.1)
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is pre-compact in H × L2. Then, Imax = R and ψ ≡ 0.

We begin by recalling the following virial identity:

Lemma 5.4.2. Let χR(r) = χ(r/R) ∈ C∞0 (R) satisfy χ(r) = 1 on [−1, 1] with supp(χ) ⊂

[−2, 2]. Suppose that ~ψ is a solution to (5.1.1) on some interval I ∋ 0. Then, for all T ∈ I

we have

〈
χRψ̇ | rψr

〉 ∣∣∣
T

0
= −

∫ T

0

∫ ∞

0
ψ̇2 r dr dt+

∫ T

0
O(E∞R (~ψ(t))) dt. (5.4.2)

Proof. Since ~ψ is a solution to (5.1.1) we have

d

dt

〈
χRψ̇ | rψr

〉
=
〈
χRψ̈ | rψr

〉
+
〈
χRψ̇ | rψ̇r

〉

=

〈
χR(ψrr +

1

r
ψr −

sin(2ψ)

2r2
)
∣∣∣ rψr

〉
+
〈
χRψ̇ | rψ̇r

〉

=

∫ ∞

0

1

2
∂r(ψ

2
r )χR r

2 dr +

∫ ∞

0
ψ2rχR r dr

−
∫ ∞

0

1

2
∂r(sin

2(ψ))χR dr +

∫ ∞

0

1

2
∂r(ψ̇

2)χR r
2 dr

= −
∫ ∞

0
ψ̇2r dr +

∫ ∞

0
(1− χR)ψ̇2 r dr

− 1

2

∫ ∞

0

(
ψ̇2 + ψ2r −

sin2(ψ)

r2

)
χ′R r

2 dr.

Observe that

∣∣∣∣
∫ ∞

0
(1− χR)ψ̇2 r dr

∣∣∣∣ . E∞R (~ψ).

Finally, noting that χ′R(r) =
1
Rχ
′(r/R), we obtain

∣∣∣∣
∫ ∞

0

1

2

(
ψ̇2 + ψ2r −

sin2(ψ)

r2

)
χ′R r

2 dr

∣∣∣∣

.

∫ 2R

R

(
ψ̇2 + ψ2r +

sin2(ψ)

r2

)
r

R
χ′
( r
R

)
r dr . E∞R (~ψ).
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Hence we can conclude that

d

dt

〈
χRψ̇ | rψr

〉
= −

∫ ∞

0
ψ̇2 r dr +O(E∞R (~ψ(t))).

An integration from 0 to T proves the lemma.

With the virial identity (5.4.2), we can begin the proof of Theorem 5.4.1. This will be

done in several steps and is inspired by the arguments in [22, Proof of Theorem 2]. To begin,

we recall from [37] that any wave map with a pre-compact trajectory in H×L2 as in (5.4.1)

that blows up in finite time is supported on the backwards light cone.

Lemma 5.4.3. [37, Lemma 4.7 and Lemma 4.8] Let ~ψ(t) ∈ H0 be a solution to (5.1.1)

such that Imax(~ψ) is a finite interval. Without loss of generality we can assume T+(~ψ) = 1.

Suppose there exists a continuous function λ : Imax → (0,∞) so that K, as defined in (5.4.1),

is pre-compact in H × L2. Then

0 <
C0(K)

1− t ≤ λ(t). (5.4.3)

And, for every t ∈ [0, 1) we have

supp(~ψ(t)) ∈ [0, 1− t). (5.4.4)

We can now begin the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1.

Step 1:

First we show that Imax(ψ) = R. Assume that T+(~ψ) <∞ and we proceed by contradiction.

Without loss of generality, we may assume that T+(~ψ) = 1. By Lemma 5.4.3, we can deduce

that 0 <
C0(K)
1−t ≤ λ(t) and supp(~ψ(t)) ∈ [0, 1 − t). In addition, we know, by [76] or an
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argument in [71, Lemma 2.2], that self similar blow-up for 2d wave maps is ruled out. This

implies that there exists a sequence {τn} ⊂ (0, 1) with τn → 1 such that

1

λ(τn)(1− τn)
< 1 as n→∞. (5.4.5)

Hence, we can extract a further subsequence {tn} → 1 and apply Corollary 5.2.9 with

σ = 1
λ(tn)

to obtain, for every n, the bound

λ(tn)

∫ tn+
1

λ(tn)

tn

∫ ∞

0
ψ̇2(t, r) r dr dt ≤ 1

n
. (5.4.6)

Note that above we have used the fact that supp(~ψ(t)) ∈ [0, 1− t). Next, with tn as above,

define a sequence in H0 by setting

~ψn(0) = (ψ0n, ψ
1
n) :=

(
ψ

(
tn,

r

λ(tn)

)
,

1

λ(tn)
ψ̇

(
tn,

r

λ(tn)

))
.

The nonlinear evolutions associated to our sequence

~ψn(t) :=

(
ψ

(
tn +

t

λ(tn)
,

r

λ(tn)

)
,

1

λ(tn)
ψ̇

(
tn +

t

λ(tn)
,

r

λ(tn)

))

are then solutions to (5.1.1) with E(~ψn) = E(~ψ). Observe that

∫ 1

0

∫ ∞

0
ψ̇2n(t, r) r dr dt→ 0 as n→∞. (5.4.7)

Indeed, by (5.4.6) we have that

∫ 1

0

∫ ∞

0
ψ̇2n r dr dt = λ(tn)

∫ tn+
1

λ(tn)

tn

∫ ∞

0
ψ̇2(t, r) r dr dt→ 0 as n→∞.

We now proceed as follows. By the compactness of K we can find ~ψ∞(0) = (ψ0∞, ψ1∞) ∈ H0
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and a subsequence of { ~ψn(0)} such that we have strong convergence

~ψn(0)→ ~ψ∞(0) as n→∞ (5.4.8)

in H × L2. Note that this also implies strong convergence in the energy topology, i.e.,

~ψn(0)→ ~ψ∞(0) in H0. In particular, we have

E(~ψ∞(0)) = E(~ψn(0)) = E(~ψ). (5.4.9)

Now, let ~ψ∞(t) ∈ H0 denote the forward solution to (5.1.1) with initial data ~ψ∞(0) on its

maximal interval of existence [0, T+(ψ∞)). Choose T0 ∈ (0, T+(ψ∞)) with T0 ≤ 1.

Using Lemma 5.2.18 for the equivalent 4-dimensional wave equation (5.2.8), the strong

convergence of ~ψn(0) to ~ψ∞(0) in H × L2 implies that for large n, the nonlinear evolutions

~ψn(t) and ~ψ∞(t) remain uniformly close in H × L2 for t ∈ [0, T0]. Indeed, we have

sup
t∈[0,T0]

‖~ψn(t)− ~ψ∞(t)‖H×L2 = on(1). (5.4.10)

Hence, combining (5.4.7) with (5.4.10) we have

0←
∫ 1

0

∫ ∞

0
ψ̇2n(t, r) r dr dt ≥

∫ T0

0

∫ ∞

0
ψ̇2n(t, r) r dr dt

=

∫ T0

0

∫ ∞

0
ψ̇2∞(t, r) r dr dt+ on(1).

Therefore we have ψ̇∞ ≡ 0 on [0, T0]. Since ψ = 0 is the unique harmonic map in H0 we

necessarily have that ψ∞ ≡ 0. But, by (5.4.9) we then have 0 = E(~ψ∞) = E(~ψn) = E(~ψ).

Hence ~ψ ≡ 0, which contradicts our assumption that ψ 6= 0 blows up at time t = 1.

Step 2: By Step 1, we have reduced the proof of Theorem 5.4.1 to the case Imax = R, and

hence λ : R→ [A0,∞). By time symmetry we can, without loss of generality, work with
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nonnegative times only and thus consider λ(t) : [0,∞)→ [A0,∞).

First note that since K is pre-compact in H × L2 and since λ(t) ≥ A0 we have that for

all ε > 0 there exists an R = R(ε) such that for every t ∈ [0,∞)

E∞R(ε)(~ψ(t)) < ε. (5.4.11)

Also, observe that for all T > 0 we have

∣∣∣∣
〈
χRψ̇ | rψr

〉 ∣∣∣
T

0

∣∣∣∣ . RE(~ψ). (5.4.12)

Now, fix ε > 0 and fix R large enough so that supt≥0 E∞R (~ψ) < ε. Then, Lemma 5.4.2

together with (5.4.12) implies that for all T ∈ [0,∞) we have

1

T

∫ T

0

∫ ∞

0
ψ̇2 r dr dt .

R

T
E(~ψ) + ε.

This shows that

1

T

∫ T

0

∫ ∞

0
ψ̇2 r dr dt→ 0 as T →∞. (5.4.13)

Next, we claim that there exists a sequence {tn} with tn →∞ such that

lim
n→∞λ(tn)

∫ tn+
1

λ(tn)

tn

(∫ ∞

0
ψ̇2 r dr

)
dt = 0. (5.4.14)

To see this, we begin by defining a sequence τn as follows. Set

τ0 = 0, τn+1 := τn +
1

λ(τn)
=

n∑

k=0

1

λ(τk)
.

First we establish that τn →∞ as n→∞. If not, then up to a subsequence we would have
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τn → τ∞ <∞. This would imply that

τ∞ =

∞∑

k=0

1

λ(τk)
<∞

which means that lim
k→∞

1

λ(τk)
= 0. But this is impossible since λ(τk)→ λ(τ∞) <∞ by the

continuity of λ.

Now, suppose that (5.4.14) fails for all subsequences {tn} ⊂ {τn}. Then there exists

ε > 0 such that for all k,

∫ τk+1

τk

(∫ ∞

0
ψ̇2 r dr

)
dt ≥ ε

1

λ(τk)
.

Summing both sides above from 1 to n gives

∫ τn+1

0

(∫ ∞

0
ψ̇2 r dr

)
dt ≥ ε

n∑

k=1

1

λ(τk)
= ετn+1

which contradicts (5.4.13). Hence there exists a sequence {tn} such that (5.4.14) holds.

Moreover, since λ(t) ≥ A0 > 0 for all t ≥ 0 we can extract a further subsequence, still

denoted by {tn}, such that (5.4.14) holds and all the intervals [tn, tn + 1
λ(tn)

] are disjoint.

Next, with tn as above, define a sequence in H0 by setting

~ψn(0) = (ψ0n, ψ
1
n) :=

(
ψ

(
tn,

r

λ(tn)

)
,

1

λ(tn)
ψ̇

(
tn,

r

λ(tn)

))
.

The nonlinear evolutions associated to our sequence

~ψn(t) :=

(
ψ

(
tn +

t

λ(tn)
,

r

λ(tn)

)
,

1

λ(tn)
ψ̇

(
tn +

t

λ(tn)
,

r

λ(tn)

))
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are then global solutions to (5.1.1) with E(~ψn) = E(~ψ). Observe that

∫ 1

0

∫ ∞

0
ψ̇2n(t, r) r dr dt→ 0 as n→∞. (5.4.15)

Indeed, by (5.4.14) we have that

∫ 1

0

∫ ∞

0
ψ̇2n r dr dt = λ(tn)

∫ tn+
1

λ(tn)

tn

(∫ ∞

0
ψ̇2 r dr

)
dt→ 0 as n→∞.

We now proceed as follows. By the pre-compactness of K we can find ~ψ∞(0) = (ψ0∞, ψ1∞) ∈

H0 and a subsequence of { ~ψn(0)} such that we have strong convergence

~ψn(0)→ ~ψ∞(0) as n→∞ (5.4.16)

in H × L2. Note that this also implies strong convergence in the energy topology, i.e.,

~ψn(0)→ ~ψ∞(0) in H0. In particular, we have

E(~ψ∞(0)) = E(~ψn(0)) = E(~ψ). (5.4.17)

Now, let ~ψ∞(t) ∈ H0 denote the forward solution to (5.1.1) with initial data ~ψ∞(0) on

its maximal interval of existence [0, T+(ψ∞)). Choose T0 ∈ (0, T+(ψ∞)) with T0 ≤ 1.

Using Lemma 5.2.18 for the 4-dimensional wave equation (5.2.8), the strong convergence

of ~ψn(0) to ~ψ∞(0) in H × L2 implies that for large n the nonlinear evolutions ~ψn(t) and

~ψ∞(t) remain uniformly close in H × L2 in t ∈ [0, T0]. Indeed, we have

sup
t∈[0,T0]

‖~ψn(t)− ~ψ∞(t)‖H×L2 = on(1). (5.4.18)
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Hence, combining (5.4.15) with (5.4.18) we have

0←
∫ 1

0

∫ ∞

0
ψ̇2n(t, r) r dr dt ≥

∫ T0

0

∫ ∞

0
ψ̇2n(t, r) r dr dt

=

∫ T0

0

∫ ∞

0
ψ̇2∞(t, r) r dr dt+ on(1).

Therefore we have ψ̇∞ ≡ 0 on [0, T0]. Since ψ = 0 is the unique harmonic map in H0 we

necessarily have that ψ∞ ≡ 0. But, by (5.4.17) we then have 0 = E(ψ∞, 0) = E(~ψn) = E(~ψ).

Hence ~ψ ≡ 0 as desired.

We can now complete the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. Suppose that Theorem 5.1.1 fails. Then by Proposition 5.3.2 there

would exist a nonzero critical element ~ψ∗ that satisfies the assumptions of Theorem 5.4.1.

But by Theorem 5.4.1, ~ψ∗ ≡ 0, which is a contradiction.

To conclude, we prove Theorem 5.1.2.

Proof of Theorem 5.1.2.

Step 1: First we show that Imax(~U) = R. We argue by contradiction. Assume that

T+(~U) <∞. Without loss of generality, we may assume that T+(~U) = 1.

Applying the exact same argument as in Step 1 of the proof of Theorem 5.4.1 up to (5.4.7)

we can construct a sequence of solutions ~Un(t) ∈ Ḣ1 × L2(R2;S2) to (5.1.1) such that

~Un(0) = (U0
n, U

1
n) :=

(
U

(
tn,

r

λ(tn)
, ω

)
,

1

λ(tn)
∂tU

(
tn,

r

λ(tn)
, ω

))

with E(~Un) = E(~U) and

∫ 1

0

∫

R2
∂tU

2
n(t) dx dt→ 0 as n→∞. (5.4.19)
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From this we obtain the following conclusions:

(i) Extracting a subsequence we have Un ⇀ U∞ weakly in Ḣ1
loc([0, 1]×R2;S2) and hence

~U∞(t) is a weak solution to (5.1.1) on [0, 1].

(ii) By the pre-compactness of K̃ we can, in fact, ensure that ~Un(0)→ ~U∞(0) strongly in

Ḣ1 × L2(R2;S2). This implies that

E(~U∞) = E(~Un) = E(~U) (5.4.20)

(iii) By (5.4.19) we can deduce that U̇∞ ≡ 0 on [0, 1].

Putting this all together, we have a time independent weak solution ~U∞ ∈ H to (5.1.1)

for t ∈ [0, 1]. By Hélein’s Theorem [32, Theorem 1] we know that U∞ is, in fact, harmonic.

Since U = 0 and U = (±Q, ω) are the unique harmonic maps up to scaling in H we

necessarily have that either U∞ = 0 or ~U∞(r, ω) = (Q(λ̃·), ω) for some λ̃ > 0. Hence, by

(5.4.20), we can deduce that either E(~U) = 0 or E(~U) = E(Q, 0). The former case implies

that U ≡ 0. If the latter case occurs, then U(t) can either be an element of H0, H1, or

of H−1 since all the higher topological classes, Hn for |n| > 1, require more energy. If

U(t) ∈ H0 then it is global in time and scatters by Theorem 5.1.1. If U(t) ∈ H1 or H−1
then we have U(t, r, ω) = (±Q(λ̃r), ω) for some λ̃ > 0 since (Q, 0), respectively (−Q, 0),

uniquely minimizes the the energy in H1, respectively H−1. In either case, this provides a

contradiction to our assumption that Imax 6= R.

Step 2:

Again we apply the exact same argument given in Step 2 of the proof of Theorem 5.4.1

and we construct a sequence of solutions ~Un(t) ∈ Ḣ1 × L2(R2;S2) to (5.1.1) such that

~Un(0) = (U0
n, U

1
n) :=

(
U

(
tn,

r

λ(tn)
, ω

)
,

1

λ(tn)
∂tU

(
tn,

r

λ(tn)
, ω

))
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with E(~Un) = E(~U) and

∫ 1

0

∫

R2
∂tU

2
n(t) dx dt→ 0 as n→∞. (5.4.21)

We thus obtain the following conclusions:

(i) Extracting a subsequence we have Un ⇀ U∞ weakly in Ḣ1
loc([0, 1]×R2;S2) and hence

~U∞(t) is a weak solution to (5.1.1) on [0, 1].

(ii) By the pre-compactness of K̃ we can extract a further subsequence with ~Un(0) →
~U∞(0) strongly in Ḣ1 × L2(R2;S2). This implies that

E(~U∞) = E(~Un) = E(~U) (5.4.22)

(iii) By (5.4.21) we can deduce that U̇∞ ≡ 0 on [0, 1].

Putting this all together, we have a time independent weak solution ~U∞ ∈ H to (5.1.1) for

t ∈ [0, 1]. By Hélein’s Theorem [32, Theorem 1] we know that U∞ is, in fact, harmonic. Since

U = 0 and U = (±Q, ω) are the unique harmonic maps up to scaling in H we necessarily

have that either U∞ = 0 or ~U∞(r, ω) = (±Q(λ̃·), ω) for some λ̃ > 0. Hence by (5.4.22) we

can deduce that either E(~U) = 0 or E(~U) = E(Q, 0). The former case implies that U ≡ 0.

Arguing as in the conclusion to Step 1, the latter case implies that either U(t) ∈ H0 or

U(t) ∈ H±1. If U(t) ∈ H±1, then U(t, r, ω) = (±Q(λ̃r), ω) for some λ̃ > 0. If ~U(t) ∈ H0

with E(~U) = E(Q), then Theorem 5.1.1 shows that ~U(t) is global in time and scatters to 0

as t→∞ in Ḣ1×L2(R2;S2) in the sense that the energy of ~U(t) goes to 0 as t→∞ on any

fixed but compact set V ⊂ R2. Finally, we observe that the pre-compactness of K̃ renders

such a scattering result impossible.

We thus conclude that either U ≡ 0 or U(t, r, ω) = (±Q(λ̃r), ω) for some λ̃ > 0 proving

Theorem 5.1.2.
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5.5 Universality of the blow-up profile for degree one wave maps

with energy below 3E(Q)

In this section we prove Theorem 5.1.3. We start by first deducing the conclusions of Theo-

rem 5.1.3 along a sequence of times. To be specific, we establish the following proposition:

Proposition 5.5.1. Let ~ψ(t) ∈ H1 be a solution to (5.1.1) blowing up at time t = 1 with

E(~ψ) = E(Q) + η < 3E(Q)

Then there exists a sequence of times tn → 1, a sequence of scales λn = o(1 − tn), a map

~ϕ = (ϕ0, ϕ1) ∈ H0, and a decomposition

(ψ(tn), ψ̇(tn)) = (ϕ0, ϕ1) +

(
Q

( ·
λn

)
, 0

)
+ ~ε(tn) (5.5.1)

such that ~ε(tn) ∈ H0 and ~ε(tn)→ 0 in H × L2 as n→∞.

Most of this section will be devoted to the proof of Proposition 5.5.1. We will proceed in

several steps, the first being the extraction of the radiation term.

5.5.1 Extraction of the radiation term

In this subsection we construct what we will call the radiation term, ~ϕ = (ϕ0, ϕ1), in the

decomposition (5.5.1).

To begin, let t̄n → 1 and rn ∈ (0, 1− t̄n] be chosen as in Corollary 5.2.13. We make the

265



rn r =∞

π

Figure 5.1: The solid line represents the graph of the function φ0n(·) for fixed n, defined in
(5.5.2). The dotted line is the piece of the function ψ(t̄n, ·) that is chopped at r = rn in

order to linearly connect to π, which ensures that ~φn ∈ H1,1.

following definition:

φ0n(r) =






π − π−ψ(t̄n,rn)
rn

r if 0 ≤ r ≤ rn

ψ(t̄n, r) if rn ≤ r <∞
(5.5.2)

φ1n(r) =





0 if 0 ≤ r ≤ rn

ψ̇(t̄n, r) if rn ≤ r <∞
(5.5.3)

We claim that ~φn := (φ0n, φ
1
n) forms a bounded sequence in the energy space H–in fact, the

sequence is in H1,1 which is defined in (5.1.3). To see this we start with the claim that

E∞rn (~φn) = E
∞
rn (

~ψ(t̄n)) ≤ η + on(1). (5.5.4)

Indeed, since ψ(t̄n, rn) → π we have G(ψ(t̄n, rn)) → 2 = 1
2E(Q) as n → ∞. Therefore, by

(5.2.4) have

Ern0 (ψ(t̄n), 0) ≥ 2G(ψ(t̄n, rn)) ≥ E(Q)− on(1)

for large n which proves (5.5.4) since E∞rn (~ψ(t̄n)) = E∞0 (~ψ(t̄n))− Ern0 (~ψ(t̄n)).
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We can also directly compute Ern0 (φ0n, 0). Indeed,

Ern0 (φ0n, 0) =

∫ rn

0

(
π − ψ(t̄n, rn)

rn

)2

r dr +

∫ rn

0

sin2
(
π−ψ(t̄n,rn)

rn
r
)

r
dr

≤ C |π − ψ(t̄n, rn)|2 → 0 as n→∞.

Hence E(~φn) ≤ η+on(1). This means that for large enough n we have the uniform estimates

E(~φn) ≤ C < 2E(Q). Therefore, by Theorem 5.1.1, (which holds with exactly the same

statement in H1,1 as in H0 = H0,0), we have that the wave map evolution ~φn(t) ∈ H1,1 with

initial data ~φn is global in time and scatters to π as t→ ±∞. We define ~φ = (φ0, φ1) ∈ H1,1

by

φ0(r) :=





π if r = 0

φn(1− t̄n, r) if r > 2(1− t̄n)
(5.5.5)

φ1(r) :=





0 if r = 0

φ̇n(1− t̄n, r) if r > 2(1− t̄n)
(5.5.6)

We need to check first that ~φ is well-defined. First recall that by definition

~φn(r) = ~ψ(t̄n, r) ∀r ≥ 1− t̄n

since rn ≤ 1− t̄n. Using the finite speed of propagation of the wave map flow, see e.g., [68],

we can then deduce that for all t ∈ [0, 1) we have

~φn(t− t̄n, r) = ~ψ(t, r) ∀ r ≥ 1− t̄n + |t− t̄n|
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Now let m > n and thus t̄m > t̄n. The above implies that

~φn(t̄m − t̄n, r) = ~ψ(t̄m, r) = ~φn(r) ∀ r ≥ 1− t̄n + |t̄m − t̄n|

Therefore, using the finite speed of propagation again we can conclude that

~φn(1− t̄n, r) = ~φm(1− t̄m, r) ∀ r > 2(1− t̄n)

proving that ~φ is well-defined. Next we claim that

E(~φ) ≤ η (5.5.7)

Indeed, observe that by monotonicity of the energy on light cones, see e.g. [68], we have

E∞2(1−t̄n)(~φ) = E
∞
2(1−t̄n)(

~φn(1− t̄n)) ≤ E∞1−t̄n(~φn(0)) ≤ E(~φn(0)) ≤ η + on(1)

and then (5.5.7) follows by taking n→∞ above. Now, let ~φ(t) ∈ H1,1 denote the wave map

evolution of ~φ. Since ~φ ∈ H1,1 and E(~φ) ≤ η < 2E(Q) we can deduce by Theorem 5.1.1 that

~φ(t) is global in time and scatters as t→ ±∞. Our final observation regarding φ(t) is that

for all t ∈ [0, 1) we have

~φ(t, r) = ~ψ(t, r) ∀ r > 1− t

This follows immediately from the definition of ~φ and the finite speed of propagation. To be

specific, fix t0 ∈ [0, 1) and r0 > 1 − t. Since t̄n → 1 we can choose n large enough so that

r0 > 2(1− t̄n) + 1− t0. Then observe that by finite speed of propagation and the fact that
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~φ(r) = ~φn(1− t̄n, r) for all r > 2(1− t̄n) we have

~φ(t0, r) = φn(t0 − t̄n, r) = ~ψ(t0, r) ∀ r > r0 > 2(1− t̄n) + 1− t0

and in particular for r = r0.

Finally, we define our radiation term ~ϕ = (ϕ0, ϕ1) ∈ H0 by setting

ϕ0(r) := φ0 − π (5.5.8)

ϕ1(r) := φ1. (5.5.9)

We denote by ~ϕ(t) ∈ H0 the global wave map evolution of ~ϕ. We gather the results estab-

lished above in the following lemma:

Lemma 5.5.2. Let ~ϕ be defined as in (5.5.8), (5.5.9). Then, ϕ ∈ H0 and E(~ϕ) ≤ η < 2E(Q).

Denote by ~ϕ(t) the wave map evolution of ~ϕ. Then ~ϕ(t) ∈ H0 is global in time and scatters

to zero as t→ ±∞ and we have

~ϕ(t, r) + π = ~ψ(t, r) ∀ (t, r) ∈ {(t, r) | t ∈ [0, 1), r ∈ (1− t,∞)} (5.5.10)

Now define

~a(t, r) := ~ψ(t, r)− ~ϕ(t, r). (5.5.11)

We use Lemma 5.5.2 to show that ~a(t) has the following properties:

Lemma 5.5.3. Let ~a(t) be defined as in (5.5.11). Then a(t) ∈ H1 for all t ∈ [0, 1) and

supp(ar(t), ȧ(t)) ∈ [0, 1− t). (5.5.12)
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Moreover we have

lim
t→1
E(~a(t)) = E(~ψ)− E(~ϕ). (5.5.13)

Proof. First observe that (5.5.12) follows immediately from (5.5.10). Next we prove (5.5.13).

First observe since ~ϕ(t) ∈ H0 is a global wave map with E(~ϕ) < 2E(Q) we have

sup
t∈[0,1]

‖~ϕ(t)‖H×L2(r≤δ) → 0 as δ → 0,

which implies in particular that

‖~ϕ(t)‖H×L2(r≤1−t) → 0 (5.5.14)

as t→ 1. Next we see that

E(~a(t)) =
∫ 1−t

0

(
|ψt(t)− ϕt(t)|2 + |ψr(t)− ϕr(t)|2 +

sin2(ψ(t)− ϕ(t))
r2

)
r dr

= E1−t0 (~ψ(t) +

∫ 1−t

0
(−2ψt(t)ϕ(t)− 2ψr(t)ϕr(t)) r dr

+

∫ 1−t

0

(
ϕ2t (t) + ϕ2r(t)

)
r dr +

∫ 1−t

0

sin2(ψ(t)− ϕ(t))− sin2(ψ(t))

r
dr

= E1−t0 (~ψ(t)) + CE(~ψ)‖~ϕ(t)‖H×L2(r≤1−t) + C‖~ϕ(t)‖2
H×L2(r≤1−t)

= E1−t0 (~ψ(t)) + o(1) as t→ 1,

where on the last line two lines we used (5.5.14) and the fact that

∣∣∣sin2(x+ y)− sin2(x)
∣∣∣ ≤ 2 |sin(x)| |y|+ 2 |y|2 . (5.5.15)
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Finally, by Lemma 5.5.2 we observe that for all t ∈ [0, 1) we have

E∞1−t(~ψ(t)) = E∞1−t(~ϕ(t)).

Hence,

E(~a(t)) = E(~ψ(t))− E∞1−t(~ϕ(t)) + o(1) as t→ 1,

which completes the proof.

5.5.2 Extraction of the blow-up profile

Next, we use Struwe’s result, Theorem 5.2.10, to extract a sequence of properly rescaled

harmonic maps. At this point we note that we can, after a suitable rescaling and time

translation assume, without loss of generality, that the scale λ0 in Theorem 5.2.10 satisfies

λ0 = 1. We prove the following result:

Proposition 5.5.4. Let ~a(t) ∈ H1 be defined as in (5.5.11) and let αn be any sequence

with αn → ∞. Then there exists a sequence of times τn → 1 and a sequence of scales

λn = o(1− τn) and αnλn < 1− τn such that

(a) As n→∞ we have

∫ ∞

0
ȧ2(τn, r) r dr ≤

1

n
. (5.5.16)

(b) As n→∞ we have

∫ αnλn

0

(∣∣∣∣ar(τn, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|a(τn, r)−Q(r/λn)|2

r2

)
r dr ≤ 1

n
. (5.5.17)
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(c) As n→∞ we also have

E(~a(τn)− (Q(·/λn), 0)) ≤ η + on(1), (5.5.18)

which implies that for large enough n we have

E(~a(τn)− (Q(·/λn), 0)) ≤ C < 2E(Q).

Proof. We begin by establishing (5.5.16) and (5.5.17). The basis for the argument is Theo-

rem 5.2.10. Indeed, by Theorem 5.2.10 and Corollary 5.2.13 there exists a sequence of times

tn → 0 and a sequence of scales λn = o(1− tn) such that for any B ≥ 0 we have

1

λn

∫ tn+λn

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt→ 0

1

λn

∫ tn+λn

tn

∫ Bλn

0

(∣∣∣∣ψr(t, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|ψ(t, r)−Q(r/λn)|2

r2

)
r dr dt→ 0

as n→∞. Next observe that since ~ϕ(t) ∈ H0 is a global wave map with E(~ϕ) < 2E(Q), we

can use the monotonicity of the energy on light cones to deduce that

sup
tn≤t≤1

E1−t0 (~ϕ(t))→ 0 as n→∞. (5.5.19)

The above then implies that

sup
tn≤t≤1

‖~ϕ(t)‖H×L2(r≤1−t) → 0 as n→∞. (5.5.20)
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By (5.5.11), Lemma 5.5.3 we then have

1

λn

∫ tn+λn

tn

∫ ∞

0
ȧ2(t, r) r dr dt =

1

λn

∫ tn+λn

tn

∫ 1−t

0

∣∣∣ψ̇(t, r)− ϕ̇(t, r)
∣∣∣
2
r dr dt

.
1

λn

∫ tn+λn

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt

+
1

λn

∫ tn+λn

tn

∫ 1−t

0
ϕ̇2(t, r) r dr dt→ 0.

Using (5.5.20) it is also immediate that

1

λn

∫ tn+λn

tn

∫ Bλn

0

(∣∣∣∣ar(t, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|a(t, r)−Q(r/λn)|2

r2

)
r dr dt→ 0.

Now, define

s(B, n) :=
1

λn

∫ tn+λn

tn

∫ ∞

0
ȧ2(t, r) r dr dt

+
1

λn

∫ tn+λn

tn

∫ Bλn

0

(∣∣∣∣ar(t, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|a(t, r)−Q(r/λn)|2

r2

)
r dr dt.

We know that for all B ≥ 0 we have s(B, n) → 0 as n → ∞. Let αn → ∞. Then there

exists a subsequence σ(n) such that s(αn, σ(n)) → 0 as n → ∞ with αnλσ(n) < 1 − tσ(n).

To see this let N(B, δ) be defined so that for n ≥ N(B, δ) we have s(B, n) ≤ δ and then

set σ(n) := N(αn, 1/n). Note that we necessarily have αnλσ(n) < 1 − tσ(n). Then we can

extract τσ(n) ∈ [tσ(n), tσ(n) + λσ(n)] so that after relabeling we have

∫ ∞

0
ȧ2(τn, r) r dr

+

∫ αnλn

0

(∣∣∣∣ar(τn, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|a(τn, r)−Q(r/λn)|2

r2

)
r dr ≤ 1

n

for every n which proves (5.5.16) and (5.5.17).
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Lastly, we establish (5.5.18). To see this, let τn and λn be as in (5.5.16) and (5.5.17).

Observe that

E(~a(τn)− (Q(·/λn), 0) = Eαnλn0 (~a(τn)− (Q(·/λn), 0))

+ E1−τnαnλn
(~a(τn)− (Q(·/λn), 0))

+ E∞1−τn(~a(τn)− (Q(·/λn), 0)).

First, observe that (5.5.16) and (5.5.17) directly imply that

Eαnλn0 (~a(τn)− (Q(·/λn), 0)) = on(1) (5.5.21)

as n→∞. Next we observe that

E∞αnλn(Q(·/λn)) = E
∞
αn(Q) = on(1). (5.5.22)

Using (5.5.22) and the fact that ~a(τn, r) = (π, 0) for every r ∈ [1− τn,∞), we have that

E∞1−τn(~a(τn)− (Q(·/λn), 0)) = E∞1−τn((π, 0)− (Q(·/λn), 0))

≤ E∞αnλn(Q(·/λn)) = on(1).

Hence it suffices to show that

E1−τnαnλn
(~a(τn)− (Q(·/λn), 0)) ≤ η + on(1). (5.5.23)

Applying (5.5.22) again we see that the above reduces to showing that

E1−τnαnλn
(~a(τn)) ≤ η + on(1).

274



Now combine the following two facts. One the one hand, for large n, (5.5.13) implies that

E(~a(τn)) ≤ E(~ψ) + on(1).

On the other hand, (5.5.16) and (5.5.17) give that Eαnλn0 (~a(τn)) = E(Q) − on(1). Putting

this all together we obtain (5.5.23).

In the next section we will also need the following consequence of Proposition 5.5.4.

Lemma 5.5.5. Let αn, λn, and τn be defined as in Proposition 5.5.4. Let βn → ∞ be any

other sequence such that βn ≤ c0αn for all n, for some c0 < 1. Then for every 0 < c1 < C2

such that C2c0 ≤ 1 there exists β̃n with c1βn ≤ β̃n ≤ C2βn such that

ψ(τn, β̃nλn)→ π as n→∞ (5.5.24)

Proof. We first observe that we can combine (5.5.17) and (5.5.14) to conclude that

‖~ψ(τn)− (Q(·/λn), 0)‖H×L2(r≤αnλn) → 0 (5.5.25)

as n→∞. Now, suppose (5.5.24) fails. Then there exists δ0 > 0, βn →∞ with βn ≤ c0αn,

and c1 < C2, and a subsequence so that

∀n ψ(τn, λnr) 6∈ [π − δ0, π + δ0] ∀r ∈ [c1βn, C2βn]

Now, since βn →∞ we can choose n large enough so that

Q(r) ∈ [π − δ0/2, π) ∀r ∈ [c1βn, C2βn]
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Putting this together we have that

∫ C2βn

c1βn

|ψ(τn, λnr)−Q(r)|2
r

dr ≥
(
C2 − c1
2c1

)2

δ20

But this directly contradicts (5.5.25) since C2βn ≤ αn for every n.

5.5.3 Compactness of the error

For the remainder of this section, αn, τn and λn will all be defined by Proposition 5.5.4.

Next, we define ~bn ∈ H0 as follows:

bn,0(r) = a(τn, r)−Q(r/λn) (5.5.26)

bn,1(r) = ȧ(τn, r) = on(1) in L2. (5.5.27)

Our goal in this section is to complete the proof of Proposition 5.5.1 by showing that

~bn → 0 in the energy space. Indeed we prove the following result:

Proposition 5.5.6. Define ~bn = (bn,0, bn,1) as in (5.5.26), (5.5.27). Then

‖~bn‖H×L2 → 0 (5.5.28)

as n→∞.

The first step in the proof of Proposition 5.5.6 is to show that the sequence ~bn does not

contain any nonzero profiles. The proof of this step is reminiscent of an argument given in

[22, Section 5] and in particular [22, Proposition 5.1]. Here the situation has been simplified

as we have already extracted the large profile Q(·/λn) by means of Struwe’s theorem.

Observe that by Proposition 5.5.4 we have

E(~bn) ≤ C < 2E(Q)
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for n large enough. Denote by ~bn(t) ∈ H0 the wave map evolution with data ~bn ∈ H0. Since

E(~bn) ≤ C < 2E(Q) for large n, we know from Theorem 5.1.1 that ~bn(t) ∈ H0 is global and

scatters to zero as t→ ±∞.

Proposition 5.5.7. Let ~bn ∈ H0 and the corresponding global wave map ~bn(t) ∈ H0 be

defined as above. Then there exists a decomposition

~bn(t, r) = ~bn,L(t, r) + ~θn(t, r) (5.5.29)

where ~bn,L(t, r) satisfies the linear wave equation

∂ttbn,L − ∂rrbn,L −
1

r
∂rbn,L +

1

r2
bn,L = 0 (5.5.30)

with initial data ~bn,L(0, r) = (bn,0, 0). Moreover, bn,L and ~θn satisfy

∥∥∥∥
1

r
bn,L

∥∥∥∥
L3
t (R;L

6
x(R

4))
−→ 0 (5.5.31)

‖~θn‖L∞
t (R;H×L2) +

∥∥∥∥
1

r
θn

∥∥∥∥
L3
t (R;L

6
x(R

4))
−→ 0 (5.5.32)

as n→∞.

Before beginning the proof of Proposition 5.5.7 we deduce the following corollary which

will be an essential ingredient in the proof of Proposition 5.5.6.

Corollary 5.5.8. Let ~bn(t) be defined as in Proposition 5.5.7. Suppose that there exists a

constant δ0 and a subsequence in n so that ‖bn,0‖H ≥ δ0. Then there exists α0 > 0 such

that for all t > 0 and all n large enough we have

‖~bn(t)‖H×L2(r≥t) ≥ α0δ0 (5.5.33)

Proof. First note that since ~bn,L satisfies the linear wave equation (5.5.30) with initial data
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~bn,L(0) = (bn,0, 0) we know by Corollary 5.2.3 that there exists a constant β0 > 0 so that

for each t ≥ 0 we have

‖~bn,L(t)‖H×L2(r≥t) ≥ β0‖bn,0‖H

On the other hand, by Proposition 5.5.7 we know that

‖~bn(t)−~bn,L(t)‖H×L2(r≥t) ≤ ‖~θn(t)‖H×L2 = on(1)

Putting these two facts together gives

‖~bn(t)‖H×L2(r≥t) ≥ ‖bn,L(t)‖H×L2(r≥t) − on(1)

≥ β0‖bn,0‖H − on(1)

This yields (5.5.33) by passing to a suitable subsequence and taking n large enough.

To prove Proposition 5.5.7 we will first pass to the standard 4d representation in order

to perform a profile decomposition on the sequence ~bn. Up to extracting a subsequence,

~bn ∈ H0 forms a uniformly bounded sequence with E(~bn) ≤ C < 2E(Q). By Lemma 5.2.1

and the right-most equality in (5.2.10), the sequence ~un = (un,0, un,1) defined by

un,0(r) =
bn,0(r)

r
(5.5.34)

un,1(r) =
bn,1(r)

r
= on(1) in L2(R4) (5.5.35)

is uniformly bounded in Ḣ1 × L2(R4). By Theorem 5.2.14 we can perform the following
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profile decomposition on the sequence ~un:

un,0(r) =
∑

j≤k

1

λ
j
n

V
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ wkn,0(0, r) (5.5.36)

un,1(r) =
∑

j≤k

1

(λ
j
n)2

V̇
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ wkn,1(0, r) (5.5.37)

where each ~V
j
L is a free radial wave in 4d and where we have for j 6= k:

λ
j
n

λkn
+
λkn

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λkn
+

∣∣∣tjn − tkn
∣∣∣

λ
j
n

→∞ as n→∞ (5.5.38)

Moreover, if we denote by ~wkn,L(t) the free evolution of ~wkn we have for j ≤ k that

(
λ
j
nw

k
n,L(λ

j
nt
j
n, λ

j
n·), (λjn)2ẇkn,L(λ

j
nt
j
n, λ

j
n·)
)
⇀ 0 ∈ Ḣ1 × L2 as n→∞ (5.5.39)

lim sup
n→∞

‖wkn,L‖L3
tL

6
x
→ 0 as k →∞ (5.5.40)

Finally,

‖~un‖2Ḣ1×L2 =
∑

j≤k

∥∥∥∥∥
~V
j
L

(
−tjn
λ
j
n

)∥∥∥∥∥

2

Ḣ1×L2

+ ‖~wkn(0)‖2Ḣ1×L2 + on(1) (5.5.41)

It is also convenient to rephrase the above profile decomposition in the 2d formulation. We

have

bn,0(r) =
∑

j≤k
ϕ
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ γkn,0(r) (5.5.42)

bn,1(r) =
∑

j≤k

1

λ
j
n

ϕ̇
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ γkn,1(r), (5.5.43)
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where

ϕ
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
:=

r

λ
j
n

V
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)

γkn(r) := rwkn,0(r).

and similarly for the time derivatives.

We make the following crucial observation about the scales λ
j
n. By Proposition 5.5.4 we

have as n→∞ that

Eαnλn0 (bn,0, 0)→ 0, (5.5.44)

E∞1−τn(bn,0, 0)→ 0. (5.5.45)

Note that we also have that if βn →∞ is any other sequence with βn ≤ αn then

Eβnλn0 (bn,0, 0)→ 0. (5.5.46)

We can combine (5.5.44) and (5.5.45) with Proposition 5.2.19 to conclude that for each scale

λ
j
n corresponding to a nonzero profile ϕj we have

λn ≪ λ
j
n ≤ 1− τn (5.5.47)

at least for n large. In particular,

λ
j
n → 0 as n→∞ for every j. (5.5.48)

The proof of Proposition 5.5.7 will consist of a sequence of steps designed to show that

each of the profiles ~V
j
L (or equivalently the ~φ

j
L) must be identically zero.
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Our first goal is to show that all of the time sequences {tn,j} can be taken to be ≡ 0 and

that then the initial velocities of the profiles vanish, i.e., V̇
j
L(0, r) ≡ 0 for each j. This is an

easy consequence of the following lemma:

Lemma 5.5.9. In the decomposition (5.5.36), (5.5.37) we must have

lim sup
n→∞

∣∣∣∣∣
t
j
n

λ
j
n

∣∣∣∣∣ <∞ ∀ j ∈ N (5.5.49)

Corollary 5.5.10. In the decomposition (5.5.36), (5.5.37) we can assume, without loss of

generality, that t
j
n = 0 for every n and for every j. And, in addition we then have

V̇
j
L(0, r) ≡ 0 for every j.

Proof of Corollary 5.5.10. Since all of the sequences t
j
n/λ

j
n are bounded, we can assume (by

translating the profiles) that tn,j ≡ 0 for all j and for all n. In the case when t
j
n = 0 for all

j, it is easy to see that, besides (5.5.41) the following Pythagorean expansion also holds

on(1) = ‖un,1‖2L2 =
∑

j≤k

∥∥∥V̇ jL(0)
∥∥∥
2

L2
+ ‖wkn,1(0)‖2L2 + on(1). (5.5.50)

from which it is immediate that V
j
1 := V̇

j
L(0) = 0 for every j.

We now move to the proof of Lemma 5.5.9. We follow closely the argument in [20],

however since there are a few technical differences, we reproduce the proof here.

Note that one way of viewing Corollary 5.5.10 is that, under the hypothesis, one has

ability to pass from (5.5.41) to (5.5.50). For a profile decomposition of a general sequence

(vn,0, vn,1) in Ḣ
1 × L2(R4) with ‖vn,1‖L2 = on(1) this is not possible due to the following

example: Let ~VL(t) be any nonzero free wave and let sn →∞ be any sequence of times. Let
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vn,0 := 2VL(sn) and vn,1 = 0. Then

vn,0 = V 1
L (−s1n) + V 2

L(−s2n), vn,1 = 0 (5.5.51)

where

V 1
L(t) := VL(t), s

1
n := −sn, V 2

L(t) := VL(−t), s2n := sn

is a profile decomposition which does not satisfy

0 = ‖un,1‖2L2 6= ‖V̇ 1
L(−s1n)‖2L2 + ‖V̇ 2

L(−s2n)‖2L2 + on(1)

With this example in mind, the first step towards proving Lemma 5.5.9 is to show that

such time-symmetric profiles are the only type that can arise with diverging parameters

t
j
n/λ

j
n → ±∞, for a sequence (vn,0, vn,1) in Ḣ

1 × L2(R4) with ‖vn,1‖L2 = on(1).

First we establish the following claim. Denote by ~S(t) the free wave propagator in R1+4,

i.e., for data (f, g) we set

S(t)(f, g) = cos(t
√
−∆)f +

sin(t
√
−∆)√
−∆ g,

~S(t)(f, g) := (S(t)(f, g), ∂tS(t)(f, g))

Claim 5.5.11. [20, Claim 2] Let {fn, gn} be a bounded sequence of radial functions in

Ḣ1 × L2(R4) and let An > be any sequence so that

‖gn‖L2(r≥An)
→ 0 as n→∞ (5.5.52)
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Let tn be a time sequence so that |tn| /An →∞ as n→∞. If

~S(−tn)(fn, gn)⇀ (V0, V1) ∈ Ḣ1 × L2

then,

~S(tn)(fn, gn)⇀ (V0,−V1) ∈ Ḣ1 × L2

Proof. The proof follows closely the argument given in [20], but here we crucially use [18,

Theorem 4] in place of [22, Lemma 4.1]. Denote by 〈·, ·〉
Ḣ1×L2 the inner product in Ḣ

1×L2.

Given any radial (h0, h1) ∈ C∞0 × C∞0 (R4) we have

〈
~S(−tn)(fn, gn), (h0, h1)

〉
Ḣ1×L2

=
〈
(fn, gn), ~S(tn)(h0, h1)

〉
Ḣ1×L2

=
〈
(fn,−gn), ~S(tn)(h0, h1)

〉

Ḣ1×L2
+ on(1) as n→∞

We note that the last inequality above is due our assumptions on gn. Indeed, by [18, Theorem

4] (which says roughly that radial free waves radiate most of their energy near the light cone)

and since |tn| /An →∞, we have

〈
(0, gn), ~S(tn)(h0, h1)

〉

Ḣ1×L2
= on(1) as n→∞

Using the fact that for any data (f, g) we have

~S(−t)(f,−g) = (S(t)(f, g),−∂tS(t)(f, g))
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we obtain

〈
~S(−tn)(fn, gn), (h0, h1)

〉

Ḣ1×L2
=
〈
~S(−tn)(fn,−gn), (h0, h1)

〉

Ḣ1×L2
+ on(1)

=
〈
~S(tn)(fn, gn), (h0,−h1)

〉
Ḣ1×L2

+ on(1) as n→∞

which completes the proof.

Claim 5.5.12. Let (vn,0, vn,1) be a bounded sequence of radial functions in Ḣ1 × L2(R4)

such that

‖vn,1‖L2 → 0 as n→∞. (5.5.53)

Then, after passing to a subsequence, there exists a profile decomposition with free waves V
j
L

and parameters {tjn, λjn} so that for a fixed j ∈ N we have either

t
j
n = 0, ∀n and V̇

j
L(0) = 0 (5.5.54)

or

t
j
n

λ
j
n

→ ±∞ as n→∞ (5.5.55)

and there exists k 6= j so that

V kL (t) = V
j
L(−t) and ∀n tjn = −tkn, λkn = λ

j
n (5.5.56)

Proof. Fix and j ∈ N. Recall from [1] that the profile ~V
j
L with parameters {tjn, λjn} is defined
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by the weak limit

~S(t
j
n/λ

j
n)(λ

j
nvn,0(λ

j
n·), (λjn)2vn,1(λjn·))⇀ ~V

j
L(0) ∈ Ḣ

1 × L2 (5.5.57)

Now, we can assume without loss of generality that either t
j
n = 0 for all n or that (5.5.55)

holds. If tn,j = 0 then (5.5.53) and (5.5.57) show that ∂tVL(0) = 0. In the latter case, we

can use Claim 5.5.11 to extract the weak limit

~S(−tjn/λjn)(λjnvn,0(λjn·), (λjn)2vn,1(λjn·))⇀ (V
j
L(0),−∂tV

j
L(0)) ∈ Ḣ

1 × L2 (5.5.58)

This gives us the existence of the kth profile V kL for some k precisely as in (5.5.56).

We can now prove Lemma 5.5.9.

Proof of Lemma 5.5.9. We argue by contradiction. Passing to the 2d formulation, assume

that there exists a j0 ≥ 1 so that ϕ
j
L 6= 0 and −tj0n /λn,j0 → +∞. By Claim 5.5.12 and after

reordering the profiles we can assume that

ϕ
j0+1
L (t) = ϕ

j0
L (−t) and t

j0+1
n = −tj0n , λj0+1

n = λ
j0
n

Recall that in Proposition 5.5.4 the time sequence τn was chosen so that for every n we have

∫ ∞

0
ȧ2(τn, r) r dr ≤

1

n

Our first observation is that there is considerable flexibility in the choice of τn in Proposi-

tion 5.5.4. In fact, we claim that there exists a number τ0 ∈ (0, 1] so that

∫ ∞

0
ȧ2(τn + λ

j0
n τ0, r) r dr → 0 as n→∞. (5.5.59)
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To prove (5.5.59), we first show that there exists a sequence εn → 0 so that

1

λ
j0
n

∫ τn+λ
j0
n

τn

∫ ∞

0
ȧ2(t, r) r dr dt = εn (5.5.60)

Recalling that ~a(t) = ~ψ(t)− ~ϕ(t) and using the global regularity of ϕ we see that it suffices

to show that

1

λ
j0
n

∫ τn+λ
j0
n

τn

∫ 1−t

0
ψ̇2(t, r) r dr dt = on(1) as n→∞ (5.5.61)

Note from the proof of Proposition 5.5.4 that τn ∈ [tn, tn + λn], where tn is as in Corol-

lary 5.2.9. We also have τn + λ
j0
n < 1. From this we infer that

τn + λ
j0
n ≤ tn +min{1− tn, λj0n + λn}

Setting σn = min{1− tn, λj0n + λn} we see that

1

λ
j0
n

∫ τn+λ
j0
n

τn

∫ 1−t

0
ψ̇2(t, r) r dr dt ≤ 1

λ
j0
n

∫ tn+σn

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt

.
1

σn

∫ tn+σn

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt = on(1)

where we have used Corollary 5.2.9 and (5.5.47) in the last line.

Next, let

En :=
{
τ ∈ [0, 1] |

∫ ∞

0
ȧ2(τn + λ

j0
n τ, r) r dr ≥ ε

1
4
n

}
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We have

εn =
1

λ
j0
n

∫ τn+λ
j0
n

τn

∫ ∞

0
ȧ2(t, r) r dr dt =

∫ 1

0

∫ ∞

0
ȧ2(τn + λ

j0
n t, r) r dr dt

≥ |En| ε
1
2
n

This implies that |En| → 0 as n → ∞. Passing to a subsequence, we can assume that

|En| ≤ 2−n−2 so that

∣∣∣∣∣∣

⋃

n≥0
En

∣∣∣∣∣∣
≤ 1

2
(5.5.62)

It follows that 50% of all τ0 ∈ (0, 1] satisfy (5.5.59). Choosing any such τ0 proves (5.5.59).

Now, recall the from the definition of ~bn we have

~ψ(τn) = Q(·/λn) + ~ϕ(τn) +
∑

j≤k
ϕ
j
L,n(0) + ~γkn (5.5.63)

where we write ~ϕn,L for the modulated linear profiles, i.e.,

~ϕ
j
L,n(t, r) =

(
ϕ
j
L

(
t− tjn
λ
j
n

,
r

λ
j
n

)
,

1

λ
j
n

ϕ̇
j
L

(
t− tjn
λ
j
n

,
r

λ
j
n

))

Now, using (5.5.44), (5.5.47) and [22, Appendix B], choose a sequence λn → 0 such that

λn ≪ αnλn, λn ≪ λn ≪ λ
j0
n

λn ≪ λ
j
n or λ

j
n ≪ λn ∀j > 1.
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Now set

βn =
λn
λn
→∞

and we note that βn ≪ αn and λn = βnλn. Therefore, up to replacing βn by a sequence

β̃n ≃ βn and λn by λn := β̃nλn, we have by Lemma 6.3.11 and a slight abuse of notation

that

ψ(τn, λn)→ π as n→∞. (5.5.64)

We define the set

J 1
ext := {j ≥ 1 | λn ≪ λ

j
n}.

Note that by construction j0 ∈ J 1
ext.

Next, with λn as above we define (fn,0, fn,1) as follows:

fn,0(r) :=






π − π−ψ(τn,λn)
λn

r if 0 ≤ r ≤ λn

ψ(τn, r) if λn ≤ r

fn,1(r) := ψ̇(τn, r)

Then (fn,0, fn,1) ∈ H1,1. Now let χ ∈ C∞0 be defined so that χ(r) ≡ 1 for all r ∈ [2,∞)

and supp(χ) ⊂ [1,∞). We define ~ψn = (ψn,0, ψn,1) ∈ H0 as follows:

ψn,0 := χ(2r/λ̃n)(fn,0(r)− π)

ψn,1 := χ(2r/λ̃n)fn,1(r)
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By construction for n large enough we have E( ~̃ψn) ≤ C < 2E(Q) (for a proof of this fact we

refer the reader to the proof of Lemma 5.5.13 for a similar arguement which applies verbatim

here). It follows from Theorem 4.0.3 that for each n, the wave map evolution ~ψn(t) ∈ H0 of

the data ~ψn is global in time and scatters to zero as t → ±∞. And by the finite speed of

propagation, it is immediate that for all t such that 0 ≤ τn + t < 1 we have

~ψn(t, r) + (π, 0) = ~ψ(τn + t, r) ∀r ≥ λn + |t| . (5.5.65)

We also define

~γ
k
n,L(0, r) := χ(2r/λ̃n)~γ

k
n,L(0, r)

Now observe that we can combine (5.5.63) and Proposition 5.2.19 to obtain the following

decomposition:

~ψn(r) = ~ϕ(τn, r) +
∑

j∈J 1
ext , j≤k

~ϕ
j
L,n(0) +

~γ
k
n,L(0, r) + on(1) (5.5.66)

where the on(1) above is in the sense of H × L2. Using Proposition 5.2.17, Lemma 5.2.18,

and Lemma 5.2.16 we can find a corresponding nonlinear profile decomposition

~ψn(t, r) = ~ϕ(τn + t, r) +
∑

j∈J 1
ext , j≤k

~ϕ
j
n(t, r) + ~γ

k
n,L(0, r) +

~θ
k

n(t, r) (5.5.67)

where

lim
k→∞

lim sup
n→∞

∥∥∥∥
~θ
k

n

∥∥∥∥
L∞(H×L2)

= 0

For the precise details on how to deduce (5.5.67) we again refer to the proof of Lemma 5.5.13.
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Next, we evaluate (5.5.67) at the time t = λ
j0
n τ0 note that one can extract a linear profile

decomposition (~V
j

L, t
j
n, λ

j
n) from the sequence ~ψ(λ

j0
n τ0) where the parameters are given by

tjn = t
j
n − λj0n , λ

j
n = λ

j
n (5.5.68)

Note that the profiles corresponding to the indices j0 and j0+1 are precisely ϕ
j0
L (t) = ϕ

j0
L (t)

and ϕ
j0+1
L (t) = ϕ

j0+1
L (t) = ϕ

j0
L (−t). In addition to this we note that by (5.5.65)

~ψn(λ
j0
n τ0, r) + (π, 0) = ~ψ(τn + λ

j0
n τ0, r) ∀r ≥ λn + λ

j0
n τ0.

Next we apply Claim 5.5.11 with An = λn/λ
j0
n + τ0 and tn = t

j0
n /λ

j0
n and

(fn, gn) = (ψ(λ
j0
n τ0, λn·),

1

λ
j0
n

∂tψ(λ
j0
n τ0, λ

j0
n )).

By our choice of λn we see that |tn| /An →∞ and hence

weak − lim
n→∞

~S(t
j0
n /λ

j0
n )(fn, gn) = weak− lim

n→∞
~S(τ0)~S(t

j0
n /λ

j0
n )(fn, gn)

= (ϕ
j0
L (τ0), ∂tϕ

j0
L (τ0))

as well as

weak − lim
n→∞

~S(−tj0n /λj0n )(fn, gn) = weak− lim
n→∞

~S(τ0)~S(t
j0+1
n /λ

j0+1
n )(fn, gn)

= (ϕ
j0+1
L (τ0), ∂tϕ

j0+1
L (τ0)) = (ϕ

j0
L (−τ0),−∂tϕj0L (−τ0))

But the above implies that

ϕ
j0
L (t) = ϕ

j0
L (t + 2τ0).
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Since ~ϕ
j
L is a solution to the linear wave equation the above implies that ϕ

j0
L can only be

identically 0, which contradicts the assumption that ϕ
j0
L is nonzero.

Now, using Corollary 5.5.10 we can rewrite our profile decomposition in the 2d formulation

as follows.

bn,0(r) =
∑

j≤k
ϕj

(
0,

r

λ
j
n

)
+ γkn(r) (5.5.69)

bn,1(r) = on(1) in L2, (5.5.70)

where

ϕj

(
0,

r

λ
j
n

)
:=

r

λ
j
n

V
j
L

(
0,

r

λ
j
n

)

γkn(r) := rwkn,0(r).

Note that in addition to the Pythagorean expansions given in (5.5.41) we also have the

following almost-orthogonal decomposition of the nonlinear energy given by Lemma 5.2.16:

E(~bn) =
∑

j≤k
E(ϕj(0), 0) + E(γkn, 0) + on(1). (5.5.71)

Note that ϕj , γkn ∈ H0 for every j, for every n, and for every k. Using the fact that

E(~bn) ≤ C < 2E(Q), (5.5.71) and Theorem 4.0.3 imply that, for every j, the nonlinear wave

map evolution of the data (ϕj(0, r/λ
j
n), 0) given by

~ϕ
j
n(t, r) =

(
ϕj

(
t

λ
j
n

,
r

λ
j
n

)
,

1

λ
j
n

ϕ̇j

(
t

λ
j
n

,
r

λ
j
n

))
(5.5.72)

is global in time and scatters as t→ ±∞. Moreover we have the following nonlinear profile
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decomposition given by Proposition 5.2.17:

~bn(t, r) =
∑

j≤k
~ϕ
j
n(t, r) + ~γkn,L(t, r) +

~θkn(t, r) (5.5.73)

where ~bn(t, r) are the global wave map evolutions of the data ~bn and ~γkn,L(t, r) is the linear

evolution of (γkn, 0). Finally, by (5.2.52), we have

lim sup
n→∞

(
‖~θkn‖L∞

t (H×L2) +

∥∥∥∥
1

r
θkn

∥∥∥∥
L3
t (R;L

6
x(R

4))

)
→ 0 as k →∞. (5.5.74)

Now, recall that our goal is to prove that ϕj = 0 for every j. Now, let k0 be the index

corresponding to the first nonzero profile ϕk0 . Without loss of generality, we can assume

that k0 = 1. Using (5.5.44), (5.5.47) and [22, Appendix B], we can find a sequence λ̃n → 0

such that

λ̃n ≪ αnλn

λn ≪ λ̃n ≪ λ1n

λ̃n ≪ λ
j
n or λ

j
n ≪ λ̃n ∀j > 1.

Now define

βn =
λ̃n
λn
→∞

and we note that βn ≪ αn and λ̃n = βnλn. Therefore, up to replacing βn by a sequence

β̃n ≃ βn and λ̃n by ˜̃λn := β̃nλn, we have by Lemma 5.5.5 and a slight abuse of notation that

ψ(τn, λ̃n)→ π as n→∞. (5.5.75)

292



We define the set

Jext := {j ≥ 1 | λ̃n ≪ λ
j
n}.

Note that by construction 1 ∈ Jext. The next step consists of establishing the following

claim:

Lemma 5.5.13. Let ϕ1, λ1n be defined as above. Then for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣∣∣∣

∑

j∈Jext ,j≤k
ϕ̇
j
n(t, r) + γ̇kn,L(t, r)

∣∣∣∣∣∣

2

r dr dt = okn (5.5.76)

where lim
k→∞

lim sup
n→∞

okn = 0. Also, for all j > 1 and for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t
(ϕ̇
j
n)

2(t, r) r drdt→ 0 as n→∞. (5.5.77)

Note that (5.5.76) and (5.5.77) together directly imply the following result:

Corollary 5.5.14. Let ϕ1 be as in Lemma 5.5.13. Then for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣ϕ̇1n(t, r) + γ̇kn,L(t, r)
∣∣∣
2
r dr dt = okn (5.5.78)

where lim
k→∞

lim sup
n→∞

okn = 0.

Proof of Lemma 5.5.13. We begin by proving (5.5.76). First recall that by the definition of

~bn we have the following decomposition

~ψ(τn, r) = (Q(r/λn), 0) + ~ϕ(τn, r) +
∑

j≤k
(ϕj(0, r/λ

j
n), 0) + ~γkn,L(0, r) (5.5.79)
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Next, with λ̃n as above we define ~fn = (fn,0, fn,1) as follows:

fn,0(r) :=





π − π−ψ(τn,λ̃n)
λ̃n

r if 0 ≤ r ≤ λ̃n

ψ(τn, r) if λ̃n ≤ r

fn,1(r) := ψ̇(τn, r)

Then ~fn ∈ H1,1. Now let χ ∈ C∞0 be defined so that χ(r) ≡ 1 for all r ∈ [2,∞) and

supp(χ) ⊂ [1,∞). We define ~̃ψn = (ψ̃n,0, ψ̃n,1) ∈ H0 as follows:

ψ̃n,0 := χ(2r/λ̃n)(fn,0(r)− π)

ψ̃n,1 := χ(2r/λ̃n)fn,1(r)

We claim that for n large enough we have E( ~̃ψn) ≤ C < 2E(Q). To see this, observe that

E( ~̃ψn) = E λ̃n
λ̃n/2

(
~̃
ψn) + E∞λ̃n(

~ψ(τn)). (5.5.80)

Using (5.5.75) and (5.2.4), we note that we have E λ̃n0 (~ψ(τn)) ≥ E(Q)− on(1) which in turn

implies that

E∞
λ̃n
(~ψ(τn)) ≤ η + on(1).

We can again use the fact that ψ(τn, λ̃n)→ π and (5.5.44) to deduce that E λ̃n
λ̃n/2

( ~̃ψn) = on(1).

Putting these facts into (5.5.80) we obtain the claim since, by assumption, η < 2E(Q).

Now, since
~̃
ψn ∈ H0 satisfies E( ~̃ψn) ≤ C < 2E(Q), Theorem 5.1.1 implies that for each

n, the wave map evolution ~̃ψn(t) ∈ H0 of the data ~̃ψn is global in time and scatters to zero

as t→ ±∞. And by the finite speed of propagation, it is immediate that for all t such that
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0 ≤ τn + t < 1 we have

~̃
ψn(t, r) + (π, 0) = ~ψ(τn + t, r) ∀r ≥ ελ1n + |t| (5.5.81)

as long as n is large enough to ensure that λ̃n ≤ ελ1n. We also define

~̃γkn,L(0, r) := χ(2r/λ̃n)~γ
k
n,L(0, r)

Now observe that we can combine (5.5.79) and Proposition 5.2.19 to to obtain the following

decomposition:

~̃ψn(r) = ~ϕ(τn, r) +
∑

j∈Jext , j≤k
(ϕj(0, r/λ

j
n), 0) + ~̃γkn,L(0, r) + on(1) (5.5.82)

where the on(1) above is in the sense of H × L2. By Lemma 5.2.20 we have that

lim sup
n→∞

∥∥∥∥
1

r
γ̃kn,L

∥∥∥∥
L3
tL

6
x(R

1+4)
→ 0 as k →∞

since if the above did not hold we could find subsequences nℓ and kℓ such that for all ℓ we

have

∥∥∥∥
1

r
γ̃
kℓ
nℓ,L

∥∥∥∥
L3
tL

6
x(R

1+4)
≥ ε and lim

ℓ→∞

∥∥∥∥
1

r
γ
kℓ
nℓ,L

∥∥∥∥
L3
tL

6
x(R

1+4)
= 0

which would directly contradict Lemma 5.2.20. Hence, if we ignore the on(1) term, the right-

hand side of (5.5.82) is a profile decomposition in the sense of Corollary 5.2.15. Therefore,

by Proposition 5.2.17, and Lemma 5.2.18, we can find
~̃
θkn(t, r) with

lim
k→∞

lim sup
n→∞

∥∥∥~̃θkn(t, r)
∥∥∥
L∞
t (H×L2)

= 0
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such that the following nonlinear profile decomposition holds:

~̃
ψn(t, r) = ~ϕ(τn + t, r) +

∑

j∈Jext , j≤k
~ϕ
j
n(t, r) + ~̃γkn,L(t, r) +

~̃
θkn(t, r) (5.5.83)

To be precise, (5.5.83) is proved as follows: Define

~̆
ψn(r) = ~ϕ(τn, r) +

∑

j∈Jext , j≤k
(ϕj(0, r/λ

j
n), 0) + ~̃γkn,L(0, r) (5.5.84)

As mentioned above, this is a profile decomposition in the sense of Corollary 5.2.15 and

E( ~̆ψn) < C ≤ 2E(Q). By Proposition 5.2.17 we then have the following nonlinear profile

decomposition for the wave maps evolutions
~̆
ψn(t, ·) ∈ H0:

~̆
ψn(t, r) = ~ϕ(τn + t, r) +

∑

j∈Jext , j≤k
~ϕ
j
n(t, r) + ~̃γkn,L(t, r) +

~̆
θkn(t, r)

lim
k→∞

lim sup
n→∞

∥∥∥~̆θkn(t, r)
∥∥∥
L∞
t (H×L2)

= 0

Now, by our perturbation theory, i.e., Lemma 5.2.18, we can deduce (5.5.83) since ‖ ~̆ψn(0)−
~̃ψn(0)‖H×L2 = on(1).

Next, we combine (5.5.83) with (5.5.81) to conclude that

~ψ(τn + t, r)− (π, 0)− ~ϕ(τn + t, r) =
∑

j∈Jext, j≤k
~ϕ
j
n(t, r) + ~γkn,L(t, r) +

~̃
θkn(t, r)

for all t+ τn < 1 and r ≥ ελ1n + t for n large enough so that λ̃n ≤ ελ1n. Using the above we
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can finally conclude that

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣∣∣∣

∑

j∈Jext ,j≤k
ϕ̇
j
n(t, r) + γ̇kn,L(t, r)

∣∣∣∣∣∣

2

r dr dt

≤ 1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t
ȧ2(τn + t, r) r dr dt+ okn

≤ 1

λ1n

∫ λ1n

0

∫ ∞

0
ȧ2(τn + t, r) r dr dt+ okn

=
1

λ1n

∫ τn+λ
1
n

τn

∫ ∞

0
ȧ2(t, r) r dr dt + okn

≤ 1

λ1n

∫ τn+λ
1
n

τn

∫ 1−t

0
ψ̇2(t, r) r dr dt+ sup

t≥τn
E1−t0 (~ϕ(t)) + okn = okn. (5.5.85)

To justify the last line above we need to show that

1

λ1n

∫ τn+λ
1
n

τn

∫ 1−t

0
ψ̇2(t, r) r dr dt = on(1)

On the one hand, by our construction in the proof of Proposition 5.5.4 we have τn ∈ [tn, tn+

λn] where tn is as in Corollary 5.2.9 and Theorem 5.2.10. On the other hand, note that

τn + λ1n < 1. Putting these facts together we infer that

τn + λ1n ≤ tn +min{1− tn, λ1n + λn}

Therefore, if we define σ := min{1− tn, λ1n + λn} we have

1

λ1n

∫ τn+λ
1
n

τn

∫ 1−t

0
ψ̇2(t, r) r dr dt ≤ 1

λ1n

∫ tn+σ

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt

.
1

σ

∫ tn+σ

tn

∫ 1−t

0
ψ̇2(t, r) r dr dt = on(1)

where the last line above follows from Corollary 5.2.9. Note that we have used the fact that
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λn ≪ λ1n in the second inequality above. This proves (5.5.76).

Next we prove (5.5.77). Recall that for j 6= 1 we have either µ
j
n :=

λ1n
λjn
→ 0 or µ

j
n →∞.

Suppose the former occurs. Then

1

λ1n

∫ λ1n

0

∫ ∞

0
(ϕ̇
j
n)

2(t, r) r drdt =
1

λ1n

∫ λ1n

0

∫ ∞

0

1

(λ
j
n)2

(ϕ̇j)2

(
t

λ
j
n

,
r

λ
j
n

)
r drdt

=
1

λ1n

∫ λ1n

0

∫ ∞

0
(ϕ̇j)2

(
t

λ
j
n

, r

)
r drdt

=
1

µ
j
n

∫ µ1n

0

∫ ∞

0
(ϕ̇j)2 (t, r) r drdt

−→
∫ ∞

0
(ϕ̇j)2 (0, r) r drdt = 0

Now suppose that µ
j
n →∞. Then, changing variables as above, we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t
(ϕ̇
j
n)

2(t, r) r drdt =
1

µ
j
n

∫ µ1n

0

∫ ∞

εµjn+t
(ϕ̇j)2 (t, r) r drdt (5.5.86)

Now note that by monotonicity of the energy on exterior cones we have that for all δ > 0

there exists M > 0 such that for all t ∈ [0,∞) we have

∫ ∞

M+t
(ϕ̇j)2 (t, r) r dr ≤ δ

This implies that the right-hand side of (5.5.86) tends to 0 as n→∞.

We can now conclude the proof Proposition 5.5.7.

Proof of Proposition 5.5.7. We first show that all of the profiles ϕj in the decomposition

(5.5.69) must be identically 0. We argue by contradiction. As above we assume that ϕ1 6= 0.

By Corollary 5.5.14 we know that for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣ϕ̇1n(t, r) + γ̇kn,L(t, r)
∣∣∣
2
r dr dt = okn
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as n→∞ for any k > 1. Changing variables this implies that

∫ 1

0

∫ ∞

ε+t

∣∣∣ϕ̇1(t, r) + λ1nγ̇
k
n,L(λ

1
nt, λ

1
nr)
∣∣∣
2
r dr dt = okn (5.5.87)

Now consider the mapping H × L2 → R defined by

(f0, f1) 7→
∫ 1

0

∫

ε+t
ϕ̇1(t, r)ḟ(t, r) r dr dt

where ~f(t, r) is the solution to the linear wave equation

ftt − frr −
1

r
fr +

1

r2
f = 0

with initial data (f0, f1). This is a continuous linear functional on H×L2. Now, by (5.5.39)

we have

(
γkn,L(λ

1
n·), λ1nγ̇kn,L(λ1n·)

)
⇀ 0 in H × L2 as n→∞

Hence, for all ε > 0 we have

lim
n→∞

∫ 1

0

∫ ∞

ε+t
ϕ̇1(t, r)λ1nγ̇

k
n,L(λ

1
nt, λ

1
nr) r dr dt = 0

Combining the above line with (5.5.87) we conclude that for all ε > 0 we have

∫ 1

0

∫ ∞

ε+t

∣∣∣ϕ̇1(t, r)
∣∣∣
2
r dr dt = 0

Letting ε tend to 0 we obtain

∫ 1

0

∫ ∞

t

∣∣∣ϕ̇1(t, r)
∣∣∣
2
r dr dt = 0
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Therefore ϕ̇1(t, r) = 0 if r ≥ t and t ∈ [0, 1]. Let Ω denote the region in [0, 1]× R
2 exterior

to the light cone

Ω = {(t, x) ∈ [0, 1]× R
2 | |x| ≥ t}

If we let U1(t, x) = (ϕ1(t, r), ω) denote the full equivariant wave map (here x = (r, ω) in

polar coordinates on R2) then we have (t, x) ∈ Ω ⇒ U1(t, x) = U1
0 (x). Hence U1

0 (x) is a

finite energy equivariant harmonic map on R
2−{0}. By Sacks-Uhlenbeck [65] we can extend

U1
0 to a smooth equivariant harmonic map from R2 → S2. But since ϕ1 ∈ H0, U

1
0 must be

identically equal to 0, since 0 is the unique harmonic map in the topological class H0. But

this contradicts the fact that we assumed ϕ1 6= 0.

To complete the proof of Proposition 5.5.7 we note that we have now concluded that

all the profiles in the decomposition (5.5.69) must be identically zero. Hence, we have

γkn(r) = bn,0(r), ~γ
k
n,L =: bn,L, and ~θ

k
n = ~θn and we can rewrite (5.5.73) as follows:

~bn(t, r) = ~bn,L(t, r) + ~θn(t, r) (5.5.88)

Finally, (5.5.31) and (5.5.32) are satisfied because of (5.5.40) and (5.5.74).

We can now prove Proposition 5.5.6.

Proof of Proposition 5.5.6. Assume that Proposition 5.5.6 fails. Then up to extracting a

subsequence, we can find δ0 > 0 so that

‖bn,0‖H ≥ δ0 (5.5.89)

for every n. With this assumption we seek a contradiction. We begin by rescaling. Set

µn :=
λn

1− τn
.
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Since λn = o(1− τn) we have µn → 0 as n→∞. Now define the rescaled wave maps

gn(t, r) := ψ(τn + (1− τn)t, (1− τn)r)

hn(t, r) := ϕ(τn + (1− τn)t, (1− τn)r).

Then ~gn(t) ∈ H1 is a wave map defined on the interval [− τn
1−τn , 1), and

~hn(t) ∈ H0 is global

in time and scatters to 0. We then have

a(τn + (1− τn)t, (1− τn)r) = gn(t, r)− hn(t, r).

Similarly, define

b̃n,0(r) := bn,0((1− τn)r)

b̃n,1(r) := (1− τn)bn,1((1− τn)r)

and the corresponding rescaled wave map evolutions

b̃n(t, r) := bn((1− τn)t, (1− τn)r)

∂tb̃n(t, r) := (1− τn)ḃn((1− τn)t, (1− τn)r).

Observe that we have the decomposition

gn(0, r) = hn(0, r) +Q

(
r

µn

)
+ b̃n,0(r) (5.5.90)

ġn(0, r) = ḣn(0, r) + b̃n,1(r). (5.5.91)
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Note that by (5.5.12) we have b̃n,0 = π −Q(·/µn) on [1,∞) and hence

‖b̃n,0‖H(r≥1) → 0 (5.5.92)

as n→∞.

Now, observe that the regularity properties of ϕ(t) imply that

lim
ρ→0

sup
n
‖~hn(0)‖H×L2(r≤ρ/(1−τn)) = 0 (5.5.93)

Hence, for fixed large K, (to be chosen precisely later), we can find r0 > 0 so that

sup
n
‖~hn(0)‖H×L2(r≤ 3r0

(1−τn)
)
≤ δ0
K
, (5.5.94)

where δ0 is as in (5.5.89). Now, recall that αn →∞ has been fixed. Using Lemma 5.5.5 we

can choose γn →∞ with

γn ≪ αn

such that

gn(0, γnµn)→ π as n→∞

Now define δn → 0 by

|gn(0, γnµn)− π| =: δn → 0
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Finally we choose βn →∞ so that

βn ≤ min{√γn, δ−1/2n ,
√
n}

gn(0, βnµn/2)→ π as n→∞ (5.5.95)

We make the following claims:

(i) As n→∞ we have

‖~gn(−βnµn/2)− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0 (5.5.96)

(ii) For each n, on the interval r ∈ [βnµn,∞) we have

~gn

(
−βnµn

2
, r

)
− (π, 0) = ~hn

(
−βnµn

2
, r

)
+ ~̃bn

(
−βnµn

2
, r

)
(5.5.97)

+
~̆
θn

(
−βnµn

2
, r

)
,

‖~̆θn‖L∞
t (H×L2) → 0

We first prove (5.5.96). Note that by Proposition 5.5.4 we have

‖(b̃n,0, b̃n,1)‖H×L2(r≤αnµn) ≤
1

n
→ 0. (5.5.98)

Using (5.5.93) together with αnλn ≤ 1 − τn → 0 as well as (5.5.98) and the decomposition

(5.5.90) we can then deduce that

‖~gn(0)− (Q(·/µn), 0)‖H×L2(r≤γnµn) ≤
2

n
→ 0.
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Unscale the above by setting g̃n(t, r) = gn(µnt, µnr) and observe that,

‖(g̃n(0), ∂tg̃n(0))− (Q(·), 0)‖H×L2(r≤γn) ≤
2

n
→ 0.

Now using Corollary 5.2.6 and the finite speed of propagation we claim that we have

‖(g̃n(−βn/2), ∂tg̃n(−βn/2))− (Q(·), 0)‖H×L2(r≤βn) = on(1). (5.5.99)

To see this, we need to show that Corollary 5.2.6 applies. Indeed define

ĝn,0(r) :=





π if r ≥ 2γn

π +
π−g̃n(0,γn)

γn
(r − 2γn) if γn ≤ r ≤ 2γn

g̃n(0, r) if r ≤ γn

ĝn,1(r) =





∂tg̃n(0, r) if r ≤ γn

0 if r ≥ γn

Then, by construction we have ~̂gn ∈ H1, and since

‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn) ≤ Cδn

we then can conclude that

‖~̂gn − (Q, 0)‖H×L2 ≤ ‖~̂gn − (Q, 0)‖H×L2(r≤γn) + ‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn)

+ ‖(π, 0)− (Q, 0)‖H×L2(r≥γn)

≤ C

(
1

n
+ δn + γ−1n

)

Now, given our choice of βn, (5.5.99) follows from Corollary 5.2.6 and the finite speed of
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propagation. Rescaling (5.5.99) we have

‖(gn(−βnµn/2), ∂tgn(−βnµn/2))− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0.

This proves (5.5.96). Also note that by monotonicity of the energy on interior cones and the

comparability of the energy and the H × L2 in H0 for small energies, we see that (5.5.98)

implies that

‖(b̃n(−βnµn/2), ∂tb̃n(−βnµn/2))‖H×L2(r≤βnµn) → 0 (5.5.100)

Next we prove (5.5.97). First we define

ĝn,0(r) =





π − π−gn(0,µnβn/2)
1
2µnβn

r if r ≤ βnµn/2

gn(0, r) if r ≥ βnµn/2

ĝn,1(r) = ġn(0, r)

Then, let χ ∈ C∞([0,∞)) be defined so that χ(r) ≡ 1 on the interval [2,∞) and suppχ ⊂

[1,∞). Define

~̆gn(r) := χ(4r/βnµn)(~̂gn(r)− (π, 0))

~̆
bn(r) := χ(4r/βnµn)

~̃
bn(r)

and observe that we have the following decomposition

~̆gn(r) = ~hn(0, r) +
~̆
bn(r) + on(1).

where the on(1) is in the sense of H × L2 – here we also have used that βnλn → 0 together
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with (5.5.93). Moreover, the right-hand side above, without the on(1) term, is a profile de-

composition in the sense of Corollary 5.2.15 because of Proposition 5.5.7 and Lemma 5.2.20.

We can then consider the nonlinear profiles. Note that by construction we have ~̆gn ∈ H0

and as usual, we can use (5.5.95) to show that E(~̆gn) ≤ C < 2E(Q) for large n. The corre-

sponding wave map evolution ~̆gn(t) ∈ H0 is thus global in time and scatters as t→ ±∞ by

Theorem 5.1.1. We also need to check that E(~̆bn) ≤ C < 2E(Q). Note that by construction

and the definition of b̃n, we have

E(~̆bn) ≤ E(~̃bn) +O

(∫ ∞

0

4r2

β2n,0µ
2
n
(χ′)2(4r/βnµn)

b2n((1− τn)r)
r

dr

)

+

∫ βnµn

βnµn/2

sin2(χ(4r/βnµn)bn,0((1− τn)r))
r

dr

≤ E(~̃bn) +O

(∫ βnλn

βnλn/2

b2n,0(r)

r
dr

)

= E(~̃bn) + on(1) ≤ C < 2E(Q),

where the last line follows from Proposition 5.5.4 and the definition of bn,0, since βn ≪ αn.

Arguing as in the proof of (5.5.83), we can use Proposition 5.5.7, Proposition 5.2.17 and

Lemma 5.2.18 to obtain the following nonlinear profile decomposition

~̆gn(t, r) = ~hn(t, r) +
~̆
bn(t, r) +

~̆
θn(t, r)

‖~̆θn‖L∞
t (H×L2) → 0

Finally observe that by construction and the finite speed of propagation we have

~̆gn(t, r) = ~gn(t, r)− π
~̆
bn(t, r) =

~̃
bn(t, r)
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t = 0 r

t

t = −βnµn
2

βnµn
2

3βnµn
2

αnµn

βnµn

Q(·/µn)

hn(0) + b̃n(0)

Q(·/µn) hn(−βnµn2 ) + b̃n(−βnµn2 )

Figure 5.2: A schematic depiction of the evolution of the decomposition (5.5.90) from time

t = 0 up to t = −βnµn2 . At time t = −βnµn2 the decomposition (5.5.101) holds.

for all t ∈ [−τn/(1− τn), 1) and r ∈ [βnµn/2 + |t| ,∞). Therefore, in particular we have

~gn(−βnµn/2, r)− (π, 0) = ~hn(−βnµn/2, r) + ~̃bn(−βnµn/2, r) + ~̆
θn(βnµn/2, r)

for all r ∈ [βnµn,∞) which proves (5.5.97).

We can combine (5.5.96), (5.5.97), (5.5.100), and (5.5.93) together with the monotonicity

of the energy on interior cones to obtain the decomposition

~gn(−βnµn/2, r) = (Q(r/µn), 0) + ~hn(−βnµn/2, r) (5.5.101)

+
~̃
bn(−βnµn/2, r) + ~̃

θn(r)

‖~̃θn‖H×L2 → 0 (5.5.102)

Now define

sn := − r0
1 − τn

.
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t = 0 r
t

t = −βnµn
2

ρnµn βnµn
2

t = sn
ρnµn + |νn|

|sn|

~hn(−βnµn2 ) +
~̃
bn(−βnµn2 )

~hn(sn) +
~̃
bn(sn)νn

Figure 5.3: A schematic depiction of the evolution of the decomposition (5.5.101) up to time
sn. On the interval [|sn|,+∞), the decomposition (5.5.103) holds.

The next step is to prove the following decomposition at time sn:

~g(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) + ~ζn(r) ∀r ∈ [|sn| ,∞) (5.5.103)

‖~ζn‖H×L2 → 0 (5.5.104)

We proceed as in the proof of (5.5.97). By (5.5.96) we can argue as in the proof of

Lemma 5.5.5 and find ρn →∞ with ρn ≪ βn so that

gn(−βnµn/2, ρnµn)→ π as n→∞ (5.5.105)

Define

f̂n,0(r) =






π − π−gn(−βnµn/2, ρnµn)
ρnµn

r if r ≤ ρnµn

gn(−βnµn/2, r) if r ≥ ρnµn

f̂n,1(r) = ġn(−βnµn/2, r)
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Let χ ∈ C∞ be as above and set

~fn(r) := χ(2r/ρnµn)(
~̂
fn(r)− (π, 0))

~̂
bn(r) := χ(2r/ρnµn)

~̃
bn(−βnµn/2, r)

Observe that we have the following decomposition:

~fn(r) = ~hn(−βnµn/2, r) + ~̂bn(r) + on(1).

where the on(1) above is in the sense of H × L2. Moreover, the right-hand side above,

without the on(1) term, is a profile decomposition in the sense of Corollary 5.2.15 because

of Proposition 5.5.7 and Lemma 5.2.20. We can then consider the nonlinear profiles. Note

that by construction we have ~fn ∈ H0 and, as usual, we can use (5.5.105) to show that

E(~fn) ≤ C < 2E(Q) for large n. The corresponding wave map evolution ~fn(t) ∈ H0 is thus

global in time and scatters as t→ ±∞ by Theorem 5.1.1.

As in the proof of (5.5.97) it is also easy to show that E(~̂bn) ≤ C < 2E(Q) where here

we use (5.5.100) instead of Proposition 5.5.4.

Arguing as in the proof of (5.5.83) we can use Proposition 5.2.17 and Lemma 5.2.18 to

obtain the following nonlinear profile decomposition

~fn(t, r) = ~hn(−βnµn/2 + t, r) +
~̂
bn(t, r) +

~̃ζn(t, r)

‖~̃ζn‖L∞
t (H×L2) → 0

In particular, for

νn := sn + βnµn/2
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we have

~fn(νn, r) = ~hn(sn, r) +
~̂
bn(νn, r) +

~̃
ζn(νn, r).

By the finite speed of propagation we have that

~fn(νn, r) = ~gn(sn, r)

~̂
bn(νn, r) =

~̃bn(sn, r)

as long as r ≥ ρnµn + |νn|. Using the fact that ρn ≪ βn we have that |sn| ≥ ρnµn + |νn|

and hence,

~gn(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) +

~̃
ζn(νn, r) ∀r ∈ [|sn| ,∞).

Setting ~ζn :=
~̃
ζn(νn) we obtain (5.5.103) and (5.5.104). Now, combine (5.5.104), (5.5.94),

and the monotonicity of the energy on light cones for the evolution of ~hn, we obtain:

‖~gn(sn)− (π, 0)− ~̃bn(sn)‖H×L2(|sn|≤r≤2|sn|) ≤
Cδ0
K

(5.5.106)

for n large enough. By Corollary 5.5.8 and (5.5.89), there exists β0 > 0 so that for all t ∈ R

we have

‖~̃bn(t)‖H×L2(r≥|t|) ≥ β0δ0

By (5.5.92) and the monotonicity of the energy on cones we have

‖~̃bn(t)‖H×L2(r≥|t|+1) → 0
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as n→∞. Therefore we have

‖~̃bn(t)‖H×L2(|t|≤r≤1+|t|) ≥
β0δ0
2

for n large enough and for all t ∈ R. Hence setting t = sn we see that the above and (5.5.106)

imply in particular that

‖~gn(sn)− (π, 0)‖H×L2(|sn|≤r≤1+|sn|) ≥
β0δ0
4

> 0

for n,K large enough. Un-scaling this we obtain

‖~ψ(τn − r0)− (π, 0)‖H×L2(r0≤r≤r0+(1−τn)) ≥
β0δ0
4

> 0.

However this contradicts the fact the ψ(t, r) cannot concentrate any energy at the point

(1− r0, r0) ∈ [0, 1)× [0,∞) with r0 > 0. This concludes the proof of Proposition 5.5.1.

We can now finish the proof of Theorem 5.1.3.

Proof of Theorem 5.1.3. Let ~a(t) be defined as in (5.5.11). Recall that by Lemma 5.5.3 we

have

lim
t→1
E(~a(t)) = E(~ψ)− E(~ϕ) (5.5.107)

Over the course of the proof of Proposition 5.5.1 we have found a sequence of times τn → 1

so that

E(~a(τn))→ E(Q)

as n → ∞. Since E(~ψ) = E(Q) + η this implies that E(~ϕ) = η since the right hand side of
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(5.5.107) is independent of t. This then implies that

lim
t→1
E(~a(t)) = E(Q)

We now use the variational characterization of Q to show that in fact ‖ȧ(t)‖L2 → 0 as t→ 1.

To see this observe that since a(t) ∈ H1 we can deduce by (5.2.18) that

E(Q)← E(a(t), ȧ(t)) ≥
∫ ∞

0
ȧ2(t, r) r dr + E(Q)

Next observe that the decomposition in Lemma 5.2.5 provides us with a function λ : (0,∞)→

(0,∞) such that

‖a(t, ·)−Q(·/λ(t))‖H ≤ δ(E(a(t), 0)− E(Q))→ 0

This also implies that

E(~a(t)− (Q(·/λ(t)), 0))→ 0 (5.5.108)

as t → 1. Since t 7→ a(t) is continuous in H for t ∈ [0, 1) it follows from Lemma 5.2.5 that

λ(t) is continuous on [0, 1). Therefore we have established that

~ψ(t)− ~ϕ(t)− (Q(·/λ(t)), 0)→ 0 in H × L2 as t→ 1

It remains to show that λ(t) = o(1−t). This follows immediately from the support properties

of ∇t,ra and from (5.5.108). To see this observe that a(t, r)−Q(r/λ(t)) = π−Q(r/λ(t)) on

[1− t,∞). Thus,

E∞1−t
λ(t)

(Q) = E∞1−t(π −Q(·/λ(t))) ≤ E(~a(t)− (Q(·/λ(t)), 0))→ 0.
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But this then implies that 1−t
λ(t)
→∞ as t→ 1. This completes the proof.

5.6 Appendix: Higher Equivariance classes and more general

targets

5.6.1 1-equivariant wave maps to more general targets

Theorem 5.1.1, Theorem 5.1.2, and Theorem 5.1.3 can be extended to a larger class of

equations, namely equivariant wave maps to general, rotationally symmetric compact targets.

To be specific, each of these theorems holds in the case that the target manifold M is a

surface of revolution with the metric given in polar coordinates, (ρ, ω) ∈ [0,∞) × S1, by

ds2 = dρ2 + g2(ρ)dω2 where g : R→ R is a smooth, odd, function with g(0) = 0, g′(0) = 1.

In addition, in order to ensure the existence of stationary solutions to the corresponding

equivariant wave map equation we need to require that there exists C > 0 such such that

g(C) = 0 and we let C∗ be minimal with this property. We also assume that g′(C∗) = −1

and that g is periodic with period 2C∗. In this case, the nonlinear wave equation of interest

is given by

ψtt − ψrr −
1

r
ψr +

f(ψ)

r2
= 0 (5.6.1)

(ψ, ψt)|t=0 = (ψ0, ψ1)

where f(ψ) = g(ψ)g′(ψ). The conserved energy for this problem is given by

E(~ψ(t)) =
∫ ∞

0

(
ψ2t + ψ2r +

g2(ψ)

r2

)
r dr = const.

To see how this extension works, we note that the small data well-posedness theory for

(5.6.1) is given in [17, Theorem 2]. One then needs replacements for the estimates involving

the sin function in the proof of the orthogonality of the nonlinear energy, the proof of the
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nonlinear perturbation theory, and later in estimates involving the energy of ~a(t), namely

(5.2.48), (5.2.53), and (5.5.15). But, the same type of estimates for g are easily established

using the assumptions we have made on g and its derivatives and simple calculus.

For more details regarding more general metrics we refer the reader to [17]. Note that

since we do not rely on [17, Lemma 7] we are able to eliminate their condition [17, (A3)].

5.6.2 Higher equivariance classes and the 4d-equivariant Yang-Mills system

We can also consider higher equivariance classes, ℓ > 1. Restricting our attention again to

the case g(ρ) = sin(ρ), the Cauchy problem for ℓ equivariant wave maps reduces to

ψtt − ψrr −
1

r
ψr + ℓ2

sin(2ψ)

2r2
= 0 (5.6.2)

(ψ, ψt)|t=0 = (ψ0, ψ1)

For ℓ-equivariant wave maps of topological degree zero we can, as in the 1-equivariant case,

consider the reduction ψ =: rℓu and we obtain the following Cauchy problem for u:

utt − urr −
2ℓ+ 1

r
ur = u1+2/ℓZ(rℓu) (5.6.3)

with

Z(ρ) :=
ℓ2

2

sin(2ρ)− 2ρ

ρ1+2/ℓ

a bounded function. In [17, Theorem 2] a suitable local well-posedness/small data theory for

such a nonlinearity is addressed when ℓ = 2 and thus Theorem 5.1.1 follows from the same

arguments in this chapter. For ℓ > 2, one would need to develop a suitable well-posedness

theory for (5.6.3). This presents some difficulties due the fractional power, 1 + 2/ℓ, in the

nonlinearity.
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One can also consider the 4d equivariant Yang-Mills system:

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ]

∂βF
αβ + [Aβ, F

αβ ] = 0, α, β = 0, . . . , 3

for the connection form Aα and the curvature Fαβ . After, making the equivariant ansatz:

A
ij
α = (δiαx

j − δjαxi)
1− ψ(t, r)

r2

one obtains the following equation for ψ:

ψtt − ψrr −
1

r
ψr −

2ψ(1− ψ2)
r2

= 0

which can be written in the form

ψtt − ψrr −
1

r
ψr + ℓ2

f(ψ)

r2
= 0 (5.6.4)

(ψ, ψt)|t=0 = (ψ0, ψ1)

for f(ρ) = g(ρ)g′(ρ) and g(ρ) = 1/2(1 − ρ2) and ℓ = 2. This equation is of the same form

as (5.6.2) with ℓ = 2 and a more general metric g. The local well-posedness/small data

scattering theory for (5.6.4) is addressed in [17, Theorem 2]. The proof and conclusions of

Theorem 1.1 thus hold for solutions of this equation with suitable modifications as in the

case of 1-equivariant wave maps to more general targets addressed above.

As we mentioned in the introduction, modulo a suitable local well-posedness/small data

theory, one should be able to apply our methods to prove the analog of Theorem 5.1.3 for the

odd higher equivariance classes, ℓ = 3, 5, 7, . . . ,. The reason is that if ℓ is odd, the linearized

version of equation (5.6.2) is a 2ℓ+ 2 dimensional free radial wave equation with 2ℓ+ 2 = 0
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mod 4 for ℓ odd, and in these dimensions Proposition 5.2.2 holds, see [18, Corollary 5].

However, as demonstrated in [18], Proposition 5.2.2 fails for ℓ = 2, 4, 6, . . . , since 2ℓ+2 = 2

mod 4 for ℓ even. Therefore it is impossible to prove Corollary 5.5.8 in these cases and our

contradiction argument for the compactness of the error term ~bn does not go through. So

our method is not suited to prove the complete conclusions of Theorem 5.1.3 for either the

even equivariance classes or the 4d Yang-Mills system, which corresponds roughly to the case

ℓ = 2. However, the rest of the argument preceding the proof of Proposition 5.5.1 should

go through and in particular one should be able to deduce Proposition 5.5.7. This would

allow one to conclude that the error terms ~bn contain no profiles and converge to zero in a

Strichartz norm adapted to the nonlinearity in (5.6.2). This is a slightly weaker result than

showing that the ~bn’s vanish in the energy space, but on its own, it is already quite strong.
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CHAPTER 6

CLASSIFICATION OF 2D EQUIVARIANT WAVE MAPS TO

POSITIVELY CURVED TARGETS: PART II

6.1 Introduction

We continue our study of the equivariant wave maps problem from 1 + 2 dimensional

Minkowski space to 2–dimensional surfaces of revolution.

Recall that in spherical coordinates,

(ψ, ω) 7→ (sinψ cosω, sinψ sinω, cosψ),

on S2, the metric, g, is given by the matrix g = diag(1, sin2(ψ)). In the case of 1-equivariant

wave maps, we require our wave map, U , to have the form

U(t, r, ω) = (ψ(t, r), ω) 7→ (sinψ(t, r) cosω, sinψ(t, r) sinω, cosψ(t, r)),

where (r, ω) are polar coordinates on R
2. In this case, the Cauchy problem reduces to

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0 (6.1.1)

(ψ, ψt)|t=0 = (ψ0, ψ1).

Wave maps exhibit a conserved energy, which in this equivariant setting is given by

E(U, ∂tU)(t) = E(ψ, ψt)(t) =
∫ ∞

0

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr = const.,
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and they are invariant under the scaling

~ψ(t, r) := (ψ(t, r), ψt(t, r)) 7→ (ψ(λt, λr), λψt(λtλr)).

The conserved energy is also invariant under this scaling which means that the Cauchy

problem under consideration is energy critical.

We refer the reader to the previous chapter for a more detailed introduction and history

of the equivariant wave maps problem.

As in Chapter 5, we note that any wave map ~ψ(t, r) with finite energy and continuous

dependence on t ∈ I satisfies ψ(t, 0) = mπ and ψ(t,∞) = nπ for all t ∈ I for fixed integers

m,n. This determines a disjoint set of energy classes

Hm,n := {(ψ0, ψ1) | E(ψ0, ψ1) <∞ and ψ0(0) = mπ, ψ0(∞) = nπ}. (6.1.2)

We will mainly consider the spaces H0,n and we denote these by Hn := H0,n. In this case

we refer to n as the degree of the map. We also define H =
⋃
n∈ZHn to be the full energy

space.

In our analysis, an important role is played by the unique (up to scaling) non-trivial

harmonic map, Q(r) = 2 arctan(r), given by stereographic projection. We note that Q

solves

Qrr +
1

r
Qr =

sin(2Q)

2r2
. (6.1.3)

Observe in addition that (Q, 0) ∈ H1 and in fact (Q, 0) has minimal energy in H1 with

E(Q) := E(Q, 0) = 4. Note the slight abuse of notation above in that we will denote the

energy of the element (Q, 0) ∈ H1 by E(Q) rather than E(Q, 0).

Recall that in Chapter 5 we showed that for any data ~ψ(0) in the zero topological class,

318



H0, with energy E(~ψ) < 2E(Q) there is a corresponding unique global wave map evolution

~ψ(t, r) that scatters to zero in the sense that the energy of ~ψ(t) on any arbitrary, but fixed

compact region vanishes as t → ∞, see Theorem 5.1.1. An equivalent way to view this

scattering property is that there exists a decomposition

~ψ(t) = ~ϕL(t) + oH(1) as t→∞ (6.1.4)

where ~ϕL(t) ∈ H0 solves the linearized version of (6.1.1):

ϕtt − ϕrr −
1

r
ϕr +

1

r2
ϕ = 0 (6.1.5)

This result was proved via the concentration-compactness/rigidity method which was devel-

oped by the Kenig and Merle in [36] and [37], and it provides a complete classification of all

solutions in H0 with energy below 2E(Q), namely, they all exist globally and scatter to zero.

We note that this theorem is also a consequence of the work by Sterbenz and Tataru in [75]

if one considers their results in the equivariant setting.

In the previous chapter we also study degree one wave maps, ~ψ(t) ∈ H1, with energy

E(~ψ) = E(Q) + η < 3E(Q) that blow up in finite time. Because we are working in the

equivariant, energy critical setting, blow-up can only occur at the origin in R2 and in an

energy concentration scenario. We show that if blow-up does occur, say at t = 1, then there

exists a scaling parameter λ(t) = o(1− t), a degree zero map ~ϕ ∈ H0 and a decomposition

~ψ(t, r) = ~ϕ(r) + (Q (r/λ(t)) , 0) + oH(1) as t→ 1. (6.1.6)

Here we complete our study of degree one solutions to (6.1.1), i.e., solutions that lie in

H1, with energy below 3E(Q), by providing a classification of such solutions with this energy

constraint. Since the degree of the map is preserved for all time, scattering to zero is not
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possible for a degree one solution. However, we show that a decomposition of the form (6.1.6)

holds in the global case. In particular we establish the following theorem:

Theorem 6.1.1 (Classification of solutions inH1 with energies below 3E(Q)). Let ~ψ(0) ∈ H1

and denote by ~ψ(t) ∈ H1 the corresponding wave map evolution. Suppose that ~ψ satisfies

E(~ψ) = E(Q) + η < 3E(Q).

Then, one of the following two scenarios occurs:

(1) Finite time blow-up: The solution ~ψ(t) blows up in finite time, say at t = 1, and

there exists a continuous function, λ : [0, 1) → (0,∞) with λ(t) = o(1 − t), a map

~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = η, and a decomposition

~ψ(t) = ~ϕ+ (Q (·/λ(t)) , 0) + ~ǫ(t) (6.1.7)

such that ~ǫ(t) ∈ H0 and ~ǫ(t)→ 0 in H0 as t→ 1.

(2) Global Solution: The solution ~ψ(t) ∈ H1 exists globally in time and there exists

a continuous function, λ : [0,∞) → (0,∞) with λ(t) = o(t) as t → ∞, a solution

~ϕL(t) ∈ H0 to the linear wave equation (6.1.5), and a decomposition

~ψ(t) = ~ϕL(t) + (Q (·/λ(t)) , 0) + ~ǫ(t) (6.1.8)

such that ~ǫ(t) ∈ H0 and ~ǫ(t)→ 0 in H0 as t→∞.

Remark 21. One should note that the requirement λ(t) = o(t) as t → ∞ in part (2) above

leaves open many possibilities for the asymptotic behavior of global degree one solutions to

(6.1.1) with energy below 3E(Q). If λ(t) → λ0 ∈ (0,∞) then our theorem says that the

solution ψ(t) asymptotically decouples into a soliton, Qλ0 , plus a purely dispersive term,
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and one can call this scattering to Qλ0 . If λ(t) → 0 as t → ∞ then this means that the

solution is concentrating E(Q) worth of energy at the origin as t → ∞ and we refer to this

phenomenon as infinite time blow-up. Finally, if λ(t) →∞ as t→∞ then the solution can

be thought of as concentrating E(Q) worth of energy at spacial infinity as t → ∞ and we

call this infinite time flattening.

We also would like to highlight the fact that global solutions of the type mentioned

above, i.e., infinite time blow-up and flattening, have been constructed in the case of the

3d semi-linear focusing energy critical wave equation by Donninger and Krieger in [19]. No

constructions of this type are known at this point for the energy critical wave maps studied

here. In addition, a classification of all the possible dynamics for maps in H1 at energy levels

≥ 3E(Q) remains open.

Remark 22. We emphasize that Chapter 5 goes hand-in-hand with this chapter. In fact, part

(1) of Theorem 6.1.1 was established in Chapter 5. Therefore, in order to complete the proof

of Theorem 6.1.1 we need to prove only part (2) and the rest of this chapter will be devoted

to that goal. The broad outline of the proof of Theorem 6.1.1 (2) is similar in nature to the

proof of part (1). With this is mind we will often refer the reader to the previous chapter

where the details are nearly identical instead of repeating the same arguments here.

Remark 23. We remark that Theorem 6.1.1 is reminiscent of the recent works of Duyckaerts,

Kenig, and Merle in [22, 21, 24, 23] for the energy critical semi-linear focusing wave equation

in 3 spacial dimensions and again we refer the reader to the previous chapter for a more

detailed description of the similarities and differences between these papers and this work.

Remark 24. Finally, we would like to note that the same observations in appendix of the

previous chapter regarding 1-equivariant wave maps to more general targets, higher equiv-

ariance classes and the 4d equivariant Yang-Mills system hold in the context of the global

statement in Theorem 6.1.1.
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6.2 Preliminaries

For the reader’s convenience, we recall a few facts and notations from [15] and the previous

chapter that are used frequently in what follows. We define the 1-equivariant energy space

to be

H = {~U ∈ Ḣ1 × L2(R2; S2) |U ◦ ρ = ρ ◦ U, ∀ρ ∈ SO(2)}.

H is endowed with the norm

E(~U(t)) = ‖~U(t)‖2
Ḣ1×L2(R2;S2)

=

∫

R2
(|∂tU |2g + |∇U |2g) dx. (6.2.1)

As noted in the introduction, by our equivariance condition we can write U(t, r, ω) =

(ψ(t, r), ω) and the energy of a wave map becomes

E(U, ∂tU)(t) = E(ψ, ψt)(t) =
∫ ∞

0

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr = const. (6.2.2)

We also define the localized energy as follows: Let r1, r2 ∈ [0,∞). Then

Er2r1 (~ψ(t)) :=
∫ r2

r1

(
ψ2t + ψ2r +

sin2(ψ)

r2

)
r dr.

Following Shatah and Struwe, [68], we set

G(ψ) :=

∫ ψ

0
|sin ρ| dρ. (6.2.3)

Observe that for any (ψ, 0) ∈ H and for any r1, r2 ∈ [0,∞) we have

|G(ψ(r2))−G(ψ(r1))| =
∣∣∣∣∣

∫ ψ(r2)

ψ(r1)
|sin ρ| dρ

∣∣∣∣∣ (6.2.4)

=

∣∣∣∣
∫ r2

r1
|sin(ψ(r))|ψr(r) dr

∣∣∣∣ ≤
1

2
Er2r1 (ψ, 0).
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We also recall from Chapter 5 the definition of the space H × L2.

‖(ψ0, ψ1)‖2H×L2 :=

∫ ∞

0

(
ψ21 + (ψ0)

2
r +

ψ20
r2

)
r dr. (6.2.5)

We note that for degree zero maps (ψ0, ψ1) ∈ H0 the energy is comparable to the H × L2

norm provided the L∞ norm of ψ0 is uniformly bounded below π. This equivalence of norms

is detailed in Lemma 5.2.1, see also [17, Lemma 2]. The space H×L2 is not defined for maps

(ψ0, ψ1) ∈ H1, but one can instead consider the H×L2 norm of (ψ0−Qλ, 0) for λ ∈ (0,∞),

and Qλ(r) = Q(r/λ). In fact, for maps ~ψ ∈ H1 such that E(~ψ) − E(Q) is small, one can

choose λ > 0 so that

‖(ψ0 −Qλ, ψ1)‖2H×L2 ≃ E(~ψ)− E(Q).

This amounts to the coercivity of the energy near Q up to the scaling symmetry. For more

details we refer the reader to [14, Proposition 4.3], Lemma 5.2.5, and [3].

6.2.1 Properties of global wave maps

We will need a few facts about global solutions to (6.1.1). The results in this section consti-

tute slight refinements and a few consequences of the work of Shatah and Tahvildar-Zadeh in

[71, Section 3.1] on global equivariant wave maps and originate in the work of Christodoulou

and Tahvildar-Zadeh on spherically symmetric wave maps, see [12].

Proposition 6.2.1. Let ~ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we have

lim sup
t→∞

E t−Aλt (~ψ(t))→ 0 as A→∞. (6.2.6)
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In fact, we have

E t−Aλt (~ψ(t))→ 0 as t, A→∞ for A ≤ (1− λ)t. (6.2.7)

We note that Proposition 6.2.1 is a refinement of [71, (3.4)], see also [12, Corollary 1]

where the case of spherically symmetric wave maps is considered. To prove this result, we

follow [12], [71], and [68] and introduce the following quantities:

e(t, r) := ψ2t (t, r) + ψ2r (t, r) +
sin2(ψ(t, r))

r2

m(t, r) := 2ψt(t, r)ψr(t, r).

Observe that with this notation the energy identity becomes:

∂te(t, r) =
1

r
∂r (r m(t, r)) , (6.2.8)

which we can conveniently rewrite as

∂t(re(t, r))− ∂r(r m(t, r)) = 0. (6.2.9)

Using the notation in [12], we set

α2(t, r) := r (e(t, r) +m(t, r))

β2(t, r) := r(e(t, r)−m(t, r))

and we define null coordinates

u = t− r, v = t + r.
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Next, for 0 ≤ λ < 1 set

Eλ(u) :=

∫ ∞
1+λ
1−λu

α2(u, v) dv (6.2.10)

F (u0, u1) := lim
v→∞

∫ u1

u0

β2(u, v) du. (6.2.11)

Also, let C±ρ denote the interior of the forward (resp. backward) light-cone with vertex at

(t, r) = (ρ, 0) for ρ > 0 in (t, r) coordinates.

As in [71, Section 3.1], one can show that the integral in (6.2.10) and the limit in (6.2.11)

exist for a wave map of finite energy, see also [12, Section 2] for the details of the argument

for the spherically symmetric case.

By integrating the energy identity (6.2.9) over the region (C+
u0\C+

u1) ∩ C−v0 , where 0 <

u0 < u1 < v0, we obtain the identity

∫ u1

u0

β2(u, v) du =

∫ v0

u0

α2(u0, v) dv −
∫ v0

u1

α2(u1, v) dv.

Letting v0 →∞ we see that

0 ≤ F (u0, u1) = E0(u0)− E0(u1), (6.2.12)

which shows that E0 is decreasing. Next, note that

F (u, u2) = F (u, u1) + F (u1, u2) ≥ F (u, u1)

for u2 > u1, and thus F (u, u1) is increasing in u1. F (u, u1) is also bounded above by E (u)

so

F (u) := lim
u1→∞

F (u, u1)
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exists and, as in [71], [12], we have

F (u)→ 0 as u→∞. (6.2.13)

Finally note that the argument in [12, Lemma 1] shows that for all 0 < λ < 1 we have

Eλ(u)→ 0 as u→∞, (6.2.14)

which is stated in [71, (3.3)]. To deduce (6.2.14), follow the exact argument in [12, proof of

Lemma 1] using the relevant multiplier inequalities for equivariant wave maps established in

[68, proof of Lemma 8.2] in place of [12, equation (6)]. We can now prove Proposition 6.2.1.

Proof of Proposition 6.2.1. Fix λ ∈ (0, 1) and δ > 0. Find A0 and T0 large enough so that

0 ≤ F (A) ≤ δ, 0 ≤ Eλ((1− λ)t) ≤ δ

for all A ≥ A0 and t ≥ T0. In (u, v)–coordinates consider the points

X1 = ((1− λ)t, (1 + λ)t), X2 = (A, 2t− A)

X3 = (A, v̄), X4 = ((1− λ)t, v̄)

where v̄ is very large. Integrating the energy identity (6.2.9) over the region Ω bounded by

the line segments X1X2, X2X3, X3X4, X4X1 we obtain,

E t−Aλt (~ψ(t)) = −
∫ v̄

2t−A
α2(A, v) dv +

∫ (1−λ)t

A
β2(u, v̄) du+

∫ v̄

(1+λ)t
α2((1− λ)t, v) dv.

Letting v̄ →∞ above and recalling that F (u, u1) is increasing in u1 we have
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t

F (A, 1− λt)

Eλ((1− λ)t)

E t−Aλt (~ψ(t))

u = A

Ω

Figure 6.1: The quadrangle Ω over which the energy identity is integrated is the gray region
above.

E t−Aλt (~ψ(t)) ≤ Eλ((1− λ)t) + F (A, (1− λ)t)

≤ Eλ((1− λ)t) + F (A).

The proposition now follows from (6.2.14) and (6.2.13).

We will also need the following corollaries of Proposition 6.2.1:

Corollary 6.2.2. Let ~ψ(t) ∈ H be a global wave map. Then

lim sup
T→∞

1

T

∫ T

A

∫ t−A

0
ψ2t (t, r) r dr dt→ 0 as A→∞. (6.2.15)

Proof. We will use the following virial identity for solutions to (6.1.1):

∂t(r
2m)− ∂r(r2ψ2t + r2ψ2r − sin2 ψ) + 2rψ2t = 0. (6.2.16)
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Now, fix δ > 0 so that δ < 1/3 and find A0, T0 so that for all A ≥ A0 and t ≥ T0 we have

E t−Aδt (~ψ(t)) ≤ δ.

Then,

∫ δt

0
e(t, r)r2 dr ≤ E(~ψ(t))δt

and as long as we ensure that A ≤ 1/3t, we obtain

∫ 2t/3

δt
e(t, r) r2 dr ≤ δt.

This implies that

∫ 2t/3

0
e(t, r) r2 dr ≤ Cδt, and

∫ 2t/3

0
e(t, r) r3 dr ≤ Cδt2.

Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for |x| ≤ 1/3, χ(x) = 0

for |x| ≥ 2/3 and χ′(x) ≤ 0. Then, using the virial identity (6.2.16) we have

d

dt

∫ ∞

0
m(t, r)χ(r/t) r2 dr =

∫ ∞

0
∂t(r

2m(t, r))χ(r/t) dr− 2

t2

∫ ∞

0
ψtψr r

3χ′(r/t) dr

=

∫ ∞

0
∂r(r

2(ψ2t + ψ2r )− sin2(ψ))χ(r/t) dr

− 2

∫ ∞

0
ψ2t (t, r)χ(r/t) r dr +O(δ)

=
1

t2

∫ ∞

0
(r2(ψ2t + ψ2r )− sin2(ψ))χ′(r/t) r dr

− 2

∫ ∞

0
ψ2t (t, r)χ(r/t) r dr +O(δ)

= −2
∫ ∞

0
ψ2t (t, r)χ(r/t) r dr +O(δ).
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Integrating in t between 0 and T yields

∫ T

0

∫ ∞

0
ψ2t (t, r)χ(r/t) r dr dt ≤ CδT

with an absolute constant C > 0. By the definition of χ(x) this implies

∫ T

0

∫ t/3

0
ψ2t (t, r) r dr dt ≤ CδT.

Next, note that we have

∫ T

A

∫ t−A

t/3
ψ2t (t, r) r dr dt ≤

∫ T0

A
E(~ψ) dt+

∫ T

T0

∫ t−A

t/3
e(t, r) r dr dt

≤ (T0 − A)E(~ψ) + (T − T0)δ.

Therefore,

1

T

∫ T

A

∫ t−A

0
ψ2t (t, r) r dr dt ≤ Cδ +

T0
T
E(~ψ)

Hence,

lim sup
T→∞

1

T

∫ T

A

∫ t−A

0
ψ2t (t, r) r dr dt ≤ Cδ

for all A ≥ A0, which proves (6.2.15).

Corollary 6.2.3. Let ~ψ(t) ∈ H be a smooth global wave map. Recall that ~ψ(t) ∈ H implies

that there exists k ∈ Z such that for all t we have ψ(t,∞) = kπ. Then for any λ > 0 we

have

‖ψ(t)− ψ(t,∞)‖L∞(r≥λt) → 0 as t→∞. (6.2.17)
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Before proving Corollary 6.2.3, we can combine Proposition 6.2.1 and Corollary 6.2.3 to

immediately deduce the following result.

Corollary 6.2.4. Let ~ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we have

lim sup
t→∞

‖~ψ(t)− (ψ(t,∞), 0)‖2
H×L2(λt≤r≤t−A) → 0 as A→∞. (6.2.18)

Proof. Say ~ψ(t) ∈ Hk. Observe that Corollary 6.2.3 shows that for t0 large enough we have,

say,

|ψ(t, r)− kπ| ≤ π

100

for all t ≥ t0 and r ≥ λt. This in turn implies that for t ≥ t0 we can find a C > 0 such that

|ψ(t, r)− kπ|2 ≤ C sin2(ψ(t, r)) ∀ t ≥ t0, r ≥ λt.

Now (6.2.18) follows directly from (6.2.6).

The first step in the proof of Corollary 6.2.3 is the following lemma:

Lemma 6.2.5. Let ~ψ(t) ∈ H be a smooth global wave map. Let R > 0 and suppose that the

initial data ~ψ(0) = (ψ0, ψ1) ∈ H1 satisfies supp(∂rψ0), supp(ψ1) ⊂ B(0, R). Then for any

t ≥ 0 and for any A < t we have

‖ψ(t)− ψ(t,∞)‖L∞(r≥t−A) ≤
√
E(~ψ)

√
A+R

t− A . (6.2.19)

Proof. By the finite speed of propagation we note that for each t ≥ 0 we have supp(ψr(t)) ⊂
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B(0, R + t). Hence, for all t ≥ 0 we have

|ψ(t, r)− ψ(t,∞)| ≤
∫ ∞

r

∣∣ψr(t, r′)
∣∣ dr′

≤
(∫ R+t

r
ψ2r (t, r

′) r′ dr′
)1

2
(∫ R+t

r

1

r′
dr′
)1

2

≤
√
E(~ψ)

√

log

(
t+R

r

)
.

Next observe that if r ≥ t− A then

log

(
t+R

r

)
≤ log

(
1 +

A+R

r

)
≤ log

(
1 +

A +R

t−A

)
≤ A+R

t− A .

This proves (6.2.19).

Proof of Corollary 6.2.3. Say ψ(t) ∈ Hk, that is ψ(t,∞) = kπ for all t. First observe that

by an approximation argument, it suffices to consider wave maps ~ψ(t) ∈ Hk with initial data

~ψ(0) = (ψ0, ψ1) ∈ Hk with

supp(∂rψ0), supp(ψ1) ⊂ B(0, R)

for R > 0 arbitrary, but fixed. Now, let tn →∞ be any sequence and set

An :=
√
tn.

Then, for each r ≥ λtn we have

|ψ(tn, r)− kπ| ≤ ‖ψ(tn)− kπ‖L∞(λtn≤r≤tn−An) + ‖ψ(tn)− kπ‖L∞(r≥tn−An).
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By Lemma 6.2.5 we know that

‖ψ(tn)− kπ‖L∞(r≥tn−An) ≤
√
E(ψ)

√√
tn +R

tn −
√
tn
→ 0 as n→∞. (6.2.20)

Hence it suffices to show that

‖ψ(tn)− kπ‖L∞(λtn≤r≤tn−An) → 0 as n→∞.

To see this, first observe that (6.2.20) implies that

ψ(tn, tn − An)→ kπ

as n→∞. Therefore it is enough to show that

‖ψ(tn)− ψ(tn, tn − An)‖L∞(λtn≤r≤tn−An) → 0 as n→∞. (6.2.21)

With G defined as in (6.2.3) we can combine (6.2.4) and Proposition 6.2.1 to deduce that

for all r ≥ λtn we have

|G(ψ(tn, r))−G(ψ(tn, tn − An))| ≤
1

2
E tn−An
λtn

(~ψ(tn))→ 0.

as n→∞. This immediately implies (6.2.21) sinceG is a continuous, increasing function.

6.3 Profiles for global degree one solutions with energy below

3E(Q)

In this section we carry out the proof of Theorem 6.1.1 (2). We start by first deducing the

conclusions along a sequence of times. To be specific, we establish the following proposition:
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Proposition 6.3.1. Let ψ(t) ∈ H1 be a global solution to (6.1.1) with

E(~ψ) = E(Q) + η < 3E(Q).

Then there exist a sequence of times τn → ∞, a sequence of scales λn ≪ τn, a solution

~ϕL(t) ∈ H0 to the linear wave equation (6.1.5), and a decomposition

~ψ(τn) = ~ϕL(τn) + (Q (·/λn) , 0) + ~ǫ(τn) (6.3.1)

such that ~ǫ(τn) ∈ H0 and ~ǫ(τn)→ 0 in H × L2 as n→∞.

To prove Proposition 6.3.1 we proceed in several steps. We first construct the sequences

τn and λn while identifying the large profile, Q(·/λn). Once we have done this, we extract

the radiation term ϕL. In the last step, we prove strong convergence of the error

~ǫ(τn) := ~ψ(τn)− ~ϕL(τn)− (Q (·/λn) , 0)→ 0

in the space H × L2.

6.3.1 The harmonic map at t = +∞

Here we prove the analog of Struwe’s result [76, Theorem 2.1] for global wave maps of degree

different than zero, i.e., ψ(t) ∈ H\H0 for all t ∈ [0,∞). This will allow us to identify the

sequences τn, λn and the harmonic maps Q(·/λn) in the decomposition (6.3.1).

Theorem 6.3.2. Let ~ψ(t) ∈ H\H0 be a smooth, global solution to (6.1.1). Then, there exists

a sequence of times tn → ∞ and a sequence of scales λn ≪ tn so that the following results

hold: Let

~ψn(t, r) :=
(
ψ(tn + λnt, λnr), λnψ̇(tn + λnt, λnr)

)
(6.3.2)
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be the global wave map evolutions associated to the initial data

~ψn(r) := (ψ(tn, λnr), λnψ̇(tn, λn, r)).

Then, there exists λ0 > 0 so that

~ψn → (±Q(·/λ0), 0) in L2t ([0, 1);H
1 × L2)loc.

We begin with the following lemma, which follows from Corollary 6.2.2 and is the global-

in-time version of Corollary 5.2.9 from the previous chapter. The statement and proof are

also very similar to [24, Lemma 4.4] and [22, Corollary 5.3].

Lemma 6.3.3. Let ~ψ(t) ∈ H be a smooth global wave map. Let A : (0,∞)→ (0,∞) be any

increasing function such that A(t)ր∞ as t→∞ and A(t) ≤ t for all t. Then, there exists

a sequence of times tn →∞ such that

lim
n→∞ sup

σ>0

1

σ

∫ tn+σ

tn

∫ t−A(tn)

0
ψ̇2(t, r) r dr dt = 0. (6.3.3)

Proof. The proof is analogous to the argument given in [22, Corollary 5.3]. We argue by

contradiction. The existence of a sequence of times tn satisfying (6.3.3) is equivalent to the

statement

∀A(t)ր∞ with A(t) ≤ t as t→∞, ∀δ > 0, ∀T0 > 0, ∃τ ≥ T0 so that

sup
σ>0

1

σ

∫ τ+σ

τ

∫ t−A(τ)

0
ψ̇2(t, r) r dr dt ≤ δ.
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So we assume that (6.3.3) fails. Then,

∃A(t)ր∞ with A(t) ≤ t as t→∞, ∃δ > 0, ∃T0 > 0, ∀τ ≥ T0, ∃σ > 0 so that

1

σ

∫ τ+σ

τ

∫ t−A(τ)

0
ψ̇2(t, r) r dr dt > δ. (6.3.4)

Now, by Corollary 6.2.2 we can find a large A1 and a T1 = T1(A1) > T0 so that for all

T ≥ T1 we have

1

T

∫ T

A1

∫ t−A1

0
ψ̇2(t, r) r dr dt ≤ δ/100. (6.3.5)

Since A(t)ր∞ we can fix T > T1 large enough so that A(t) ≥ A1 for all t ≥ T . Define the

set X as follows:

X :=

{
σ > 0 :

1

σ

∫ T+σ

T

∫ t−A(T )

0
ψ̇2(t, r) r dr dt ≥ δ

}
.

Then X is nonempty by (6.3.4). Define ρ := supX . We claim that ρ ≤ T . To see this

assume that there exists σ ∈ X so that σ ≥ T . Then we would have

T + σ ≤ 2σ.

This in turn implies, using (6.3.5), that

1

2σ

∫ T+σ

T

∫ t−A(T )

0
ψ̇2(t, r) r dr dt ≤ 1

T + σ

∫ T+σ

A1

∫ t−A1

0
ψ̇2(t, r) r dr dt ≤ δ/100

where we have also used the fact that A(T ) ≥ A1. This would mean that

1

σ

∫ T+σ

T

∫ t−A(T )

0
ψ̇2(t, r) r dr dt ≤ δ/50,
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which is impossible since we assumed that σ ∈ X . Therefore ρ ≤ T . Moreover, we know

that

∫ T+ρ

T

∫ T−A(T )

0
ψ̇2(t, r) r dr dt ≥ δρ. (6.3.6)

Now, since T + ρ > T > T1 > T0 we know that there exists σ > 0 so that

∫ T+ρ+σ

T+ρ

∫ t−A(T+ρ)

0
ψ̇2(t, r) r dr dt > δσ.

Since A(t) is increasing, we have A(T ) ≤ A(T + ρ) and hence the above implies that

∫ T+ρ+σ

T+ρ

∫ t−A(T )

0
ψ̇2(t, r) r dr dt > δσ. (6.3.7)

Summing (6.3.6) and (6.3.7) we get

∫ T+ρ+σ

T

∫ t−A(T )

0
ψ̇2(t, r) r dr dt > δ(σ + ρ),

which means that ρ+ σ ∈ X . But this contradicts that fact that ρ = supX .

The rest of the proof of Theorem 6.3.2 will follow the same general outline of [76, proof

of Theorem 2.1]. Let ~ψ(t) ∈ H1 be a smooth global wave map.

We begin by choosing a scaling parameter. Let δ0 > 0 be a small number, for example

δ0 = 1 would work. For each t ∈ (0,∞) choose λ(t) so that

δ0 ≤ E2λ(t)0 (~ψ(t)) ≤ 2δ0. (6.3.8)

Then using the monotonicity of the energy on interior cones we know that for each |τ | ≤ λ(t)
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we have

Eλ(t)0 (~ψ(t+ τ)) ≤ E2λ(t)−|τ |0 (~ψ(t+ τ)) ≤ E2λ(t)0 (~ψ(t)) ≤ 2δ0. (6.3.9)

Similarly, we have

δ0 ≤ E2λ(t)+|τ |0 (~ψ(t + τ)) ≤ E3λ(t)0 (~ψ(t+ τ)). (6.3.10)

Lemma 6.3.4. Let ~ψ(t) ∈ H\H0 and λ(t) be defined as above. Then we have λ(t) ≪ t as

t→∞.

Proof. Suppose ~ψ ∈ Hk for k ≥ 1. It suffices to show that for all λ > 0 we have λ(t) ≤ λt

for all t large enough. Fix λ > 0. By Corollary 6.2.3 we have

‖ψ(t)− kπ‖L∞(r≥λt) → 0 (6.3.11)

as t → ∞. For the sake of finding a contradiction, suppose that there exists a sequence

tn →∞ with λ(tn) ≥ λtn for all n ∈ N. By (6.2.4) and (6.3.11) we would then have that

E2λ(tn)0 (~ψ(tn)) ≥ Eλtn0 (~ψ(tn)) ≥ 2G(ψ(tn, λtn))→ 2G(kπ) ≥ 4 > 2δ0,

which contradicts (6.3.8) as long as we ensure that δ0 < 2.

We can now complete the proof of Theorem 6.3.2.

Proof of Theorem 6.3.2. Let λ(t) be defined as in (6.3.8). Choose another scaling parameter

A(t) so that A(t)→∞ and λ(t) ≤ A(t)≪ t for t→∞, for example one could take A(t) :=

max{λ̃(t), t1/2} where λ̃(t) := sup0≤s≤t λ(s). By Lemma 6.3.3 we can find a sequence
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tn →∞ so that by setting λn := λ(tn) and An := A(tn) we have

lim
n→∞

1

λn

∫ tn+λn

tn

∫ t−An

0
ψ̇2(t, r) r dr dt = 0.

Now define a sequence of global wave maps ~ψn(t) ∈ H\H0 by

~ψn(t, r) :=
(
ψ(tn + λnt, λnr), λnψ̇(tn + λnt, λnr)

)
.

and write the full wave maps in coordinates on S2 as Un(t, r, ω) := (ψn(t, r), ω). Observe

that we have

∫ 1

0

∫ rn

0
ψ̇2n(t, r) r dr dt→ 0 as n→∞ (6.3.12)

where rn := (tn − An)/λn →∞ as n→∞ by our choice of An. Also note that

E(~ψn(t)) = E(~ψ(tn + λnt)) = E(~ψ) = C.

This implies that the sequence ~ψn is uniformly bounded in L∞t (Ḣ1×L2). Note that (6.2.4)

implies that ψn is uniformly bounded in L∞t L
∞
x . Hence we can extract a further subsequence

so that

~ψn ⇀ ~ψ∞ weakly in L2t (H
1 × L2)loc

and, in fact, locally uniformly on [0, 1)× (0,∞). By (6.3.12), the limit

~ψ∞(t, r) = (ψ∞(r), 0) ∀(t, r) ∈ [0, 1)× (0,∞)

and is thus a time-independent weak solution to (6.1.1) on [0, 1)× (0,∞). This means that
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the corresponding full, weak wave map Ũ∞(t, r, ω) = U∞(r, ω) := (ψ∞(r), ω) is a time-

independent weak solution to (1.1.8) on [0, 1)×R2 \ {0}. By Hélein’s theorem [32, Theorem

2],

U∞ : R2 \ {0} → S
2

is a smooth finite energy, co-rotational harmonic map. By Sacks-Uhlenbeck, [65], we can

then extend U∞ to a smooth finite energy, co-rotational harmonic map U : R2 → S2. Writing

U(r, ω) = (ψ∞(r), ω), we have either ψ∞ ≡ 0 or ψ∞ = ±Q(·/λ0) for some λ0 > 0.

Following Struwe, we can also establish strong local convergence

~ψn → (ψ∞, 0) in L2t ([0, 1);H
1 × L2)loc (6.3.13)

using the equation (1.1.8) and the local energy constraints from (6.3.9):

E10 (~ψn(t)) ≤ 2δ0, E10 (ψ∞) ≤ 2δ0,

which hold uniformly in n for |t| ≤ 1. For the details of this argument we refer the reader to

[76, Proof of Theorem 2.1 (ii)]. Finally we note that the strong local convergence in (6.3.13)

shows that indeed ψ∞ 6≡ 0 since by (6.3.10) we have

δ0 ≤ E30 (~ψn(t))

uniformly in n for each |t| ≤ 1. Therefore we can conclude that there exists λ0 > 0 so that

ψ∞(r) = ±Q(r/λ0).

As in the previous chapter, the following consequences of Theorem 6.3.2, which hold for

global degree one wave maps with energy below 3E(Q), will be essential in what follows.

Corollary 6.3.5. Let ψ(t) ∈ H1 be a smooth global wave map such that E(~ψ) < 3E(Q).
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Then we have

ψn −Q(·/λ0)→ 0 as n→∞ in L2t ([0, 1);H)loc, (6.3.14)

with ψn(t, r), {tn}, {λn}, and λ0 as in Theorem 6.3.2.

Corollary 6.3.5 is the global-in-time analog of Corollary 5.2.13. For the details, we refer

the reader to the proof of Lemma 5.2.11, Lemma 5.2.12, and Corollary 5.2.13. At this point

we note that we can, after a suitable rescaling, assume, without loss of generality, that λ0 in

Theorem 6.3.2, and Corollary 6.3.5, satisfies λ0 = 1.

Arguing as in the proof of Proposition 5.5.4 we can also deduce the following consequence

of Theorem 6.3.2.

Proposition 6.3.6. Let ψ(t) ∈ H1 be a smooth global wave map such that E(~ψ) < 3E(Q).

Let αn be any sequence such that αn →∞. Then, there exists a sequence of times τn →∞

and a sequence of scales λn ≪ τn with αnλn ≪ τn, so that

(a) As n→∞ we have

lim
n→∞

∫ τn−An

0
ψ̇2(τn, r) r dr → 0, (6.3.15)

where An →∞ satisfies λn ≤ An ≪ τn.

(b) As n→∞ we have

lim
n→∞

∫ αnλn

0

(∣∣∣∣ψr(τn, r)−
Qr(r/λn)

λn

∣∣∣∣
2

+
|ψ(τn, r)−Q(r/λn)|2

r2

)
r dr = 0. (6.3.16)

Remark 25. Proposition 6.3.6 follows directly from Lemma 6.3.3, Corollary 6.3.5 and a

diagonalization argument. As mentioned above, we refer the reader to Proposition 5.5.4,

parts (a) and (b) for the details. Also note that τn ∈ [tn, tn + λn] where tn → ∞ is the
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sequence in Proposition 6.3.6. Finally An := A(tn) is the sequence that appears in the proof

of Theorem 6.3.2.

As in the previous chapter we will also need the following simple consequence of Propo-

sition 6.3.6.

Corollary 6.3.7. Let αn, λn, and τn be defined as in Proposition 6.3.6. Let βn → ∞ be

any sequence such that βn < c0αn for some c0 < 1. Then, for every 0 < c1 < C2 such that

C2c0 < 1 there exists β̃n with c1βn ≤ β̃n ≤ C2βn such that

ψ(τn, β̃nλn)→ π as n→∞. (6.3.17)

6.3.2 Extraction of the radiation term

In this subsection we construct what we will refer to as the radiation term, ϕL(t) ∈ H0 in

the decomposition (6.3.1).

Proposition 6.3.8. Let ψ(t) ∈ H1 be a global wave map with E(~ψ) = E(Q) + η < 3E(Q).

Then there exists a solution ϕL(t) ∈ H0 to the linear wave equation (6.1.5) so that for all

A ≥ 0 we have

‖~ψ(t)− (π, 0)− ~ϕL(t)‖H×L2(r≥t−A) → 0 as t→∞. (6.3.18)

Moreover, for n large enough we have

E(~ϕL(τn)) ≤ C < 2E(Q). (6.3.19)

Proof. To begin we pick any αn → ∞ and find τn, λn as in Proposition 6.3.6. Now let
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βn →∞ be any other sequence such that βn ≪ αn. By Corollary 6.3.7 we can assume that

ψ(τn, βnλn)→ π (6.3.20)

as n→∞. We make the following definition:

φ0n(r) =





π − π−ψ(τn,βnλn)
βnλn

r if 0 ≤ r ≤ βnλn

ψ(τn, r) if βnλn ≤ r <∞
(6.3.21)

φ1n(r) =






0 if 0 ≤ r ≤ βnλn

ψ̇(τn, r) if βnλn ≤ r <∞.
(6.3.22)

We claim that ~φn := (φ0n, φ
1
0) ∈ H1,1 and E(~φn) ≤ C < 2E(Q). Clearly φ0n(0) = π and

φ0n(∞) = π. We claim that

E∞βnλn(~φn) = E
∞
βnλn

(~ψ(τn)) ≤ η + on(1). (6.3.23)

Indeed, since ψ(τn, βnλn)→ π we have G(ψ(τn, βnλn))→ 2 = 1
2E(Q) as n→∞. Therefore,

by (6.2.4) we have

Eβnλn0 (ψ(τn), 0) ≥ 2G(ψ(τn, βnλn)) ≥ E(Q)− on(1)

for large n which proves (6.3.23) since E∞βnλn(~ψ(τn)) = E
∞
0 (~ψ(τn))− Eβnλn0 (~ψ(τn)).
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We can also directly compute Eβnλn0 (φ0n, 0). Indeed,

Eβnλn0 (φ0n, 0) =

∫ βnλn

0

(
π − ψ(τn, βnλn)

βnλn

)2

r dr +

∫ βnλn

0

sin2
(
π−ψ(τn,βnλn)

βnλn
r
)

r
dr

≤ C |π − ψ(τn, βnλn)|2 → 0 as n→∞.

Hence E(~φn) ≤ η+on(1). This means that for large enough n we have the uniform estimates

E(~φn) ≤ C < 2E(Q). Therefore, by the degree 0 global existence and scattering result for

energies below 2E(Q), (which holds with exactly the same statement in H1,1 as in H0 =

H0,0), we have that the wave map evolution ~φn(t) ∈ H1,1 with initial data ~φn is global in

time and scatters to π as t → ±∞. The scattering statement means that for each n we

can find initial data ~φn,L so that the solution, S(t)~φn,L, to the linear wave equation (6.1.5)

satisfies

‖~φn(t)− (π, 0)− S(t)~φn,L‖H×L2 → 0 as t→∞.

Abusing notation, we set

~φn,L(t) := S(t− τn)~φn,L.

By the definition of ~φn and the finite speed of propagation observe that we have

φn(t− τn, r) = ψ(t, r) ∀r ≥ t− τn + βnλn.

Therefore, for all fixed m we have

‖~ψ(t)− (π, 0)− ~φm,L(t)‖H×L2(r≥t−τm+βmλm) → 0 as t→∞, (6.3.24)
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and, in particular

‖~φn − (π, 0)− ~φm,L(τn)‖H×L2(r≥τn−τm+βmλm) → 0 as n→∞. (6.3.25)

Now set ~ϕn = (ϕ0n, ϕ
1
n) := (φ0n, φ

1
n) − (π, 0) ∈ H0. We have E(~ϕn) ≤ C < 2E(Q) by

construction. Therefore the sequence S(−τn)~ϕn is uniformly bounded in H × L2. Let

~ϕL = (ϕ0L, ϕ
1
L) ∈ H0 be the weak limit of S(−τn)~ϕn in H × L2 as n→∞, i.e.,

S(−τn)~ϕn ⇀ ~ϕ weakly in H × L2

as n → ∞. Denote by ~ϕL(t) := S(t)~ϕL the linear evolution of ~ϕL at time t. Following the

construction in [1, Main Theorem] we have the following profile decomposition for ~ϕn:

~ϕn(r) = ~ϕL(τn, r) +

k∑

j=2

(
ϕ
j
L(t

j
n/λ

j
n, r/λ

j
n),

1

λ
j
n

ϕ̇
j
L(t

j
n/λ

j
n, r/λ

j
n)

)
+ ~γkn(r) (6.3.26)

where if we label ϕL =: ϕ1L, τn =: t1n, and λ
1
n = 1 this is exactly a profile decomposition as

in Corollary 5.2.15. Now observe that for each fixed m we can write

~ϕn(r)− ~φm,L(τn, r) = ~ϕL(τn, r)− ~φm,L(τn, r)

+
k∑

j=2

(
ϕ
j
L(t

j
n/λ

j
n, r/λ

j
n),

1

λ
j
n

ϕ̇
j
L(t

j
n/λ

j
n, r/λ

j
n)

)
+ ~γkn(r) (6.3.27)

and (6.3.27) is still a profile decomposition in the sense of Corollary 5.2.15 for the sequence

~ϕn(r)− ~φm,L(τn, r). Since the pseudo-orthogonality of the H × L2 norm is preserved after
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sharp cut-offs, see [18, Corollary 8] or Proposition 5.2.19, we then have

‖~ϕn − ~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm) = ‖~ϕL(τn)− ~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm)

+
k∑

j=2

‖~ϕjL(t
j
n/λ

j
n)‖2H×L2(r≥τn−τm+βmλm)

+ ‖~γkj ‖2H×L2(r≥τn−τm+βmλm)
+ on(1)

Note that (6.3.25) implies that the left-hand-side above tends to zero as n→∞. Therefore,

since all of the terms on right-hand-side are non-negative we can deduce that

‖~ϕL(τn)− ~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm) → 0 as n→∞.

Since,

~ϕL(τn)− ~φm,L(τn) = S(τn)(~ϕ− S(−τm)~φm,L)

is a solution to the linear wave equation, we can use the monotonicity of the energy on

exterior cones to deduce that

‖~ϕL(t)− ~φm,L(t)‖2H×L2(r≥t−τm+βmλm) → 0 as t→∞.

Combining the above with (6.3.24) we can conclude that

‖~ψ(t)− (π, 0)− ~ϕL(t)‖2H×L2(r≥t−τm+βmλm) → 0 as t→∞.

The above holds for each m ∈ N and for any sequence βm → ∞ with βm < c0αm. Taking

βm ≪ αm and recalling that τm → ∞ and λm are such that αmλm ≪ τm we have that

τm − βmλm →∞ as m→∞. Therefore, for any A > 0 we can find m large enough so that

τm − βmλm > A, which proves (6.3.18) in light of the above.

345



It remains to show (6.3.19). But this follows immediately from the decomposition (6.3.26)

and the almost orthogonality of the nonlinear wave map energy for such a decomposition,

see Lemma 5.2.16, since we know that the left-hand-side of (6.3.26) satisfies

E(~ϕn) ≤ C < 2E(Q)

for large enough n.

Now that we have constructed the radiation term ~ϕL(t) we denote by ϕ(t) ∈ H0 the

global wave map that scatters to the linear wave ~ϕL(t), i.e., ~ϕ(t) ∈ H0 is the global solution

to (6.1.1) such that

‖~ϕ(t)− ~ϕL(t)‖H×L2 → 0 as t→∞. (6.3.28)

The existence of such a ϕ(t) ∈ H0 locally around t = +∞ follows immediately from the

existence of wave operators for the corresponding 4d semi-linear equation. The fact that

ϕ(t) is global-in-time follows from Theorem 5.1.1 since (6.3.19) and (6.3.28) together imply

that E(~ϕ) < 2E(Q).

We will need a few facts about the degree zero wave map ~ϕ(t) which we collect in the

following lemma.

Lemma 6.3.9. Let ~ϕ(t) be defined as above. Then we have

lim sup
t→∞

‖~ϕ(t)‖H×L2(|r−t|≥A) → 0 as A→∞, (6.3.29)

lim
t→∞

E∞t−A(~ϕ(t))→ E(~ϕ) as A→∞. (6.3.30)
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Proof. First we prove (6.3.29). We have

‖~ϕ(t)‖2H×L2(|r−t|≥A) ≤ ‖~ϕ(t)− ~ϕL(t)‖2H×L2 + ‖ϕL(t)‖2H×L2(|r−t|≥A).

By (6.3.28) the first term on the right-hand-side above tends to 0 as t→∞ so it suffices to

show that

lim sup
t→∞

‖ϕL(t)‖2H×L2(|r−t|≥A) → 0 as A→∞.

Since ϕL(t) is a solution to (6.1.5) the above follows from [18, Theorem 4] by passing to the

analogous statement for the corresponding 4d free wave vL(t) given by

rvL(t, r) := ϕL(t, r).

To prove (6.3.30) we note that the limit as t → ∞ exists for any fixed A due to the mono-

tonicity of the energy on exterior cones. Next observe that we have

lim
t→∞

E t−A0 (~ϕ(t)) ≤ lim
t→∞

‖~ϕ(t)‖2
H×L2(r≤t−A) → 0 as A→∞ (6.3.31)

by (6.3.29) and then (6.3.30) follows immediately from the conservation of energy.

Now, observe that we can combine Proposition 6.3.8 and (6.3.28) to conclude that for all

A ≥ 0 we have

‖~ψ(t)− (π, 0)− ~ϕ(t)‖H×L2(r≥t−A) → 0 as t→∞. (6.3.32)

With this in mind we define a(t) as follows:

~a(t) := ~ψ(t)− ~ϕ(t) (6.3.33)
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and we aggregate some preliminary information about a in the following lemma:

Lemma 6.3.10. Let ~a(t) be defined as in (6.3.33). Then ~a(t) ∈ H1 for all t. Moreover,

• for all λ > 0 we have

‖~a(t)− (π, 0)‖H×L2(r≥λt) → 0 as t→∞, (6.3.34)

• the quantity E(~a(t)) has a limit as t→∞ and

lim
t→∞

E(~a(t)) = E(~ψ)− E(~ϕ). (6.3.35)

Proof. By definition we have a(t) ∈ H1 for all t since

a(t, 0) = 0, a(t,∞) = π.

To prove (6.3.34) observe that for every A ≤ (1− λ)t we have

‖~a(t)− (π, 0)‖2
H×L2(r≥λt) ≤ ‖~ψ(t)− (π, 0)‖2

H×L2(λt≤r≤t−A)

+ ‖~ϕ(t)‖2
H×L2(λt≤r≤t−A)

+ ‖~a(t)− (π, 0)‖2
H×L2(r≥t−A).

Then (6.3.34) follows by combining (6.3.32), (6.3.29), and (6.2.18). To prove (6.3.35) we first

claim that

lim
A→∞

lim
t→∞

E∞t−A(~ψ(t)) = E(~ϕ). (6.3.36)
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Indeed, we have

E∞t−A(~ψ(t)) =
∫ ∞

t−A
[(ψt(t)− ϕt(t) + ϕt(t))

2 + (ψr(t)− ϕr(t) + ϕr(t))
2] r dr

+

∫ ∞

t−A
sin2(ψ(t)− π − ϕ(t) + ϕ(t))

r
dr

= E∞t−A(~ϕ(t)) + ‖~ψ(t)− (π, 0)− ~ϕ(t)‖2
Ḣ1×L2(r≥t−A)

+O
(
‖~ψ(t)− (π, 0)− ~ϕ(t)‖

Ḣ1×L2(r≥t−A)‖~ϕ(t)‖Ḣ1×L2(r≥t−A)
)

+

∫ ∞

t−A
sin2(ψ(t)− π − ϕ(t) + ϕ(t))− sin2(ϕ(t))

r
dr

= E∞t−A(~ϕ(t)) +O
(
‖~ψ(t)− (π, 0)− ~ϕ(t)‖2H×L2(r≥t−A)

)

+O
(√
E(~ϕ)‖~ψ(t)− (π, 0)− ~ϕ(t)‖H×L2(r≥t−A)

)
,

which proves (6.3.36) in light of (6.3.30) and (6.3.32). In the third equality above we have

used the simple trigonometric inequality:

∣∣∣sin2(x− y + y)− sin2(y)
∣∣∣ ≤ 2 |sin(y)| |x− y|+ 2 |x− y|2 .

Now, fix δ > 0. By (6.3.29), (6.3.36), and (6.3.32) we can choose A, T0 large enough so that

for all t ≥ T0 we have

‖~ϕ(t)‖H×L2(r≤t−A) ≤ δ,
∣∣∣E∞t−A(~ψ(t))− E(~ϕ)

∣∣∣ ≤ δ,

‖~a(t)− (π, 0)‖2H×L2(r≥t−A) ≤ δ.
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Then for all t ≥ T0 and A as above we can argue as before to obtain

E(~a(t)) = E t−A0 (~a(t)) +O(‖~a(t)− (π, 0)‖2H×L2(r≥t−A)

= E t−A0 (~ψ(t)) +O

(√
E(~ψ)‖~ϕ(t)‖H×L2(r≤t−A)

)

+O
(
‖~ϕ(t)‖2

H×L2(r≤t−A)
)
+O

(
‖~a(t)− (π, 0)‖2

H×L2(r≥t−A)
)

= E(~ψ)− E∞t−A(~ψ(t)) +O(δ)

= E(~ψ)− E(~ϕ) +O(δ),

which proves (6.3.35).

We will also need the following technical lemma in the next section.

Lemma 6.3.11. For any sequence σn > 0 with λn ≪ σn ≪ τn we have

lim
n→∞

1

σn

∫ τn+σn

τn

∫ ∞

0
ȧ2(t, r) r dr dt = 0. (6.3.37)

Proof. Fix 0 < λ < 1. For each n we have

1

σn

∫ τn+σn

τn

∫ ∞

0
ȧ2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ λt

0
ȧ2(t, r) r dr dt

+
1

σn

∫ τn+σn

τn

∫ ∞

λt
ȧ2(t, r) r dr dt.

By (6.3.34) we can conclude that

lim
n→∞ sup

t≥τn

∫ ∞

λt
ȧ2(t, r) r dr = 0.

Hence it suffices to show that

lim
n→∞

1

σn

∫ τn+σn

τn

∫ λt

0
ȧ2(t, r) r dr dt = 0.
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Observe that for every n we have

1

σn

∫ τn+σn

τn

∫ λt

0
ȧ2(t, r) r dr dt .

1

σn

∫ τn+σn

τn

∫ λt

0
ψ̇2(t, r) r dr dt (6.3.38)

+
1

σn

∫ τn+σn

τn

∫ λt

0
ϕ̇2(t, r) r dr dt.

We first estimate the first integral on the right-hand-side above. Let An → ∞ be the

sequence in Proposition 6.3.6, see also Remark 25, and let tn → ∞ be the sequence in

Theorem 6.3.2. Recall that we have τn ∈ [tn, tn + λn] and λn ≤ An ≪ tn.

Observe that for n large enough we have that for each t ∈ [τn, τn+σn] we have λt ≤ t−An.

Hence,

1

σn

∫ τn+σn

τn

∫ λt

0
ψ̇2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ t−An

0
ψ̇2(t, r) r dr dt.

Next, note that since λn ≪ σn we can ensure that for n large enough we have λn+σn ≤ 2σn.

Therefore,

1

σn

∫ τn+σn

τn

∫ t−An

0
ψ̇2(t, r) r dr dt ≤ 2

λn + σn

∫ tn+λn+σn

tn

∫ t−An

0
ψ̇2(t, r) r dr dt→ 0

as n→∞ by Lemma 6.3.3.

Lastly we estimate the second integral on the righ-hand-side of (6.3.38). For each A > 0

we can choose n large enough so that λt ≤ t−A for each t ∈ [τn, τn + σn]. So we have

1

σn

∫ τn+σn

τn

∫ λt

0
ϕ̇2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ t−A

0
ϕ̇2(t, r) r dr dt.

Taking the limsup as n→∞ of both sides and then letting A→∞ on the right we have by

(6.3.29) that the left-hand-side above tends to 0 as n→∞. This concludes the proof.
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6.3.3 Compactness of the error

For the remainder of this section, we fix αn → ∞ and find τn → ∞ and λn ≪ τn as in

Proposition 6.3.6. We define ~bn = (bn,0, bn,1) ∈ H0 as follows:

bn,0(r) := a(τn, r)−Q(r/λn), (6.3.39)

bn,1(r) := ȧ(τn, r). (6.3.40)

As in Section 5.5.3 of the previous chapter, our goal in this subsection is to show that ~bn → 0

in the energy space. Indeed we prove the following result:

Proposition 6.3.12. Define ~bn ∈ H0 as in (6.3.39), (6.3.40). Then,

‖~bn‖H×L2 → 0 as n→∞. (6.3.41)

Remark 26. In light of (6.3.28), it is clear that Proposition 6.3.12 implies Proposition 6.3.1.

We begin with the following consequences of the previous sections.

Lemma 6.3.13. Let ~bn ∈ H0 be defined as above. Then we have

(a) As n→∞ we have

‖bn,1‖L2 → 0. (6.3.42)

(b) As n→∞ we have

‖bn,0‖H(r≤αnλn) → 0. (6.3.43)

352



(c) For any fixed λ > 0 we have

‖bn,0‖H(r≥λτn) → 0 as n→∞. (6.3.44)

(d) There exists a C > 0 so that

E(~bn) ≤ C < 2E(Q) (6.3.45)

for n large enough.

Proof. To prove (6.3.42) fix 0 < λ < 1 and observe that we have

∫ ∞

0
b2n,1(r) r dr ≤

∫ λτn

0
ψ̇2(τn, r) r dr +

∫ λτn

0
ϕ̇2(τn, r) r dr

+

∫ ∞

λτn
ȧ(τn, r)

2 r dr.

Then (6.3.42) follows from (6.3.15), (6.3.29), and (6.3.34).

Next we prove (6.3.43). To see this, observe that for each n we have

‖bn,0‖2H(r≤αnλn) ≤ ‖ψ(τn)−Q(·/λn)‖
2
H(r≤αnλn) + ‖ϕ(τn)‖

2
H(r≤αnλn).

The first term on the right-hand-side tends to zero as n → ∞ by (6.3.16). To estimate the

second term on the right-hand-side we note that for fixed A > 0 we can find n large enough

so that αnλn ≤ τn − A and so we have

‖ϕ(τn)‖2H(r≤αnλn) ≤ ‖ϕ(τn)‖
2
H(r≤τn−A).

Taking the limsup as n→∞ on both sides above and then taking A→∞ on the right and

recalling (6.3.29) we see that the limit as n→ ∞ of the left-hand side above must be zero.
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This proves (6.3.43).

To deduce (6.3.44) note that

‖bn,0‖2H(r≥λτn) ≤ ‖a(τn)− π‖
2
H(r≥λτn) + ‖Q(·/λn)− π‖

2
H(r≥λτn).

The first term on the right-hand-side above tends to zero as n→∞ by (6.3.34). The second

term tends to zero since λτn/λn →∞ as n→∞.

Finally, we establish (6.3.45). First observe that for any fixed λ > 0, (6.3.44) implies that

E(~bn) = Eλτn0 (~bn) + E∞λτn(~bn)

= Eλτn0 (~bn) + on(1)

as n→∞. So it suffices to control Eλτn0 (~bn). Next, observe that for n large enough, (6.3.31)

gives that

‖~ϕ(τn)‖H×L2(r≤λτn) ≤ ‖~ϕ(τn)‖H×L2(r≤τn−A)

and the right-hand side is small for n,A large. This means that the contribution of ~ϕ(τn) is

negligible on r ≤ λτn, and thus

Eλτn0 (~bn) = Eλτn0 (~ψ(τn)− (Q(·/λn), 0)) + on(1).

Next, recall that Proposition 6.3.6 implies that

Eαnλn0 (~ψ(τn)−Q(·/λn), 0) = on(1), (6.3.46)
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which shows in particular that

E∞αnλn(~ψ(τn)) ≤ η + on(1) (6.3.47)

where η := E(~ψ)− E(Q) < 2E(Q). Also, (6.3.46) means that it suffices to show that

Eλτnαnλn
(~ψ(τn)− (Q(·/λn), 0)) ≤ C < 2E(Q).

Note that since αn →∞ we have

E∞αnλn(Q(·/λn)) = E
∞
αn(Q) = on(1).

Hence,

Eλτnαnλn
(~ψ(τn)− (Q(·/λn), 0)) = Eλτnαnλn

(~ψ(τn)) + on(1) ≤ η + on(1),

which completes the proof.

Next, we would like to show that the sequence ~bn does not contain any nonzero profiles.

This next result is the global-in-time analog of Proposition 5.5.7 and the proof is again,

reminiscent of the the arguments given in [22, Section 5].

Denote by ~bn(t) ∈ H0 the wave map evolution with data ~bn. By (6.3.45) and Theo-

rem 5.1.1 we know that ~bn(t) ∈ H0 is global in time and scatters to zero as t→ ±∞.

The statements of the following proposition and its corollary are identical to the corre-

sponding statements, Proposition 5.5.7 and Corollary 5.5.8 in the finite time blow-up case.

Proposition 6.3.14. Let bn ∈ H0 and the corresponding global wave map evolution ~bn(t) ∈
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H0 be defined as above. Then, there exists a decomposition

~bn(t, r) = bn,L(t, r) + ~θn(t, r) (6.3.48)

where ~bn,L satisfies the linear wave equation (6.1.5) with initial data ~bn,L(0, r) := (bn,0, 0).

Moreover, bn,L and ~θn satisfy

∥∥∥∥
1

r
bn,L

∥∥∥∥
L3
t (R;L

6
x(R

4))
−→ 0 (6.3.49)

‖~θn‖L∞
t (R;H×L2) +

∥∥∥∥
1

r
θn

∥∥∥∥
L3
t (R;L

6
x(R

4))
−→ 0 (6.3.50)

as n→∞.

c6bg1

Before beginning the proof of Proposition 6.3.14 we use the conclusions of the proposi-

tion to deduce the following corollary which will be an essential ingredient in the proof of

Proposition 6.3.12.

Corollary 6.3.15. Let ~bn(t) be defined as in Proposition 6.3.14. Suppose that there exists

a constant δ0 and a subsequence in n so that ‖bn,0‖H ≥ δ0. Then there exists α0 > 0 such

that for all t > 0 and all n large enough along this subsequence we have

‖~bn(t)‖H×L2(r≥t) ≥ α0δ0. (6.3.51)

Proof. First note that since ~bn,L satisfies the linear wave equation (6.1.5) with initial data

~bn,L(0) = (bn,0, 0) we know by [18, Corollary 5] and Corollary 5.2.3, that there exists a

constant β0 > 0 so that for each t ≥ 0 we have

‖~bn,L(t)‖H×L2(r≥t) ≥ β0‖bn,0‖H .
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On the other hand, by Proposition 6.3.14 we know that

‖~bn(t)−~bn,L(t)‖H×L2(r≥t) ≤ ‖~θn(t)‖H×L2 = on(1).

Putting these two facts together gives

‖~bn(t)‖H×L2(r≥t) ≥ ‖bn,L(t)‖H×L2(r≥t) − on(1)

≥ β0‖bn,0‖H − on(1).

This yields (6.3.51) by passing to a suitable subsequence and taking n large enough.

The proof of Proposition 6.3.14 is very similar to the proof of Proposition 5.5.7. Instead

of going through the entire argument again here, we establish the main ingredients of the

proof and we refer the reader to the previous chapter for the remainder of the argument.

Since~bn ∈ H0 and E(~bn) ≤ C < 2E(Q) we can, by Corollary 5.2.15, consider the following

profile decomposition for ~bn:

bn,0(r) =
∑

j≤k
ϕ
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ γkn,0(r), (6.3.52)

bn,1(r) =
∑

j≤k

1

λ
j
n

ϕ̇
j
L

(
−tjn
λ
j
n

,
r

λ
j
n

)
+ γkn,1(r), (6.3.53)

where each ~ϕ
j
L is a solution to (6.1.5) and where we have for each j 6= k:

λ
j
n

λkn
+
λkn

λ
j
n

+

∣∣∣tjn − tkn
∣∣∣

λkn
+

∣∣∣tjn − tkn
∣∣∣

λ
j
n

→∞ as n→∞. (6.3.54)

Moreover, if we denote by ~γkn,L(t) the linear evolution of ~γkn, i.e., solution to (6.1.5), we have

357



for j ≤ k that

(
γkn,L(λ

j
nt
j
n, λ

j
n·), λjnγ̇kn,L(λ

j
nt
j
n, λ

j
n·)
)
⇀ 0 in H × L2 as n→∞ (6.3.55)

lim sup
n→∞

∥∥∥∥
1

r
γkn,L

∥∥∥∥
L3
tL

6
x(R

4)
→ 0 as k →∞. (6.3.56)

Finally we have the following Pythagorean expansions:

‖bn,0‖2H =
∑

j≤k

∥∥∥∥∥ϕ
j
L

(
−tjn
λ
j
n

)∥∥∥∥∥

2

H

+ ‖γkn,0‖2H + on(1) (6.3.57)

‖bn,1‖2L2 =
∑

j≤k

∥∥∥∥∥ϕ̇
j
L

(
−tjn
λ
j
n

)∥∥∥∥∥

2

L2

+ ‖γkn,1‖2L2 + on(1). (6.3.58)

As in the previous chapter, the proof of Proposition 6.3.14 will consist of a sequence of steps

designed to show that each of the profiles ϕ
j
L must be identically zero. Arguing exactly as in

Lemma 5.5.9 and Corollary 5.5.10 we can first deduce that the times t
j
n can be taken to be

0 for each n, j and that the the initial velocities ϕ̇
j
L(0) must all be identically zero as well.

We summarize this conclusion in the following lemma:

Lemma 6.3.16. In the decomposition (6.3.52), (6.3.53) we can assume, without loss of

generality, that t
j
n = 0 for every n and for every j. In addition, we then have

ϕ̇
j
L(0, r) ≡ 0 for every j.

The proof of Lemma 6.3.16 is identical to the proof of Lemma 5.5.9 and Corollary 5.5.10.

We refer the reader to the previous chapter for the details.

358



By Lemma 6.3.16 we can rewrite our profile decomposition as follows:

bn,0(r) =
∑

j≤k
ϕ
j
L

(
0, r/λ

j
n

)
+ γkn,0(r) (6.3.59)

bn,1(r) = on(1) in L
2 as n→∞, (6.3.60)

Note that in addition to the Pythagorean expansions in (6.3.57) we also have the fol-

lowing almost-orthogonality of the nonlinear wave map energy, which was established in

Lemma 5.2.16:

E(~bn) =
∑

j≤k
E(ϕjL(0), 0) + E(γ

k
n,0, 0) + on(1). (6.3.61)

Note that ϕj, γkn,0 ∈ H0 for every j, for every n, and for every k. Using the fact that

E(~bn) ≤ C < 2E(Q), (6.3.61) and Theorem 5.1.1 imply that, for every j, the nonlinear wave

map evolution of the data (ϕ
j
L(0, r/λ

j
n), 0) given by

~ϕ
j
n(t, r) :=

(
ϕj

(
t

λ
j
n

,
r

λ
j
n

)
,

1

λ
j
n

ϕ̇j

(
t

λ
j
n

,
r

λ
j
n

))
(6.3.62)

is global in time and scatters as t→ ±∞. Moreover we have the following nonlinear profile

decomposition guarranteed by Proposition 5.2.17:

~bn(t, r) =
∑

j≤k
~ϕ
j
n(t, r) + ~γkn,L(t, r) +

~θkn(t, r) (6.3.63)

where the ~bn(t, r) are the global wave map evolutions of the data ~bn, ~γ
k
n,L(t, r) is the linear

evolution of (γkn, 0), and the errors ~θkn satisfy

lim sup
n→∞

(
‖~θkn‖L∞

t (H×L2) +

∥∥∥∥
1

r
θkn

∥∥∥∥
L3
t (R;L

6
x(R

4))

)
→ 0 as k →∞. (6.3.64)
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Recall that we are trying to show that all of the profiles ϕj must be identically equal to

zero. As in the previous chapter we can make the following crucial observations about the

scales λ
j
n. Since we have concluded that we can assume that all of the times t

j
n = 0 for all

n, j we first note that the orthogonality condition (6.3.54) implies that for j 6= k:

λ
j
n

λkn
+
λkn

λ
j
n

→∞ as n→∞.

Next, recall that by Lemma 6.3.13 we have

‖bn,0‖H(r≤αnλn) → 0 as n→∞, (6.3.65)

‖bn,0‖H(r≥λτn) → 0 as n→∞, ∀λ > 0 fixed. (6.3.66)

Combining the above two facts with Proposition 5.2.19 we can conclude that for each λ
j
n

corresponding to a nonzero profile ϕj we have

λn ≪ λ
j
n ≪ τn as n→∞. (6.3.67)

Now, let k0 be the index corresponding to the first nonzero profile ϕk0 . We can assume,

without loss of generality that k0 = 1. By (6.3.65), (6.3.67) and [22, Appendix B] we can

find a sequence λ̃n so that

λ̃n ≪ αnλn

λn ≪ λ̃n ≪ λ1n

λ̃n ≪ λ
j
n or λ

j
n ≪ λ̃n ∀j > 1.
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Define

βn =
λ̃n
λn
→∞

and we note that βn ≪ αn and λ̃n = βnλn. Therefore, up to replacing βn by a sequence

β̃n ≃ βn and λ̃n by ˜̃λn := β̃nλn, we have by Corollary 6.3.7 and a slight abuse of notation

that

ψ(τn, λ̃n)→ π as n→∞. (6.3.68)

We define the set

Jext := {j ≥ 1 | λ̃n ≪ λ
j
n}.

Note that by construction 1 ∈ Jext.

The above technical ingredients are necessary for the proof of the following lemma and

its corollary. The analog in the finite-time blow-up case is Lemma 5.5.13.

Lemma 6.3.17. Let ϕ1, λ1n be defined as above. Then for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣∣∣∣

∑

j∈Jext ,j≤k
ϕ̇
j
n(t, r) + γ̇kn,L(t, r)

∣∣∣∣∣∣

2

r dr dt = okn (6.3.69)

where lim
k→∞

lim sup
n→∞

okn = 0. Also, for all j > 1 and for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t
(ϕ̇
j
n)

2(t, r) r drdt→ 0 as n→∞. (6.3.70)

Remark 27. We refer the reader to the proof Lemma 5.5.13 for the details of the proof of

Lemma 6.3.17. The proof of (6.3.69) is nearly identical to the proof of (5.5.57) the one
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difference being that here we use Lemma 6.3.11 in place of the argument following equation

(5.5.66). The proof of (6.3.70) is identical to the proof of (5.5.58) and we omit it here.

Note that (6.3.69) and (6.3.70) together directly imply the following result:

Corollary 6.3.18. Let ϕ1 be as in Lemma 6.3.17. Then for all ε > 0 we have

1

λ1n

∫ λ1n

0

∫ ∞

ελ1n+t

∣∣∣ϕ̇1n(t, r) + γ̇kn,L(t, r)
∣∣∣
2
r dr dt = okn (6.3.71)

where lim
k→∞

lim sup
n→∞

okn = 0.

The proof of Proposition 6.3.14 now follows from the exact same argument as the proof

Proposition 5.5.7. We refer the reader to the previous chapter for the details.

We can now complete the proof of Proposition 6.3.12.

Proof of Proposition 6.3.12. We argue by contradiction. Assume that Proposition 6.3.12

fails. Then, up to extracting a subsequence, we can find a δ0 > 0 so that

‖bn,0‖H ≥ δ0 (6.3.72)

for every n. Next, we rescale. Set

µn :=
λn
τn
.

Since λn ≪ τn as n → ∞, our new scale µn → 0 as n → ∞. We next define rescaled wave

maps:

gn(t, r) := ψ(τn + τnt, τnr), (6.3.73)

hn(t, r) := ϕ(τn + τnt, τnr). (6.3.74)
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Since ~gn(t) and ~hn(t) are defined by rescaling ~ψ and ~ϕ we have that ~gn(t) ∈ H1 is a global-in-

time wave map and the wave map ~ϕ(t) ∈ H0 is global-in-time and scatters to 0 as t→ ±∞.

We then have

a(τn + τnt, τnr) = gn(t, r)− hn(t, r).

Similarly, we define

b̃n,0(r) := bn,0(τnr),

b̃n,1(r) := τnbn,1(τnr)

and the corresponding rescaled wave map evolutions

b̃n(t, r) := bn(τnt, τnr),

∂tb̃n(t, r) := τnḃn(τnt, τnr).

After this rescaling, our decomposition becomes

gn(0, r) = hn(0, r) +Q

(
r

µn

)
+ b̃n,0(r) (6.3.75)

ġn(0, r) = ḣn(0, r) + b̃n,1(r). (6.3.76)

We can rephrase (6.3.44) and (6.3.43) in terms of this rescaling and we obtain:

∀λ > 0 fixed, ‖b̃n,0‖H(r≥λ) → 0 as n→∞, (6.3.77)

‖b̃n,0‖H(r≤αnµn) → 0 as n→∞. (6.3.78)
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Also, (6.3.29) implies that

lim
A→∞

lim sup
n→∞

‖~hn(0)‖H×L2(r≤1−A/τn) = 0, (6.3.79)

lim
A→∞

lim sup
n→∞

‖~hn(0)‖H×L2(r≥1+A/τn) = 0. (6.3.80)

Next, we claim that for every n a decomposition of the form (6.3.75) is preserved up to a

small error if we replace the terms in (6.3.75) with their respective wave map evolutions at

some future times to be defined precisely below.

By Corollary 6.3.7 we can choose a sequence γn →∞ with

γn ≪ αn

so that

gn(0, γnµn)→ π as n→∞.

Define δn → 0 by

|gn(0, γnµn)− π| =: δn → 0.

Using (6.3.16) we define εn → 0 by

‖~gn(0)− (Q(·/µn), 0)‖H×L2(r≤αnµn) =: εn → 0.

Finally, choose βn →∞ so that

βn ≤ min{√γn, δ−1/2n , ε
−1/2
n }

gn(0, βnµn/2)→ π as n→∞. (6.3.81)
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As in the previous chapter, we make the following claims:

(i) As n→∞ we have

‖~gn(βnµn/2)− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0. (6.3.82)

(ii) For each n, on the interval r ∈ [βnµn,∞) we have

~gn

(
βnµn
2

, r

)
− (π, 0) = ~hn

(
βnµn
2

, r

)
+
~̃
bn

(
βnµn
2

, r

)
(6.3.83)

+
~̆
θn

(
βnµn
2

, r

)
,

‖~̆θn‖L∞
t (H×L2) → 0.

We first prove (6.3.82). The proof is very similar to the corresponding argument in the finite-

time blow-up case, see the proof of (5.5.94). We repeat the argument here for completeness.

First note that we have

‖~gn(0)− (Q(·/µn), 0)‖H×L2(r≤γnµn) ≤ εn → 0.

Unscale the above by setting g̃n(t, r) = gn(µnt, µnr), which gives

‖(g̃n(0), ∂tg̃n(0))− (Q(·), 0)‖H×L2(r≤γn) ≤ εn → 0.

Now using Corollary 5.2.6 and the finite speed of propagation we claim that we have

‖(g̃n(βn/2), ∂tg̃n(βn/2))− (Q(·), 0)‖H×L2(r≤βn) = on(1). (6.3.84)
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To see this, we need to show that Corollary 5.2.6 applies. Indeed define

ĝn,0(r) :=






π if r ≥ 2γn

π +
π−g̃n(0,γn)

γn
(r − 2γn) if γn ≤ r ≤ 2γn

g̃n(0, r) if r ≤ γn.

ĝn,1(r) =





∂tg̃n(0, r) if r ≤ γn

0 if r ≥ γn

Then, by construction we have ~̂gn ∈ H1, and since

‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn) ≤ Cδn

we then can conclude that

‖~̂gn − (Q, 0)‖H×L2 ≤ ‖~̂gn − (Q, 0)‖H×L2(r≤γn) + ‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn)

+ ‖(π, 0)− (Q, 0)‖H×L2(r≥γn)

≤ C(εn + δn + γ−1n ).

Now, given our choice of βn, (6.3.84) follows from Corollary 5.2.6 and the finite speed of

propagation. Rescaling (6.3.84) we have

‖(gn(βnµn/2), ∂tgn(βnµn/2))− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0.

This proves (6.3.82). Also note that by monotonicity of the energy on interior cones and

the comparability of the energy and the H ×L2 norm in H0, for small energies, we see that
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(6.3.42) and (6.3.78) imply that

‖(b̃n(βnµn/2), ∂tb̃n(βnµn/2))‖H×L2(r≤βnµn) → 0. (6.3.85)

Next we prove (6.3.83). First we define

g̃n,0(r) =





π − π−gn(0,µnβn/2)
1
2µnβn

r if r ≤ βnµn/2

gn(0, r) if r ≥ βnµn/2

g̃n,1(r) = ġn(0, r).

Then, let χ ∈ C∞([0,∞)) be defined so that χ(r) ≡ 1 on the interval [2,∞) and suppχ ⊂

[1,∞). Define

~̆gn(r) := χ(4r/βnµn)(~̃gn(r)− (π, 0))

~̆
bn(r) := χ(4r/βnµn)

~̃
bn(r)

and observe that we have the following decomposition

~̆gn(r) = ~hn(0, r) +
~̆
bn(r) + on(1),

where the on(1) is in the sense of H × L2 – here we also have used (6.3.79). Moreover, the

right-hand side above, without the on(1) term, is a profile decomposition in the sense of

Corollary 5.2.15 because of Proposition 6.3.14 and [18, Lemma 11] or Lemma 5.2.20. We

can then consider the nonlinear profiles. Note that by construction we have ~̆gn ∈ H0 and

as in the previous chapter, we can use (6.3.81) to show that E(~̆gn) ≤ C < 2E(Q) for large

n. The corresponding wave map evolution ~̆gn(t) ∈ H0 is thus global in time and scatters as

t→ ±∞ by Theorem 5.1.1. We also need to check that E(~̆bn) ≤ C < 2E(Q). Note that by
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construction and the definition of b̃n, we have

E(~̆bn) ≤ E(~̃bn) +O

(∫ ∞

0

4r2

β2n,0µ
2
n
(χ′)2(4r/βnµn)

b2n((1− τn)r)
r

dr

)

+

∫ βnµn

βnµn/2

sin2(χ(4r/βnµn)bn,0((1− τn)r))
r

dr

≤ E(~̃bn) +O

(∫ βnλn

βnλn/2

b2n,0(r)

r
dr

)

= E(~̃bn) + on(1) ≤ C < 2E(Q),

where the last line follows from (6.3.43) since βn ≪ αn.

Arguing as in the previous chapter, we can use Proposition 6.3.14, Proposition 5.2.17,

and

Lemma 5.2.18 to obtain the following nonlinear profile decomposition

~̆gn(t, r) = ~hn(t, r) +
~̆
bn(t, r) +

~̆
θn(t, r),

‖~̆θn‖L∞
t (H×L2) → 0.

Finally observe that by construction and the finite speed of propagation we have

~̆gn(t, r) = ~gn(t, r)− π,
~̆
bn(t, r) =

~̃bn(t, r).

for all t ∈ R and r ∈ [βnµn/2 + |t| ,∞). Therefore, in particular we have

~gn(βnµn/2, r)− (π, 0) = ~hn(βnµn/2, r) +
~̃
bn(βnµn/2, r) +

~̆
θn(βnµn/2, r)

for all r ∈ [βnµn,∞) which proves (6.3.83).

We can combine (6.3.82), (6.3.83), (6.3.85), and (6.3.79) together with the monotonicity

368



t = 0 r

t

t =
βnµn
2

βnµn
2

3βnµn
2

αn

βnµn

Q(·/µn)

hn(0) + b̃n(0)

Q(·/µn) hn(
βnµn
2 ) + b̃n(

βnµn
2 )

Figure 6.2: A schematic description of the evolution of the decomposition (6.3.75) from time

t = 0 until time t = βnµn
2 . At time t = βnµn

2 the decomposition (6.3.86) holds.

of the energy on interior cones and the fact that ‖Q(·/µn)−π‖H(r≥βnµn) = on(1), to obtain

the decomposition

~gn(βnµn/2, r) = (Q(r/µn), 0) + ~hn(βnµn/2, r) (6.3.86)

+ ~̃bn(βnµn/2, r) +
~̃θn(r),

‖~̃θn‖H×L2 → 0. (6.3.87)

Now, let sn → ∞ be any sequence such that sn ≥ βnµn/2 for each n. The next step is

to prove the following decomposition at time sn:

~gn(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) + ~ζn(r) ∀r ∈ [sn,∞), (6.3.88)

‖~ζn‖H×L2 → 0 as n→∞. (6.3.89)

We proceed as in the proof of (6.3.83). By (6.3.82) we can argue as in Corollary 6.3.7 and

find ρn →∞ with ρn ≪ βn so that

gn(βnµn/2, ρnµn)→ π as n→∞. (6.3.90)
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Define

f̂n,0(r) =






π − π−gn(βnµn/2, ρnµn)
ρnµn

r if r ≤ ρnµn

gn(βnµn/2, r) if r ≥ ρnµn

f̂n,1(r) = ġn(βnµn/2, r).

Let χ ∈ C∞ be as above and set

~fn(r) := χ(2r/ρnµn)(
~̂
fn(r)− (π, 0)),

~̂
bn(r) := χ(2r/ρnµn)

~̃bn(βnµn/2, r).

Observe that we have the following decomposition:

~fn(r) = ~hn(βnµn/2, r) +
~̂
bn(r) + on(1).

where the on(1) above is in the sense of H × L2. Moreover, the right-hand side above,

without the on(1) term, is a profile decomposition in the sense of Corollary 5.2.15 because

of Proposition 6.3.14 and [18, Lemma 11] or Lemma 5.2.20. We can then consider the

nonlinear profiles. Note that by construction we have ~fn ∈ H0 and, as usual, we can use

(6.3.90) to show that E(~fn) ≤ C < 2E(Q) for large n. The corresponding wave map evolution

~fn(t) ∈ H0 is thus global in time and scatters as t→ ±∞ by Theorem 5.1.1.

As in the proof of (6.3.83) it is also easy to show that E(~̂bn) ≤ C < 2E(Q) where here

we use (6.3.85) instead of (6.3.43).

Again we can use Proposition 6.3.14, Proposition 5.2.17 and Lemma 5.2.18 to obtain the
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t = 0 r

t
t = r

t =
βnµn
2 ρnµn βnµn

2

t = sn

ρnµn + νn

|sn|

~hn(
βnµn
2 ) +~bn(

βnµn
2 )

~hn(sn) +~bn(sn)

νn

Figure 6.3: A schematic depiction of the evolution of the decomposition (6.3.86) up to time
sn. On the interval [sn,+∞), the decomposition (6.3.88) holds.

following nonlinear profile decomposition

~fn(t, r) = ~hn(βnµn/2 + t, r) +
~̂
bn(t, r) +

~̃
ζn(t, r),

‖~̃ζn‖L∞
t (H×L2) → 0.

In particular, for

νn := sn − βnµn/2

we have

~fn(νn, r) = ~hn(sn, r) +
~̂
bn(νn, r) +

~̃ζn(νn, r).

By the finite speed of propagation we have that

~fn(νn, r) = ~gn(sn, r)− (π, 0),

~̂
bn(νn, r) =

~̃bn(sn, r)
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as long as r ≥ ρnµn + νn. Using the fact that ρn ≪ βn we have that sn ≥ ρnµn + νn and

hence,

~gn(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) +

~̃
ζn(νn, r) ∀r ∈ [sn,∞).

Setting ~ζn := ~̃ζn(νn) we obtain (6.3.88) and (6.3.89). With this decomposition we can now

complete the proof.

One the one hand observe that by rescaling, (6.3.34), and the fact that 2τnsn ≥ τn+τnsn

for n large we have

‖~gn(sn)−~hn(sn)− (π, 0)‖H×L2(r≥sn) = ‖~a(τn + τnsn, τn·)− (π, 0)‖H×L2(r≥sn)

= ‖~a(τn + τnsn)− (π, 0)‖H×L2(r≥τnsn)

≤ ‖~a(τn + τnsn)− (π, 0)‖H×L2(r≥1
2 (τn+τnsn))

−→ 0 as n→∞.

Combining the above with the decomposition (6.3.88) and (6.3.89) we obtain that

‖~̃bn(sn)‖H×L2(r≥sn) → 0 as n→∞. (6.3.91)

On the other hand, combining our assumption (6.3.72) and Corollary 6.3.15 we know

that there exists α0 > 0 so that

‖~̃bn(sn)‖H×L2(r≥sn) = ‖~bn(τnsn)‖H×L2(r≥τnsn) ≥ α0δ0.

But this contradicts (6.3.91).

We can now complete the proof of Theorem 6.1.1.
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Proof of Theorem 6.1.1. Let ~a(t) be defined as in (6.3.33). Recall that by (6.3.35) we have

lim
t→∞

E(~a(t)) = E(~ψ)− E(~ϕ). (6.3.92)

By Proposition 6.3.1 we have found a sequence of times τn →∞ so that

E(~a(τn))→ E(Q)

as n→∞. This then implies that

lim
t→∞

E(~a(t)) = E(Q).

We now use the variational characterization of Q to show that in fact ‖ȧ(t)‖L2 → 0 as

t→∞. To see this observe that since a(t) ∈ H1 we can deduce by (5.2.18) that

E(Q)← E(a(t), ȧ(t)) ≥
∫ ∞

0
ȧ2(t, r) r dr + E(Q).

Next observe that the decomposition in Lemma 5.2.5 provides us with a function λ : (0,∞)→

(0,∞) such that

‖a(t, ·)−Q(·/λ(t))‖H ≤ δ(E(a(t), 0)− E(Q))→ 0.

This also implies that

E(~a(t)− (Q(·/λ(t)), 0))→ 0 (6.3.93)

as t→∞. Since t 7→ a(t) is continuous in H for t ∈ [0,∞) it follows from Lemma 5.2.5 that
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λ(t) is continuous on [0,∞). Therefore we have established that

~ψ(t)− ~ϕ(t)− (Q(·/λ(t)), 0)→ 0 in H × L2 as t→∞.

It remains to show that λ(t) = o(t). This follows immediately from the asymptotic vanishing

of ∇t,ra(t) outside the light cone and from (6.3.93). To see this observe that by (6.3.34)

with λ = 1 we have that a(t, r) − (π, 0) = o(1) in H × L2(r ≥ t) as t → ∞. Therefore we

have

E∞t
λ(t)

(Q) = E∞t (π −Q(·/λ(t))) ≤ E(~a(t)− (Q(·/λ(t)), 0)) + o(1)→ 0

as t→∞. But this then implies that t
λ(t)
→∞ as t→∞. This completes the proof.
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[5] P. Bizoń, T. Chmaj, and M. Maliborski. Equivariant wave maps exterior to a ball.

Nonlinearity, 25(5):1299–1309, 2012.

[6] J. Bourgain. Global wellposedness of defocusing critical nonlinear Schrödinger equation

in the radial case. J. Amer. Math. Soc., 12(1):145–171, 1999.

[7] H. Brezis and L. Nirenberg. Degree theory and BMO. I. Compact manifolds without

boundaries. Selecta Math. (N.S.), 1(2):197–263, 1995.

[8] A. Bulut, M. Czubak, D. Li, N. Pavlović, and X. Zhang. Stability and unconditional
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[50] J. Krieger, W. Schlag, and D. Tataru. Renormalization and blow up for charge one

equivariant wave critical wave maps. Invent. Math., 171(3):543–615, 2008.

379



[51] J. Krieger, W. Schlag, and D. Tataru. Renormalization and blow up for the critical

Yang-Mills problem. Adv. Math., 221(5):1445–1521, 2009.

[52] A. Lawrie. The Cauchy problem for wave maps on a curved background. Calc. Var.

Partial Differential Equations, 45(3–4):505–548, 2012.

[53] A. Lawrie and W. Schlag. Scattering for wave maps exterior to a ball. Advances in

Mathematics, 232(1):57–97, 2013.

[54] Fanghua Lin and Changyou Wang. The analysis of harmonic maps and their heat flows.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

[55] Hans Lindblad and Christopher D. Sogge. On existence and scattering with minimal

regularity for semilinear wave equations. J. Funct. Anal., 130(2):357–426, 1995.

[56] N. Manton and P. Sutcliffe. Topological solitons. Cambridge Monographs on Mathe-

matical Physics. Cambridge University Press, Cambridge, 2004.

[57] J. Metcalfe and D. Tataru. Global parametrices and dispersive estimates for variable

coefficient wave equations. Math. Ann., 353(4):1183–1237, 2012.

[58] A. Nahmod, A. Stefanov, and K. Uhlenbeck. On the well-posedness of the wave map

problem in high dimensions. Comm. Anal. Geom., 11(1):49–83, 2003.

[59] Kenji Nakanishi and Wilhelm Schlag. Invariant manifolds and dispersive Hamiltonian

evolution equations. Zurich Lectures in Advanced Mathematics. European Mathematical

Society (EMS), Zürich, 2011.
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