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Abstract

In the Boolean Maximum 2-Satisfiability (MAX 2-SAT) problem, we consider a Boolean
formula F in conjunctive normal form with clauses that contain only two literals each, and
ask for the maximum number of clauses that can be satisfied in F. MAX 2-SAT is an NP-
complete problem, and it has been identified that it undergoes a phase transition where
the hardness shifts from underconstrained to overconstrained. The hardness of MAX 2-SAT
depends on the clause to variable ratio ¢, such that MAX 2-SAT undergoes a phase tran-
sition when ¢ = 1. Meanwhile, there exist approximation algorithms to estimate solutions
to MAX 2-SAT in polynomial time using relaxations. One such relaxation involves the use
of semidefinite programs (SDP), in which the algorithm optimizes over the cone of positive
semidefinite matrices, or matrices with nonnegative eigenvalues. Semidefinite programming
was first incorporated into an approximation algorithm for MAX 2-SAT by Goemans and
Williamson, which produces approximations such that the exact solution is at least 0.87856
times the SDP upper bound. Yet, despite our knowledge of MAX 2-SAT’s behavior over
different regions of constrainedness, less can be said about how the ratio between the exact
solution and the approximated solution, or the approximation ratio, changes over these re-
gions. Thus, we studied how the approximation ratio changes over ¢ to identify if there exists
a phase transition for the approximation ratio. Ultimately, we found that the approximation
ratio approaches 1 as MAX 2-SAT becomes more constrained. In addition, when the SDP
upper bound is restricted such that it cannot produce solutions greater than the number of
clauses in an instance, there is an easy-hard-easy pattern for the approximation ratio. We
also found that when the negation of variables in MAX 2-SAT instances are “unbalanced,”
such that variables are negated with a probability of 32%, the rate of convergence between
the exact solution and upper bound is faster and the approximation ratio is greater for larger
c.

Summary



The Boolean Maximum 2-Satisfiability (MAX 2-SAT) problem is a computational prob-
lem that is NP-complete, meaning it is very difficult to solve. However, it has been found that
the hardness of MAX 2-SAT undergoes a phase transition at a specific critical point, such
that the problem’s hardness shifts from easier to hard. Meanwhile, there are approximation
algorithms that allow for quicker and easier estimations through techniques that reduce the
problem’s constraints, or requirements. One approximation algorithm, in particular, provides
an upper bound solution. Though we understand how MAX 2-SAT behaves as the problem
becomes harder, little is known about the behavior of the ratio between the exact solution
and approximated solution. Hence, in this work, we investigated changes in the ratio between
the exact solution and the approximated upper bound solution. Altogether, we found that
as MAX 2-SAT becomes harder, the approximation algorithm’s upper bounded solution gets
closer to the exact solution.



1 Introduction

Consider a Boolean formula F over n variables with m clauses in conjunctive normal
form. This means that each clause contains literals, which are variables or their negation,
that are in disjunction with each other. In addition, the clauses are in conjunction with each
other, such that all the clauses in F must be satisfied for F to be true. Variables in F can
be assigned truth values through a vector # € {0,1}".

The Boolean 2-Satisfiability (2-SAT) problem considers a formula F with clauses that
contain only two literals each and asks if there exists a variable assignment that satisfies
F. While 2-SAT is solvable in polynomial time, receiving considerable attention is the opti-
mization version, which is NP-complete [I]. For the Boolean Maximum 2-Satisfiability (MAX
2-SAT) problem, rather than considering whether a formula F can be satisfied, we ask for
the maximum number of clauses that can be satisfied.

Cheeseman et al. [2] have determined that several NP-complete problems undergo phase
transitions, which are critical points where the problem’s hardness changes. Specifically,
phase transitions are defined in terms of control parameters and split the space of prob-
lem instances into an underconstrained region, where instances are easier to solve and an
overconstrained region, where instances are harder to solve.

The hardness of MAX 2-SAT, in particular, can be thought of in terms of the clause
to variable ratio c. It was theoretically proven by Coppersmith et al. [3] that MAX 2-SAT
undergoes a phase transition at the critical point where ¢ = 1. When ¢ < 1, the problem
is underconstrained, and it can be expected that nearly all the clauses in a given instance
can be satisfied. More precisely, only ©(1/n) clauses are unsatisfied. This value increases
sharply around ¢ = 1, such that when ¢ > 1, the number of satisfied clauses approaches
((3/4)c + ©(y/c))n. In addition, it was identified, first for 2-SAT by Bollobés et al. [4] and

later for MAX 2-SAT by Coppersmith et al. [3], that there is a scaling window around the



phase transition. This scaling window is a small margin around ¢ = 1 and is within 1£0(n'/?)
inside of which, it is expected that ©(1) of the clauses are unsatisfied. These results were
later justified by a empirical study by Shen and Zhang [5].

Meanwhile, many algorithms have been developed for NP-complete problems, including
MAX 2-SAT, to approximate solutions in polynomial time. These algorithms use relaxation
techniques, which reduce restrictions on the problem and allow for a wider range of potential
solutions. One relaxation technique involves the use of semidefinite programming, mean-
ing the algorithm optimizes over the cone of positive semidefinite matrices—matrices with
nonnegative eigenvalues. Goemans and Williamson [6], in particular, presented in a ground-
breaking paper an algorithm that uses semidefinite relaxations for MAX CUT and MAX
2-SAT. This was the first time that a semidefinite program (SDP) was used for approxima-
tion algorithms and it provided a more precise estimation than previous algorithms, such
that the exact solution is at least 0.87856 times the estimation. Since then, more improved
approximation algorithms have been developed with better estimates. Nonetheless, we still
apply Goemans and Williamson [6]’s SDP for our study.

Though we understand how MAX 2-SAT behaves in the underconstrained region, over-
constrained region, and scaling window around ¢ = 1, little is known about how the ratio
between the exact solution and approximated solution behaves over these regions. There-
fore, we investigate how the ratio between the exact solution and the SDP upper bound
solution of Goemans and Williamson [6]’s algorithm, or the approximation ratio, changes
over c¢. Using code, we randomly generated MAX 2-SAT instances and calculated the aver-
age approximation ratio between the exact solution and SDP upper bound for a range of ¢
values. Ultimately, we aim to determine whether the approximation ratio undergoes a phase
transition, and if so, where that transition occurs.

As such, the paper is structured as follows. In Section 2, we review preliminaries such

as the SDP formulation for Goemans and Williamson [6]’'s MAX 2-SAT approximation al-



gorithm. In Section 3, we discuss our methodology and results. In Section 4, we summarize

our work, draw conclusions from the results, and present avenues for further study.

2 Preliminaries

MAX 2-SAT

Let F be a Boolean formula with n variables {z;}" ;. A Boolean variable z has a value of
either true or false. A variable can be negated —x, so that if x is true, then —x is false, and
vice versa. Variables in F are assigned truth values, which can be represented as a vector
Z € {0,1}", where 0 corresponds to false and 1 corresponds to true. A literal consists of one
variable or its negation. Literals can be placed in disjunction with each other to form clauses,
such that if at least one of the variables in a clause is true, the entire clause is satisfied, or
true. Clauses can be put in conjunction with each other to construct a formula in conjunctive

normal form.

Definition 2.1. A Boolean formula F is in conjunctive normal form if it consists of a

conjunction of clauses, which are disjunctions of literals.

We assume throughout that our formulas are in conjunctive normal form, which can be

seen in Example [2.1]

Example 2.1. A formula F in conjunctive normal form could be:

(x1 V@) A (11 V x2) A (m21 V 22).
In this example, the variables are x1 and x5, and the clauses are (x1V x3), (mx1 V 23), and
(mxy V —xe). For the entire formula to be satisfied, truth values must be assigned to the

variables such that all the clauses are satisfied.

Definition 2.2. The k-Satisfiability (k-SAT) problem is a decision problem that considers a



formula F with clauses that have only £ distinct variables, and asks if there exists a variable

assignment that satisfies F.

Except when k = 2, k-SAT is NP-complete and cannot be solved in polynomial time [I]
unless P = N P. Furthermore, the optimization version of k-SAT, the Boolean Maximum k-
Satisfiability (MAX k-SAT) problem, is also NP-complete and cannot be solved in polynomial

time unless P = NP.

Definition 2.3. MAX k-SAT is an optimization problem that asks for the maximum number

of clauses that can be satisfied in a given formula F. MAX k-SAT is formulated as:

O(F) =, Jmax Z Ci(x1, ..., xn) (1)

{Il}i:16{071} CJG}-
where Cj(z1,...,x,) represents the truth value of clause j in F with variable assignments
equal to {x;}. Here, we optimize over the sum of the truth values of the clauses in F,

constraining x; for (i = 1,...,n) to a value of 0 for false or 1 for true.

Semidefinite Programming Formulation

Approximation algorithms aim to estimate solutions to NP-complete problems, such as
MAX 2-SAT, through techniques that relax the problem’s constraints. Several approximation

algorithms use semidefinite programming as defined in [7].

Definition 2.4. A semidefinite program (SDP) is a type of optimization problem that takes

the form:
max tr(CX)
st te(4,X)=b;, i={0,1,...n} (2)
X =0,

where C', X, and A; (for i = 1,...,n) are symmetric n by n matrices.



Goemans and Williamson [6] were the first to use SDP for an approximation algorithm
for MAX 2-SAT, which we present in this section. Recall that in a given F', we have a set
of Boolean variables {z1, ..., z,}. Let every variable z; (for i = 1,...,n) be associated with a
value y; € {—1,1}. In addition, we introduce a new variable yo, such that when y; = yo, =;
is true.

Now we define v(C) for a given Boolean expression C, such that when v(C) = 1, the
expression is true and when v(C) = 0, the expression is false. Here, v(z;) = % and

v(—2;) =1 —v(x;) = L% So, for an expression (z; V z;):

v(z; V) = 1—uv(-w; A-xy) (3)
= 1 —v(~z)v(—)) (4)
L —yoyi 1 — yoy;
= ]_ —
1
= 1(3 + Yoyi + Yoyj — Yi¥s)- (6)

For other clauses, we still use Equation [0 using —y; for a negated Boolean variable —z;.

With this expression, we write an integer program for MAX 2-SAT:

max Z v(Cy)
CieF (7)

sty e{-1,1} Vie{0,1,...,n}.
Here y; is constrained to only two discrete values: —1 and 1. However, we can relax y;
to be a n-dimensional vector of unit norm wu;. Specifically, u; lies in a n-dimensional sphere

of radius 1, S,. So, we can replace y;y; with the dot product between u; and u;, or u; - ;.

Hence, we can rewrite the program Equation as:

1
max 21[3+u0-ui+uo-u]~ — u; - U]
®
st. u; €S8, Vie{0,1,..,n}.
Finally, we reformulate Equation as a semidefinite program.



Definition 2.5. A matrix A is positive semidefinite if the matrix is symmetric and has
nonnegative eigenvalues. For such a matrix, there exists another matrix B, such that A can

be decomposed as BT B.

Let Y represent a positive semidefinite matrix, such that Y;; = u; - u; and Y;; = 1.
Matrix Y can be decomposed into UTU, where the columns of U correspond to the vectors

{ug, ..., un }. With this, we can complete our SDP:

1

max ZZ[SﬂLYOi—f—YOj—Yi‘]
i<j

U(F) = (¢ Yi=1 Vie{0,1,..n} ®)

Y = 0.

Solving for the objective function of this program provides us with an upper bound
solution for MAX 2-SAT. In particular, Goemans and Williamson [6] proved that the exact

solution for MAX 2-SAT is at least 0.87856 times this upper bound.

3 Methodology and Results

For our tests, we created code in Python to generate random 2-SAT formulas and run
a complete solver for the exact solutions and the approximation algorithm to derive the
upper bound approximation. Specifically, we used the RC2 complete solver from PySAT [g],
a toolkit for SAT solvers. For the approximation algorithm, we implemented it in CVXPY
[9, 0], a package for modeling convex optimization problems that uses SCS [11, 12], a
backend solver for numerical optimization.

We worked with MAX 2-SAT instances with n = 20 for ¢ ranging from 0.1 to 38. For
each ¢, we generated 100 random instances; each instance was inputted into both the com-
plete solver and the approximation algorithm to produce the exact solution, ®(F), and the

(F)

SDP upper bound solution, W(F), respectively. Then the approximation ratio, or T Was

calculated. Afterwards, the average approximation ratio for a given ¢ was determined out of

6



the approximation ratios calculated for the 100 instances.

In Figure [T we show a plot of the average approximation ratio over c. Notably, the
average approximation ratio increases quickly for small ¢, especially when ¢ < 2. Afterwards,
it gradually increases and as ¢ gets larger, the average approximation ratio approaches 1.
This result indicates that as ¢ increases, the SDP upper bound solution gets closer to the

exact solution.

100 A

Average Approximation Ratio
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Figure 1: Average approximation ratios for n = 20. The error bars indicate the standard

deviation of the approximation ratio from the average approximation ratio.

This result is supported by Figure[2] where we plot the average fraction of satisfied clauses
out of the total number of clauses as calculated by the complete solver and approximation
algorithm over ¢ in Figure [2l Note that as ¢ gets larger, both curves converge towards each

other, corresponding to the convergence towards 1 that is seen in Figure [T
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Figure 2: Fraction of satisfied clauses out of the total number of clauses. The blue points
correspond to the average fraction of satisfied clauses as determined by the complete solver,
while the orange points indicate the approximated average fraction of satisfied clauses esti-

mated by the SDP. The error bars indicate the standard deviation from the average.

Both curves are expected to approach a fraction 0.75 as ¢ increases, based on previous
results by Coppersmith et al. [3] and Shen and Zhang [5], which indicated that the expected
fraction of satisfied clauses as ¢ approaches infinity is %. We also prove this in the following

theorem.
Theorem 3.1. The expected number of satisfied clauses approaches %m as c gets larger.

Proof. Recall that C;(z1,...,z,) is the truth value of clause j in F, where C; = 1 when

clause j is satisfied and C; = 0, when clause j is not satisfied. We can express the expected



value of a MAX 2-SAT instance as follows:
E[Y G- (10)
By the linearity of expectation, we can rewi“i:tle the above as:
> E[Cy].
Suppose we fix the variable assignmerit_%or a given F and randomly add a new clause to
F. The variables in the clause has a 50% chance of being negated, so the probability that

a literal is true or false for a given variable assignment is % As such, the probability that a

clause is unsatisfied is equal to the probability that both literals are false, which is (%)2 = %.
Thus, for any variable assignment, the probability that a clause is satisfied is 1 — % = %.
So, we can express the expectation as:
Y E[C] = Y (WP(C;=1)+ (0)P(C; = 0)
j=1 j=1
= 3 1
= 1= -
> w3+ o
7j=1
N
= o
m

Furthermore, Coppersmith et al. [3] reported that the number of satisfied clauses for large
values of ¢ is expected to be ((3/4)c + O(y/c))n. As such, the average fraction of satisfied

clauses from the complete solver align with the line 0.75 + \/% as in Figure .
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Figure 3: Average fraction of satisfied clauses out of the total number of clauses as computed
by the complete solver. The blue points, which indicate the computed average, fit to the red

line corresponding to the graph y = 0.75 + %, where k£ = 0.3816.

Though the approximation algorithm provides an upper bound for the exact solution,
it appears to overestimate more for small ¢, especially ¢ < 2. Up to around ¢ = 2, the
approximation algorithm frequently estimates a higher number of satisfied clauses than there

are clauses themselves in the formula. This can be seen in the following example.

Example 3.1. Consider an instance in whichn =2, m = 1, and the formula F is (x1V 3).

For this formula, the optimization problem becomes:

1
max 1[3 + Y01 + Yoo — Yi4]
V(@1 Va)= st Y;=1 Vie{0,1,..n} (11)
Y =0

10



Solving for this optimization problem produces the following 3 by 3 matriz:

1 05 05
Y=105 1 =05

0.5 =05 1
From this matriz, one can determine that the objective value is (3 4+ 0.5+ 0.5 — (—0.5)] =

1.125, which is greater than m = 1.

We also tested MAX 2-SAT instances with n = 25 variables for a smaller range of ¢
values between 0.1 and 10. We used a smaller range due to computational speed. Notably,
despite having a larger number of variables, the average approximation ratio is roughly the

same over ¢ as seen in Figure

098 1
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094 -

092 1

Average Approximation Ratio

090 -

Figure 4: Average approximation ratio for n = 20 variables and n = 25 variables. MAX
2-SAT instances generated from n = 20 variables are indicated in blue, while instances from

n = 25 are indicated in orange.

Furthermore, we ran tests on MAX 2-SAT such that the maximum SDP upper bound
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was limited to the number of clauses in the generated formulas. In other words, if the SDP
upper bound solution for a generated MAX 2-SAT formula is greater than the number of
clauses in the formula, we set the solution to be equal to the number of clauses in the formula
instead. We ran these tests for ¢ values between 0.1 and 38.

Notice that the approximation ratio in Figure 5| initially decreases around ¢ = 1, in
contrast to the initial increase seen in Figure [I} This decrease continues until around ¢ =
3, from which the average approximation ratio increases and steadily approaches 1. This
could indicate an easy-hard-easy pattern for the approximation ratio. Where the average
approximation ratio is closer to 1, the SDP performs better as it produces solutions that are
closer to exact solution. On the other hand, where the approximation ratio is lower, such as
around ¢ = 3, the SDP performs comparably worse. The approximation ratio also increases

more gradually for ¢ > 3, compared to the rate of increase found in Figure

1000 1
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0.990 -
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Average Approximation Ratio
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Figure 5: Average approximation ratios for n = 20 when the SDP upper bound is restricted

such that estimations cannot exceed the number of clauses in an instance.
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In Figure 6] we also show the fraction of satisfied clauses for the exact solution and SDP
upper bound when the SDP is restricted. Note that for ¢ < 2, the SDP upper bound solution
is limited to at most 1, since it can no longer exceed the number of clauses in F. Thus, the
SDP upper bound matches the exact solution for small ¢ until the exact solution begins to
decrease around ¢ = 1, where MAX 2-SAT undergoes a phase transition, corresponding to
the decrease in the average approximation ratio that was found in Figure [5] However, both

curves in Figure [6] do converge as ¢ increases, particularly after ¢ = 3.
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Figure 6: Fraction of satisfied clauses out of the total number of clauses, when the SDP upper
bound is restricted such that the bound cannot exceed the number of clauses in an instance.
The blue points correspond to the average fraction of satisfied clauses as determined by the
complete solver, while the orange points indicate the average fraction of satisfied clauses in

the SDP estimate. The error bars indicate the standard deviation from the average.

Now, so far, we have produced formulas such that any given literal is the negation of a

13



variable with a probability of 50%. We call these MAX 2-SAT instances “balanced,” since
variables can be negated or not negated with equal probability. However, Austrin [I3] found
that if this probability is decreased to 32%, it is harder to approximate MAX 2-SAT instances.
These instances are “unbalanced.” So, we studied the approximation ratio and fraction of
satisfied clauses for unbalanced MAX 2-SAT compared to balanced MAX 2-SAT.

In Figure [7, we show the average approximation ratio from balanced and unbalanced
MAX 2-SAT instances. Both balanced and unbalanced MAX 2-SAT have similar trends,
with their average approximation ratios approaching 1 for larger values of ¢. However, as

¢ gets larger, the average approximation ratio for unbalanced MAX 2-SAT becomes larger

than that for balanced MAX 2-SAT.
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Figure 7: Average approximation ratios of balanced and unbalanced MAX 2-SAT for n = 20.
The orange points correspond to the approximation ratios for balanced MAX 2-SAT, while
the blue points correspond to the approximation ratios for unbalanced MAX 2-SAT. The

error bars indicate the standard deviation from the average approximation ratio.

Additionally, there are similar trends between balanced and unbalanced MAX 2-SAT with
regards to the fraction of clauses that are satisfied, which are depicted in Figure |8 However,
in unbalanced MAX 2-SAT, a larger fraction of clauses are satisfied. In fact, unbalanced
MAX 2-SAT appears to have a faster rate of convergence than balanced MAX 2-SAT, which

corresponds to the higher average approximation ratios found in Figure [7]
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Figure 8: Fraction of satisfied clauses out of the total number of clauses for balanced and
unbalanced MAX 2-SAT. The orange and blue points correspond to the average fraction of
satisfied clauses as determined by the complete solver for balanced and unbalanced MAX
2-SAT, respectively. The red and green points correspond to the average fraction of satis-
fied clauses from the approximation algorithm for balanced and unbalanced MAX 2-SAT,

respectively. The error bars indicate the standard deviation from the average.

In addition, we ran tests with a larger number of MAX 2-SAT instances, 1000, for ¢
between 0.1 and 10. We used a smaller range of ¢ values due to computational speed. The
results seen in Figure [J] are consistent with the results found in Figure [7] for small ¢, though
the variation in the average approximation ratio is smaller as indicated by the shorter error

bars.

16



#® unbalanced
& balanced

Average Approximation Ratio

= &= = = = =

] W] [Na] [ [N V]

(=] = %} = =] ]
i i i i i i

Figure 9: Average approximation ratios of balanced and unbalanced MAX 2-SAT for n =
20 for ¢ between 0.1 and 10, using 1000 random instances for each c¢. The orange points
correspond to the approximation ratios for balanced MAX 2-SAT, while the blue points
correspond to the approximation ratios for unbalanced MAX 2-SAT. The error bars indicate

the standard deviation from the average approximation ratio.

4 Conclusion

In this paper, we explored how Goemans and Williamson [6]’s algorithm perform over
MAX 2-SAT’s regions of constrainedness through studying the approximation ratio over a
range of values for c¢. We investigated both balanced MAX 2-SAT, in which variables are
negated with a probability of 50% and unbalanced MAX 2-SAT, in which variables are
negated with a probability 32%. We also considered the approximation ratio when the SDP

upper bound is restricted such that it cannot exceed the number of clauses in an instance.
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We found that for both balanced and unbalanced MAX 2-SAT, as ¢ increases, the ap-
proximation ratio approaches 1, which is depicted in Figure [7] This indicates that the that
the SDP upper bound converges towards the exact solution as MAX 2-SAT becomes more
constrained as seen in Figures [2 and [§] Additionally, we found that balanced and unbalanced
MAX 2-SAT have different rates of convergence with regard to the fraction of clauses that are
satisfied as c gets larger. We report that the fraction of clauses that are satisfied in balanced
MAX 2-SAT approaches % as ¢ gets larger for both the exact solution and SDP upper bound,
confirming previous results [3] [5]. Moreover, given that the SDP upper bound and exact so-
lution for unbalanced MAX 2-SAT converges faster than balanced MAX 2-SAT, unbalanced
MAX 2-SAT instances have a larger average approximation ratio than balanced MAX 2-SAT
as ¢ increases. We also identified an easy-hard-easy pattern in the approximation ratio when
we restricted the SDP upper bound, which is seen in Figure [5

In the future, we would like to explore our results further in order to understand the
mechanisms that drive them. In particular, we want to investigate the rate at which the
approximation ratio changes, especially the steep increase for small ¢ that is seen in Fig-
ure [7} Additionally, we would like to investigate the rate of convergence of the fraction of
satisfied clauses between the exact solution and SDP upper bound. In particular, we want
to understand the difference between the convergence between the exact solution and SDP
upper bound of balanced and unbalanced MAX 2-SAT as ¢ increases. Furthermore, we would
like to study the easy-hard-easy pattern identified when the SDP upper bound was restricted

and see if this could indicate a phase transition for the approximation ratio.
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